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Abstract. Consistently fitting vanilla option surfaces is an important issue
when it comes to modeling in finance. As far as local and stochastic volatility

models are concerned, this problem boils down to the resolution of a nonlin-

ear integro-differential pde. The non-locality of this equation stems from the
quotient of two integral terms and is not defined for all bounded continuous

functions. In this paper, we use a fixed point argument and suitable a priori

estimates to prove short-time existence of solutions for this equation.

1. Introduction. Financial modelling has been an area of extremely rapid growth
in the past 30 years, and some extremely interesting mathematical challenges have
emerged. One of the utmost importance for real-life applications to derivatives trad-
ing is that of calibration. Similar to common situations in many areas of physics and
engineering, once a model has been suggested, its parameters have to be estimated
using external data. In the case of derivative modelling, those data are the liquid
(tradable) options, generally known as the vanilla products. It is well known since
the pioneering work of Litzenberger and Breeden [4] and its celebrated extension
by Bruno Dupire [5] that the knowledge of market data such as the prices of vanilla
options across all strikes and maturities is equivalent to the knowledge of the risk-
neutral marginals of the underlying stock distribution, and moreover, that there is
a unique one-dimensional driftless diffusion which recovers exactly such marginals.
However, it has also been well-known for almost as many years that the evolution
in time of the so-called local volatility is not stable, thereby leading researchers and
financial engineers to look for a more robust, stochastic volatility type of modelling.
In this paper, we consider the calibration problem for a generic stochastic volatility
model: more precisely, we address the issue of calibrating to market data a generic
model with a stochastic component and a local component for the volatility process.
Such models are very useful in practice, since they offer both the flexibility and re-
alistic dynamics of stochastic volatility models, and the exact calibration properties
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2 FREDERIC ABERGEL AND REMI TACHET

of local volatility models. In mathematical terms, the problem we consider is a non
linear partial integro-differential equation for which we are able to prove short-time
existence of classical solutions under suitable assumptions. The paper is organized
as follows: Section 2 is devoted to the mathematical formulation of the problem.
Section 3, to notations and statement of the main result. In Section 4, we recall
some important technical results stemming from the general theory of parabolic
pdes. Section 5 contains the proof of the main result. Finally, Section 6 is a short
conclusion.

2. Local and Stochastic Volatility model.

2.1. Diffusion equations. The LSV model is an extension of Dupire’s local volatil-
ity model. In the simplest situation - the two-dimensional case - the dynamics of
the model are given by the following system of SDEs

dSt
St

= a(t, St)b(Yt)dB1
t + rdt

dYt = α(t, Yt)dB2
t + ξ(t)dt

Here, (St, t ≥ 0) is the stock price process and (Yt, t ≥ 0) the stochastic component
of the volatility. The function b simply transforms that factor into a proper volatility.
a is the local volatility part of the model, choosing its value properly will enable us
to calibrate the vanillas of the model. α is the volatility of the volatility factor and
µ and ξ are drift terms that may depend on the state variables and on time. B1

and B2 are standard brownian motions with correlation ρ.

2.2. The LSV model calibration. In order to fit the vanillas of this model, we
write the Kolmogorov forward equation on the joint density p(t, S, y) of the couple
(St, Yt)

∂p

∂t
− ∂2

∂S2
(
1
2
a2b2S2p)− ∂2

∂S∂y
(ρabαSp)− ∂2

∂y2
(
1
2
α2p))

+
∂

∂S
(rSp) +

∂

∂y
(ξp) + rp = 0

p(S, y, 0) = δ(S = S0, y = y0)

with (S0, y0) the initial conditions. Taking q =
∫
pdy the marginal of S, we get the

equation
∂q

∂t
− ∂2

∂S2
(
1
2
a2S2(

∫
b2pdy)) +

∂

∂S
(rSq) + rq = 0

Using Dupire’s results from [5], we know that q has to solve the following equation
in order to fit perfectly the vanillas of the market

∂q

∂t
− ∂2

∂S2
(
1
2
σ2
DS

2q) +
∂

∂S
(rSq) + rq = 0

where σD is Dupire’s local volatility and contains the information about the vanillas
we want to reproduce. We identify the terms in this last formula. This gives us
the value of a2(t, S) = σ2

D(t, S) q∫
b2pdy

= σ2
D(t, S)

∫
pdy∫
b2pdy

. Eventually, the joint
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A NONLINEAR PDE FROM FINANCE 3

density that calibrates the smile of our model is solution of the nonlinear partial
integro-differential equation

∂p

∂t
− ∂2

∂S2
(
1
2
σ2
Db

2S2

∫
pdy∫
b2pdy

p)− ∂2

∂S∂y
(ρσDbαS(

∫
pdy∫
b2pdy

)
1
2 p)− ∂2

∂y2
(
1
2
α2p))

+
∂

∂S
(rSp) +

∂

∂y
(ξp) + rp = 0

The rest of this paper is devoted to the study of a more general n-dimensional
version of this equation.

3. Generalized equation and notations. Throughout this article, we denote
by 0 < t ≤ T the time-variable and by x = (x1, x2, ..., xn) ∈ Ω ⊂ Rn the n-
dimensional space variable where Ω is an open subset with a sufficiently smooth
boundary (we will precise this notion later). When we consider the equation from
a financial point of view, the first-variable x1 stands for the spot and the last n− 1
for the volatility. Hence, we write S = x1, y = (x2, ..., xn). We also denote by
DT =]0, T [ Ö Ω the domain of definition and by B = {0} Ö Ω, BT = {T} Ö Ω
and CT =]0, T [ Ö ∂Ω the different parts of the boundary. Given the particular
part played by the spot, we consider ΩS = {S ∈ R/∃y ∈ Rn−1, (S, y) ∈ Ω} and
∀S ∈ ΩS ,ΩSy = {y ∈ Rn−1/(S, y) ∈ Ω}. We are interested in the following equation:

O(p) :=
∂p

∂t
− ∂2

∂S2
(ρ11α

2
1I(p)p)−

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi

√
I(p)p)

−
n∑

i,j=2

∂2

∂xi∂xj
(ρijαiαjp) +

n∑
i=1

∂

∂xi
(βip) + γp = 0 on DT ∪BT

(1)

where (ρij)1≤i,j≤n is a correlation matrix ie is symetric positive definite and verifies:
ρii = 1

2 for all i and − 1
2 < ρij <

1
2 for i 6= j. We add the boundary condition

p = Ψ on B ∪ CT with Ψ constant on CT . We also let p0 denote the function
p0(t, S, y) = Ψ(S, y). The complexity of this equation stems from the following
integral term:

I(p)(t, S) =

∫
ΩS

y
p(t, S, x2, ..., xn)dx2...dxn∫

ΩS
y
b2(x2, ..., xn)p(t, S, x2, ..., xn)dx2...dxn

=

∫
ΩS

y
p(t, S, y)dy∫

ΩS
y
b2(y)p(t, S, y)dy

(1) belongs to the class of nonlinear, parabolic and nonlocal equations. An inter-
esting reference concerning that kind of equations is [2]. However, our case doesn’t
fall under the scope of that paper: the operator I(.) is not defined on Cb(DT ). Let
us now make a few remarks about our particular equation.

Remark 1. In the case of an equation with no I(p) term, it becomes a classic
linear equation of parabolic type. That kind of equation has been properly solved
for quite some time now, see [6] or [7]. When b is constant, the problem is reduced
to the previous remark. This observation is the key to our resolution method.
First, we suppose that b does not vary too much and approximate the nonlocal
term I(p) with a suitable constant. We then isolate the error made during this
process in the second term and use a fixed point method to solve the new equation.
In order to use this method and the results from [6], one has to assume that the
coefficients of the equation belong to Holder spaces Hk,h,h/2 (we shall define them
in the preliminaries).
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4 FREDERIC ABERGEL AND REMI TACHET

Remark 2. The question whether I is properly defined is natural. To answer it, we
have to prove that

∫
ΩS

y
b2(y)p(t, S, y)dy is bounded away from 0. We assume that b

is non-negative and that Ψ the initial condition is strictly positive. By restricting
ourselves to short times, we are sure that p is not too far from its initial condition
and thus is strictly positive.

Remark 3. From a financial viewpoint, it is natural to consider a domain Ω cylin-
drical with respect to the spot. However, since it is quite challenging to study a
PDE on a domain with corners, we reduce our study to domains with an S-section
depending on S.

Assumptions. The theorem we shall prove requires the following assumptions on
b and Ψ.
(H1) b ∈ C1(Rn−1), ∃(δ1, δ2) ∈ R2, 0 < δ1 ≤ b ≤ δ2 on Rn−1

(H2) ∀2 ≤ i ≤ n, | ∂b
2

∂xi
| ≤ b∗ on Ωy where b∗ is a constant we will choose later

(H3) Ψ is strictly positive and in H2,h,h/2. This gives us two results on p0. First,
p0 belongs to H2,h,h/2(DT ) and second

0 < p0 = inf p0 ≤ sup p0 = p0

(H4) O(Ψ) = 0 on ∂B in a sense described in the preliminaries

Under the previous assumptions, we have the following result:

Theorem 3.1. If the αi belong to H2,h,h/2(DT ), are positive and bounded away
from 0 by a stricly positive constant e, if the βi are in H1,h,h/2(DT ) and if γ belongs
to H0,h,h/2(DT ), then, for b∗ small enough, there exists 0 < T ∗ ≤ T and a solution
of the equation (1) on DT∗ ∪BT∗ .

The rest of the paper will be devoted to the proof of Theorem 3.1 above. We start
with the basic mathematical notions it requires.

4. Preliminaries.

4.1. Holder Spaces. In this section, we write ∂xi and ∂
∂xi

without distinction.
Let us start as in [6] and [7] with the following notion of distance d(P,Q) = [|x −
x′|2 + |t− t′|]1/2 where P = (t, x) and Q = (t′, x′) belong to DT and |x| is the norm
of the n-dimensionnal vector x. Given such a metric d, we can define the concept
of h-Holder continuity (with h a number between 0 and 1 strictly). For a function
u, we write:

|u|D
T

0 = sup
DT

|u| HDT

h (u) = sup
P,Q∈DT

|u(P )− u(Q)|
d(P,Q)h

|u|D
T

h = |u|D
T

0 +HDT

h (u)

|u|DT

h < ∞ if and only if u is uniformly holder (exponent h) in DT . We denote
by H0,h,h/2(DT ) the set of all functions u for which |u|DT

h < ∞. Now, if all the
derivatives used in the equation exist, we write for k ≤ 2:

|u|D
T

k+h = |u|D
T

h + Σ|∂xu|D
T

h + ...+ Σ|∂kxu|D
T

h + |∂tu|D
T

h (2)

where the sums are taken over all the partial derivatives of the indicated order. We
denote by Hk,h,h/2(DT ) the set of all functions u for which |u|DT

k+h < ∞. It is a
Banach space and an algebra with the norm given by definition 2. Indeed, for all
u,v in Hk,h,h/2(DT ), we have:

|uv|D
T

k+h ≤ |u|D
T

k+h|v|D
T

k+h (3)
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A NONLINEAR PDE FROM FINANCE 5

We can now make the assumptions about DT more precise: for every point Q of
CT , there exists an (n+1)-dimensional neighborhood V such that V ∩ CT can be
represented, for some i (1 ≤ i ≤ n), in the form xi = r(t, x1, ..., xi−1, xi+1, ..., xn)
with r, ∂xr, ∂2

xxr, ∂tr Holder continuous (exponent h) and ∂2
xtr, ∂

2
ttr simply conti-

nous.
We also have to consider functions ψ defined on B ∪ CT . Such a function ψ is
said to belong to Hk,h,h/2 if there exists a Ψ in Hk,h,h/2(DT ) such that Ψ = ψ on
B ∪CT . We then define |ψ|k+h = inf |Ψ|DT

k+h where the inf is taken with respect to

all the Ψ’s in Hk,h,h/2(DT ) which coincide with ψ on B ∪CT . This process defines
a norm on Hk,h,h/2.

4.2. Linear equations of parabolic type. The following results will be useful
in the proof of our result. They concern the PDE:

Lu :=
∂u

∂t
−

n∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi

+c(x, t)u =f(x, t) on DT ∪BT

u = ψ on B ∪ CT

(4)

We shall need the assumptions:
• the coefficients of the operator L belong to H0,h,h/2(DT ), let K1 be a bound

on their norm

• for all (x, t) in DT and for all ξ ∈ Rn,
n∑

i,j=1

aij(x, t)ξiξj ≥ K2 | ξ |2 (K2 > 0)

• ψ ∈ H2,h,h/2 and |f |DT

h <∞
In addition, given the assumption about DT , if we consider a function ψ ∈ H2,h,h/2,
for any extension Ψ of ψ, ∂tΨ is uniquely defined (by continuity) on the boundary
∂B of B, and the definition is independent of Ψ. We denote this function (on ∂B)
by ∂tψ. The other terms of Lψ are also uniquely defined (by continuity) on ∂B.
Thus, the quantity Lψ is well-defined on ∂B.

Theorem 4.1. Under the previous assumptions and if Lψ = f on ∂B, there exists
a unique solution of the equation 4, this solution belongs to H2,h,h/2(DT ) and we
have the Schauder inequality (with KH2 depending only on K1, on K2, on h and
on DT )

|u|D
t

2+h ≤ KH2(|ψ|2+h + |f |D
t

h ) (5)
Furthermore, if ψ = 0, we can write a bound containing the time on the supremum
of the solution

|u|D
t

0 ≤ tK0|f |D
t

0 (6)
and K0 only depends on K, on K ′ and on Ω.

Proof. The first part of the result is classic, its proof can be found in [6]. As to the
result with ψ = 0, which is more original, one needs a result from [7] about volume
potentials and representation of solutions of parabolic equations. It is the theorem
(16.2) of section IV.16 we shall use. One reads that the solution of the equation 4
with ψ = 0 can be written as

u(x, t) =
∫ t

0

dτ

∫
Ω

G(x, z, t, τ)f(z, τ)dz
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6 FREDERIC ABERGEL AND REMI TACHET

where G is the Green’s function for the operator L and verifies

|G(x, y, t, τ)| ≤ K(t− τ)−
n
2 exp(−K ′ |x− y|

2

t− τ
)

with K and K ′ two constants depending on the data of the problem. Using both
these results, we get, for all t′ ≤ t and x ∈ Ω

|u(x, t′)| ≤ t|f |D
t

0

∫ t

0

dτ

∫
Ω

K(t− τ)−
n
2−1exp(−K ′ |x− y|

2

t− τ
)dz ≤ t|f |D

t

0 K0

where K0 depends on K1, on K2, on h and on DT .

5. Proof of Theorem 3.1. We are interested in the equation

∂p

∂t
− ∂2

∂S2
(ρ11α

2
1I(p)p)−

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi

√
I(p)p)

−
n∑

i,j=2

∂2

∂xi∂xj
(ρijαiαjp) +

n∑
i=1

∂

∂xi
(βip) + γp = 0 on DT ∪BT

and want to prove the theorem:
If the αi belong to H2,h,h/2(DT ), are positive and bounded away from 0 by a stricly
positive constant e, if the βi are in H1,h,h/2(DT ) and if γ belongs to H0,h,h/2(DT ),
then, for b∗ small enough, there exists 0 < T ∗ ≤ T and a solution of the equation
(1) on DT∗ ∪BT∗ .

Proof. The assumption (H2) gives us some control over the variations of b. Let us
denote by b = b(y0) a strictly positive value taken by b (with y0 ∈ ΩSy for some
arbitrary S ∈ ΩS). We use the assumption on b to approximate the integral term
I(p) with 1/b2, the gap between those two quantities is quantified with the

Lemma 5.1. There exists a constant Kb (depending only on h, n, δ1, δ2, p0 and
Ω) and a polynomial function P strictly positive and increasing on R∗+ such that
∀p ∈ H2,h,h/2(DT ) verifiying p0 ≤ p, we have

|I(p)− 1
b2
|D

t

2+h + |
√
I(p)− 1

b
|D

t

2+h ≤ b∗KbP (|p|D
t

2+h).

Remark 4. As a consequence of this lemma, we see that ∀p ∈ H2,h,h/2(DT ) veri-
fiying p0 ≤ p, I(p) belongs to H2,h,h/2(DT ).

We then write the equation as

∂p

∂t
− ∂2

∂S2
(ρ11α

2
1

1
b2
p)−

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi

1
b
p)−

n∑
i,j=2

∂2

∂xi∂xj
(ρijαiαjp)

+
n∑
i=1

∂

∂xi
(βip) + γp =

∂2

∂S2
(ρ11α

2
1(I(p)− 1

b2
)p) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(p)− 1

b
)p)

To solve this equation, we apply a fixed point method and use the lemma 5.1 to get
an upper bound on the second term.
We take a real number x ≥ |p0|D

T

2+h and t ∈ R∗+ and let Xt
x denote the set

Xt
x = {p ∈ H2,h,h/2(Dt), |p|D

t

2+h ≤ x,
p0

2
≤ p ≤ p0 +

p0

2
, p = Ψ on B ∪ CT }
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A NONLINEAR PDE FROM FINANCE 7

The set Xt
x clearly contains the function p0. We then consider the application M

which takes a function u ∈ X and sends it on v ∈ H2,h,h/2(DT ) solution of the
equation

O′v :=
∂v

∂t
− ∂2

∂S2
(ρ11α

2
1

1
b2
v)−

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi

1
b
v)−

n∑
i,j=2

∂2

∂xi∂xj
(ρijαiαjv)

+
n∑
i=1

∂

∂xi
(βiv) + γv =

∂2

∂S2
(ρ11α

2
1(I(u)− 1

b2
)u) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(u)− 1

b
)u)

with the boundary condition v = Ψ on B ∪ CT . The existence of v is given by
Theorem 4.1. Indeed, the coefficients of this equation belong to the appropriate
spaces and because of (H4) the necessary condition

O′ψ =
∂2

∂S2
(ρ11α

2
1(I(Ψ)− 1

b2
)Ψ) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(Ψ)− 1

b
)Ψ)

on ∂B is verified. It remains to prove that this operator is elliptic: let (ξi)1≤i≤n be
n real numbers and (t, S, y) ∈ DT . We write f1 = α1

b and fi = αi for i ≥ 2, we have

n∑
i,j=1

ρijfi(t, S, y)fj(t, S, y)ξiξj ≥ Kρ

n∑
i=1

f2
i (t, S, y)ξ2

i ≥ Kρe
2
n∑
i=1

ξ2
i

where the existence of Kρ is a consequence of ρ being a positive definite matrix.
This proves the ellipticity of the operator, v exists and belongs to H2,h,h/2(DT ).
We now want to show that for suitable x and t, v belongs to Xt

x ie that

|v|D
t

2+h ≤ x
p0

2
≤ v ≤ p0 +

p0

2
For the first inequality, we apply 5

|v|D
t

2+h ≤ KH2(|ψ|D
t

2+h + | ∂
2

∂S2
(ρ11α

2
1(I(u)− 1

b2
)u)

+
n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(u)− 1

b
)u)|D

t

h )

≤ KH2(|ψ|D
T

2+h + |ρ11α
2
1(I(u)− 1

b2
)u|D

t

2+h +
n∑
i=2

|ρ1iα1αi(
√
I(u)− 1

b
)u|D

t

2+h)

≤ KH2(|ψ|D
T

2+h + (|ρ11α
2
1|D

T

2+h +
n∑
i=2

|ρ1iα1αi|D
T

2+h)

(|I(u)− 1
b2
|D

t

2+h + |
√
I(u)− 1

b
|D

t

2+h)|u|D
t

2+h)

≤ KH2(|ψ|D
T

2+h + b∗K ′P (|u|D
t

2+h)|u|D
t

2+h)

where K ′ = (|ρ11α
2
1|D

T

2+h +
n∑
i=2

|ρ1iα1αi|D
T

2+h)Kb (we apply lemma 5.1 for the last

line). We remember that u belongs to Xt
x, thus |u|Dt

2+h ≤ x and then

|v|D
t

2+h ≤ KH2(|ψ|D
T

2+h + b∗K ′P (x)x)
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8 FREDERIC ABERGEL AND REMI TACHET

Taking x∗ = max(KH2(|ψ|DT

2+h+1), |p0|D
T

2+h) and b∗ ≤ 1
K′P (x∗)x∗ , 7 gives us |v|DT

2+h ≤
x∗. It remains to prove that

p0
2 ≤ v ≤ p0 +

p0
2 . Let us write ṽ = v − p0. It is clear

that ṽ verifies

O′ṽ = O′p0 +
∂2

∂S2
(ρ11α

2
1(I(u)− 1

b2
)u) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(u)− 1

b
)u)

on DT ∪BT with ṽ = 0 on B∪CT (here we use the fact that Ψ is constant on CT ).
We now apply the second part of Theorem 4.1, the inequality 6, to this function ṽ

|ṽ|D
t

0 ≤ tK0|O′p0 +
∂2

∂S2
(ρ11α

2
1(I(u)− 1

b2
)u) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(u)− 1

b
)u)|D

t

0

≤ tK0(|O′p0|D
T

0 + | ∂
2

∂S2
(ρ11α

2
1(I(u)− 1

b2
)u)

+
n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(u)− 1

b
)u)|D

t

h )

≤ tK0(|O′p0|D
T

0 + 1)

Taking T ∗K0(|O′p0|D
T

0 + 1) =
p0
2 , we get |ṽ|Dt

0 ≤ p0
2 . Eventually, since v = p0 + ṽ,

the last inequality is proved and v belongs to XT∗

x∗ . The application M maps XT∗

x∗

into itself.
Using this statement, we construct a bounded sequence (pn)n∈N of functions be-
longing to XT∗

x∗

• p0 has been previously defined
• by induction, we write pn+1 = M(pn)

By construction, we have ∀n ∈ N, |pn|D
T

2+h ≤ x∗. Repeated applications of the Ascoli-
Arzel theorem give us a function p ∈ C2(DT∗) limit in C2(DT∗) of a subsequence
of pn. Since

sup{
| ∂2pn

∂xi∂xj
(x, t)− ∂2pn

∂xi∂xj
(x′, t′) |

(| x− x′ |2 + | t− t′ |)α/2
; (x, t), (x′, t′) ∈ DT∗} ≤ x

We have

sup{
| ∂2p
∂xi∂xj

(x, t)− ∂2p
∂xi∂xj

(x′, t′) |
(| x− x′ |2 + | t− t′ |)α/2

, (x, t); (x′, t′) ∈ DT∗} ≤ x

And this computation being true for all the derivatives appearing in the norm
H2,h,h/2, we find that p ∈ H2,h,h/2.
The last step of the proof is to take the limit in 7. The only result needed is
I(pn) → I(p). Since pn ∈ XT∗

x∗ , the denominator is bounded away from 0. Two
applications of the dominated convergence theorem give us the convergence we need.
Thus, it is possible to take the limit in 7 which gives us

∂p

∂t
− ∂2

∂S2
(ρ11α

2
1

1
b2
p)−

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi

1
b
p)−

n∑
i,j=2

∂2

∂xi∂xj
(ρijαiαjp)

+
n∑
i=1

∂

∂xi
(βip) + γp =

∂2

∂S2
(ρ11α

2
1(I(p)− 1

b2
)p) +

n∑
i=2

∂2

∂S∂xi
(ρ1iα1αi(

√
I(p)− 1

b
)p)
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A NONLINEAR PDE FROM FINANCE 9

That concludes the proof of the theorem, p is solution of our equation.

Let us now prove lemma 5.1.

Proof. By definition, we have:

|I(p)− 1
b2
|D

T

2+h = |
∫
pdy∫
b2pdy

− 1
b2
|D

T

2+h = |
∫
p(b2 − b2)dy
b2

∫
b2pdy

|D
T

2+h

≤ 1
b2
| 1∫
b2pdy

|D
T

2+h|
∫
p(b2 − b2)dy|D

T

2+h

Let us compute one after another the terms appearing in this norm (we remember
that those functions only depend on t and S). Let (t, S) belong to ]0, T [ Ö ΩS . We
have

|
∫

ΩS
y

p(t, S, y)(b2 − b2(y))dy| ≤
∫

ΩS
y

p(t, S, y)|b2 − b2(y)|dy

≤ |p|D
T

0

∫
ΩS

y

|b2 − b2(y)|dy ≤ |p|D
T

0

∫
ΩS

y

|b2(y0)− b2(y)|dy

≤ b∗(n− 2)
∫

ΩS
y

|y0 − y|dy |p|D
T

0 ≤ b∗K|p|D
T

0

here and in the rest of the proof, K stands for some constant depending only on the
data of the problem (Ω, n, δ1...) but not on p nor on b∗. We get the last line from
the following computation where y = (x2, ., xn) and y0 = (x′2, ., x

′
n)

|b2(y0)− b2(y)| = |b2(x′2, ., x
′
n)− b2(x2, ., xn)|

≤
n∑
i=3

|b2(x′2, ., x
′
i, xi+1, ., xn)− b2(x′2, ., x

′
i−1, xi, ., xn)|

≤
n∑
i=3

|∂(b2)
∂xi
|D

t

0 |x′i − xi| ≤ (n− 2)b∗|y′ − y|

Now, let (t, S) and (t′, S′) belong to ]0, T [ Ö ΩS . We compute

|
∫

ΩS
y

p(t, S, y)(b2(y0)− b2(y))dy −
∫

ΩS′
y

p(t′, S′, y)(b2(y0)− b2(y))dy|

≤
∫

ΩS
y∩ΩS

y

|p(t, S, y)− p(t′, S′, y)||b2(y0)− b2(y)|dy

+
∫

ΩS
y \ΩS′

y

p(t, S, y)|b2(y0)− b2(y)|dy +
∫

ΩS′
y \ΩS

y

p(t, S, y)|b2(y0)− b2(y)|dy

≤ HDT

h (p)D((t, S), (t′, S′))
∫

ΩS
y∩ΩS

y

|b2(y0)− b2(y)|dy

+|p|D
T

0

∫
ΩS

y \ΩS′
y

|b2(y0)− b2(y)|dy + |p|D
T

0

∫
ΩS′

y \ΩS
y

|b2(y0)− b2(y)|dy

≤ b∗K|p|D
T

h (D((t, S), (t′, S′)) +
∫

ΩS
y \ΩS′

y

|y0 − y|dy +
∫

ΩS′
y \ΩS

y

|y0 − y|dy)

By assumption on the boundary of our domain, it is possible to find a constant K
depending only on Ω such as ∀S, S′ ∈ ΩS ,

∫
ΩS

y \ΩS′
y
|y0 − y|dy ≤ KD(S, S′). This
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10 FREDERIC ABERGEL AND REMI TACHET

gives us

|
∫
p(b2 − b2)dy|D

T

h ≤ b∗K|p|D
t

h

And since

|
∫
p(b2 − b2)dy|D

T

2+h =|
∫
p(b2 − b2)dy|D

T

h + |
∫
∂p

∂t
(b2 − b2)dy|D

T

h

+ |
∫

∂p

∂S
(b2 − b2)dy|D

T

h + |
∫

∂2p

∂S2
(b2 − b2)dy|D

T

h

We get from the previous computation

|
∫
p(b2 − b2)dy|D

T

2+h ≤ b∗K|p|D
t

2+h

We now have to find a bound on | 1∫
b2pdy

|DT

2+h. Since p belongs to XT∗

x∗ , we have

| 1∫
b2pdy

|DT

0 ≤ 2
δ21p0V (Ω)

. Now, let (t, S) and (t′, S′) belong to ]0, T [ Ö ΩS . We write

| 1∫
ΩS

y
b2(y)p(S, t, y)dy

− 1∫
ΩS′

y
b2(y)p(S′, t′, y)dy

|

≤
|
∫

ΩS′
y
b2(y)p(S′, t′, y)dy −

∫
ΩS

y
b2(y)p(S, t, y)dy|∫

ΩS
y
b2(y)p(S, t, y)dy

∫
ΩS′

y
b2(y)p(S′, t′, y)dy

≤ KHDt

h (p)D((t, S), (t′, S′))

We used the same kind of arguments than earlier, K denotes here another constant
depending on δ1, δ2, p0 and Ω. This gives us | 1∫

b2pdy
|DT

h ≤ K(1 + |p|DT

h ). As for

derivatives of 1∫
b2pdy

, for instance with respect to S, we have

| ∂
∂S

(
1∫
b2pdy

)|D
T

h = | −
∫
b2 ∂p∂S dy

(
∫
b2pdy)2

|D
T

h ≤ K(1 + |p|D
T

h )2|p|D
T

1+h

The same kind of computation is true for the derivative of second order

| ∂
∂S

(−
∫
b2 ∂p∂S dy

(
∫
b2pdy)2

)|D
T

h = |
2(

∫
b2 ∂p∂S dy)2

(
∫
b2pdy)3

−
∫
b2 ∂

2p
∂S2 dy

(
∫
b2pdy)2

|D
T

h

≤ K[(1 + |p|D
T

h )3(|p|D
T

1+h)2 + (1 + |p|D
T

h )2|p|D
T

2+h]

Eventually, we get

| 1∫
b2pdy

|D
T

2+h ≤ K(1 + |p|D
T

2+h + (|p|D
T

2+h)2 + (|p|D
T

2+h)3 + (|p|D
T

2+h)4 + (|p|D
T

2+h)5)

Combining this result with the previous computations, we find

|I(p)− 1
b2
|D

T

2+h ≤ b∗KP (|p|D
t

2+h)

with P a polynomial function of degree 6, strictly positive on R∗+. Now, writing√
I(p)− 1

b =
I(p)− 1

b2√
I(p)+ 1

b

, we find the same kind of results for the second term involved

in the lemma. This concludes the proof.
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A NONLINEAR PDE FROM FINANCE 11

6. Conclusion. In this paper, we have shown that the equation driving the cali-
bration problem for local and stochastic volatility models is well-posed in the case
of suitably regularized initial conditions. It is however clear that the solution of the
full Kolmogorov equation with Dirac initial condition is not obtained as a conse-
quence of Theorem 1 : possible extensions of our results towards this direction are
currently being explored. Let us also mention that a generalization of Theorem 1
to multidimensional correlation calibration has already been investigated and will
be presented in [1]
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