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Abstract—In many classification tasks, managing costs and 

completion times are the main concerns. In this paper, we assume 
that the completion time for classifying an instance is determined 
by its class label, and that a late penalty cost is incurred if the 
deadline is not met. This time requirement enriches the 
classification problem but posts a challenge to developing a 
solution algorithm. We propose an innovative approach for the 
decision tree induction, which produces multiple candidate trees 
by allowing more than one splitting attribute at each node. The 
user can specify the maximum number of candidate trees to 
control the computational efforts required to produce the final 
solution. In the tree-induction process, an allocation scheme is 
used to dynamically distribute the given number of candidate 
trees to splitting attributes according to their estimated 
contributions to cost reduction. The algorithm finds the final tree 
by backtracking. An extensive experiment shows that the 
algorithm outperforms the top-down heuristic and can effectively 
obtain the optimal or near-optimal decision trees without an 
excessive computation time.  
 

Index Terms—classification, decision tree, cost and time 
sensitive learning, late penalty  
 

I. INTRODUCTION 
ecision trees are an attractive method for classification 
tasks, because they can efficiently generate rules easy to 

interpret and understand [1]. Many decision-tree induction 
algorithms have been developed for a wide range of 
applications, including medical diagnosis, fraud detection, 
credit scoring, and direct marketing. The majority of existing 
algorithms, such as ID3, CART, and C4.5, are greedy 
heuristics for maximizing classification accuracy, which work 
in a top-down manner using a statistic measure or information 
gain as the criterion in selecting an attribute to produce further 
splits [2]. 

In many classification applications, managing costs and 
completion times are main concerns. For example, in 
designing a medical diagnosis procedure, the costs of 
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performing tests and the economic consequences incurred by 
erroneous results could be dominating factors. Furthermore, 
the completion time of a diagnosis procedure is critical for 
some illnesses like heart attack and stroke, because the fatality 
rate and chance of permanent disability increase dramatically 
if treatment is delayed. Similar scenarios are found in fraud 
detection, customer retention, and other applications. 

The cost-sensitive (CS) decision tree is the research area 
that explicitly considers cost minimization as the goal in 
developing tree-induction algorithms. Two costs are 
commonly considered: the cost of using attributes (attribute 
cost) and the costs incurred by misclassification. Turney [3] 
applied the genetic algorithm to search for a decision tree with 
the lowest misclassification cost. Ling et al. [4] developed a 
top-down heuristic for minimizing the sum of the attribute and 
misclassification costs. Ling et al. [5] further proposed a lazy-
learning heuristic, which allows discounts in attribute costs 
when several attributes can be evaluated together. For 
additional references for the CS trees, please refer to Ling et 
al. [5].  

To our best knowledge, Arnt and Zilberstein [6] and Chen 
et al. [7] are the only studies that explicitly consider both costs 
and completion times in classification tasks. Arnt and 
Zilberstein assumed an increasing cost function of the 
completion time in addition to attribute and misclassification 
costs. They used the Markov decision process to solve a cost-
minimization problem. Chen et al. [7] required all 
classifications be finished before a common deadline. Their 
top-down heuristic uses the cost-reduction rate (the cost 
reduction per unit time) as the criterion for selecting splitting 
attributes. After the tree has been developed, a local search is 
performed to utilize slack times in the tree for possible 
improvements. 

We generalize the problem proposed by Chen et al. [7] by 
assuming that the required completion times are determined 
by class labels. This completion time requirement is 
applicable to many classification tasks. For example, there are 
several types of heart disease with different severity levels, 
including coronary artery disease, heart attack, heart failure, 
arrhythmia, etc. A heart attack is much more serious than 
coronary artery disease and requires immediate medical 
attention. Therefore, a shorter completion time should be set 
for the diagnosis of a patient with a heart attack than one with 
coronary artery disease. Similarly, in customer retention, 
customers may be categorized according to their times to 
churn. Customers who will soon switch to another service 
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need to be identified more quickly than those who may stay 
for a longer period of time. Similarly, in fraud detection, the 
priority should be to identify more serious fraudulent cases in 
a shorter time. To incorporate this requirement, we add late 
penalties to the total cost considered in the tree induction. This 
type of completion time requirement enriches the 
classification problem, but, at the same time, poses a challenge 
to developing algorithms for tree induction. For convenience, 
we name the proposed research problem as the cost-sensitive-
with-late-penalty (CSLP) decision tree.  

It is well known that the traditional top-down approach is 
computationally efficient. However, it has significant 
drawbacks. In particular, the criteria used in selecting splitting 
attributes are “myopic” in nature, reflecting only instant 
benefits at “current” tree nodes. As a result, the attributes 
selected in early stages may have little value in the final tree. 
Similarly, the tree growth may be stopped prematurely, 
because the same criteria are used. For the problem under 
consideration, an additional issue is the difficulty in 
adequately assessing an attribute’s contribution to the late 
penalty cost in early stages of the tree induction, because late 
penalties may occur only at later stages. These issues motivate 
the development of an innovative algorithm in this paper.  

Essentially, our proposed algorithm produces multiple tree 
candidates by allowing more than one splitting attribute at 
each node in the tree-induction process. The user can specify 
the maximum number of candidate trees to control the 
required computational efforts. In the induction process, an 
allocation scheme is used to dynamically distribute the given 
number of candidate trees to splitting attributes according to 
their estimated contributions to cost reduction. The algorithm 
finds the grown tree with the minimum cost as the solution by 
backtracking. Overall, it works like an exploration aiming to 
locate the optimal solution in a limited but promising area in 
the solution space. In contrast, the traditional top-down 
approach forces a selection of one splitting attribute at a given 
node and develops only one decision tree in the induction 
process. For convenience, we use EXP as the name of our 
proposed algorithm. 

This paper is organized as follows. In section II, we define 
the problem, and in section III, we present the proposed tree 
induction algorithm with two illustrative examples. In section 
IV, we perform an extensive experiment to evaluate the 
performance of the algorithm. In section V, we summarize the 
results and discuss possible extensions. 

II.  PROBLEM DEFINITION 
Consider a training dataset consisting of N records with K 

attributes, X1, X2, …, XK, and a class label (target variable), Y. 
Let y1, y2, …, and yM be the levels of Y. The attributes are used 
to develop a decision tree by a sequence of splits, and each 
leaf of the tree is assigned a predicted label value for all the 
instances at the leaf. For simplicity, we assume that all the 
attributes are categorical and all the records do not contain 
missing values. 

Let Tj and Cj denote the time and cost, respectively, for 
measuring attribute Xj, and Vk the deadline for classifying an 
instance in class k. If it takes a time longer than Vk to classify 
an instance in class k, a late penalty Pk is incurred. If a class j 
instance is classified into class k, a misclassification cost of 
CM(j, k) is incurred, where CM(j, k) = 0 if j = k. 

For a given decision tree R with Q leaf nodes, we define the 
follow notation: Leaf(R) as the set of leafs {l1, l2, …, lQ}; ψ(li) 
the set of attributes used in the path from the root node to leaf 
li; N(li) the number of instances at leaf li; N(yk, li) the number 
of class k (Y = yk) instances at li. 

Three costs are considered in developing a decision tree: 
the misclassification cost (CM), attribute cost (CA), and late 
cost (CL). We derive these costs for a given tree as follows. At 
leaf li, in order to minimize the total misclassification cost 
associated with the N(li) instances, the class label assigned to 
the leaf, ,ˆ

il
Y  is determined by: 
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Consequently, the total misclassification cost for the 
instances at li is 
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And the total misclassification cost associated with the tree 
R is 

.)()(
)(

∑
∈

=
RLeafl

iMM
i

lCRTC  (3) 

The total attribute cost for the instances at li is determined by 
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and the total attribute cost for the tree is 
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The time for an instance to reach leaf li is given by 
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For an instance at li with Y = yk, the late penalty is Pj if t(li) > 
Vk; and 0, otherwise. We define an indicator variable: 
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using which, the total late penalty at li is given as 
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and the total late penalty for the tree is 
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Combining the three cost components, the total costs for leaf li 
and tree R are given, respectively, as 
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The optimal tree is the one with the minimum TC(R). In the 
next section, we discuss the tree-induction algorithm with the 
objective to find the optimal tree. 

III. TREE-INDUCTION ALGORITHM 

A. The EXP algorithm 
We present the proposed algorithm for the CSLP decision 

tree induction. We first discuss the structure of the algorithm 
and then the allocation scheme of trees to the solution space. 
Two examples are used to illustrate the algorithm.  

Let qmax be the maximum number of candidate trees allowed 
in the induction process. The algorithm starts with the root 
node by using the EXP function in Figure 1 to allocate qmax to 
the K attributes. This process is applied recursively at each 
new node added to the tree. When no splitting attributes are 
available, no sub-trees will be produced, and when the 
available number of trees is 1 or smaller, a top-down myopic 
heuristic is used to construct the sub-tree from the node. Once 
all sub-trees are fully grown from a node, the sub-tree with the 
smallest cost is selected as the “optimal” sub-tree rooted at the 
node.  

 Let q denote the number of trees available for allocation at 
node n (q = qmax at the root node). The magnitude of q 
determines the depth of the search at node n: a larger q implies 
a more extensive search. Therefore, if the user gives a larger 
qmax, the decision tree produced by the EXP algorithm is likely 
to have a lower cost. However, it also requires more 
computation time. When qmax is sufficiently large, the 
algorithm is equivalent to an exhaustive search, and when qmax 
is 1, it is basically a simple top-down heuristic. 

 
================== 

Insert Fig. 1 here 
================== 

Fig. 1.  The EXP algorithm. 
 

From the above description, it is evident that the key 
element of the algorithm is the scheme for allocating the 
available number of candidate trees at each new node in the 
tree-induction process. We first derive the estimated instant 
benefit (EIB) of a splitting attribute at a given node to be used 
in the allocation scheme.  

Let b(n, Xi) denote the net cost reduction resulting from 
splitting n on Xi. We use children(n, Xi) to denote the set of 
child nodes created from splitting n by Xi, and obtain: 
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After the split using Xi, the classification time of all instances 
in n is t(n) + Ti. At this point, late penalties may not have been 
realized for some instances, depending on their labels. 
Assume Vk > t(n) + Ti. For the instances of class k at node n, it 
is difficult to determine whether or how much the late penalty 
will eventually be realized if the tree growth continues. Note 
that, in the grown tree, the total late penalty for these instances 
must be between 0 and kk PnyN ×),( . We pro-rate the penalty 

cost according to the ratio of the attribute time, Ti, to the 
deadline, Vk, in estimating the late penalty resulting from 
splitting n on Xi. Let A(n, Xi) denote the estimated late penalty 
by attribute Xi determined by: 
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Consequently, the EIB of using Xi as the splitting attribute at 
n, denoted by B(n, Xi), is given by: 

),(),(),( iii XnAXnbXnB −= . (14) 
If all available splitting attributes have the same EIBs, we 

will distribute q evenly among them. Otherwise, an attribute is 
considered more preferable if it has a larger EIB and, thus, is 
given a larger share of q. However, no available splitting 
attributes should be excluded, even those with negative EIBs, 
because of the possibility that using them may still lead to a 
good result.  

Let Bmin and Bmax be, respectively, the smallest and largest 
EIBs of the splitting attributes available at the node under 
consideration. We define for each available attribute: 

)],,max([),( maxmin BzpBXnBd ii ×−−=  (15) 
where  p > 0 and z > 0 are selected by the user. We propose 
the following allocation scheme for assigning the number of 
trees to an available attribute Xi:  

./
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Note that [Bmin – p × max(z, Bmax)] represents the reference 
value for measuring each attribute’s potential of yielding a 
low-cost sub-tree by splitting on Xi, and z ensures that all di’s 
are positive. The user can adjust p to control the sensitivity of 
the allocation to the dispersion in B(n, Xi). When a small p is 
used, the values of di’s tend to have a smaller variation, 
leading to smaller differences in the allocation. Note that it is 
possible, under the scheme, to allocate an excessive number to 
a splitting attribute. We may ignore the unused number of 
trees or distribute it to other attributes.  

When q is equal to or less than 1, we use a top-down 
heuristic to produce a sub-tree from n using B(n, Xi) as the 
criterion in selecting splitting attributes. It is expected that the 
selection of the splitting criterion does not affect EXP’s 
performance as significantly as the allocation scheme does. 
The first reason is that the heuristic algorithm usually is used 
near the leaves of a decision tree, where the choices are 
usually correct. Second, if the allocation scheme properly 
places large numbers of trees on important splitting attributes, 
finding optimal or near optimal trees are less dependent on the 
heuristic method. 

B. Examples 
We use two examples to illustrate the proposed algorithm 

and compare it with the brute-force search algorithm, 
abbreviated by OPT(imum). The dataset, “Heart Cleveland” 
(HRT296), is used in the first example, which contains the 
heart disease diagnosis data from 296 patients.1 The class 
 

1 The original dataset at UCI data mining repository has 303 records. We 
removed 5 records because of missing values.  
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label indicates the presence or absence of a heart disease, and 
13 attributes include patients’ demographics and medical test 
results. This dataset has been widely used for classification 
benchmarking in machine learning. The “Hepatitis Domain” 
dataset (HPT151) is used in the second example. It contains 
diagnosis data of 151 hepatitis patients with two classes, 
survivors and victims, and 19 attributes.2 The two datasets are 
available at the UC Irvine Machine Learning Repository. All 
numeric attributes are discretized, using the method by Fayyad 
Irani [8]. The cutoff points are selected to maximize the 
information gain and are tested against the MDLP criterion.  

The cost and time parameters for the both datasets are given 
in the Appendix under Setting HRT296-C and Setting 
HPT151-C, respectively. Note that these parameters are 
randomly generated, because the original datasets do not 
contain the late penalty information. We will explain the 
methods of generation in the next section, where we conduct 
an extensive numerical evaluation of the algorithm.  

The EXP algorithm with qmax = 200 and the brute-force 
algorithm yield the optimal decision tree given in Part (a) of 
Figure 2. We include the numbers of instances associated with 
the classes and time information along the tree induction. We 
observe that many attributes with short attribute times are 
used, such as cp, sex, and age. Approximately 17.6% of the 
instances shown in the dashed rectangle in the figure have 
passed their respective deadlines, incurring an average late 
penalty cost of $33.11 per instance. The overall 
misclassification rate is 22.6%, and the average cost of 
misclassification is $260.14. The average attribute cost is 
$9.81, and the average total cost per instance is $303.05. 
When qmax is set to 200, the EXP algorithm took 390 
milliseconds to complete the induction.3 In comparison, it 
requires 975 seconds for the brute-force search to find the 
optimal decision tree. 

For this example, the EXP algorithm finds the optimal tree, 
when qmax is set at or above 200. As discussed, if qmax = 1, the 
EXP algorithm is equivalent to a top-down heuristic based on 
the estimated instant benefit as the attribute selection criterion. 
Part (b) of Figure 2 shows the tree obtained by such an 
approach. The tree is relatively smaller and has an average 
cost of $339.45 (higher than the optimum by 12.0%). A 
noticeable difference is observed at node #3, where the top-
down heuristic stops splitting because of a negative EIB. In 
contrast, the EXP algorithm continues exploring the 
possibility of reducing the cost although the cost increases 
temporarily from $39,141 to $40,762.5 (the sum of $3,140 at 
node #6, $29,650 at node #7, and $7,962.5 at node #8). As 
shown in the optimal tree, the gains in classification accuracy 
in the leaves under node #3 eventually justify the splits at 
node #3. 

 
================== 

 
2 The original dataset consists of 155 records. Four records are removed 

because of missing values. 
3 We implemented the algorithms in Java on a PC with CPU Intel® Core™ 

2 Duo E6750 under Windows® Vista and JDK 1.6.0.  

Insert Fig. 2 here 
================== 

Fig. 2.  The decision trees generated by the EXP algorithm with HRT296 
dataset (test case HRT296_C).  
 

================== 
Insert Fig. 3 here 

================== 
Fig. 3.  The effect of qmax. 

 
When a large number of attributes is encountered, a much 

larger qmax is required for the EXP algorithm to find the 
optimal tree. We use the second dataset, HPT151, with a 
relatively large number of attributes to show the effects of 
qmax. Part (a) of Figure 3 reports the average costs per instance 
as we increase qmax from 100 to 12,000. For comparison, we 
also plot a horizontal line near the top of the figure to indicate 
the average cost achieved by the top-down heuristic (i.e., qmax 
= 1). The total cost appears as a step function of qmax and 
becomes steady after 10,000 since the optimal tree has been 
found. Note that the total cost of the top-down approach is 
84% higher than that of the optimal tree, and that the 
difference is reduced to 28.8% for qmax = 200, and 8.1% for 
qmax = 4,000.  

Part (b) shows the run time as a function of qmax. The 
algorithm ends at less than 15 milliseconds when qmax = 1. As 
expected, the time increases when a large qmax is used. When 
qmax = 4,000, the algorithm yields a solution within 8.1% from 
the optimal tree in 10.1 seconds. When qmax = 10,000, the 
EXP algorithm obtains the optimal decision tree in 17.0 
seconds. The overall results suggest that, with a moderate 
qmax, the algorithm can find a near optimal solution within a 
reasonable time. In contrast, it requires 824.8 seconds for the 
brute-force search to find the optimal solution. 

The allocation scheme for distributing the number of 
candidate trees should affect the performance of the EXP 
algorithm. It is expected that a smaller qmax is required for 
obtaining the optimal solution, if a more efficient allocation 
scheme is used. To evaluate the performance of the proposed 
allocation scheme, we compared it with an equal allocation 
scheme, which distributes the number of candidate trees 
evenly to all available splitting attributes. Figure 4 shows the 
average per-instance costs of the two schemes as functions of 
qmax. In the entire range, the even allocation performs better 
only when qmax = 200. The equal allocation scheme yields the 
optimal tree when qmax is at least 26,000, whereas only 10,000 
is required for the proposed allocation scheme based on EIB.  

The equal allocation method is similar to building a tree by 
choosing a splitting attribute randomly. We find when qmax is 
very small, e.g., 100, the EXP algorithm based on the equal 
allocation method still significantly outperforms the top-down 
heuristic, confirming the effectiveness of the proposed 
strategy of allowing multiple candidate decision trees in the 
tree- induction process. 
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IV. EXPERIMENT 
The results reported in the two examples suggest that the 

EXP algorithm is effective in finding the optimal tree. In this 
section, we perform an extensive experiment to evaluate the 
algorithm by comparing it with the brute-force search, and the 
top-down heuristic using EIB for selecting splitting attributes. 
Four datasets from the UC Irvine Machine Learning 
Repository with multiple cost and time settings are used in the 
experiment.4 The setups of the experiment are discussed in the 
next subsection.  

A. Setups 
The first two datasets, HRT296 and HPT151, have been 

discussed in the last section. The third, BRT277, contains data 
of breast cancer diagnoses, and the fourth, DBT768, diabetes 
diagnoses. We have pre-processed the datasets by removing 
missing values and discretizing numeric attributes. Table I 
contains a brief description of the datasets after pre-
processing. 
 

TABLE I 
THE DATASETS USED FOR PERFORMANCE TESTS 

================== 
Insert TABLE I here 

================== 
 
We use the following three attribute cost and time settings: 
A. The values are available in the literature.5 
B. The attribute costs and times for demographic attributes 

are set at $1 and 1 unit, respectively. Remaining costs 
and times are randomly generated, respectively, from the 
uniform distributions with ranges of [$5, $50] and [10 
units, 100 units]. 

C. The attribute cost and time for demographic attributes are 
set at $1 and 1 unit, respectively. Remaining costs and 
times are randomly generated, respectively, from the 
uniform distributions with ranges of [$5, $15] and [10 
units, 100 units]. 

We refer to a test case as (dataset name)_(cost and time 
setting). For example, HRT296_B represents dataset HRT296 
under setting B. Since setting A is not available for the third 
and fourth datasets, we have 10 test cases in total. 

All the test cases, except HPT151_A, share the same 
misclassification costs ($1,000 and $3,000) and late penalties 
($100 and $300). Since the attribute costs for HPT151 used in 
a previous study are exceptionally low, we change them to 
$100 for negative instances and $300 for positive instances. 
The late penalties are $10 and $30, respectively, for less and 
more severe classes. To synthesize classification deadlines, we 
first use the brute-force algorithm to find the optimal CS trees 
and use 70% and 80% of its average completion time as the 
deadlines of the less and more severe classes, respectively. 

 
4 The datasets can be accessed at http://archive.ics.uci.edu/ml/datasets/ . 
5 Previous test costs for BRT277 and DBT768 are unavailable. Therefore 

we conducted experiments based only on settings B and C for these two 
datasets. 

The cost and time settings are given in the Appendix.  
We use qmax = 20,000 for the test cases based on HPT151, 

and use 1,000 in other cases, unless stated otherwise, and z = 
10 and p = 1 for the tree-allocation scheme. The solutions 
provided by the brute-force search (OPT) are used to evaluate 
the EXP algorithm in its cost performance. The comparison 
between the EXP algorithm and the top-down heuristic (TDH) 
can show the benefits of producing multiple candidate trees in 
the induction process. Note that using a brute-force search 
may not be practical when the number of attributes is large. In 
this experiment, the running time ranges from a few seconds 
(HRT296) to more than one hour (HPT151). 

B. Results 
We use bootstrapping in our performance evaluations. For 

each test case, 50 bootstrap replicates (with the same sample 
size as the original) were generated from each of the original 
datasets by simple random sampling with replacement. The 
EXP algorithm, brute-force search, and a top-down heuristic 
are applied on each replicate and the average costs per 
instance are computed for comparisons.  

The results are presented graphically by the box-plots in 
Table II, and summary statistics are reported in Table III. In 
general, the EXP and the brute-force search produce very 
similar results, and their average costs are significantly lower 
than those obtained by the top-down heuristic. For the datasets 
with a smaller number of attributes, including HRT296, 
BRT277, and DBT768, the solutions of the EXP algorithm are 
within 0.02% of the optimal solutions given by the brute-force 
algorithm. For HPT151, which has a large number of 
attributes, the difference increases to 2.93% in setting A, 
0.93% in setting B, and 2.24% in setting C. The EXP 
algorithm did not obtain the optimal solution because the 
given qmax is not large enough; thus, it has to rely on the top-
down approach to complete many lower parts of a decision 
tree. However, the differences are small, especially 
considering that the computation times of the EXP algorithm 
are much lower than those of the brute-force search. For 
example, the brute-force search requires 764 seconds on 
average to generate the optimal trees for test case HPT151_A, 
whereas the EXP algorithm takes only 26 seconds. 

The results also indicate that the top-down heuristic does 
not perform well in almost all the test cases. Although its 
computational time is very short, the average per-instance cost 
could be significantly higher than that of the optimal solution. 
Using dataset HPT151 as an example, it takes less than 15 
milliseconds to generate a solution. However, its average costs 
in the three settings are 139.4%, 88.1%, and 151.3% higher 
than those of the optimal trees. 

 
TABLE II 

THE DATASETS USED FOR PERFORMANCE TESTS 
================== 

Insert TABLE II here 
================== 

 
TABLE III 
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SUMMARY STATISTICS FOR COMPARING THE THREE ALGORITHMS. 
================== 

Insert TABLE III here 
================== 

 
In summary, the experiment results support that the EXP 

algorithm is capable of obtaining optimal or near optimal 
CSLP trees in very reasonable times. We believe the concept 
of producing multiple candidate trees in the induction process 
is promising and can also be used to improve many existing 
tree algorithms.  

V.  CONCLUSION 
In this paper, we generalize the cost and time-sensitive 

decision-tree problem proposed by Chen et al. [7] by 
assuming that required completion times are determined by 
class labels. This new problem has many potential application 
fields, including medical diagnosis, customer retention, and 
fraud detection. Our proposed algorithm for the problem 
produces multiple candidate trees in the induction process. 
The user can specify the maximum number of candidate trees 
to control the required computational efforts. In the induction 
process, an allocation scheme dynamically distributes the 
given number of candidate trees to splitting attributes 
according to their estimated contributions to cost reduction. 
The algorithm finds the tree with the minimum cost as the 
final solution by backtracking. An extensive experiment is 
used to compare the proposed algorithm, brute-force search, 
and a top-down heuristic. The results show that the algorithm 
significantly outperforms the top-down heuristic and can 
effectively obtain the optimal or near-optimal decision trees 
without an excessive computation time.  

There are two possible extensions of this paper to further 
improve the EXP algorithm. The first is the development of an 
adaptive allocation scheme to distribute candidate trees in the 
tree induction process. For example, if EBIs have a very large 
variation among available splitting variables at a node, the 
allocation should be more even when q is large. However, 
when q is small, we may need to focus on few splits with 
better estimated instant benefits. An allocation scheme based 
on this concept may improve the performance of the EXP 
algorithm. 

The second possible extension is on the searching strategy 
of the algorithm. The current search strategy is a deterministic 
process without considering the results found in the induction 
process. If we find a tree with a very low cost during the 
induction process, for example, it may be reasonable to invest 
more computation resources (i.e., allocate more trees) to its 
neighboring areas. Therefore, we may use a two-step process 
to obtain candidate trees. In the first step, we find a number of 
grown trees based on the EXP algorithm. In the second step, 
local search is applied to their neighboring areas according to 
their cost performances. We expect that this two-step process 
is especially effective when qmax is small.  

Finally, we may consider a different problem formulation. 
In this paper, late penalty is used to incorporate the time 

constraints in the model. We may consider the time 
constraints directly and hope to control the percentages of 
instances that pass the deadlines. Making this change in model 
formulation is straightforward. However, developing 
algorithms to solve the problem could be challenging. 

APPENDIX 
COST SETTINGS FOR HRT296  

 Setting A Setting B Setting C 
Cost Cost Time Cost Time Cost 

A
ttr

ib
ut

es
 

age 1  1 1 1 1 1 
sex 1 1 1 1 1 1 
cp 1 1 1 1 1 1 
trestbps 1 1 11 87 13 38 
chol 7.27 240 40.5 52 9.5 15 
fbs 5.2 240 12.5 55 13.5 78 
restecg 15.5 30 7 38 13.5 98 
thalach 102.9 60 26 98 7 55 
exang 87.3 60 11.5 73 11 94 
oldpeak 87.3 60 24 50 13.5 52 
slope 87.3 60 34.5 52 8 58 
ca 100.9 60 32.5 21 8.5 96 
thal 102.9 60 5 12 11.5 39 

C
la

ss
es

 Negative Mis. 1000  1000  1000  
Late 100 44 100 104 100 96 

Positive Mis. 3000  3000  3000  
Late 300 50 300 119 300 110 

 
COST SETTINGS FOR HPT151 

 Setting A Setting B Setting C 
Cost Cost Time Cost Time Cost 

A
ttr

ib
ut

es
 

SEX 1 1 1 1  1 1 
STEROID 1 1 10 70 11.5 38 
ANTIVIRALS 1 1 42.5 77 10 15 
FATIGUE 1 1 18 12 9 86 
MALAISE 1 1 46.5 29 5.5 38 
ANOREXIA 1 1 47 66 13 25 
'LIVER BIG' 1 1 35 91 5 35 
'LIVER FIRM' 1 1 7 20 9.5 77 
'SPLEEN 
PALPABLE' 1 1 35.5 30 8 50 

SPIDERS 1 1 41.5 75 12.5 94 
ASCITES 1 1 36 15 8 78 
VARICES 1 1 8.5 38 9 76 
BILIRUBIN 7.27 19 31 97 13.5 18 
SGOT 7.27 21 24.5 90 12.5 56 
ALBUMIN 7.27 23 18 87 14 16 
HISTOLOGY 1 1 15 10 14.5 35 

C
la

ss
es

 Negative Mis. 100  1000  1000  
Late 10 18 100 163 100 225 

Positive Mis. 300  3000  3000  
Late 30 20 300 186 300 257 

 
COST SETTINGS FOR BRT277 

 Setting B Setting C 
Cost Time Cost Time 

A
ttr

ib
ut

es
 

age 1 1 1 1 
menopause 15.5 77 13.5 84 
tumor-size 13.5 24 11.5 19 
inv-nodes 25 71 13.5 77 
node-caps 37.5 85 5 44 
deg-malig 47.5 31 15 11 
breast 35.5 87 9 96 
breast-quad 32.5 49 12.5 57 
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'irradiat' 12 58 12  54 

C
la

ss
es

 Negative Mis. 1000  1000  
Late 100 227 100 225 

Positive Mis. 3000  3000  
Late 300 259 300 258 

 
 

COST SETTINGS FOR DBT768 
 Setting B Setting C 

Cost Time Cost Time 

A
ttr

ib
ut

es
 

preg 1 1 1 1 
plas 17.5 50 13 57 
pres 14 14 6 80 
skin 20.5 82 13 100 
insu 25.5 63 5.5 27 
mass 43 83 15 90 
pedi 36 54 12 29 
age 1 1 1 1 

C
la

ss
es

 Negative Mis. 1000  1000  
Late 100 36 100 194 

Positive Mis. 3000  3000  
Late 300 42 300 222 
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Figures and Tables 
 

Inputs: 
 n – The node to split  
 q – Maximum allowable number of sub-trees below n 
 
Function EXP(n, q) 
 If q ≤ 1 then 
  build the sub-tree below n by a myopic algorithm 
  exit this function 
 End if 
 
 allocate q to all splitting attributes 
 For each attribute Xi 
  Let qi be the allocated share of q 
  If qi > 0 then 
   Split node n by Xi 
   For each child, c, of n 
    Exp(c, qi) 
   Next child 

Save the resulted sub-tree and its cost 
  End if 
 Next attribute 
  
 Let X* be the attribute yields the lowest cost 

Set the sub-tree of n to the sub-tree resulting from 
splitting on X* 

End function 
Fig. 1.  The EXP algorithm. 
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Fig. 2.  The decision trees generated by the EXP algorithm with HRT296 dataset (test case HRT296_C).  
 
 
 
 
 
 

 
(a) The optimal decision tree generated by both the EXP algorithm (qmax = 200) and the brute-force search algorithm. 
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(b) The decision tree generated by the EXP algorithm with qmax = 1 for the cost setting including late penalty. 



 10

 
Fig. 3.  The effect of qmax. 
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(a) The average cost decreases as qmax increases. (The upper dashed line
indicates the average cost when qmax = 1, and the lower indicates the average 
cost when qmax = ∞.) 
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(b) The run time of the EXP algorithm as a function of qmax. 
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TABLE I 
THE DATASETS USED FOR PERFORMANCE TESTS 

 

Dataset # Attributes # Instancesa Class Distribution 

1. Heart Cleveland 
 (HRT296) 13 296 (303) Presence: 160 

Absence: 136 
2. Hepatitis Domain 
 (HPT151)b 16 (19) 151 (155) Live: 120 

Die:31 
3. Breast Cancerc 
 (BRT277) 9 277 (286) Non-recurrence: 196 

Recurrence: 81 
4. Diabetes 
 (DBT768) 8 768 Negative: 500 

Positive: 268 
aWe consider only the instances without missing values. Either missing 

values are imputed, or records containing many missing values are removed. 
The numbers shown within the parentheses indicate the original dataset size 
before removing instances with missing values.  

bThe original dataset contains 19 Attributes. Two (‘PROTIME’ and ‘ALK 
PHOSPHATE’) are deleted because of too many missing values. We also 
deleted 4 instances with more than 4 missing values. The remaining missing 
values are imputed with the value of either mean for a numeric attribute or 
mode for a categorical attribute. After discretization, attribute ‘AGE’ has only 
one level, and is therefore discarded. 

cSome categorical variables in the original dataset have many levels. For 
those attribute levels containing only a few observations, we combined the 
adjacent ones manually to avoid a decision tree grown too shallow.  
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TABLE II 
THE DATASETS USED FOR PERFORMANCE TESTS 

Dataset Cost setting A Cost setting B Cost setting C 

HRT296 

TDH EXP OPT
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TABLE III 
SUMMARY STATISTICS FOR COMPARING THE THREE ALGORITHMS 

Test Case  
Algorithm 

TDH EXP OPT 

HRT296_A 

Min 238.00 228.33 228.33 

Mean 336.68 (9.32%) 307.97 (0.00%) 307.97 

Std Dev 49.28 35.06 35.06 

Max 500.00 370.70 370.70 

HRT296_B 

Min 226.70 179.28 179.28 

Mean 307.98 (37.40%) 224.15 (0.00%) 224.15 

Std Dev 39.40 25.14 25.14 

Max 439.19 290.55 290.55 

HRT296_C 

Min 238.00 198.83 198.83 

Mean 320.95 (29.25%) 248.32 (0.00%) 248.32 

Std Dev 39.09 26.91 26.91 

Max 439.19 305.26 305.26 

HPT151_A 

Min 12.05 6.27 5.21 

Mean 23.7 (139.39%) 10.19 (2.93%) 9.90 

Std Dev 5.59 2.12 2.02 

Max 36.10 14.49 13.16 

HPT151_B 

Min 117.96 105.40 103.49 

Mean 253.9 (88.10%) 136.23 (0.93%) 134.98 

Std Dev 56.15 22.13 22.24 

Max 386.99 168.93 168.93 

HPT151_C 

Min 97.61 58.04 56.23 

Mean 195.94 (151.27%) 79.73 (2.24%) 77.98 

Std Dev 61.97 11.09 10.41 

Max 358.99 98.22 96.48 

BRT277_B 

Min 338.48 321.41 321.41 

Mean 443.99 (18.08%) 376.04 (0.01%) 376.02 

Std Dev 38.17 30.41 30.43 

Max 533.25 463.53 463.53 

BRT277_C 

Min 303.09 289.16 289.16 

Mean 419.21 (22.02%) 343.56 (0.00%) 343.55 

Std Dev 39.38 29.95 29.95 

Max 495.04 412.91 412.91 

DBT768_ B 

Min 434.49 434.49 434.49 

Mean 495.15 (1.77%) 486.65 (0.02%) 486.54 

Std Dev 28.63 20.01 19.90 

Max 606.77 539.24 539.24 

DBT768_C 

Min 298.96 287.85 287.85 

Mean 376.64 (9.26%) 344.74 (0.01%) 344.71 

Std Dev 25.05 17.53 17.50 

Max 442.93 385.93 385.93 

 
 
 


