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Institute of Mathematics and Computer Science

Wrocław University of Technology, Poland
sebastian.orzel@pwr.wroc.pl, agnieszka.wylomanska@pwr.wroc.pl

February 1, 2011

Abstract

In the classical analysis many models used to real data description are
based on the standard Brownian diffusion-type processes. However, some
real data exhibit characteristic periods of constant values. In such cases
the popular systems seem not to be applicable. Therefore we propose an
alternative approach, based on the combination of the popular arithmetic
Brownian motion and tempered stable subordinator. The probability density
function of the proposed model can be described by a Fokker-Planck type
equation and therefore it has many similar properties as the popular arith-
metic Brownian motion. In this paper we propose the estimation procedure
for the considered tempered stable subdiffusive arithmetic Brownian motion
and calibrate the analyzed process to the real financial data.
Key words: Subdiffusion Tempered stable distribution Calibration

1 Introduction

Anomalous behavior characterized through constant time periods (called also trap-
ping events) is observed in variety of physical systems, including charge carrier
transport in amorphous semiconductors [29, 28, 25], transport in micelles [24], in-
tracellular transport [4], motion of mRNA molecules inside E. coli cells [9], for a
review including discussion of different applications see[5]. This specific behav-
ior is also typical for some financial data especially corresponding to interest rates
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and stock prices, for which the constant time periods occur when the liquidity of
the analyzed assets is low [12]. Description and modeling ofsuch systems require
the appropriate mathematical tools that correspond to fundamental physical laws
and capture the most significant properties of the phenomena. Such tools as gen-
eralized Langevin equations, fractional Fokker-Planck-type equations (FFPEs) or
fractional Brownian motion are well-known and usually applicable to anomalous
diffusions, [5, 31, 21, 16].

In the domain of subdiffusion the typical approach is based on continuous
time random walk (CTRW), [29, 22], and subordinated Lévy processes as a limit
in distribution of CTRW, [20, 17]. The key issue in the framework of CTRW as
well as in subordination technique is the waiting-times distribution corresponding
to periods of constant values in which a test particle is immobilized. Let us note,
that a family of nonnegative infinitely divisible (ID) distributions is enough rich to
capture waiting-times distributions appearing in real physical systems, [18]. In the
class of the ID distributions of the special importance are one-sided Ĺevy stable,
Pareto, gamma, Mittag-Leffler, and tempered stable distributions.

Especially tempered stable distributions are the most appropriate in modeling
of waiting-times in intermediate case between sub and normal diffusion, [32, 8].
Moreover, it is worth noticing that the tempered stable distributions have many
interesting properties (i.e. finite moments), but simultaneously they remain close
to the purelyα-stable distribution, [27]. The tempered stable distributions have
found many practical applications for instance in finance [15, 14], biology [11],
physics to description of anomalous diffusion and relaxation phenomena [32, 8],
turbulence [7] and in plasma physics [13], see also [30, 6]. Some physical systems
that also demonstrate subdiffusive behavior at short time,and normal (Gaussian)
at long times are analyzed in [3, 26].

In this paper we consider the model based on the combination of the classi-
cal arithmetic Brownian motion (ABM) and tempered stable subordinator. Let us
mention that the extended model based on subordinated ABM with general ID
subordinator was recently applied to option pricing, [19].The considered sub-
diffusive ABM with tempered stable waiting-times capture the aforementioned
property, i.e. it demonstrates the subdiffusive behavior for small time scale and
Gaussian for large times. Moreover, it is based on the classical ABM therefore it
is not complicated from the theoretical point of view. For these reasons, the pre-
sented practical methods of data analysis, especially parameters estimation, can
be easily applied to the real data. In this paper we overview the main properties
of the considered ABM with tempered stable waiting-times. Asa main result we
present in details the estimation procedure for the considered process and addi-
tionally describe the simple method of distinction betweenstrictly α−stable and
tempered stable distribution of the subordinator. In orderto demonstrate theoreti-
cal results we calibrate the subdiffusive ABM with tempered stable waiting-times
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to the real financial data. The similar considerations for Brownian diffusion with
purelyα-stable subordinator are presented in [12, 23].

The paper is scheduled as follows. In Section 2, we recall theconstruction of
the subordinated ABM with tempered stable waiting-times. The estimation proce-
dure for considered process is presented in details in Section 3. The practical ap-
plications of theoretical results are presented in Section4 to the real financial data,
i.e. United States Government Bonds (Inflation-Indexed3.875%, Yield) from the
period 09.04.1999-03.09.2008. Last Section contains conclusions.

2 The arithmetic Brownian motion with tempered
stable waiting-times

Let us consider the arithmetic Brownian motion with temperedstable waiting-
times, i.e. process{Y (t)} defined as follows [18]:

Y (t) = X(Sα,λ,c(t)), (2.1)

where{X(τ)} is ABM with parametersµ andσ, represented by the following
stochastic differential equation:

dX(τ) = µdτ + σdB(τ). (2.2)

The inverse subordinator{Sα,λ,c(t)}, called inverse tempered stable subordinator,
is defined as follows, [18, 8]:

Sα,λ,c(t) = inf{τ > 0 : Tα,λ,c(t) > τ}, (2.3)

where{Tα,λ,c(t)} is a Lévy process with tempered stable increments and Laplace
transform given by, [32]:

E
(

e−uTα,λ,c(t)
)

= e−tΨ(u) = e−tc((λ+u)α−λα), (2.4)

whereλ > 0, 0 < α < 1, c > 0. Whenλ = 0, then the Ĺevy process{Tα,0,c(t)}
becomes simplyα−stable with the scale parameterc1/α. We assume the pro-
cesses{X(τ)} and{Tα,λ,c(t)} are independent. The probability density function
of {Tα,λ,c(t)} can be expressed in the following form:

p̃α,λ,c(x, t) = e−λx+cλαtpα,σ,1,0(x, t), (2.5)

whereσ =
(

c ∗ cosπα
2

)1/α
andpα,σ,β,µ(x, t) is a probability density function of the

α-stable Ĺevy motion with the index of stabilityα, scale parameterσ, skewness
β and shiftµ, [1].
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On Fig. 1 we present an exemplary sample path of the inverse tempered stable
subordinatorSα,λ,c(t), the arithmetic Brownian motionX(τ) and the tempered
subdiffusion processY (t) = X(Sα,λ,c(t)). Let us recall, that the constant periods
of trajectories of subdiffusion process{Y (t)} correspond to the waiting-times that
are distributed according to the tempered stable law.
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Figure 1: An exemplary sample path of the inverse tempered stable subordina-
tor Sα,λ,c(t) (top panel), the classical arithmetic Brownian motionX(τ) (middle
panel) and the subdiffusion processY (t) = X(Sα,λ,c(t)) (bottom panel). The pa-
rameters of the subdiffusive process are:α = 0.85, λ = 0.05, c = 0.05, µ = 1
andσ = 5.

Main properties and the simulation procedure for the process {Y (t)} one can
find in [18, 8, 19]. We only mention here that the probability density function
of the process{Y (t)} satisfies the following generalized fractional Fokker-Planck
equation:

δw(x, t)

δt
=

[

−µ
δ

δx
+

σ2

2

δ2

δx2

]

Φw(x, t), (2.6)

where the operatorΦ is defined as:

Φf(t) =
d

dt

∫ t

0

M(t− y)f(y)dy.

According to [18], the memory kernelM(t) is defined via its Laplace transform
∫

∞

0

e−utM(t)dt =
1

Ψ(u)
=

1

c((λ+ u)α − λα)
. (2.7)
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Let us point out that in caseλ → 0 the operatorΦ is proportional to the fractional
Riemann-Liouville derivative, therefore (2.6) tends to fractional Fokker-Planck
equation. Using formula (2.7) we can obtain the form of the memory kernelM(t):

M(t) =
e−λttα−1

c
Eα,α((λt)

α), (2.8)

where

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)

is a generalized Mittag-Leffler function, [10].

3 Estimation procedure

The estimation procedure for parameters of the ABM with tempered stable waiting-
times is based on the fact that lengths of constant time periods observed in a real
data set are realizations of independent identically distributed (i.i.d.) random vari-
ables that are distributed according to the tempered stablelaw and the process
that arises after removing the trapping events is the classical ABM. For detailed
explanation of this algorithm in case of purelyα-stable subordinator see [12, 23].
To estimate the parameters we apply the following scheme:

(a) From the data setY1, Y2, ..., Yn determine the length of the constant time pe-
riodsT1, ..., Tk that constitute i.i.d. random variables from tempered stable
distribution. For simplicity we assume the parameterc = 1. Therefore the
Laplace transform of the random variableTi is given by

E
(

e−uTi
)

= eλ
α
−(λ+u)α , i = 1, 2, ..., k.

(b) Estimate theα andλ parameters from the sampleT1, ..., Tk obtained in point
(a). This can be done by using the method of moments that in this case
proceeds as follows.

Let us consider the cumulant generating functionK that is defined as:

K(u) = log
(

EeuTi
)

= λα − (λ− u)α.

The cumulantscm = E(Ti − c1)
m (for eachi = 1, 2, ..., k andm = 1, 2, 3)

we can obtain computingm−th derivative ofK function in pointu = 0:

c1 = E(Ti) = αλα−1,

c2 = V ar(Ti) = −α(α− 1)λα−2,

5



c3 = E(Ti − c1)
3 = α(α− 1)(α− 2)λα−3.

Therefore we obtain

α = 1 +
c22

c22 − c1c3
, λ =

(1− α)c1
c2

=
c1c2

c1c3 − c22
.

Using method of moments (i.e. replacement of the theoretical central mo-
mentscm by the empirical ones) we obtain the formulas for estimators:

α̂ = 1 +
ĉ22

ĉ22 − ĉ1ĉ3
, λ̂ =

ĉ1ĉ2

ĉ1ĉ3 − ĉ22
,

whereĉm is an empirical centralm−th moment (m = 1, 2, 3) calculated on
the basis of the vector(T1, T2, ..., Tk), i.e.

ĉ1 =
1

k

k
∑

i=1

Ti, ĉm =
1

k

k
∑

i=1

(Ti − ĉ1)
m for m = 2, 3.

(c) After removing the constant time periods we obtain the realization of the clas-
sical ABM {X(τ)}. The parametersµ andσ of the ABM we estimate by
using discrete version of equation (2.2), i.e.

X(τ)−X(τ − 1) = µ+ σZ(τ), τ = 1, 2, ...

where{Z(τ)} is a sequence of i.i.d. random variables with standard normal
distribution. Therefore the estimatorµ̂ is equal to the mean of the differ-
enced (with order1) series{X(τ)} while the estimator̂σ is equal to the em-
pirical standard deviation of the differenced (with order1) series{X(τ)}.

4 Applications

In this Section we consider the real data set of United StatesGovernment Bonds
(Inflation-Indexed3.875%, Yield) expressed in USD from the period 09.04.1999-
03.09.2008 (2350 observations). Let us notice, the data demonstrate characteristic
trap-behavior typical for the subdiffusive processes, seeFig. 2.

In the first step of our analysis we divide considered data into two sets: the first
one represents lengths of the observed trapping events (DATA1), while the second
describes the data after removing the constant time periods(DATA2). According
to the theoretical results, DATA1 constitute the length of constant time periods of
the inverse subordinator, that is a significant component ofthe data, since lengths
of traps have large values and number of trapping events is 436, see Fig. 3. For
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Figure 2: The examined real data set of United States Government Bonds
(Inflation-Indexed3.875%, Yield) expressed in USD. The considered period is
09.04.1999-03.09.2008. The data demonstrate characteristic trap-behavior typi-
cal for the subdiffusive processes.
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detailed description of the algorithm, see [23]. Moreover,tail behavior of DATA2
(without constant time periods) is close to the Gaussian case because the estimated
parameter of stability, so called tail index, calculated byusing the McCulloch,
regression and moments methods, [2], is close to2. For these reasons, for the
considered financial data we propose to use the subdiffusibeABM.
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Figure 3: The lengths of constant time periods (DATA1). Constant periods are
defined here as a number of days in which the changes of the bondprices are
smaller than 0.01.

Firstly, let us examine the hypothesis, that the purelyα−stable distribution
(i.e. tempered stable withλ = 0) better describes waiting-times behavior than the
tempered stable one. To this end, from DATA1 we estimate, by using the McCul-
loch, regression and moments methods, theα parameter under the assumption that
lengths of traps constitute i.i.d. random variables from strictly α−stable distribu-
tion. All the estimation methods return̂α > 1, that contradicts the main assump-
tion about the purelyα-stable distribution of the subordinator (in this case theα

parameter should be between0 and1). Therefore, as an alternative, we propose
the tempered stable distribution. By using the estimation procedure presented in
the previous Section we obtain the following values ofα andλ estimators:

α̂ = 0.6786, λ̂ = 0.2203.

According to our assumption, DATA2 (that arises after removing the trap-
ping events) represents the classical ABM. Therefore, the estimatorsµ̂ andσ̂ we
calculate as the empirical mean and the standard deviation,respectively, of the
differenced (with order1) series DATA2. We obtain the following values:

µ̂ = −0.001, σ̂ = 0.0443.
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5 Conclusions

In this paper we have examined the subdiffusive ABM with tempered stable waiting-
times that is the most appropriate in intermediate case between sub- and normal
diffusion. As a main result we have presented the estimationscheme for param-
eters of the considered process. To distinguish between models with purelyα-
stable subordinator and tempered stable one, we have proposed a simple method
based on analysis of the estimated (from data correspondingto constant time pe-
riods) index of stability. In order to present the motivation of the paper and the
theoretical results we have calibrated the subordinated ABMwith tempered stable
subordinator to the real financial data.
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