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ABSTRACT

The covariance transformation is a useful and often necessary

procedure to estimate the fixed effects model. When some

explanatory variables are contemporaneously correlated with the

disturbance term, the covariance transformation can be used in

conjunction with an instrumental variables procedure to obtain a

consistent estimator. This paper describes how to &_rrectly

compute the IV estimator as a two stage least squares estimator.

In addition, I show that if the IV estimator is incorrectly

computed using a two stage least squares approach where the

covariance transformation is not applied until the second stage,

the resulting estimator is not in general consistent.



The use of panel data in economics has become more widespread

in recent years (Hsiao (1986)). One model that is often adopted

to take into account the heterogeneity of the cross-sectional units

in the panel is the fixed effects model. When the number of cross-

sectional units is large, it is computationally difficult, if not

impossible, to compute the ordinary least squares (OLS) estimates

using the standard formula.

overcome by the covariance

obtain the 0I.S estimates

This computational problem has been

transformation, which enables one to

using

Although descriptions of how to use the covariance transformation

to estimate the fixed effects model by OLS are widely available,

I am not aware of a corresponding treatment of how to use the

standard computer &kages.

transformation in conjunction with an instrumental variables (IV)

procedure. The purpose of this note is to describe how to use the

covariance transformation to obtain the IV estimates for the fixed

effects model when the model contains explanatory variables that

are contemporaneously correlated with the disturbance term. In

particular, I show that when the IV estimator is computed using a

two stage least squares approach, the covariance transformation

should be used in the first stage as well as in the second. If the

transformation is used only in the second stage, the

not be in general consistent.

I consider the following fixed effects model

estimator will

Yit = oi + zxitk& +eit i = 1,2,...,H;t = 1,2 ,...I T
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where the ai's are the fixed effects which are intended to capture

the (time-invariant) heterogeneity of the H cross-sectional units

in the sample, the tit's are assumed to be identically a6d

independently distributed random variables with zero mean and

constant variance ~7'. In addition, the first K, of the K

explanatory variables are assumed to be contemporaneously

correlated with the disturbance term, i.e., Exitkeit # 0 for

k = 1,2,...,K,; the remaining K, of the explanatory variables are
\

exogenous. For concreteness, I will assume that the sample

consists of a panel of H households observed over T periods.

If the observations are ordered first by household and then

by time, we can rewrite (1) in matrix notation as

Y = Da + x/3 + Q (2)

where D is a (HT x H) matrix of household dummy variables which is

given by D = I, @J,, with I, being a (H x H) identity matrix and

J, being a (T x 1) vector of ones. The dimensions of Y and E are

(HT x 1) and the dimension of X is (HT x K). Let X = [X, X2],

W = [D X], and N = HT, where X, and X2 are (N x K,) and (N x K2)

respectively.

I begin by considering the OLS estimator to illustrate the

covariance transformation. The OLS estimator of (a1 /3')' is given

by (W'W)-'W'Y. When the number of households is large, it is

difficult, if not impossible, to invert (W'W), a matrix of order

(H + K). In these instances, the OLS estimate of /3 is obtained by
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using the covariance transformation to transform the model and then

estimating the transformed model by least squares. Specifically,

let M, = I, - D(DVD)-'D1 be an idempotent matrix (i.e., s = 5%)

which transforms observations on Y and X into deviations from their

respective household means. For example, the vector Y* = k&Y has

a typical element yFt = yit - pi, where pi = (l/T)Cyi,. One can

transform the model (2) by premultiplying by M, to obtain

Since D is orthogonal to s, i.e. SD = 0, (3) simplifies to

Y* = X.8 + E’ (4)

The OLS estimate of fl, b, can be obtained by regressing Y* on X8,

i.e.,

b = (flXj-'X*ly*
(5)

= (X’q)X)  -‘(x’q)Y) (6)

It is well known that this estimate is identical to the last K

elements of (WlW)-'W'Y. Thus, the covariance transformation simply

enables one to obtain the OLS estimate of B by a computationally

convenient method.

Given the assumption that X, is contemporaneously correlated

3



with (E, the OIS estimator of /3 is not consistent. A common remedy

to this problem is to use instrumental variables. Thus, assume

that there exists a (N x R) matrix (R L K) of instruments, 2 = [Z,

X,11 for X such that' plim(l/H)(Z'sc)  = 0, plim(l/H)(Z'qZ) is a

non-singular matrix of finite constants, and plim(l/H) (Z'P$X) is a

matrix of finite constants of full column rank. Let 6' = (al @')I.

The IV estimator of 6, d'", is given by (see Bowden and Turkington

(1884))
.

d'" = (W'P,W)"W'P,Y (7)

where Q = [D Z] is a matrix of full column rank and P, = Q(Q'Q)-'Ql

is an idempotent matrix. Let W = P,W. Since WlW = W'PpP,W =W'PoW,

we have

d'" = ($W)-'w^,y (8)

The version of the IV estimator given by (8) shows that it can be

obtained as a two stage least squares estimator: W is obtained in

stage one as the fitted values of W based on a regression of W on

Q; Y is regressed on k in stage two, thereby yielding d'".

When H is large, it will be computationally difficult to

obtain the IV estimates from either (7) or. (8)

involves inverting a matrix of order (H + K). Thus,

to use the covariance transformation to reduce the

the matrices that need to be inverted. I will
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approaches to applying the covariance transformation. The first

yields an estimate of /3 that is identical to the one given in (7)

or (8). The second yields an estimator that differs from b'", and

moreover, is an inconsistent estimator of /3. I consider this

second approach because, as I will discuss below, it corresponds

to an error that is often made in obtaining the two stage least

squares estimates of the parameters of simultaneous equation

models.

The correct way of using the covariance transformition  to

compute the IV estimator as a two stage least squares estimator is

to apply it at both stages. To see this, I begin by examining the

regression equations for the first stage. Since W = [D X, X2] and

Q = [D Z, $1, one obtains W by running the following regressions:

D = Dr,, + Z,a,, + Xz"cQ + Eg (9)

x, = Dr,,, + ZP,, + xz"12 + E~ (10)

x2 = m,, + 7921 + x2"22 + E2 (11)

It is clear from (9) and (11) that D = D and i2 = X2. Applying the

results for the inverse of a partitioned matrix to (8), one can

show that the IV estimator of /3 is given by

(12)



This implies that b'" is obtained by regressing Y* on i* = I$,;

= [M& l$,Xz], where I+& is obtained as follows. Since D is

orthogonal to s, (10) implies that

where g,, and srz are the OLS estimates of r,, and T,~, which can be

easily computed by applying the covariance transformation to (10)

and estimating the transformed model by least squares. Given. the

assumptions made above, b'" is a consistent estimator of p. (See

Proposition 1 in the Appendix.)

In contrast, an inconsistant estimator results when the

following two stage least squares approach is used. In the first

stage regression, the fitted values of X, are obtained by

regressing X, on Z = [Z, X,], yielding 2, = ZG, where ;b = (ZIZ)W'ZIX,.

In the second stage, Y* is regressed on k* = M$ = [M& %X2]. This

is equivalent to obtaining an estimator of j3 by using X in place

of i in (12),i.e.,

g= (i+i) -'(i'M()Y) (14)

In the Appendix (see Proposition 2), I show that the resulting

estimator is not in general

The inconsistency of b

consistent.*

arises because X, is not computed using

all exogenous variables (i.e., Q), while the "fitted values" of D

and X2 (which are equal to their actual values) are implicitly
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based on all components of Q including D. This error is

essentially the same as one that is often made in estimating

simultaneous equation models, where many researchers omit some of

the predeterminedvariables in the first stage regressions (Hausman

(1983) and Bowden and Turkington (1984)).

In summary, I have described how to use the covariance

transformation to correctly compute the IV estimator of the fixed

effects model as a two stage least squares estimator. In

particular, I showed that the transformation should be used>in.both

stages.



APPENDIX

Proposition 1. If plim(l/H)(Z'qe) = 0; plim(l/H)(Z'qZ) = B, a non-

singular matrix of finite constants: and plim(l/H)(Z*qX) = C, a

matrix of finite constants of full column rank, then plim b'" = p.

Proof. Using equation (12) in the text and the definition of 2,

we have

b I V
=  ((X9&Z) (Z’~Z)“(Z’~X) p

.

.

x( (X’SZ) (z’qz)-‘(z’~x)p  +  (X’M()Z)  (Z’~Z)-‘(z’y-#)  } (Al)

= p + ((X’l$Z) (z’\z)-‘(z’~x, )-‘(x’qz) (Z’q)ZPZ’q)E (A2 )

The assumptions made above imply that

plim b'" = j3 + (C'B-'C)-'C'B-'0

=B

(A3)

(A4)

Proposition 2. In addition to the assumptions of Proposition 1,

suppose that plim(l/H)(Z'Z) = F, a non-singular matrix of finite

constants and plim(l/H)(Z'X) = G, a matrix of finite constants of

full column rank. Then plim 6 # /3.

Proof. Using equation (14) of the text and the definition of 2,

we have



ii = (x~z(z~z)-‘(z~M,z)-‘(z’z)-‘(z’x)  1-l

x( (X’Z) (z~z)-‘(z~MDx)p + (X’Z) (ZlZ)_‘(Zy)e)  )

The assumptions made above imply that

plim 6 = (GtF~'B-'F-'G)~'(GtF"C~  + G'F-'0)

= (G'F-'B“F-'G)-'(G'F-'C)@

(A51

(A61

(A7)

#P (A81



FOOTNOTES

'Since most panel data sets are characterized by many cross-

sectional units observed over a small number of time periods, I

state consistency properties for fixed T and H + 00. Consequently,

all probability limits (plims) are defined for H + Q).

*In addition to the assumptions made in the text, a set of

sufficient conditions for the inconsistency of b areL (i)

plim(l/H)(Z'Z)  is a nonsingular matrix of finite constants and (ii)

plim(l/H)(Z'X)  is a matrix of finite constants of full column rank.
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