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Abstract

This paper presents a new cooperative equilibrium for strategic form games, denoted

Conjectural Cooperative Equilibrium (CCE). This concept is based on the expectation

that joint deviations from any strategy pro�le are followed by an optimal and noncooper-

ative reaction of non deviators. We show that CCE exist for all symmetric supermodular

games. Furthermore, we discuss the existence of a CCE in speci�c submodular games

employed in the literature on environmental agreements. Keywords: Strong Nash Equi-
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1 Introduction

Intuitively a cooperative equilibrium is a collective decision adopted by a group of individuals

that can be viewed as stable (i.e., an equilibrium) against all feasible deviations by single

individuals or by proper subgroups. While modelling the possibilities of cooperation may not

pose the social scientist particular problems, at least once an appropriate economic or social

situation is clearly outlined, the de�nition of stability may be a more demanding task for

the modeler. This because the outcome, and the pro�tability, of players�deviations heavily

depends on the conjectures they make over the reaction of other players. As an example,

a neighborhood rule to keep a common garden clean possesses di¤erent stability properties

whether the conjectured reactions in the event of shirking is, in turn, that the garden would

be kept clean anyway or, say, that the common garden would be abandoned as a result.

Similarly, countries participating to an international environmental agreement will possess

di¤erent incentive to comply with the prescribed pollution abatements whether defecting

countries expect the other partners to be inactive or to retaliate.

The main focus of the present paper are cooperative equilibria of games in strategic form.

A cooperative equilibrium of a game in strategic form can be de�ned as a strategy pro�le such

that no subgroup of players can �make e¤ective�- by means of alternative strategy pro�les -

utility levels higher for its members than those obtained at the equilibrium. As expressed in

the example above, the content of the equilibrium concept depends very much on the utility

levels that each coalition can potentially make e¤ective and this, in turn, depends on the

conjectures over the reactions induced by deviations. In this paper we propose a cooperative

equilibrium for games in strategic form, based on the assumption that players deviating

from an arbitrary strategy pro�le have non zero conjectures on the reaction of the remaining

players. More precisely, the conjectural cooperative equilibrium we propose assumes that the

remaining players are expected to optimally and independently react according to their best

response map.

1.1 Related literature

The problem of de�ning cooperative equilibrium concepts have been centered on the formula-

tion of conjectures ever since the pioneering work of von Neumann and Morgenstern�s (1944).

The concepts of � and � core, formally studied by Aumann (1967), are based on their early

proposal of representing the worth of a coalition as the aggregate payo¤ that it can guarantee

its members in the game being played. Formally obtained as the minmax and maxmin payo¤

imputations for the coalition in the game played against its complement, the � and � charac-
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teristic functions express the behaviour of extremely risk averse coalitions, acting as if they

expected their rivals to minimize their payo¤. Although ful�lling a rationality requirement

in zero sum games, � and �-assumptions do not seem justi�able in most economic settings.

Moreover, the little pro�tability of coalitional objections usually yield very large set of so-

lutions (e.g., large cores). Another important cooperative equilibrium proposed by Aumann

(1959), denoted Strong Nash Equilibrium, extends the Nash Equilibrium assumption of �zero

conjectures� to every coalitional deviation. Accordingly, a Strong Nash Equilibrium is de-

�ned as a strategy pro�le that no group of players can pro�tably object, given that remaining

players are expected not to change their strategies. Strong Nash Equilibria are at the same

time Pareto optima and Nash Equilibria; in addition they satisfy the Nash stability require-

ment for each possible coalition. As a consequence, the set of Strong Nash Equilibria is often

empty, preventing the use of this otherwise appealing concept in most economic problems of

strategic interaction.

Other approaches have looked at the choice of forming coalitions as a strategy in well

de�ned games of coalition formation (see Bloch (1997) for a survey). Among others, the

gamma and delta games in Hart and Kurz (1985) constitute a seminal contribution.1 The

gamma game, in particular, is related to the present analysis, since it predicts that if the grand

coalition N is objected by a subcoalition S, the complementary set of players splits and act as

a noncooperative fringe. On the same behavioural assumption is based the concept of 
 core,

introduced by Chander and Tulkens (1997) in the analysis of environmental agreements, where

a characteristic function is obtained as the Nash equilibrium between the forming coalition

and all individual players in its complement. As in the present approach, based on deviations

in the underlying strategic form game, the 
 core assumes that the forming coalition expects

outside players to move along their (individual) reaction functions. Di¤erently from our

approach, however, there the forming coalition forms before choosing its Nash equilibrium

strategy in the game against its rivals, while here deviating coalitions directly switch to

new strategies in the underlying game, expecting their rivals to react in the same manner

as followers in a Stackelberg game. In applying our concept to the analysis of stability of

environmental coalitions, we may interpret these di¤erences as the description of di¤erent

structures in the process of deviation. While the 
 core seems to describe settings in which

the formation of a deviating coalition is publicly observed before the choice of strategies, our

approach best �ts situations in which deviating coalitions can implement their new strategies

1More precisely, Hart and Kurz (1983) present endogenous coalition formation games and look at the

Strong Nash of these games. Other related papers (i.e., Chander and Tulkens (1998), Yi (1998)) look at the

Nash equilibrium taking as given the gamma and delta rule of coalition formation.
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before their formation is monitored, enjoying a positional advantage.

The conjectural cooperative equilibrium we propose in this paper, by assuming that re-

maining players are expected to optimally react according to their best response map, in-

troduces a very natural rationality requirement in the equilibrium concept. Moreover, the

coalitional incentives to object are considerably weakened with respect to the Strong Nash

Equilibrium, thus ensuring the existence of a cooperative conjectural equilibrium in all sym-

metric games in which players�actions are strategic complements in the sense of Bulow et al.

(1985), i.e., in all supermodular games (see Topkis (1998)).

1.2 An example of a conjectural cooperative equilibrium

Before formally de�ning the conjectural cooperative equilibrium, it is easy to introduce the

mechanics at works for the existence of such an equilibrium by means of the following 3x3

bi-matrix game.

A B C

A x; x d; h a; c

B h; d b; b e; f

C c; a f; e y; y

Suppose, in the game above, that (b; b) is an e¢ cient outcome, i.e, such to maximize

the sum of players�payo¤. To be a cooperative equilibrium, the outcome (b; b) has to be

immune from either player switching her own strategy, given their expectation that the rival

would optimally react to the switch. When players actions are strategic substitutes (and the

game submodular), each player�s reaction map is downward sloped, implying that any move

from (b; b) by one player would generate a predicted outcome on the asymmetric diagonal

of the matrix. If we let, in the example, a > b > c > h, and b > a+c
2 , then the e¢ cient

outcome (b; b) will not certainly be a conjectural cooperative equilibrium, for player 1 will

pro�tably deviate from it (from B to A), conjecturing that her rival�s best reply will go in

the opposite direction (from B to C), and getting a payo¤ of a > b. The same will happen

if c > b > a > e, in which case player 2 deviates by switching from B to C. In contrast,

suppose that the game above is supermodular, with the associated increasing reaction maps.

In this case, the conjectured outcomes in case of deviations from outcome (b; b) are only

(x; x) and (y; y). As a result, if either player �nds it pro�table to switch either to A or to C

(with x > b and y > b, respectively) then the assumption that (b; b) is an e¢ cient outcome

is contradicted. We can conclude that (b; b) is a conjectural cooperative equilibrium of the
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symmetric game described above whenever supermodularity holds. Note that in our example,

if d > b, the e¢ cient outcome (b; b) is a conjectural cooperative equilibrium although it is

neither a Strong Nash Equilibrium nor a Nash Equilibrium.2 The above example, although

providing a clear insight of how both supermodularity and symmetry work in favour of the

existence of an equilibrium, contains two substantial simpli�cations: the presence of only

two players, ruling out existence problems related to the formation of coalitions, as well as

the restriction to 3 strategies, thus forcing the increasing best replies to generate symmetric

outcomes, from which, the fact that (B,B) is an equilibrium, directly follows. However, in

the paper we are able to show that the existence result holds for any number of players and

strategies, provided a symmetry assumption on the e¤ect of players�own strategies on the

payo¤ of rivals is ful�lled.

The paper is organized as follows. The next section introduce the conjectural cooperative

equilibrium in the standard setup of strategic form games. Section 3 presents the main

paper result: for a well de�ned class of games, symmetric supermodular games, a conjectural

cooperative equilibrium always exists. Section 4 discusses in detail the meaning of this

result and presents a descriptive example of an environmental economy whose cooperative

conjectural equilibrium exists depending on individuals�preferences. Section 5 concludes.

2 Set Up

We consider a game in strategic form G =
�
N; (Xi; ui)i2N

�
, in which N = f1; :::; i; :::; ng

is the set of players, Xi is the set of strategies for player i, with generic element xi, and

ui : X1� :::�Xn ! R+ is the payo¤ function of player i. We denote by S � N any coalition

of players, and by �S its complement with respect to N . For each coalition S, we denote by

xS 2 XS �
Q
i2S Xi a pro�le of strategies for the players in S, and use the notation X = XN

and x = xN . A Pareto Optimum (PO) for G is a strategy pro�le such that there exists

no alternative pro�le which is preferred by all players to and strictly preferred by at least

one player. The Pareto Optimum xe is e¢ cient if it maximizes the sum of the payo¤s of

all players in N . In the example discussed in the above introduction, letting outcomes be

ordered as follows: a > b > c > d > e > h > x > y, and assuming that b > a+c
2 , the pro�les

(a; c), (c; a) and (b; b) are all Pareto Optima, while the e¢ cient pro�le is (b; b).

A Nash Equilibrium (NE) for G is de�ned as a strategy pro�le �x 2 XN such that no
player has an incentive to change his own strategy, i.e., such that there exists no i 2 N and

2Similarly, in a 2x2 Prisoner�s Dilemma, although no Strong Nash Equilibria exist, the e¢ cient strategy

pro�le, that is not even a Nash equilibrium, turns out to be a CCE.
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xi 2 Xi such that
ui(xi; �xNni) > ui(�x).

Nash equilibria are stable with respect to individual deviations, given that the e¤ect of

such deviations is evaluated keeping the strategies played by the other players �xed at the

equilibrium levels.

In trying to formulate equilibrium concepts that allow coalitions of players to coordinate

in the choice of their strategies, a natural extension of the Nash equilibrium is given by the

concept of Strong Nash equilibrium (SNE), a strategy pro�le that no coalition of players
can improve upon given that the e¤ect of deviations is, again, evaluated keeping the strategies

of other players �xed at the equilibrium levels. So, x̂ 2 XN is a SNE for G if there exists no

S � N and xS 2 XS such that

ui(xS ; x̂ �S) � ui(x̂) 8i 2 S;
uh(xS ; x̂ �S) > uh(x̂) for some h 2 S:

Obviously, all SNE of G are both Nash Equilibria and Pareto Optima. As a result, SNE fails

to exist in many economic problems, and in particular, whenever Nash Equilibria fail to be

Optimal. Although the lack of existence of SNE can be interpreted as a poor speci�cation

of the game theoretic model, it precludes the use of this otherwise appealing concept of a

cooperative equilibrium in many important applications.

In this paper we propose a concept of cooperative equilibrium for G based on the intro-

duction of non-zero conjectures in the evaluation of the pro�tability of coalitional deviations.

The concept we propose captures the idea that players outside a deviating coalition are ex-

pected to react by making optimal choices (contingent on the strategy pro�le played in the

deviation) as independent and noncooperative players. In order to describe the conjectured

optimizing reactions of players outside a deviating coalition S, let us de�ne �rst the restricted

game G(xS) obtained from G by considering the restricted set of players �S, and parameter-

izing payo¤s by letting each j in �S obtain the payo¤ uj(x �S ; xS) out of the pro�le x �S , for each

x �S 2 X �S . We denote by R �S : XS ! X �S the map associating with each joint strategy xS of

coalition S the set R �S(xS) of Nash Equilibria of the restricted game G(xS). The set R �S(xS)

describes the conjecture of coalition S on the possible reactions of players in �S to the choice

of the joint strategy xS .

De�nition 1 A Conjectural Cooperative Equilibrium (CCE) is a strategy pro�le ex
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such that there exists no coalition S, strategy pro�les xS 2 XS and x �S 2 R �S(xS) such that:

ui(xS ; x �S)) � ui(ex) 8i 2 S
uh(xS ; x �S)) > uh(ex) for some h 2 S:

So de�ned, a CCE satis�es very restrictive stability requirements. According to de�nition

1, any coalition S can look for improvements upon any proposed strategy pro�le by selecting

among its feasible joint pro�les xS 2 XS and, for each possible xS it may choose, by selecting
among all the Nash responses of players in �S (formally, the set R �S) the most pro�table

strategy x �S . De�nition 1 is indeed well de�ned both when the set R �S(xS) may be empty

for some (possibly all) xS 2 XS , and when the set R �S(xS) is multivalued for some (possibly

all) xS 2 XS . In this sense, it applies to all games in strategic form. This generality comes
at the price of the arguably unreasonable assumption that a deviating coalition faces no

constraint in selecting among the possibly non unique reactions of outside players. A more

realistic approach would assume that a deviating coalition should form expectations about

which equilibrium reaction would be played by outside players, and that these expectations

should be based on some sort of rationality requirement on the behaviour of such outside

players. We remark, however, that the present approach generates a smaller set of equilibria

than would result from any arbitrary selection from the set of Nash responses of outside

players. Our result of existence of a CCE in all supermodular games, contained in theorem 1

in section 3.3, would therefore extend to any equilibrium concept associated with the choice

of such a selection. In addition, lemmas 7-10 show that the present de�nition generates the

same set of equilibria that would result from the selection of the Pareto dominant element

of the set R �S(xS). Since the existence of such elements is not generally ensured, but always

holds on the class of symmetric supermodular games for which our result is obtained (see

section 3.1 for de�nitions), we have chosen to present de�nition 1 in its present, and more

general, form.

3 Existence of a conjectural cooperative equilibrium in super-
modular games

This section contains our main result, showing that if a strategic form game G is super-

modular, and satis�es some symmetry requirements, then admits a conjectural cooperative

equilibrium.
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3.1 Supermodularity

We start by de�ning the concept of a supermodular function and by recording some results

in the theory of supermodularity that will be used in the analysis of the next section. For a

partially ordered set A � Rn and any pair of elements x; y of A, we de�ne the join element
(x ^ y) and the meet element (x _ y) as follows:

(x ^ y) = (min fx1; y1g ; :::;min fxn; yng) ;
(x _ y) = (max fx1; y1g ; :::;max fxn; yng) :

De�nition 2 The set A is a sublattice of Rn if (x_ y) 2 A and (x^ y) 2 A for all x; y 2 A.

De�nition 3 The function f : A! R is supermodular if for all x; y 2 A :

f (x _ y) + f(x ^ y) � f(x) + f(y):

De�nition 4 Let X;Y be partially ordered sets. The function f : X�Y ! R has increasing

di¤erences in (x; y) on X�Y if the term f(x; y00)�f(x; y0) is increasing in x for all y00 > y0.

Increasing di¤erences describe a complementarity property of the function f , whose mar-

ginal increase with respect to y is increasing in x. If A is the Cartesian product of partially

ordered sets, then the fact that f is supermodular on A implies that f has increasing dif-

ference in all pairs of sets among those whose product originates A (see Topkis (1998) for a

formal statement and proof of this fact).

De�nition 5 The game in strategic form G =
�
N; (Xi; ui)i2N

�
is supermodular if the set X

of feasible joint strategies for N is a sublattice of Rn, if the payo¤ functions ui(xi; x�i) is

supermodular in xi and has increasing di¤erences in (xi; x�i) on Xi �X�i.

We will extensively exploit two properties of supermodular games, related to the existence

of a Nash Equilibrium and to the behaviour of the set of Nash equilibria in response to changes

in a �xed parameter on which these equilibria depend. We recall these properties below, and

refer to Topkis (1998) for proofs.

Lemma 1 Let G =
�
N; (Xi; ui)i2N

�
be a supermodular game, with X nonempty and compact

and ui upper hemicontinuous in xi for all i. Then the set of Nash equilibria of G is nonempty

and admits a greatest and least element.

Lemma 2 Let Gt =
�
N;
�
Xi; u

t
i

�
i2N

�
t2T

be a set of supermodular games, parameterized by

t, with T being a partially ordered set. Let the assumptions of Lemma 1 hold. Then the

greatest and least elements of the set of Nash equilibria of G are non decreasing in t on T .
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3.2 Assumptions and preliminary results

We impose the following lattice structure and continuity assumptions on our game in strategic

form.

Assumption 1 Xi is a compact sublattice of R, for all i 2 N .

Assumption 2 ui is continuous and supermodular in xi on Xi for each x�i 2 X�i, and
exhibits increasing di¤erences on Xi �X�i.

Our requirement of continuity of ui is unnecessarily strong for the establishment of exis-

tence and monotonicity of Nash equilibria in the next lemmas. However, we will need such

assumption to ensure the existence of a strategy pro�le with certain properties in X as a

step towards the proof of theorem 1 (see lemma 9). In addition to assumptions 1 and 2, we

impose two symmetry requirements on G.

Assumption 3 (Symmetric Players): For all x 2 X and all pairwise permutations p : N !
N :

up(i)
�
xp(1); :::; xp(n)

�
= ui (x1; :::; xn) :

Assumption 4 (Symmetric Externalities): One of the following two cases must hold:

1. Positive externalities: ui(x) increasing in xNni for all i and all x 2 XN ;

2. Negative externalities: ui(x) decreasing in xNni for all i and all x 2 XN .

Assumption 3 requires that players payo¤s are neutral to switches in the strategies played

by other players, and that pairwise switches in strategies are mirrored by pairwise switches

in payo¤s. In other words, only strategies matter, and not who plays them. Assumption

4 requires that the e¤ect of a change in other players� strategies on one�s own payo¤ is

monotonic, and its sign is the same for all players. Many well known games (including

Cournot, Betrand and public good games) satisfy this symmetry assumption. The next

results directly follow from an applications to our game G of the properties of supermodular

games listed in lemmas 1 and 2.

Lemma 3 Let assumptions 1 and 2 hold. For all xS 2 XS, the set of Nash equilibria R �S(xS)

is nonempty and has a greatest and a least element.

Proof 1 Application of lemma 1.
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Let rg�S and r
l
�S
the selections of the map R �S obtained by considering its greatest and least

element, respectively.

Lemma 4 Let assumptions 1 and 2 hold. The maps ru�S and r
l
�S
are non decreasing in xS.

Proof 2 Application of lemma 2.

We �nally make use of the symmetry assumptions 3 and 4 to show that the set R �S(xS)

is Pareto ranked.

Lemma 5 Let assumptions 1-4 hold. If the payo¤ functions exhibit positive (negative) ex-
ternalities, then for all xS the element r

g
�S
(xS) (rl�S (xS)) Pareto dominates all other elements

in R �S on the set of players �S.

Proof 3 Let j 2 S, x �S 2 R �S (xS) and x
0
�S
= rg�S (xS) for some xS 2 XS. Let externalities be

positive. The following inequality follows:

uj(xS ; x
0
�Snj ; x

0
j) � uj(xS ; x0�Snj ; xj) � uj(xS ; x �S):

The �rst inequality is due to the Nash equilibrium property of x0�S for the restricted game

G(xS). The second inequality is due to positive externalities. Since the argument applies to

all j in �S and for all x �S 2 R �S (xS), the result follows. The proof for the case of negative

externalities is similar and is omitted.

3.3 Results

This section contains our main result: all games satisfying assumptions 1-4 admit a Conjec-

tural Cooperative Equilibrium. The proof of theorem 1 is constructive: we show that every

e¢ cient symmetric strategy pro�le in XN satis�es the conditions for being a CCE. Before

proving this fact in theorem 1, we establish a few preliminary results. We �rst show that an

e¢ ciency symmetric strategy pro�le always exists under assumptions 1-4.

Lemma 6 Let G satisfy assumption 1-4. Then there exists an e¢ cient strategy pro�le xe 2
XN such that xei = x

e
j for all i; j 2 N:

Proof 4 Compactness of each Xi implies compactness of X. Continuity of each ui implies
continuity of the social payo¤ function uN =

P
i2N ui. Existence of an e¢ cient pro�le directly

follows from Weiestrass theorem. To show that there exists a symmetric e¢ cient pro�le, we

need to exploit the supermodularity properties of payo¤ functions. Consider any arbitrary
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asymmetric pro�le x, with xi 6= xj for some players i and j. By the symmetry assumption
on payo¤ functions, we write

uN (x) = uN (xi; xj ; xNnfi;jg) = uN (xj ; xi; xNnfi;jg) (1)

where we have used the convention of writing the strategies of players i and j as �rst and

second elements of x, respectively. Since the sum of supermodular functions is itself super-

modular, assumptions 1 and 2 imply:

2 � uN (x) � uN
�
xi; xi; xNnfi[jg

�
+ uN

�
xj ; xj ; xNnfi[jg

�
: (2)

It follows that either

uN (x) � uN
�
xi; xi; xNnfi[jg

�
(3)

or

uN (x) � uN
�
xj ; xj ; xNnfi[jg

�
(4)

or both.

Suppose that (3) holds, and let x0 =
�
xi; xi; xNnfi[jg

�
. This is without loss of generality

for the ongoing argument. If xk = xi for all k 2 Nn fi [ jg our proof is complete. If not,
then let xk 6= xi. In this case, again by supermodularity of payo¤ functions, we write

2 � uN (x0) � uN
�
xi; xi; xi; xNnfi[j[kg

�
+ uN

�
xi; xk; xk; xNnfi[j[kg

�
: (5)

Condition (5) implies, again, that either

uN (x
0) � uN

�
xi; xi; xi; xNnfi[j[kg

�
(6)

or

uN (x
0) � uN

�
xi; xk; xk; xNnfi[j[kg

�
(7)

or both. Suppose �rst that only (7) holds. Using the de�nition of x0 we obtain

uN
�
xi; xi; xk; xNnfi[j[kg

�
� uN

�
xi; xk; xk; xNnfi[j[kg

�
: (8)

For this case, using again supermodularity, we write

2uN
�
xi; xk; xk; xNnfi[j[kg

�
� uN

�
xi; xi; xk; xNnfi[j[kg

�
+ uN

�
xk; xk; xk; xNnfi[j[kg

�
: (9)

Using (8) and (9) we obtain that

uN
�
xi; xk; xk; xNnfi[j[kg

�
� uN

�
xk; xk; xk; xNnfi[j[kg

�
: (10)
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Conditions (8) and (10) directly imply

uN (x
0) � uN

�
xk; xk; xk; xNnfi[j[kg

�
: (11)

We have therefore shown that either (6) or (9) must hold. By iteration of the same operation

for each additional player in Nn fi [ j [ kg, we obtain the conclusion that there exists some
symmetric pro�le xs for which uN (xs) � uN (x). Since the starting pro�le x was arbitrary,

and by the existence of an e¢ cient pro�le proved in the �rst part of this proof, we conclude

that a symmetric e¢ cient pro�le xe always exists under assumptions 1-4.

We now consider the possible joint strategies that an arbitrary coalition S can use in

order to improve upon an e¢ cient pro�le xe. In particular, we focus on the �best�strategies

S can adopt, by this meaning the pro�les x� (S) 2 XN satisfying the two following properties:
i) x��S 2 R �S (x

�
S); ii) there exists no x

0
S 2 XS and x0�S 2 R �S (x

0
S) such that ui

�
x0S ; x

0
�S

�
� ui (x�)

8i 2 S and uh (x0S ; r �S (x0S)) > uh (x
�) for at least one h 2 S. In words, x�(S) is a Pareto

optimal pro�le for coalition S in the set F (S) of all pro�les that are consistent with the

reaction map R �S :

F (S) = fx 2 XN : x �S 2 R �S (xS)g :

Note that F (S) is a compact set by the compactness of XN and by the closedness of the

Nash correspondence R �S (xS).

Lemma 7 Let G satisfy assumptions 1-4. Then for all x0 2 F (S) there exists some pro�le
x�(S) 2 XN which is a best strategy for S in the sense of conditions i) and ii) above and such
that ui(x�(S)) � ui(x0) for all i 2 S.

Proof 5 Let x0 2 F (S). If x0 = x�(S) for some x�(S) then the lemma is proved for x0. If

x0 6= x�(S) for all x�(S), then let the set

Pi(x
0) =

�
xN 2 F (S) : ui(x) � ui(x0)

	
de�ne the set of strategy pro�les that are weakly preferred by player i to x0. The set Pi(x0) is

nonempty by the fact that x0 6= x�(S) for all x�(S), and it is closed and bounded by continuity
of ui and by compactness of F (S). Since this holds for all i 2 S, it follows that the set

PS(x
0) = \i2SPi(x0) is closed and bounded.3 Moreover, it is non empty because x0 6= x�(S).

We can therefore conclude that the problem

max
x2PS(x)

X
i2S

�iui(x)

3We remind here that S is a �nite set.

12



has a solution for all � in the interior of the #S � 1 dimensional unitary simplex. Call x(�)
such a solution. Clearly, x(�) satis�es conditions i) and ii) de�ning the pro�le x�(S). Also,

clearly x(�) Pareto dominates x0 on the set of players S, which concludes the proof.

By lemma 7, we can restrict our analysis to the �best�choices x�(S) of coalition S, since

if S cannot pro�tably deviate by any such pro�les, it cannot deviate by means of any pro�le

in F (S). We remark here that in the choice of a �best�pro�le x�(S), coalition S is assumed

able to select among all the possible (equilibrium) reactions of �S, as speci�ed by R �S , in order

to maximize its joint payo¤. This is in line with our de�nition of a CCE, in which this ability

of S was implicitly assumed. The next lemma shows that under assumptions 3 and 4 the

best choice of S always selects strategies for �S that are greater (least) elements of the set

R �S (xS), depending on the sign of the externality being positive or negative, respectively.

Lemma 8 Let G satisfy positive (negative) externalities. Let S � N and x0 2 F (S).

Then, ui
�
x0S ; r

g
�S
(x0S)

�
� ui (x0) (respectively, ui

�
x0S ; r

l
�S
(x0S)

�
� ui (x0)) for all i 2 S.

Proof 6 We show only the case of positive externalities; the proof for negative externalities
is symmetric and left to the reader. Since rg�S (x

0
S) � x �S for all x �S 2 R �S (x

0
S), and since

x0�S 2 R �S (x
0
S), positive externalities imply that ui

�
xS ; r

g
�S
(x0S)

�
� ui

�
xS ; x

0
�S

�
for all xS..

The implications of lemmas 7 and 8 are better illustrated by referring to the sets F g(S) �
F (S) and F l � F (S), de�ned as follows:

F g(S) =
n
x 2 F (S) : x �S = r

g
�S
(xS)

o
;

F l(S) =
n
x 2 F (S) : x �S = rl�S (xS)

o
:

Lemmas 8 implies that, under positive externalities, the same strategy pro�le x�(S), maxi-

mizing (by lemma 7) the aggregate payo¤ of S over the set F (S) for some vector of weights

�, also maximizes the same aggregate payo¤ over the set F g(S). The same conclusion can

be drawn, with respect to the set F l(S), for the case of negative externalities. This result is

important for two reasons. First, it endows the somewhat problematic assumption that S can

select among Nash reactions of players in �S - which, as we said, is implicit in the de�nition of

a CCE and of the set F (S) above - with the more appealing interpretation that the Pareto

dominant Nash equilibrium will be played by members of S. This interpretation is supported

by the result of Lemma 5, by which the greater and least elements of R �S (x
0
S) are the best

choices for �S under positive and negative externalities, respectively. Second, the result of

13



lemma 8 allows us to exploit the properties of the maps rg�S (xS) and r
l
�S
(xS) in supermodular

games. This is done in the next lemma, in which these properties are shown to imply that

at x�(S) the strategies played by members of S and of �S are ordered according to the sign of

the externality: under positive externalities, players in S play �greater�strategies than those

in �S, while the opposite is true under negative externalities.

Lemma 9 Let i 2 S and j 2 S, and denote by x 2 X and y 2 X the strategies of player

i 2 S and player j 2 S, respectively, at x� (S). Then:
i) positive externalities imply x � y;
ii) negative externalities imply y � x.

Proof 7 For simplicity of notation, let x� denote the pro�le x�(S). Let Ui(x; y) � ui
�
x�Sni; x; x

�
NnSnj ; y

�
,

and similarly let Uj(x; y) = uj
�
x�Sni; x; x

�
NnSnj ; y

�
. We use supermodularity of ui to write:

Ui(y; y) + Ui(x; x) � Ui(x; y) + Ui(y; x): (12)

By the properties of x�,

Uj(x; y) � Uj(x; x); (13)

implying by symmetry that

Ui(y; x) � Ui(x; x): (14)

Using (12) and (14) we obtain

Ui(y; y) � Ui(x; y) = ui(x�): (15)

Now suppose that y > x and assume that the game has positive externalities. By lemma 4,

the equilibrium best response map has non decreasing greatest element, so that

y > x) rg�S(x
�
Sni; y) � r

g
�S
(x�S) = x

�
�S : (16)

By positive externalities

ui(x
�
Sni; y; r

g
�S
(x�Sni; y)) > ui(x

�
Sni; y; r

g
�S
(x�S)) = Ui(y; y): (17)

Equations (15) and (17) imply

ui

�
x�Sni; y; r

g
�S
(x�Sni; y)

�
> ui(x

�): (18)

Finally, since y > x, positive externalities also imply that for every player k 2 Sni:

uk

�
x�Sni; y; r

g
�S
(x�Sni; y)

�
� uk(x�): (19)
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Both 18 and 19 contradict the assumption that x� is a Pareto Optimum. Suppose now that

y < x and assume that the game has negative externalities. Supermodularity of ui and uj
imply

y < x) rl�S(x
�
Sni; y) � r

l
�S(x

�
S) = x

�
�S : (20)

By negative externalities

ui(x
�
Sni; y; r

l
�S(x

�
Sni; y)) � ui(x

�
Sni; y; r

l
�S(x

�
S)) = Ui(y; y): (21)

Again, equation (22) imply

ui(x
�
Sni; y; r

l
�S(x

�
Sni; y)) > ui(x

�): (22)

and, by negative externalities,

uk

�
x�Sni; y; r

g
�S
(x�Sni; y)

�
> uk(x

�) (23)

for every k 2 Sni, a contradiction.

Since by lemma 7 we can restrict our attention to the pro�les x�(S), we will use the

above result as a characterizing of the strategies played in the only relevant pro�les that

may be used in any deviation from an e¢ ciency pro�le xe. The next result makes use of this

characterization to prove that at any pro�le x� (S), the members of S cannot be better o¤than

the members of S. This result generalizes to the present setting of coalitional actions a well

known property of the subgame perfect equilibrium in two player symmetric supermodular

games, in which the �leader�is weakly worse o¤ than the �follower�.

Lemma 10 Let i 2 S and j 2 �S. Then uj(x� (S)) � ui(x� (S)).

Proof 8 For simplicity, let again x� denote the pro�le x�(S). The following inequalities hold:

uj
�
x�S ; x

�
�S

�
� uj

�
x�S ; x

�
�Snj ; x

�
i

�
� uj

�
x�Sni; x

�
j ; x

�
�Snj ; x

�
i

�
: (24)

The �rst part is implied by the conditions de�ning the pro�le x�; the second part follows from

lemma 9 and assumption 4. By assumption 3, we also have

uj

�
x�Sni; x

�
j ; x

�
�Snj ; x

�
i

�
= ui

�
x�S ; x

�
�S

�
: (25)

Inequalities (24) and (25) imply

uj (x
�) � ui (x�) ;

which proves the result.
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We are now ready to show that an e¢ cient strategy pro�le xe satis�es the requirements

of a Conjectural Cooperative Equilibrium.

Theorem 1 Let the game G satisfy assumption 1-4. Then, G admits a conjectural coopera-

tive equilibrium.

Proof 9 Let xe be a symmetric e¢ cient strategy pro�le for G, that is, a symmetric strategy
pro�le that maximizes the aggregate payo¤ of N . Let u(xe) denote the payo¤ of each agent

at xe. Suppose, by contradiction, that there exists a coalition S � N such that for all i 2 S:

ui(x
�(S)) � u(xe) (26)

with strict inequality for at least one h 2 S. Note that by lemma 10, it must be thatP
i2S
ui(x

�(S))

s
�

P
j2 �S

uj (x
�(S))

n� s ; (27)

otherwise there would exist i 2 S and j 2 �S for which

ui (x
�(S)) > uj (x

�(S)) :

By condition (27) we obtain the following implication:P
i2S
ui(x

�(S))

s
> u(xe))

P
j2 �S

uj (x
�(S))

n� s > u(xe): (28)

We conclude that if ui(x�(S)) � u(xe) for all i 2 S, with strict inequality for at least one
h 2 S, then using (26) and (28), we obtain

s

P
i2S
ui(x

�(S))

s
+ (n� s)

P
j2 �S

uj (x
�(S))

n� s > s u(xe) + (n� s)u(xe) (29)

or, X
i2N

ui(x
�(S)) > n u(xe) (30)

which contradicts the e¢ ciency of xe.
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4 On the Existence of Equilibria in Submodular Games

4.1 The Role of the Slope of the Reaction Map

Theorem 1 establishes su¢ cient conditions for the existence of a conjectural cooperative

equilibrium of the game G. The crucial condition, strategic complementarity in the sense of

Bulow et al. (1985), generates non decreasing best replies; in particular, the supermodularity

of payo¤ functions implies that the Nash responses of players outside a deviating coalition

are a non decreasing function of the strategies of coalitional members. This feature ensures

that each players outside S is better o¤ than each coalitional member of S when deviating.

Deviations by proper subcoalitions of players are therefore little pro�table, while the grand

coalition, not a¤ected by this �deviator�s curse�, produces a su¢ ciently big aggregate payo¤

for a stable cooperative outcomes to exist. In this section we show how the same mechanics

responsible for our existence result on the class of supermodular games, provide useful insight

for the analysis of games with strategic substitutes, as, for instance, environmental and public

goods games. We will use as an illustration an environmental Cobb-Douglas economy to show

that as long as best replies are not �too� decreasing (thereby providing deviating coalitions

with a not �too�big positional advantage), stable cooperative outcomes exist.

4.2 An illustration using a Cobb-Douglas environmental economy

We consider an economy with set of agents N = f1; ::i; ::; ng, in which z � 0 is the environ-
mental quality enjoyed by agents, xi � 0 is a private good, pi � 0 is a polluting emission

originated as a by-product of the production of xi. We assume that for each i in N preferences

are represented by the Cobb-Douglas utility function

ui (z; xi) = z
�x�;

technology is described by the production function

xi = p


i ;

and emissions accumulate according to the additive law

z (p) = A�
X
i2N

pi (31)

where A is a constant expressing the quality of a pollution-free environment. We will assume

that 
; � and � are all positive and 
 � 1. We associate with this economy the game

Ge with players set N , strategy space
�
0; p0i

�
for each i, with

P
i2N p

0
i < A, and payo¤s
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Ui(p1; :::; pn) = z�p�i , where � = �
. Using this (symmetric) setup, we can express the

maximal per-capita payo¤ of each coalition S in the event of a deviation from an arbitrary

strategy pro�le in G as follows:

ui (S) = s
��A�+��2� (�+ �)���� (�+ � (n� s))�� ��: (32)

This simple setup of an environmental economy can be used to illustrate how CCE exist when

best replies are not too decreasing or, in other terms, when strategies are not too substitute.

This in turn requires that players�utilities does not decrease too much with other players�

choice, a property mainly depending on the level of log-concavity of the term z (p)�. We prove

this analytically for the case � = 1, while we rely on numerical simulation for the general case.

Note that z (p)� is log-concave (and the game is not log-supermodular) for � > 0, and best

replies are decreasing. The environmental game admits a unique Nash equilibrium �p with

�pi =
A
�+n for every i 2 N , and a unique e¢ cient pro�le p

e (by e¢ cient we mean �aggregate

welfare maximizer�). Simple algebra yields the following expression:

ui (S) = s
�1A��+1�2� (�+ 1)���1 (�+ n� s)�� :

The pro�tability of individual deviation from the e¢ cient strategy pro�le pe is evaluated as

follows:

ui (p
e)� ui (S) = �� (�+ n� 1)�� n� 1 < 0, � < 1:

It follows that when the function z(p)� is strictly concave (� < 1), then no CCE exists.

However, when � = 1, the CCE is unique, and equal to pe. It is also easy to show that for

� > 1 (z(:)� convex ) the strategy pro�le pe is still a CCE. We conclude that the existence of

a CCE only requires a not too strong log-concavity of z(:)�. This ensures that the marginal

utility of each consumer does not decrease too much with the rivals�private consumption

and hence, a deviating coalition, by expanding its pollution (and private consumption) does

not exploit too much its advantage against complementary players. When this is the case,

although the environmental game is a natural �strategic substitute�game, the CCE exists.

It is interesting to relate the existence of a stable cooperative (and e¢ cient) solution with

the relative magnitude of the parameters �, � and 
, expressing the intensity of preferences

for the environment and for private consumption, and the characteristics of technology. It

turns out that in order for an agreement on emissions to be reached, agents must put enough

weight on the environment in their preferences (high enough �), and emissions must not

be too �productive� according to the available technology. In other words, this conclusion

rephrases the common intuition that a clean environment is sustainable only if agents care

enough for ambient quality. As we said, the analysis of existence of a CCE for the general
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case (that is, removing the assumption � = 1) is not possible in analytical terms. In what

follows we show by means of computations that the set of CCEa of the game �e can be

characterized with respect to three possible con�gurations of the parameter �; � and 
 of

the economy: the case � = �
, in which the CCE is unique and assigning to each player the

payo¤ ui(pe) (for this case we provide an analytical proof); the case � > �
, in which the set

of CCEa strictly includes the pro�le pe; the case � < �
, in which the set of CCE is empty.

Proposition 1 If � = �
 the unique CCE is the e¢ cient pro�le pe.

Proof 10 We �rst show that no pro�le p 6= pe can be a CCE. By 32 we obtain

ui (p
e)� ui (fig) =

��A�+� (�+ �)���� ��
�
(�+ � (n� 1))� � ��n�

�
n� (�+ � (n� 1))�

from which

ui (p
e)� ui (fig) = 0()

h
(�+ � (n� 1))� � ��n�

i
= 0;

Using the fact that � = �
 we geth
(�+ � (n� 1))� � ��n�

i
= [�+ � (n� 1)]� � (�n)� = 0

from which

ui (p
e) = ui (fig) :

To show that pe is a CCE, it su¢ ces to show that ui (S) � ui (p
e) for all coalitions S such

that s > 1. Using 32 we obtain

ui (p
e)� ui (S) � 0()

h
s� (�+ � (n� s))� � ��n�

i
� 0

which, using again the fact that � = �
 reduces to

ui (p
e)� ui (S) � 0() [s (�+ � (n� s))]� � (�n)� .

The last condition can be rewritten as

ui (p
e)� ui (S) � 0() s+ (n� s) s+ s2 � n+ s2

which is always satis�ed since s � 1.

Proposition 2 If � > �
 then pe is a CCE.
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Proof 11 We proceed by numerical simulations. Our aim is to show that whenever � > �


the di¤erence ui (pe) � ui (S) is positive for every s. We �rst consider the case s = 1. We

plot the graph of

fi (�; n) � max f(ui (pe)� ui (fig)) ; 0g

for the �xed value of � = 0:5. The domains are taken to be (1; 10000) for n and (0; 1) for

�.From Figure 1 it is evident that ui (pe) > ui (fig) whenever � > 0:5 = �. Similar graph are
obtained for other values of � in the range (0; 1). We perform the same exercise for coalition

of size s > 1. We plot the function

f (�; s) � max f(ui (pe)� ui (fSg)) ; 0g

for �x values of n and �. The domains are taken to be (�; 1) for � and (1; n] for s. For the

case n = 1000 and � = 0:2 we obtain the following graph:In Figure 2 the graph of f (�; s) all

lies above the zero plane for all values of s 2 (1; n] and of � 2 (�; 1). Summing up, whenever
� > � we found that ui (pe) > ui fig for s � 1; we thus conclude that whenever � > � then pe

is a CCE.

Proposition 3 If � > �
 there exists no CCE.

Proof 12 We again proceed by numerical simulations and evaluate the function

f̂i (�; n) � min f(ui (pe)� ui (fig)) ; 0g

for an arbitrary player i 2 N and a �xed value of �. The domains are taken to be (0; 1) for �

and [1; 10000] for n. Figure 3 depicts the graph of f̂i (�; n) for the case � = 0:5.It is evident

from Figure 3 (and from numerical evaluations around the point � = 0:5) that for any value

of n in the selected range, ui (pe) < ui (fig) for the whole range of values of � < �. We thus
conclude that for such values there is no CCE.

The above results can be usefully summarized by plotting the value of the di¤erence

[ui (p
e)� ui fig] as a function of the parameter � for �xed values of �; n and for s = 1.
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