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Abstract

In the classical analysis many models used to real data description are
based on the standard Brownian diffusion-type processes. Hovsorae
real data exhibit characteristic periods of constant values. In sws#BcCa
the popular systems seem not to be applicable. Therefore we propose an
alternative approach, based on the combination of the popular arithmetic
Brownian motion and tempered stable subordinator. The probability density
function of the proposed model can be described by a Fokker-Plapek ty
equation and therefore it has many similar properties as the popular arith-
metic Brownian motion. In this paper we propose the estimation procedure
for the considered tempered stable subdiffusive arithmetic Brownian motion
and calibrate the analyzed process to the real financial data.
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1 Introduction

Anomalous behavior characterized through constant timeqi®(called also trap-
ping events) is observed in variety of physical systemduding charge carrier
transport in amorphous semiconductors [29, 28, 25], tranmapmicelles [24], in-
tracellular transport [4], motion of MRNA molecules insidecgli cells [9], for a
review including discussion of different applications §&le This specific behav-
ior is also typical for some financial data especially cquoggling to interest rates



and stock prices, for which the constant time periods ocdwenthe liquidity of
the analyzed assets is low [12]. Description and modelirspioh systems require
the appropriate mathematical tools that correspond toduonahtal physical laws
and capture the most significant properties of the phenonfameh tools as gen-
eralized Langevin equations, fractional Fokker-Plangetequations (FFPES) or
fractional Brownian motion are well-known and usually apable to anomalous
diffusions, [5, 31, 21, 16].

In the domain of subdiffusion the typical approach is basedcontinuous
time random walk (CTRW), [29, 22], and subordinatezl/lz processes as a limit
in distribution of CTRW, [20, 17]. The key issue in the framewof CTRW as
well as in subordination technique is the waiting-timesriistion corresponding
to periods of constant values in which a test particle is iroiiced. Let us note,
that a family of nonnegative infinitely divisible (ID) digbutions is enough rich to
capture waiting-times distributions appearing in realgpbtgl systems, [18]. In the
class of the ID distributions of the special importance are-sided levy stable,
Pareto, gamma, Mittag-Leffler, and tempered stable digidbs.

Especially tempered stable distributions are the mostagp@te in modeling
of waiting-times in intermediate case between sub and nadiffasion, [32, 8].
Moreover, it is worth noticing that the tempered stablerdistions have many
interesting properties (i.e. finite moments), but simwtausly they remain close
to the purelya-stable distribution, [27]. The tempered stable distidmng have
found many practical applications for instance in financg f14], biology [11],
physics to description of anomalous diffusion and relaaphenomena [32, 8],
turbulence [7] and in plasma physics [13], see also [30, 6m&physical systems
that also demonstrate subdiffusive behavior at short tand,normal (Gaussian)
at long times are analyzed in [3, 26].

In this paper we consider the model based on the combinafitmecclassi-
cal arithmetic Brownian motion (ABM) and tempered stable sdimator. Let us
mention that the extended model based on subordinated ABNl g@heral 1D
subordinator was recently applied to option pricing, [19he considered sub-
diffusive ABM with tempered stable waiting-times capture #forementioned
property, i.e. it demonstrates the subdiffusive behaworsimall time scale and
Gaussian for large times. Moreover, it is based on the dak8BM therefore it
is not complicated from the theoretical point of view. Foesk reasons, the pre-
sented practical methods of data analysis, especiallypes estimation, can
be easily applied to the real data. In this paper we overviewmain properties
of the considered ABM with tempered stable waiting-times.aAsain result we
present in details the estimation procedure for the consitiprocess and addi-
tionally describe the simple method of distinction betwsgictly a—stable and
tempered stable distribution of the subordinator. In otdefemonstrate theoreti-
cal results we calibrate the subdiffusive ABM with temper&abk waiting-times
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to the real financial data. The similar considerations fomBrian diffusion with
purely a-stable subordinator are presented in [12, 23].

The paper is scheduled as follows. In Section 2, we recaltdmstruction of
the subordinated ABM with tempered stable waiting-timese &stimation proce-
dure for considered process is presented in details in@e8ti The practical ap-
plications of theoretical results are presented in Seetimthe real financial data,
i.e. United States Government Bonds (Inflation-Index&d5%, Yield) from the
period 09.04.1999-03.09.2008. Last Section containslasions.

2 The arithmetic Brownian motion with tempered
stable waiting-times

Let us consider the arithmetic Brownian motion with tempestable waiting-
times, i.e. proces§Y (¢)} defined as follows [18]:

Y (t) = X(Sanc(t)), (2.1)

where{X (1)} is ABM with parameterg: and o, represented by the following
stochastic differential equation:

dX (1) = pdr + odB(T). (2.2)

The inverse subordinatdiS,, , .(t)}, called inverse tempered stable subordinator,
is defined as follows, [18, 8]:

Sanc(t) =inf{rT > 0: T, .(t) > 7}, (2.3)

where{T, ,.(t)} is a Lévy process with tempered stable increments and Laplace
transform given by, [32]:

E (e Tane®) = om0 — gteOtu)? ) (2.4)

whereX > 0,0 < a < 1, ¢ > 0. When\ = 0, then the vy process{T, o.(t)}
becomes simplyy—stable with the scale parametér®. We assume the pro-
cessed X ()} and{T, ,.(t)} are independent. The probability density function
of {T...(t)} can be expressed in the following form:

ﬁa,k,e(xa t) - e_Ax—i_C)\atpa,a',l,O(xa t)7 (25)

wheres = (¢ * cos™2) Y andpa o.5..(x, 1) is a probability density function of the

a-stable vy motion with the index of stabilityy, scale parameter, skewness
£ and shiftu, [1].



On Fig. 1 we present an exemplary sample path of the invengeseed stable
subordinatorsS,, , .(t), the arithmetic Brownian motiotk (7) and the tempered
subdiffusion proces¥ (t) = X (S,,.(t)). Let us recall, that the constant periods
of trajectories of subdiffusion proce§¥ (¢) } correspond to the waiting-times that
are distributed according to the tempered stable law.
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Figure 1. An exemplary sample path of the inverse temper@desisubordina-
tor S, .(t) (top panel), the classical arithmetic Brownian moti&itr) (middle
panel) and the subdiffusion processt) = X (S,..(t)) (bottom panel). The pa-
rameters of the subdiffusive process atie= 0.85, A = 0.05, ¢ = 0.05, p = 1
ando = 5.

Main properties and the simulation procedure for the pr@¢&3¢)} one can
find in [18, 8, 19]. We only mention here that the probabiligndity function
of the procesg$Y (t)} satisfies the following generalized fractional Fokkerrela
equation:

dw(x,t) § o

where the operatab is defined as:

Mt —vy)f(y)dy.
0= [

According to [18], the memory kernél/ (¢) is defined via its Laplace transform

< R 1
/0 MO = G = 2.7)
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Let us point out that in case — 0 the operato is proportional to the fractional
Riemann-Liouville derivative, therefore (2.6) tends toctranal Fokker-Planck
equation. Using formula (2.7) we can obtain the form of thenoey kernelM (¢):

e—Atta—l N
M) = ———Eaa((30)"), (2.8)
where
Fes®) = 2 Fak v )

is a generalized Mittag-Leffler function, [10].

3 Estimation procedure

The estimation procedure for parameters of the ABM with tenegbstable waiting-
times is based on the fact that lengths of constant time gewbserved in a real
data set are realizations of independent identicallyitisteed (i.i.d.) random vari-
ables that are distributed according to the tempered stabeand the process
that arises after removing the trapping events is the dak8iBM. For detailed
explanation of this algorithm in case of purelystable subordinator see [12, 23].
To estimate the parameters we apply the following scheme:

(a) From the data seét7, Y5, ..., Y,, determine the length of the constant time pe-
riods Ty, ..., T), that constitute i.i.d. random variables from temperedistab
distribution. For simplicity we assume the parameter 1. Therefore the
Laplace transform of the random varialilgis given by

E (e_“Ti) = MO =1 2 Lk

(b) Estimate thex and\ parameters from the samglg, ..., T), obtained in point
(a). This can be done by using the method of moments that snctise
proceeds as follows.

Let us consider the cumulant generating functiothat is defined as:
K(u) = log (Ee"™) = X\* — (A — u)™.

The cumulants,,, = E(T; — ¢;)™ (foreachi = 1,2,...,k andm = 1,2, 3)
we can obtain computing.—th derivative of K function in pointu = 0:

1 = E(T‘z) = Oé)\a_1>

co = Var(T}) = —a(a — 1)A*2,
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cs = B(T; — 1) = afa — 1)(a — 2)A*73,
Therefore we obtain

2
3 \ = (1—-a)gy _ao
3 —cies’ Co cie3 — 3

a=1+

Using method of moments (i.e. replacement of the theolet&matral mo-

mentsc,, by the empirical ones) we obtain the formulas for estimators
a=1+5"——, A= %7

C5 — C1C3 C1C3 — G4

wherec,, is an empirical centrah—th moment (n = 1, 2, 3) calculated on

the basis of the vectafly, 75, ..., T}), i.e.

k k

.1 s 1 5™

c1:EZ T, Cm:EE :(Ti—cl) form = 2,3.
i—1 i=1

(c) After removing the constant time periods we obtain the ra#ibn of the clas-
sical ABM {X(7)}. The parametergs ando of the ABM we estimate by
using discrete version of equation (2.2), i.e.

X(r)=X(r—=1)=p+0Z(1), T=1,2, ...

where{Z(7)} is a sequence of i.i.d. random variables with standard norma
distribution. Therefore the estimatgris equal to the mean of the differ-
enced (with ordet) series{ X (7)} while the estimatoé is equal to the em-
pirical standard deviation of the differenced (with ordeseries{ X (7)}.

4 Applications

In this Section we consider the real data set of United Stataernment Bonds
(Inflation-Indexed.875%, Yield) expressed in USD from the period 09.04.1999-
03.09.2008%350 observations). Let us notice, the data demonstrate clesistat
trap-behavior typical for the subdiffusive processes,FSge2.

In the first step of our analysis we divide considered datatiub sets: the first
one represents lengths of the observed trapping eventsADAWhile the second
describes the data after removing the constant time pe(i@&EA2). According
to the theoretical results, DATAL constitute the length afistant time periods of
the inverse subordinator, that is a significant componettt@tiata, since lengths
of traps have large values and number of trapping eventsass&® Fig. 3. For
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Figure 2. The examined real data set of United States GowarhrBonds
(Inflation-Indexed3.875%, Yield) expressed in USD. The considered period is
09.04.1999-03.09.2008. The data demonstrate chardictérap-behavior typi-
cal for the subdiffusive processes.



detailed description of the algorithm, see [23]. Moreotait,behavior of DATA2
(without constant time periods) is close to the Gaussiaa lbasause the estimated
parameter of stability, so called tail index, calculatedusyng the McCulloch,
regression and moments methods, [2], is close.td-or these reasons, for the
considered financial data we propose to use the subdiffédihé.
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Figure 3: The lengths of constant time periods (DATA1). Cantperiods are
defined here as a number of days in which the changes of the fraces are
smaller than 0.01.
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Firstly, let us examine the hypothesis, that the purelystable distribution
(i.e. tempered stable with = 0) better describes waiting-times behavior than the
tempered stable one. To this end, from DATA1 we estimate doyguthe McCul-
loch, regression and moments methodstiparameter under the assumption that
lengths of traps constitute i.i.d. random variables frontgy o—stable distribu-
tion. All the estimation methods return> 1, that contradicts the main assump-
tion about the purely-stable distribution of the subordinator (in this case dhe
parameter should be betweemnd1). Therefore, as an alternative, we propose
the tempered stable distribution. By using the estimati@tg@uure presented in
the previous Section we obtain the following valuesv@nd\ estimators:

& = 0.6786, \ = 0.2203.

According to our assumption, DATA2 (that arises after remguhe trap-
ping events) represents the classical ABM. Therefore, themators; ands we
calculate as the empirical mean and the standard deviaggpgectively, of the
differenced (with ordet) series DATA2. We obtain the following values:

fi = —0.001, 6 = 0.0443.
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5 Conclusions

In this paper we have examined the subdiffusive ABM with teragestable waiting-
times that is the most appropriate in intermediate casedmiwgub- and normal
diffusion. As a main result we have presented the estimatotieme for param-
eters of the considered process. To distinguish betweerelsedth purelya-
stable subordinator and tempered stable one, we have gdposmple method
based on analysis of the estimated (from data correspomaliognstant time pe-
riods) index of stability. In order to present the motivatiof the paper and the
theoretical results we have calibrated the subordinated ABtMtempered stable
subordinator to the real financial data.
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