INTERNATIONAL MACROECONOMIC POLICY COORDINATION WHEN POLICY-MAKERS DISAGREE ON THE MODEL

Jeffrey A. Frankel
Katharine A. Rockett

Working Paper No. 2059

```
NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 1986
```

From August 6 - September 24, the first author was Visiting Scholar, Division of International Finance, Board of Governors of the Federal Reserve System, Washington, DC, and from September 25 December 24, Visiting Scholar, Research Department, International Monetary Fund, Washington, DC. In addition to the above agencies, we would like to thank the Sloan Foundation and the Institute for International Studies at U.C. Berkeley for research support. Views expressed are those of the authors rather than any of these institutions. We would also like to acknowledge suggestions from seminar participants at a Brookings Institution conference, the Seminaire Economique Monetaire Internationale in Paris, the Japanese Ministry of Finance, the NBER Summer Institute, Columbia University, the Federal Reserve Board, the Bank of Canada, and the University of Quebec at Montreal. The research reported here is part of the NBER's research program in International Studies. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

International Macroeconomic Policy Coordination

When Policy-Makers Disagree on the Model

Abstract

The existing literature on international macroeconomic policy coordination makes the unrealistic assumption that policy-makers all know the true model, from which it follows in general that the Nash bargaining solution is superior to the Nash non-cooperative solution. But everything changes once we recognize that policy-makers' models differ from each other and therefore from the "true" model. It is still true that the two countries will in general be able to agree on a cooperative policy package that each belleves will improve the objective function relative to the Nash non-cooperative solution. However, the bargaining solution is as likely to move the target variables in the wrong direction as in the right direction, in the light of a third true model.

This paper illustrates these theoretical points with monetary and fiscal multipliers taken from simulations of eight leading international econometric models. (It is a sequel to NBER Working Paper 1925, which considered coordination between the domestic monetary and Piscal authorities.) Here we first consider coordination between U.S. and non-U.S. central banks. We find that out of 512 possible combinations of models that could represent U.S. bellefs, non-U.S. bellefs and the true model, coordination improves U.S. welfare in only 289 cases, reducing it in 206, and improves the welfare of other OECD countries in only 297 cases, reducing it in 198. Then we consider coordination with both monetary and fiscal policy. We find that out of 512 combinations, coordination improves U.S. welfare in 183 cases, reducing it in 228, and improves the welfare of other OECD countries in 283 cases, reducing it in 219. A final section of the paper considers possible extensions of the framework, dealing with uncertainty.
Jeffrey Frankel
Department of Economics
University of California
Berkeley, CA 94720
(415) $642-8084$
Katharine Rockett
Department of Economics
University of California
Berkeley, CA 94720

International policy coordination has been the fastest-growing research topic in the field of open-economy macroeconomics. 1 The topic owes its success to the happy marriage of the mathematical techniques of game theory and the practical problem of coordination that has in the mid-1980s become of central concern to international policy-makers. Virtually all of the coordination literature has made the automatic assumption that policy-makers agree on the true model of how the world macroeconomy behaves. As a consequence, it has reached a very strong conclusion: in general, countries will be better off it they coordinate policies than they would be in the Nash non-cooperative equilibrium in which each government sets its policies while taking those of the others as given. 2 The empirical literature is as yet less fully developed than the theoretical literature. But it too has claimed gains from coordination that, though small, are necessarily positive. 3 If the case in favor of coordination is indeed this clear, one might wonder at the stupidity of governments in not pursuing it more seriously. The assumption that policy-makers agree on the true model has little, if any, empirical basis. Different governments subscribe to different economic philosophies. If one wishes to think of actors as perpetually processing new information in a Bayesian manner, so that their models over time would converge on any given reality in the limit, then one must admit that the speed of convergence is sufficiently slow, or else that reality is changing sufficiently rapidly, that policy-makers have not been able to reach agreement on the true model. Nor is there much prospect of them doing so in the foreseeable future. professional economists are not much more able to agree on the correct macroeconomic model than are policy-makers. A concrete
illustration was offered by a recent exercise at the Brookings Institution. Ralph Bryant and Dale Henderson asked those responsible for twelve leading econometric models of the world economy to simulate the effects of some carefully-specified policy changes. 4 The predictions of the models varied widely as to both the magnitude and the sign of the effects on output, inflation, exchange rates and current account balances among trading partners and even in the country originating the policy change. (See tables 1 and 6 below.) Obviously no more than one of the models can be right, and it seems unlikely that even one of them is in fact exactly right.

Lack of knowledge as to the true model helps explain a troublesome fact. While support for the proposition that coordination would improve welfare is widespread, proponents do not generally agree on the nature of the pareto-improving package of policy changes that is called for in any particular set of circumstances. Some call for coordinated expansion, some for coordinated discipline, some for coordinated shifts in the mix between monetary and fiscal policy, and so forth. 5 Obviously if one sort of package would raise welfare, then others would lower welfare. Disagreement, even within one country, as to where the economy currently sits relative to the desired values of the target variables is responsible for some of the disagreement on the desirable coordinated policy changes, but disagreement as to the correct model is also a significant factor. As Branson (1986, 176) says, "With this range of disagreement on economic analysis, how are the negotiators
to reach agreement? The topic is one for the National Science Foundation, not a new Bretton Woods."

One implication of the lack of agreement on the true model is, of course, that "more research needs to be done." But the implications for any policy coordination that might take place in the meantime are considerably more interesting. This paper demonstrates two propositions that hold when policy-makers disagree on the model. First, in contrast to what one might think before careful reflection, such policy-makers will in general be able to find a package of coordinated policy changes that each believes will improve its country's welfare relative to the sub-optimal Nash noncooperative equilibrium. 6 second, and in striking contrast to the standard result when policy-makers agree on the model, the package of coordinated policy changes could turn out to reduce welfare, as judged by some true model of reality, as easily as raise it. For example, using eight models from the Brookings simulations as models which could represent the views of the U.S. government, the views of other industrialized countries, or the true world macroeconomy, we find that out of 512 possible combinations, monetary coordination perceptibly improves U.S. welfare in only 289 cases, reducing it in 206 cases, and improves the welfare of the other industrialized countries in only 297 cases, reducing it in 198. The first two sections of the paper analyze a very simple game where two countries, the United States and Europe, must decide how to set their money supplies so as to come as close as possible to their desired levels of two target variables: income and the current account
(internal balance and external balance). Section 1 makes the two points theoretically, that the two central banks will in general be able to agree on a coordinated policy package that each thinks leaves its country in a better position, and that the package might in fact leave them in a worse position. Section 2 uses the multipliers from the eight models in the Brookings simulations to provide a dramatic illustration of the points.

In section 3 each government is given a second policy instrument, government expenditure, to use, in addition to monetary policy, and a third target variable, inflation, to pursue in addition to income and the current account. Again we see that the governments will in general find a coordinated policy package that they expect to improve welfare, but that it could as easily have the opposite effect in reality. Section 4 considers extensions of the framework to deal with the policy-maker's uncertainty regarding the true model, or the other player's model, or both.

Section 1: The Theory of Monetary Coordination with Disagreement
Here we assume that each country is interested in two target
variables: its own output, denoted y for the United States and y^{*} for Europe (expressed relative to their optimum values and in log form), and its current account balance, denoted x and x^{*} respectively (expressed as a percentage of GNP and again relative to their optimums). Each government seeks to minimize a quadratic loss function.
(1) $W=y^{2}+\omega x^{2}$
(2) $W^{*}=y^{* 2}+\omega^{*} x^{* 2}$
where ω and ω^{*} denote the relative weignts placed on external balance versus internal balance.

We assume a general framework in which the targets are linearly related to the available policy instruments, which in this section are limited to the countries' money supplies, m and m^{*} respectively (in log form). We denote the parameters as perceived by the U.S. authorities by a "us" subscript.

$$
\begin{align*}
& y=A_{u s}+C_{u s} m+E_{u s} m^{*} \tag{3}\\
& x=B_{u s}+D_{U S} m+F_{u s} m^{*} \tag{4}
\end{align*}
$$

We denote the parameters perceived by the European government by an "e" subscript.
(5) $\quad y^{*}=G_{e}+I_{e} m+K_{e} m^{*}$
(6) $\quad x^{*}=H_{e}+J_{e} m+L_{e} m^{*}$

Since each country has only a single instrument but two targets, it cannot unilaterally achieve its targets. We begin by considering the Nash non-cooperacive equilibrium. To ascertain U.S.
behavior we differentiate (1) with respect to m, using (3) and (4) and holding m^{*} constant. It follows that the U.S. reaction function is:

$$
\begin{equation*}
m=M+N m^{*} \tag{7}
\end{equation*}
$$

Where $\quad M=-\frac{A_{u s} C_{u s}+\omega B_{u s} D_{u s}}{C_{u s}^{2}+\omega D_{u s}}$
and $\quad N=-\frac{E_{u s} C_{u s}+\omega F_{u s} D_{u s}}{C_{u s}^{2}+\omega D_{u s}}{ }^{2} \quad$.

To ascertain European behavior we differentiate (2) with respect to m^{*}, using (5) and (6) and holding m constant. The European reaction function is:

$$
\begin{equation*}
m^{*}=Q+R m, \tag{8}
\end{equation*}
$$

where $\quad Q=-\frac{G_{e} K_{e}+\omega^{*} H_{e} L_{e}}{K_{e}^{2}+\omega^{*} L_{e}^{2}}$
and $\quad R=-\frac{I_{e} K_{e}+\omega^{*} J_{e} L_{e}}{K_{e}^{2}+\omega^{*} L_{e}^{2}}$.

We solve equations (7) and (8) for the Nash equilibrium.

$$
\begin{align*}
& m^{n}=\frac{M+N Q}{1-N R} \tag{9}\\
& m^{* n}=\frac{Q+M R}{1-N R} \tag{10}
\end{align*}
$$

Figure 1 shows the two policy-makers' reaction functions, equations (7) and (8). The optimum point as perceived by the U.S. policy-makers is a point $O_{u s}$ on its reaction function. Concentric indifference curves radiate from $O_{u s}$. These curves are vertical

Figure 1
wherever they intersect the reaction function, because m is chosen so that its marginal benefit given m^{*} is zero. Similarly the optimum point as perceived by the European policy-maker is a point P_{E}, and its concentric indifference curves are horizontal wherever they intersect its reaction function.

We have drawn the European reaction curve as steeper than the U.S. curve. One might expect that the effects that are largest in absolute value are the positive effects of money on domestic output: C in equations (3) - (4) for the United States and K in equations (5)-(6) for the non-U.S. OECD. 7 It follows that, unless the welfare weight w on the current account is large, the absolute value of the slope of the U.S. reaction function is less than one when the U.S. money supply is on the vertical axis, and vice versa for the European reaction function. The possibilities for the sign of the slope are more diverse. If monetary expansion is thought to be transmitted negatively to trading partners $(E<0)$, presumably via a depreciation of the currency and improvement in the trade balance of the expanding country as in the Mundell-Fleming model, then the slope is positive: $N>0$. If monetary transmission is thought to be positive on the other hand ($E>0$), then the slope is ambiguous: when the welfare weight ω on the current account is small, the slope is negative, but when ω is large, or when the transmission multiplier E is small (relative not only to the own multiplier C, but also to the current account multipliers D and F), the slope is again positive. (We are assuming that D and F, the effects of m and m^{*} on the domestic current account, are of opposite signs by symmetry.)

The same analysis holds for the forelgn reaction function (e.g., $I<0 \Rightarrow R>0$), though it must be remembered that even if any given model is symmetric, the two reaction functions could easily have opposite slopes. For example one country might believe that transmission is negative and the other that it is positive. In figure 1 we have drawn the functions downward-sloping: a foreign expansion is transmitted positively to the domestic country and so the domestic government reacts by contracting.

The Nash equilibrium N is determined as the intersection of the two reaction functions. At N the indifference curves cannot be tangent, but must intersect, since their respective slopes are infinity and zero. It follows that the Nash equilibrium is perceived as Pareto-inefficient. Both policy-makers think they would be better off if they could agree to move to a point within the "lens" determined by the intersection of the two indifference curves.

As we have drawn the graph, each country would like to expand but is afraid to do so on its own, presumably because of adverse implications for the current account. But they can agree to expand simultaneously, moving northeastward in the graph to higher levels of perceived welfare. Such joint reflation is the kind of international coordination that has been urged on Germany and Japan by the United States under two different Administrations: in 1977-78, in the form of the "locomotive theory," and in 1986 in the form of coordinated discount rate cuts. 8

If an efficient mechanism of coordination exists, the countries will move, not just northeastward, but specifically to one of the points on the contract curve, where the two countries' indifference curves are tangent. There is no strong reason to choose any particular point. Nor, for that matter, is there reason to think that any Pareto-improving solution can necessarily be enforced. But we follow much of the literature in considering the Nash bargaining solution, defined as the point where the product of the two countries' perceived welfare gains, compared to the perceived welfare at the Nash noncooperative solution, is maximized:
(11) Max ($\left.W_{u s}\left(m, m^{*}\right)-W_{u s}\left(m^{n}, m^{*} n\right)\right)\left(W_{e}^{*}\left(m, m^{*}\right)-W_{e}\left(m^{n}, m^{*} n\right)\right.$

$$
\begin{aligned}
& =\left(\left[\left(A_{u s}+C_{u s} m+E_{u s} m^{*}\right)^{2}+\omega\left(B_{u s}+D_{u s} m+F_{u s} m^{*}\right)^{2}\right]\right. \\
& \left.-\left[\left(A_{u s}+C_{u s} m^{n}+E_{u s} m^{*} n\right)^{2}+\omega\left(B_{u s}+D_{u s} m^{n}+F_{u s} m^{*} n\right)^{2}\right]\right)
\end{aligned}
$$

$$
\left(\left(G_{e}+I_{e} m+K_{e} m^{*}\right)^{2}+w^{*}\left(H_{e}+J_{e} m+L_{e} m^{*}\right)^{2}\right]
$$

$$
\left.-\left[\left(G_{e}+I_{e} m^{n}+K_{e} m^{*} n\right)^{2}+\omega^{*}\left(H_{e}+J_{e} m^{n}+L_{e} m^{*} n\right)^{2}\right]\right)
$$

One would differentiate with respect to m and m^{*} to find the bargaining solution ($\mathrm{m}^{b}, \mathrm{~m}^{*} \mathrm{~b}$), a point such as B in figure 2 .

Once we recognize that the two policy-makers have different models of the world, we must recognize that one, or both, will be wrong.

To evaluate whether the bargaining solution B is superior to the noncooperative solution ($m^{n}, m^{*} n$) not just in perception but also in reality, we would have to know the true parameter values, the output and current account functions (3)-(6) without the subscripts:

$$
\begin{align*}
& y=A+C m+E m^{*} \tag{12}\\
& x=B+D m+F m^{*} \tag{13}\\
& y^{*}=G+I m+K m^{*} \tag{14}\\
& x^{*}=H+J m+L m^{*} \tag{15}
\end{align*}
$$

We would then plug m^{b} and $\mathrm{m}^{*} \mathrm{~b}$ into (12)-(15), and in turn plug the target variables into the loss functions (1) and (2), to see whether the bargaining solution in fact improves welfare.

In the standard case where the policy-makers agree on the correct model, coordination must necessarily improve welfare for each country, or else its government would not have agreed to go along. In our case, coordination may improve welfare. For example if the true model is very close to that believed by the U.S. authorities, then the true iso-welfare map will be very similar to the perceived indifference curves shown in figure 1 , and U.S. welfare will indeed be higher at B than N. But this need not be the case.

The true optimum policy combination to maximize U.S. welfare is given by differentiating (1) with respect to m (as in the derivation of (7) but without the subscripts), and with respect to m^{*}, and solving simultaneously:

Fiqure 2

$$
\begin{align*}
& m^{o}=\frac{M\left(E^{2}+\omega F^{2}\right)-N(A E+\omega B F)}{\left(E^{2}+\omega F^{2}\right)+N(C E+\omega D F)} \tag{10}\\
& m^{* O}=-\frac{A E+\omega B F}{E^{2}+\omega F^{2}}-\frac{C E+\omega D F}{E^{2}+\omega F^{2}} m^{0} \tag{11}
\end{align*}
$$

If the true optimum point O is not at $O_{\text {us }}$ but rather is as shown in Figure 2, with the new set of true iso-welfare curves drawn, then the move from N to B could very well be in the wrong direction, resulting in a reduction in U.S. welfare. Similarly if the true optimum policy combination from the viewpoint of European interests is not at Pe_{e} but rather at P as shown in Figure 2 , then coordination could reduce European welfare as well.

It is worth considering momentarily the case when the two policy-makers are seeking to maximize the identical objective function, and disagree only about the proper model. For example they might be the monetary and fiscal authority within the same country. Our two propositions would still hold: (1) the two policy-makers will in general be able to agree on a package of coordinated policy changes that each thinks will improve the (same) country's welfare relative to the Nash noncooperative solution, and (2) the package agreed to in bargaining could in fact worsen welfare as easily as improve it. This is the case considered in Frankel (1986b). 9 While in that paper coordination arises solely from different perceptions, and in the conventional literature it arises solely from different objectives, in the present paper both factors are present.

Section 2: Coordination with Eight International Econometric Models
How important for coordination is the issue of conflicting models likely to be in practice? Is the case where bargaining reduces welfare as judged by the true model merely a pathological counterexample, or is it a likely occurrence? In what follows we use the international simulation results of the macro-econometric models that participated in the Brookings exercise to get an idea of what might actually happen if governments coordinate.

The models were asked to show the effects of four experiments, among others: an increase in the U.S. money supply, an increase in the non-U.S. OECD money supply, an increase in U.S. government expenditure and an increase in non-U.S. OECD government expenditure. In each case the instructions were to hold the other policy instruments constant. Though twelve models participated, some did not report effects on current account balances, which we need along with effects on output levels. The eight that we can use here are the Federal Reserve Board's Multi-Country Model (MCM), Patrick Minford's Liverpool Model (LIVPL), the Sims-Litterman Vector AutoRegression Model (VAR), the OECD's Interlink Model (OECD), the Project Link Model (LINK), the McKibbon-Sachs Global Model (MSG), the EEC Commission's Compact Model (EEC), and the Haas-Masson smaller approximation of the MCM model (MINIMOD). These models are quite representative of the range of econometric models actually in use, including as they do models both large and small in size, structural and nonstructural in approach, Keynesian and neoclassical in philosophy, backward-looking and

	Y	CPI	$\stackrel{1}{(\text { pts. })}$	Currency Value	$\begin{gathered} C A \\ (\$ b) \end{gathered}$	$\begin{gathered} C A^{*} \\ (\$ \mathrm{~b}) \end{gathered}$	$\begin{gathered} \mathbf{1}^{*} \\ (\text { pts. }) \end{gathered}$	CPI*	\mathbf{Y}^{*}
Monetary Expansion in U.S. (Sim. D)	Effect in U.S.					Effect in Non-U.S.			
MCM	+1.5\%	+0.4\%	-2.2	-6.0\%	-3.1	-3.5	-0.5	-0.6\%	-0.7\%
EEC $1 /$	+1.0\%	+0.8\%	-2.4	-4.0\%	-2.8	+1.2	-0.5	-0.4\%	+0.2\%
EPA $2 /$	+1.2\%	+1.0\%	-2.2	-6.4\%	-1.6	-10.1	-0.6	-0.5\%	-0.4\%
LINX	+1.0\%	-0.4\%	-1.4	-2.3\%	-5.9	+1.5	NA	-0.1\%	-0.1\%
Liverpool	+0.1\%	+3.7\%	-0.3	-3.9\%	-13.0	+0.1	-0.1	-0.0\%	-0.0\%
MSG	+0.3\%	+1.5\%	-0.8	-2.0\%	+2.6	-4.4	-1.2	-0.7\%	+0.4\%
MINIMOD	+1.0\%	+0.8\%	-1.8	-5.7\%	+2.8	-4.7	-0.1	-0.27	-0.2\%
VAR 3/	+3.0\%	+0.4\%	.-1.9	-22.9\%	+4.9	+5.1	+0.3	+0.17	+0.4\%
OECD	+1.6\%	+0.7\%	-0.8	-2.6\%	-8.4	+3.1	-0.1	-0.1\%	+0.3\%
Taylor 3/	+0.6\%	+1.2\%	-0.4	-4.9\%	NA	NA	-0.1	-0.2\%	-0.2\%
Wharton	+0.7\%	+0.0\%	-2.1	-1.0\%	-5.1	+5.3	-1.3	-0.1\%	+0.4\%
DRI	+1.8\%	+0.4\%	-2.3	-14.6\%	-1.4	+14.5	-1.1	-1.3\%	-0.6\%
```Monetary Expansion in Non-U.S. OECD (Sim. H)```	Effect in Non-U.S.					Effect in U.S.			
MCM	+1.5\%	+0.6\%	-2.1	-5.4\%	+3.5	+0.1	-0.2	-0.2\%	-0.0\%
EEC 1/	+0.8\%	+1.0\%	-1.0	-2.3\%	$-5.2$	+1.9	+0.0	+0.1\%	+0.1\%
EPA $2 /$	+0.0\%	+0.0\%	-0.1	-0.1\%	-0.1	+0.1	-0.0	-0.0\%	+0.0\%
Link 4 /	+0.8\%	-0.6\%	NA	-2.3\%	$-1.4$	+3.5	+0.0	-0.0\%	+0.1\%
Liverpool	+0.4\%	+2.8\%	-0.9	-8.4\%	+7.1	-8.2	-1.1	-3.4\%	+1.6\%
MSG	+0.2\%	+1.5\%	-0.7	-1.4\%	-15.9	+12.0	-1.2	-0.67	+0.3\%
MINIMOD	+0.8\%	+0.2\%	$-1.8$	-4.8\%	+3.6	-1.4	-0.6	-0.5\%	-0.3\%
VAR 3/	+0.7\%	-0.5\%	-3.0	-5.5\%	+5.2	-10.0	+0.6	-0.7\%	+1. $2 \%$
OECD	+0.8\%	+0.3\%	-1.3	-2.1\%	-1.6	+2.3	-0.2	-0.1\%	+0.1\%
Taylor 3/	+0.8\%	+0.7\%	-0.3	-3.5\%	NA	NA	-0.2	-0.5\%	-0.1\%
Wharton	+0.2\%	-0.1\%	-0.8	+0.2\%	+2.6	+0.5	+0.0	+0.0\%	+0.0\%
DRI	NA								

1/ Non-U.S. short-term interest rate NA; long-term reported instead.
2/ Non-U.S. current account is Japan, Germany, the United Kingdom, and Canada.
3/ CPI NA. GNP deflator reported instead
4/ Appreciation of non-U.S. currency NA; depreciation of dollar reported instead

Table 1. Monetary Multipliers
(For two targets in each country)

Percentage Effect	Effect on Current
on Income	Account (As Per-
centage of GNP):	


From a (l percent) increase in:	U.S.m	Eur.m	U.S. m	Eur.m
Effect on U.S.	(C)	(E)	(D)	(F)
MCM	0.3750	0.0000	-0.0198	0.0006
Liverpool	0.0250	0.4000	-0.0832	-0.0525
VAR	0.7500	0.3000	0.0311	-0.0634
OECD	0.4000	0.0250	-0.0537	0.0147
LINK	0.2500	0.0250	-0.0380	0.0225
MSG	0.0750	0.0750	0.0167	0.0769
EEC	0.2500	0.0250	-0.0180	0.0122
MINIMOD	0.2500	-0.0750	0.0179	-0.0089
```Effect on non-U.S. OECD ("Europe")```	(I)	(K)	(J)	(L)
MCM	-0.1750	0.3750	-0.0090	0.0090
Liverpool	0.0000	0.1000	0.0034	0.2384
VAR	0.1000	0.1750	0.1169	0.1192
OECD	0.0750	0.2000	0.0178	-0.0091
LINK	-0.0250	0.2000	0.0083	-0.0077
MSG	0.1000	0.0500	-0.0206	-0.0743
EEC	0.0500	0.2000	0.0159	-0.0689
MINIMOD	-0.0500	0.2000	-0.0226	0.0173

forward-looking in expectations formation, European and American in authorship, and public-sector and private-sector in function.

Table 1a reports the effects of monetary expansion on several macroeconomic variables. The simulations showed effects over six years, but ours is a static framework; we use only the effect in the second year. (Two years is intended to be just long enough to get past the negative part of the "J-curve effect" of the exchange rate on the trade balance.) Table 1 reports the multipliers for output and the current account calculated in the form that we need: as a percentage of GNP per one percent change in the money supply. The models all agree that a monetary expansion raises domestic output, but they agree on little else. There is a surprising amount of disagreement, in particular, on whether a monetary expansion improves or worsens the current account and, in turn, on whether it is transmitted negatively or positively to the rest of the world. The reasons for this and other disagreements in the simulations are examined elsewhere. 10 It suffices to repeat that disagreements with respect to both the sign and magnitude of effects are common among honorable economists, and are common even within subsets of models that are supposedly similar in orientation, let alone among policy-makers.

Computing the policy-makers' reactions requires knowing not only the perceived policy multipliers, but also the target optimums and the welfare weights. We adopt the same target values as Oudiz and Sachs (1984): current accounts of zero for the United States and two percent of GNP for the non-U.S. OECD, and GNP gaps of zero for both regions. The baseline values of both variables, specified as part of the

Brookings simulation exercise, were below target as of 1985. Thus policy-makers will seek to increase both output and the current account. The targets, together with the baseline values for the variables and any set of policy multipliers from Table 1, imply corresponding values for the constant terms A, B, G and H in equations (3)-(6).

The choice of welfare weights ω and ω^{*} is necessarily more arbitrary, even, than the choice of target optimums. Oudiz and Sachs chose the values that the weights would have had to have held for countries to have produced the values of output, inflation and the current account actually observed in the 1980s, assuming a Nash non-cooperative equilibrium. For lack of a better alternative, we adopt the set of weights calculated by Oudiz and Sachs for the EPA model, and apply it uniformly regardless of model. We do not replicate their methodology separately with each model, because our welfare comparisons require a common objective function. But we have examined the sensitivity of our results to different welfare weights, and to different optimum values for the targets as well; we found no qualitative change in the results. 11

If the U.S. policy-maker can believe any of the eight models and the non-U.S. (henceforth "European") policy-maker can believe any of the eight models, then there are $8 \times 8=64$ possible combinations, each implying a different Nash non-cooperative equilibrium. In Table 2 we report $6 \times 6=36$ of them. $(8 \times 8$ is a bit too unwieldly for one table.)

Table 2：Nash Non－cooperative Equilibrium（Monetary Policies）

MODEL SUESCRIEED TO		MODEL SUESCRIEED TO EY EUROFE				MSG	
	MCM	LIVPOO	OL UAR	OECD	LINK，		
MCM							
NASH POINT：STAELE？	yEs 1	YES ${ }_{1}$	YES ${ }_{1}$	YES ${ }_{1}$	YES 1	YES	
DEVIATION OF NASH ${ }^{\text {c }}$							
FROM EASELINE							
$\mathrm{Me}^{\text {e }}$	34．643	－6． 150	－59． 500	46．06E	$5 E .775$		
M_{4}	10.547	10．5こう	10.43 z	10.554	10.558	10． 5 S1	
FERCEIVED DEVIATION OF TARGET							
FROM EASELINE							
EUR． Y	11.145	－0．615	－9．$こ こ こ$	10.004	10． 291	0.551	
－ $\mathrm{CA}^{\text {a }}$	O．EIE	－1．431	－5．84E	－6．-3 E	－0．	O． 5.8	
us Y	こ． 355	3． 346	3． 354	3． 5 53	5． 553	3．945	
FERCEIVED DEVIATION OF TARGET－0．1．eis							
EUR．Y	0.445	－11．315	－20．0こ玉	－0． 696	－0．409	－10．143	
CA	－1． 397	0． 556	2． 306	－1．151	－0．75E	－0．51玉	
US Y	－1．015	－1．034	－1．036	－1．012	－1．011	－1．0こ5	
CA	－E．3EJ	－2．888	－－． 3 E	－E． 956	－2． 851	－E． 891	
PERCEIVED GAIN FOR：－2．891－－－							
EUR．	1． 9 E 96	0． 2735	5.1246	1.0760	1． 0091	9． 2243	
us	0． 1673	0.1572	0.1440	0.1701	0． 1717	0.1563	
LIVPOOL							
NASH POINT：STAELE？	YES	YES	YES	YES	YES	YES	
DEVIATION STEPS	7	3	37	ϵ	5	6	
DEVIATION OF NASH． 6							
FRCM EASELINE							
Me	－0． 7 5 1	-5.159	45.315	54．525	57．417	こ1．077	
Mus	－64． 53 E	－60． 377	－103． 359	-144.120	－36．+ E®	－8E． 79 E	
FERCEIVED DEVIATION OF TRRGET－8E．79E							
EUR．${ }_{\text {C }}^{\text {C }}$（	11.031	－0． 516	－－ 00				
	0.572	-1.434	－E．$\epsilon こ ゙$	－ 398	－1．894	－7． $2 ⿺ 4$	
US $\quad \stackrel{Y}{\text { C }}$	－1．903	－3． 505	15.731	34． 311	1－． 557	E． $3 \in 1$	
	5． 409	モ．コミコ	€．$£ 00$	7．097	1－6．057	¢． 5 ¢	
FROM GOAL							
EUR． $\begin{aligned} & \mathrm{Y} \\ & \mathrm{CA}\end{aligned}$	0.351	－11．玉16	－1E． 900	－E． 608	－0．806	－17 9e4	
	－1．041	0． 5 S	1.483	－4． 307	－1．SE 1	－1． 904	
US $\quad \begin{aligned} & \text { Y } \\ & \\ & \\ & \text { CA }\end{aligned}$	－6． 975	－8． 5 －5	10.951	E9． 241	7． 597	1.391	
	－9．303	－0． 303	0.4 .31	1． 210	0.540	1． $96 \pm$	
FERCEIVED GAIN FOR：							
EUR．	1． 346	0．อฺ¢9	7．sears	－1．2530	0.342 C	－๕．ロコこ6	
us	1． 3611	1.6301	1．	－E．EsE	i．SEE	－，－0e	
UAR							
NASH POINT：STAELE？ STEPS	YES 4	YES	YES	YES	YES	YES	
FROM EASELINE							
$\mathrm{Me}^{\text {e }}$	28． 280	－6． 141	－86． 278	53.211	49.689		
$\mathrm{Mus}^{\text {M }}$	－2． 970	9.843	37.673	－12． 250	－10． 939	11.395	
PERCEIVED DEVIATION OF TARGET 10．כs k							
FROM EASELINE							
EUR．${ }_{\text {¢ }}^{\text {C }}$	11． 125	－0．614	－11．131	9.793	10． 211	0． 634	
	9． 280	－1．431	－5． 647	－0．697	-0.475	0．	
US $\quad \underset{\text { ce }}{\boldsymbol{r}}$	6． 356	5． 540	3． 871	6． 776	6． 705	5．453	
	－1． 385	0.695	6.700	－3．753	－3．489	1．007	
FERCEIVED DEVIATION OF TARGET－3．483 1．007							
FROM GOGL							
EUR． $\begin{aligned} & \mathrm{Y} \\ & \mathrm{CA}\end{aligned}$	$0.4 E 5$	－11． 514	－ご．631	－0． 577	－0．489	－10．07	
	－1．355	0． 356	2． 404	－1．5i7	－0． 347	－0．508	
us $\quad \begin{aligned} & \text { ¢ } \\ & \\ & \text { ca }\end{aligned}$	1．E®E	0.570	－1．099	1． 306	1．73E		
	－4．650	－E．051	3． 3 こう	－E． 473	－E． E － 5	0.483 -1.758	
FERCEIVED GAIN FOR：－－－－－－－							
EUR．	1.2531	0． 3735	4.2435	0.8956	1． $05 E \in$		
	－0．70こ2	1． 4674	－0．3087	－E． 1154	－1．8854	0． 5478	

Table 2 （cont．）

MODEL SUESCRIEED TO		MODEL SUESCRIEED TO EY EUROPE				
	mCM	LIVP	ol Var	OECD	LINK	MSG
UECD						
NGSH FOINT：STAELE？	YES Ξ	YES	YES	YES	YES	YES
DEVIATION OF NASH						
FROM gASELINE						
$\mathrm{M}^{\text {e }}$	E1．G15	－6．075	－55． 545	48． 217	51.774	－8． 234
M	4.11ε	5． 106	6.405	3．679	3.386	5． 162
FERCEIVED DEVIATION OF TARGET						
FROM ERSELINE						
EUR．Y ${ }_{\text {ch }}$	11.135	－0．608	－9．080	9． $9 ะ 0$	10．e65	0． 105
	0． 246	－1．431	－5．873	－0． 37 E	－0． 371	0.506
US $\quad \begin{gathered}\text { ca } \\ \text { ca }\end{gathered}$	E． 437	1.890	1． 174	E． 677	2． 7 E9	1．859
	0.344	－1．） $3 \in 3$	-1.160	0.511	0.568	－0． 598
Ferceived deviation of target						
FROM GOAL						
EUR．${ }^{Y} \mathrm{Y}$	0.435	－11．308	－19．790	－0．780	－0．435	－10． 595
	－1． 366	0． i 56	E． 173	－1． 3 －	－0．942	－0． 535
us $\quad \begin{aligned} & \text { Y } \\ & \text { ca }\end{aligned}$	－อ． 5 こ	－3．080	－3．796	－E． E^{3}	－モ． 241	－̇． 111
	－E． 815	－3．4ここ	－4． E_{18}	－E． 547	－2．430	－3．456
FERCEIVED GAIN FOR：						
EUR．	1.3409	O．ヨ7S0	5． 241 E	1．0こ91	1.0780	0．1285
US	0.2700	－0．0057	－0．4Eここ	4． 3Ω ce	0.4033	－0．0ここ7
LINK						
NASH POINT：STABLE？	YES_{1}	YES ${ }_{1}$	YES ${ }_{1}$	YES	YES	YES ${ }_{1}$
DEVIATION OF NASH						
FROM EASELINE						
Me	32.133	－6．080	－55．0®3	47．77E	51.988	－8． 348
Mus	S． E_{18}	5.490	5． 840	5.106	5.076	5． 507
FERCEIVED deviation of target						
FROM EASELINE						
EUR．${ }_{\text {l }}^{\text {C }}$	11.137	－0．608	－9．045	9． 337	10． 571	0.133
	0． $\mathbf{8} 41$	－1．431	－5． 877	－6． 343	－0．300	0.507
us $\quad \begin{aligned} & \mathrm{Y} \\ & \mathrm{CA}\end{aligned}$	E． 108	1．อご1	0． 084	E． 471	こ．ЈЄヲ	1． 168
	O．SES	－0．345	－1．461	0.88 E	0.778	－0． 397
FERCEIVED deviaticn of targetFind goal						
EUR． $\begin{aligned} & \text { Y } \\ & \text { ca }\end{aligned}$	0.457	－11．308	－17．745	－0．7ES	－0．4E3	－10．SE7
	－1．37E	－0．3EE	E． 174	－1． E E	－0．83こ	－0．5ころ
us $\quad \begin{gathered}\mathrm{Y} \\ \mathrm{CA}\end{gathered}$	－こ． 86 E	－3． 743	－4．8eє	－こ．4ミヲ	－e． 001	－3． 802
	－E．810	－3．680	－4．7ЭE	－E．453	－2． 357	－3． 73 2
FERCEIVED GAIN FOR：						
	1．$こ こ 90$	0.3749	5． E 57 E	1．0392		
US	0．3817	－0．0551	－0．7885	0． 5×71	0．5ヒこう	-0.0858
MSS						
NAEH FOINT：STAELE？	YES	YES	No	YES	YES	YES
	93	3	99	1 1	6	11
DEVIATION OF NASH						
FROM EASELINE						
Me	38.815	－7．497	179．648	49.873	50.78 E	－102． 426
Mus	19.413	107.410	－こ48．135	－1．598	－こ．こご	E37．785
FERCEIVED deviation of target						
FROM EASELINE						
Eur．${ }_{\text {y }}^{\text {ch }}$	11.158	－0． 750	6． $5 こ 0$	3． 355	10.340	ここ． 657
	0.174	－1．4EE	－7．EOE	－0．480	－6．4E1	1． 694
us \quad y	4． $3 \in 7$	7.473	－5． 140	こ． 5 こ1	5． 553	15． 309
	3.310	1． I_{14}	9． 535	3.811	3．85き	－3．083
FROM GOAL						
EUR．${ }_{\text {Y }}^{\text {C }}$（	0.458	－11．450	－4．080	－0．845	－0．450	$1 \Xi .357$
	－1．437	0．JEO	0.449	－1． 3 Э	－0．89こ	0.654
us $\quad \begin{gathered}\text { c } \\ \text { ca }\end{gathered}$	－0．603	こ．■ここ	－10．110	－1． 347	－1．411	8．Эコะ
	0.404	－1．632	6.779	0.305	0.946	-5.983
FERCEIVED GAIN FOR：						
EUR．	1． ¹35 $^{\text {c }}$	0．24EE	Э．ニ9ニ¢	0． 2994	1． $0 \in \in \mathcal{Z}$	－0．4466
US	0.7387	0.5573	－コ．こヨきご	0.7464	0．7ころE	－2． 3909

＊ 39 indicates more than eo Stefs required for convergence

Table 3：Bargaining Solution
（Movement from Non－cooperative to Cooperative Solution）

model Surscriaed to		MODEL SUESCRIEED TO EY EUROPE				
	MCM	LIVFOOL	VAR	OECD	LINK	MSG
MCM						
EARGAINING CHANGE IN FOLICY						
Me	U． 3 EB	0.000	E． 003	1． 595	0．- こ7	こ． 074
Mus	－0．14三	0.000	－0．43	0． $3 \in 4$	O． 247	$0.4 \geq 0$
Ferceived change in targetis						
EUR．${ }^{\mathbf{Y}}$	0.110	0.000	0.307	C． 34 E	0．153	0． 146
－CA	9.005	0.060	0.103	－9．000	－0．0．04	－0．1过
US $\quad \mathrm{Y}$	－0．053	0.000	－0． 163	○． 1 ± 7	O．0ヶe	6． 153
CA	0.005	0.000	0.010	－0．bot	－19．094	－0．007
FERCEIVED GAIN FOR：						
EUR．	0.0001	0.0000	0.0063	0.0011	0．000	0.0056
US	0.0000	0.0000	0．000E	0.0002	0.0001	0.0005
LIVFOOL						
EARGAINING CHANGE IN POLICY						
M_{e}	O． 563	0.417	－1．195	－EE． 445	－5．813	－3．6E7
Mus	－1．447	－5． 844	－シ．ここ7	$1 \Xi \Xi .215$	19.078	3.054
Fefreived change in targets						
EUR． $\begin{aligned} & \text { Y } \\ & \\ & \text { CA }\end{aligned}$	0． 55.5	$0.04{ }^{\text {0 }}$	－0． 540	－4．1こコ	－1．640	0．1ez
	0.015	0.080	－0．5 50	2． 747	－ 303	－． 210
US \quad Y	0．0E9	$0.0 こ 1$	－0． 557	－ここ． $5 こ ゙$	－1．348	－1． 591
	0.107	0．TEM	9． $5 \bigcirc 9$	－E． \％$^{\text {a }}$	－1．235	－0．06き
Fefocived gain fcr：						
ELR．		0.0010	0．0ミ15	1．7645	0.0 OE8	0.0885
4	0.0131	0.0130	0.0890	E． 4046	0.1943	0.0136
VAR						
EARGAINING CHANGE IN M	FOLICY					
	－E．0こ9	－i．08e	ES． 50.14	－16． 346	－-7.704	-11.157
$\begin{aligned} & \text { Mus } \\ & \text { FERCEIVED CHANGE IN T } \end{aligned}$	$- \text { E. } 441$	－0．343	－17．1 5 O	－14．SEE	4．4きこ	7．1玉
	TARGETS					
$\begin{array}{ll} \text { EUR. } & Y \\ & C A \end{array}$	-0.357	－0．008	2． 714	－E． 180	－0．ES 1	0.155
	0.004	－0．0こ1	1.013	0.403	0． 0.59	6．6as
US $\quad \begin{gathered}\text { Ca } \\ \\ \\ \text { CA }\end{gathered}$	－5．44玉	－i． 3 3e	－5．こもこ	5． 391	E．Fob	1． 999
	0．05ड	－6．60c	－Е．1－¢	1.487	9． 309	10． 328
FERCEIVED GAIN FQR：${ }^{\text {a }}$						
EUR．		0.00011	\therefore Oese	0.1 UEO	（1．0055	
US	O．9アEE	0.0007	0.4349	\therefore ¢Tご	\therefore ロ以ご	$\therefore 09=5$
OECD						
EARGAINING CHANGE IN FOLIEY						
Me	$\therefore . \dot{B}$	\therefore O C	11．ごS	5.5	E．1Es	$\equiv \text {. } 15$
FEFCEIVED CHFINEE IN TR	$-0 .-\equiv \Xi$	－－Eここ	－E．	こ．こご	$1.85+$	シ．ここき
	TARGETS					
EUR．Y CA	0．ここ	0.011	1． $3 \rightarrow 1$	9．9Eこ	C． 357	๑． $53:$
	0.010	0.024	B．EDG	0．goc	－9，\％11	－0．430
US $\quad \begin{aligned} & \text { Y } \\ & \\ & \text { CA }\end{aligned}$	－0． －$^{\text {a }}$	－6． 006	－ご心40	1.957		1．48゙5
	6.104ϵ	0． 130	0.504	－0． 06	－9．063	－6．998
FEFCEIVED GAIN FOR：${ }^{\text {a }}$（ ${ }^{\text {a }}$						
EUR．	g．one	9．001	9． 1118	0.0077	（i．जो	$\therefore 0.000$
US	0.0014	0． 0004	0.0479	0.0128	0.064	－D2こ
LINK						
BRRGAINING CHANGE IN M	FOLICY					
	0.370	0.162	24． 517	5．00E		7． 124
M	－1．2こ5	－1．448	－17．479	5.006	4． 559	7.291
Ferceived change in targets						
EUR． $\begin{aligned} & Y \\ & \\ & \text { CA }\end{aligned}$	－） SE	0.016	2． 543	1． 377	0． 580	1.085
	0.014	0.054	0.879	0.043	0.011	－0．680
US $\quad \begin{aligned} & \text { r } \\ & \\ & \text { ca }\end{aligned}$	－0． 297	－0． 358	－5． 757	1． 377	$1 . E 21$	2． 001
	i． 055	0.059	1．ごら	－0．077	－0．094	－0． 116
PERCEIVED GAIN FQR：						
EUR．	0.0009	0.0005	ن．$\sum \Sigma \in 7$	$0.01 \in 1$	0.00140	0.0534
US	0.00 e	0.0006	0.1747	0.0 ± 40	0.12153	0．25こヨ
MSG						
M	－3．154	－7．884	－1．11E	ご，こご	16．5こ：	－177．378
Perceived change in targeis						
EUR．${ }_{\text {CA }}^{\text {CA }}$	－0．19玉	0.050	－0．177	-1.151	－1．174	－14．14E
	0.010	0.094	－0．175	－0．347	0.167	－1．768
US－－Y－－．．－－	－－1）．58＝	－0．55こ．	－－6．11E	1．J̇ロ	9． 954	－7．871
	－6． 504	－0．073	－0．047	－0． 365	－6． 017	E．ESE
FERCEIVED GAIN FOR：						
EJJR．	0.0054	0.0913	$0.00 \Omega 1$	$0.197 E$	0.9112	1． 5551
Lis	0.0020	0．0035	0.0305	0.0751	0.0 E00	こ．せ4もこ

[^0]Table 4：TRUE GAINS FFOM COORDINATION FOR US

MCM
MODEL REFRESENTING REALITY：

MCM	0.0000	0.0000	0.0008	0.000 E	0.0001	0.0003
LIVFOOL	－0．0163	0.0000	0.4107	－0．3E0e	－0．17e3	0.0210
VAR	－0．0016	0.0000	0． 1054	－0．Зこここ	－0．18こ9	－0．0365
OECD	0.0047	0.0000	0.0259	－0．0003	－0．00E4	0.0080
LINK	0.0033	0.0000	0.0371	0.0109	0.0039	0．0E4E
MSG	0.0003	0.0000	0．16こ5	－0．013	－0．0107	0.0345

LIVFCOL						
MCDEL REFRESENTing	RERLITY：					
MCM	－0．3143	－1． 5444	－1．10E5	ここ． 7613	5． 3005	0． 30 E\％
LIVFOOL	0.0131	0.0130	0.0890	E． 404 E	0． 1943	0.0156
VAR	－1．1E¢	－4．7475	－4．0474	75． 3500	16．0E3う	$1.71 \in a$
OECD	－0． 3607	－1．4373	－1．ここう	ご．ミこ01	6． 1.334	0．83ここ
LINK	－0．144E	－0． 5787	－0．5431	14． 5 こう4	E． 4761	0．$Ј こ 31$
MSG	－0．0197	－0．1E05	－0．0アEE	0.7234	0.1479	－0．0351
＇JAR						
MODEL REFRESENTING REALITY：						
MCM	－0．1035	－0．0009	1.0193	0． 0.45	$0 . E 4 \Xi 3$	－0．0936
LIVFOOL	0.3850	0.0017	E．580e	1．Еごき	0.046Ξ	－0．9447
VAR	0.036 E	0.0007	0.4347	0． 5733	0.10 e	0.0995
OECD	－0．0096	0.0051	1.7074	0．3ごき	0．17Eヲ	－0． 3319
LINK	－0．0545	0.0010	1． 0815	0.0651	0.0646	－0．E4ヲ4
MSG	－0．0．051	－0．0003	1.3550	0.0595	0.017 E	－0．4154

OECD
MODEL REFPREGENTING REALITY：

mCM	－0．0149	－0．0085	－0．1E日E	0.0303	0．03こも	0.0360
LIVEOOL	0.9577	0.0337	e． 1314	－0．9590	－0．6158	－0． 1207
UAR	0.0403	－0．0E94	－0．4089	－0． 3364	－0． 6461	0.0597
OECD	0.0014	0.0004	0.0479	0.0100	0.0064	9．0eEe
LINK	0.0013	0.0009	0．1EこE	0.0306	0.0174	0．0607
MSG	－0．0007	－0．0034	0.7470	－0．0．09	－0．0．0．37	9．esee

LINK
MODEL REFPESENTING REALITY：

MCM	－0．0e0s	－0．0こ39	－0． 6 E 5	0.0435	0.04 EE	0.0304
LIVFOOL	0．0e73	0.091 e	4．$こ こ ろ こ$	－1．4711	－1．197e	－0． 0.4153
VAR	0.0900	－0．0027	－ 3.3200	－1．70ee	－1．5．Eも	－0．1347
OECD	0.0047	－－0．0004	－0． 303	-0.0429	－0．04Ee	－0．0507
L．INK	0．00e	0.0006	0.1749	0.0840	0.0153	0.0529
MSg	－0．008	－0．0143	1． 425	－0．0501	－0．0．03	0.3009

930
model refregenting peality：

mCM	0.0650	E． 0999	－9．8e94	－0．7．4．7	の．Eeve	EE．geef
LIVROOL	0．63：0	1.1773	0.1215	－1．0070	－1．0430	4）．7e34
VAR	1．100E	3． 1539	－E．64E5	－7．4367	－E．4378	E37．957E
OECD	0.1453	e． 7300	－1．0053	－1．936E	-0.0983	120.0006
LINK	0.0389	1． 1010	－0． 4077	－0．8513	－0．0．08	50． 70.8
MSG	a，bea	9． 0030	0.0203	9．0731	9．0．00	2． $4+6$

Table 5：TRUE GAINS FROM COORDINATION FOR EUROFE

MODEL SUBSCRIBED TO by the united states	MODEL SUBSCRIEED TO EY EUROFE					
	MCM	LIVFOOL	－VAR	OECD	LINK	MSG
MCM						
MIODEL REFRESENTING REALITY：						
MCM	0.0001	0.0000	0． 5814	－0．0475	－0．03E4	
LIVFOOL	$-0.14 \mathrm{E} 0$	0.0000	1.5970	－1．300E	－0．0．6ES	0.2317
VAR	－0．0こもE	0.0000	0．0068	－0． 9144	－0．480E	－6． 5601
OECD	0.0008	0.0000	0.1575	0.0011	－0．0031	$0.10=4$
LINK	0.0034	0.0000	0．1865	0.0080	$0.000 E$	0．10EE
MSg	－0．0148	0.0000	0.1 E34	－0．14E5	－0．0737	0.005ϵ
LIVEGOL						
MODEL REFRESENTING REALITY：						
MCM	0.0006	0.0490	－0．0673	E4． 6330	1． ¢95き	¢．Зรอย
LIVFOOL	－0．01E	0.0010	0.9510	もう．Єヲ9ย	3.3405	1． 3 － 406
VAR	－0．0こ15	－0．183	0.0215	－9． 50 e	－0．5855	－6．0860
OECD	－0．03E8	－0．1735	－0．13こ7	1．7545	0.3410	－0．07Eこ
LINK	$0.01 E 5$	0.0331	－0．0050	1．85ここ	0.0255	－0．0595
MSG	－0．04EJ	－0． 3105	－0．0540	5． $55 こ 4$	0.5310	0.0803
UAR						
MODEL REFRESENTING REALITY：						
MCM	0.0050	0.0100	11． 1868	1． 1389	0． 3014	－こ． 1764
LIVFOOL	1.0570	0.0001	E5． 8508	1̇．もこご	e． 197 E	－1． 6444
VAR	1． 4471	0.103 E	0． 3 こ56	0．76こう	－0． $6 \in \in 4$	0.7496
OECD	－0．0738	－0．0105	1.7854	$0.06 E O$	0.0341	－0．4019
LINK	－0．03Eड	－0．00こ1	E． 9089	－0．057E	0.0035	－0．6781
MSG．	$0.09 も う$	－0．0051	1.4447	1． 1607	0． 1367	0.0614

OECD
MODEL REFRESENTING REALITY：

MCM	0.000 E	0.0388	3． 29 － 9	－0．1469	－0．0803	0.3704
LIVFOOL	－0．1967	0.0001	7． $5 ¢ 58$	－3． 373 E	－1．9818	－0．03¢こ
VAR	0.1543	0.0943	O． 1118	－E． 8419	－1．37E1	－1．89E
OECD	－0．0040	－0．006e	0.7044	0.0079	0.00 l	O． 2004
LINK	O．006E	0.0077	0.7989	0.0090	$0.001 E$	0．Eこee
MSG	－0．0198	－0．0093	0.4740	－0． 3708	－0． 2.41	0.0538

LINK
MODEL REFRESENTING REALITY：

MCM	0.0009	0.0931	E．Ge53	－0．1こEE	－0．0055	0． 37 ± 8
LIVFOOL	－0． 0.075	0.0003	13.7141	－4． 3935	－З．こ407	－0．1515
VAR	$0.3 こ 36$	$0 . \mathrm{ecge}$	0． 3 ec 6	－4．6行	－3．341E	－－3．4599
OECD	－0．0089	－0．0e3e	1． 3160	0.0161	0.0041	6． 4447
LINK	0.0067	0.0151	E．0340	$0.015{ }^{0.015}$	0.0040	0． 2959
MSG	－0．0E01	－0．0e5s	0．7000	－0． 31 ± 5	－0．3240	0.0694

MSG
MODEL REFRESENTING REALITY：

MCM M LIVFOOL URR OECD LINK msg

6． 00 1． 3557
E． 3199
$-0.05 \mathrm{EO}$ -0.0344 0.1790

1.0414	-0.1139
0.0013	1.0034
4.4003	0.0021
-0.0063	-6.0091
0.0960	0.0293
0.0765	0.0561

$0.1+03$
15.7576
-8.1086
0.1376
$-6.20 E$

0．$こ こ 51$
04．57．5 $15.7 \Xi 76$

3．0096
E1．9314
-5.6647
75.3553
0.1157 B．4EES
0.0113 1．．715E
$0.154 \mathrm{E} \quad 1.55 \mathrm{~S} 1$
For each combination we report first whether the Nash equilibrium is stable, and the number of moves needed to reach convergence starting from the baseline. 12 We then report the values of the two countries' variables of interest in the equilibrium: the money supply (relative to the baseline), the perceived output and current account (relative to baseline, first, and then relative to the optimum) and the perceived welfare function (relative to the baseline). It usually turns out that both countries think they can do better than the baseline even without cooperating, but not always. All but two of the 36 cases call for expansion by one country or the other. Our main interest lies in the move from the non-cooperative to the bargaining equilibrium, shown in Table 3. To take one example, if the U.S. policy-maker believes in the MCM model and the European policy-maker belleves in the OECD model, then they can agree to expand further their money supplies simultaneously (0.36 percent and 1.59 percent, respectively). They each believe that this policy package will result in higher output with little adverse effect on their current accounts. This is the often-mentioned case in which the Nash equilibrium is too contractionary. But besides the case of simultaneous expansion (9 combinations of models), every other case is possible, as well: European expansion with U.S. contraction (12 combinations), U.S. expansion with European contraction (8 combinations), and simultaneous contraction (5 cases).
Without knowing the true model, we can not determine whether any given policy package actually improves welfare. But we can get a
good idea of the possibilities by trying out each of the models as a candidate for the true model. The 36 cells in Tables 4 and 5 correspond to the same 36 combinations as Tables 2 and 3 . But within each cell we report the effect that the corresponding coordination package of Table 3 would have under each of the 6 models; thus there are $63=216$ combinations altogether. 13 Table 4 shows the actual effect of coordination on U.S. Welfare and Table 5 the effect on European welfare. Whenever one or the other policy-makers turns out to have had the right model, his country does gain from coordination. Otherwise he would not have agreed to the package. For example the joint monetary expansion that they agree on when the U.S. policy-maker believes the MCM model and the European policy-maker believes the OECD model is seen to raise U.S. Welfare if the MCM model is the true one (Table 4) and to raise European welfare if the $O E C D$ model is the true one (Table 5). It also turns out to raise both countries' welfare if the LINK model is the true one. But it turns out to reduce welfare if the LIVPL, VAR or MSG model is the correct one. The reader who does not belleve in one of the latter three models might not be concerned with that result. But such a reader should instead be concerned with the result that when the U.S. policy-maker, for example, believes in the LIVPL model and the European policy-maker in the VAR model, coordination will reduce welfare according to each of the other models. 14

Altogether there are $83=512$ combinations (counting those with the EEC and MINIMOD models in addition to those shown in the tables). Coordination turns out to result in gains for the united

States in 289 cases, as against losses in 206 cases and no perceptible effect (to four decimal places) in 17 cases. For Europe there are gains in 297 cases, as against losses in 198 cases and no effect in 17 cases. These figures in a sense overstate the odds in favor of successful coordination, in that by construction each country's welfare is improved (or at least not worsened) in $1 / 8$ of the combinations, those in which the policy-maker has the same model as the true one. If we exclude such combinations and take only the $8 \times 7 \times 6=336$ combinations where all three models are different, the margin is narrower. For the United States there are gains in 168 cases, as against losses in 156 cases and no effect in 12. For Europe there are gains in 170 cases, losses in 154 and no effect in 12 .

The results thus suggest that the danger that coordination will worsen welfare rather than improve it is more than just a pathological counterexample. It is true, but beside the point, that the proper strategy, if the correct model could be discovered, would be simply for both policy-makers to optimize subject to it. The point is that one cannot, under conditions where policy-makers do subscribe to different models, make the blanket pronouncement that coordination must improve welfare.

Section 3: International Coordination of Monetary and Fiscal Policy Together

In this section we give each country a second tool, government expenditure - g for the United States and g^{*} for Europe. We must add a third target variable for each country; otherwise each will be able to
attain its optimal point regardless what the other country does. We choose the inflation rate. Now 24 multipliers are relevant from each model: the effects of m, m^{*}, g and g^{*} on U.S. output, current account and inflation and European output, current account and inflation.

Table 6 reports the 24 multipliers for each of the eight models. There is not as much disagreement regarding fiscal policy as monetary policy. A domestic fiscal expansion in most of the models is transmitted positively to the other country, via domestic current account deficit. But a few models have fiscal or monetary expansion reducing the domestic price level rather than raising it. We again assume that each country seeks to minimize a quadratic loss function. Rather than repeating our earlier points in algebraic form, we turn directly to the simulation results. As before, the weights and target optimums are taken from Oudiz and Sachs (1984). The inflation target is zero for both the United States and Europe. Thus policy-makers will seek to reduce inflation, as well as increase output and the current account.

Table 7 reports the Nash non-cooperative equilibrium for the six models. 15 The movement from the baseline to the Nash involves fiscal expansion as often as contraction. (Both fiscal authorities contract in 9 case, both expand in 9, and only one expands in 18.) But the money supply is expanded more often (both central banks contract in 8 cases, both expand in 18 cases, and one expands in 10.)

Table 8 reports the Nash bargaining solution. To take one example, when the United States subscribes to the LINK model and Europe

Table 6a:Fiscal Policy
Simulation Effect in Second Year of Increase in Government Expenditure (l Percent of GNP)

	Y	CPI	$\begin{gathered} 1 \\ (\text { pts. }) \end{gathered}$	$\begin{gathered} \text { Currency } \\ \text { Value } \end{gathered}$	$\begin{gathered} C A \\ (\$ \mathrm{~b}) \end{gathered}$	$\begin{gathered} C A^{*} \\ (\$ \mathrm{~b}) \end{gathered}$	$\begin{gathered} 1^{*} \\ (p t s .) \end{gathered}$	CPI*	Y^{*}
$\begin{gathered} \text { Fiscal Expansion in } \\ \text { U.S. (-Sim. B) } \end{gathered}$MCM	Effect in U.S.					Effect in Non-U.S.			
	+1.8\%	+0.4\%	+1.7	+2.8\%	-16.5	+8.9	+0.4	+0.4\%	+0.7\%
EEC 1/	+1.2\%	+0.6\%	+1.5	+0.6\%	-11.6	+6.6	+0.3	+0.2\%	+0.3\%
EPA 2/	+1.7\%	+0.9\%	+2.2	+1.9\%	-20.5	+9.3	+0.5	+0.3\%	+0.9\%
LINK	+1.2\%	+0.5\%	+0.2	-0.1\%	-6.4	+1.9	NA	-0.0\%	+0.1\%
Liverpool	+0.6\%	+0.2\%	+0.4	+1.0\%	-7.0	+3.4	+0.1	+0.6\%	-0.0\%
MSG	+0.9\%	-0.1\%	+0.9	+3.2\%	-21.6	+22.7	+1.0	$+0.5 \%$	+0.3\%
MINIMOD	+1.0\%	+0.3\%	+1.1	+1.0\%	-8.5	+5.5	+0.2	+0.1\%	+0.3\%
VAR 3/	+0.4\%	-0.9\%	+0.1	+1.2\%	-0.5	-0.2	-0.0	-0.0\%	-0.0\%
OECD	+1.1\%	+0.6\%	+1.7	+0.4\%	-14.2	+11.4	+0.7	+0.3\%	+0.4\%
Taylor 3/	+0.6\%	+0.5\%	+0.3	+4.0\%	NA	NA	+0.2	+0.4\%	+0.4\%
Wharton	+1.47	+0.3\%	+1.1	-2.1\%	-15.4	+5.3	+0.6	-0.1\%	+0.2\%
DRI	+2.1\%	+0.4\%	+1.6	+3.2\%	-22.0	+0.8	+0.4	+0.3\%	+0.7\%
Fiscal Expansion in Non-U.S. OECD (Sim. G)	Effect in Non-U.S.					Effect in U.S.			
MCM	+1.4\%	+0.3\%	+0.6	+0.3\%	-7.2	+7.9	+0.5	+0.2\%	+0.5\%
EEC 1/	+1.3\%	+0.8\%	+0.4	-0.6\%	-9.3	+3.0	+0.0	+0.1\%	+0.2\%
EPA ${ }^{2 /}$	+2.3\%	+0.7\%	+0.3	-0.7\%	-13.1	+4.7	+0.6	+0.3\%	+0.3\%
Link	+1.2\%	+0.1\%	NA	-0.1\%	-6.1	+6.3	+0.0	+0.0\%	+0.2\%
Liverpool	+0.3\%	+0.8\%	+0.0	+3.3\%	-17.2	$+11.9$	+0.8	+3.1\%	-0.5\%
MSG	+1.1\%	+0.1\%	+1.4	+2.9\%	-5.3	+10.5	+1.3	+0.6\%	+0.4\%
MINIMOD	+1.6\%	+0.2\%	+0.9	+0.6\%	-2.2	+3.2	+0.3	+0.2\%	+0.1\%
VAR 3/	+0.5\%	-0.3\%	-0.2	-2.4\%	+1.7	-2.6	+0.2	-0.1\%	+0.3\%
OECD	+1.5\%	+0.7\%	+1.9	+0.9\%	-6.9	+3.3	+0.3	+0.2\%	+0.1\%
Taylor 3/	+1.6\%	+1.2\%	+0.6	+2.7\%	NA	NA	+0.4	+0.9\%	+0.6\%
Wharton	+3.2\%	-0.8\%	+0.8	-2.4\%	-5.5	+4.7	+0.1	-0.0\%	+0.0\%
DRI	NA								

1/ Non-U.S. short-term interest rate NA; long-term reported instead.
2/ Non-U.S. current account is Japan, Germany, the United Kingdom, and Canada.
3/ CPI NA. GNP deflator reported instead.

	Percentage Effect on Income		Effect on Current Account (As Percentage of GNP):		Effect on Percentage Inflation Rate	
From a (l percent) increase in:	U.S. m	Eur. m	U.S. m	Eur.m	U.S. m	Eur. m
Effect on U.S.						
MCM	0.3750	0.0000	-0.0198	0.0006	0.1000	-0.0500
Liverpool	0.0250	0.4000	-0.0832	-0.0525	0.9250	-0.8500
VAR	0.7500	0.3000	0.0311	-0.0634	0.1000	-0.1750
OECD	0.4000	0.0250	-0.0537	0.0147	0.1750	-0.0250
LINK	0.2500	0.0250	-0.0380	0.0225	-0.1000	0.0000
MSG	0.0750	0.0750	0.0167	0.0769	0.3750	-0.1500
EEC	0.2500	0.0250	-0.0180	0.0122	0.2000	0.0250
MINIMOD	0.2500	-0.0750	0.0179	-0.0089	0.2000	-0.1250
Effect on "Europe"						
MCM	-0.1750	0.3750	-0.0090	0.0090	-0.1500	0.1500
Liverpool	0.0000	0.1000	0.0034	0.2384	0.0000	0.7000
VAR	0.1000	0.1750	0.1169	0.1192	0.0250	-0.1250
OECD	0.0750	0.2000	0.0178	-0.0091	-0.0250	0.0750
LINK	-0.0250	0.2000	0.0083	-0.0077	-0.0250	-0.1500
MSG	0.1000	0.0500	-0.0206	-0.0743	-0.1750	0.3750
EEC	0.0500	0.2000	0.0159	-0.0689	-0.1000	0.2500
MINIMOD	-0.0500	0.2000	-0.0226	-0.0173	-0.0500	0.0500
From an increase (equal to 1% of GNP):	U.S.g	Eur.g	U.S.g	Eur.g	U.S. g	Eur.g
Effect on U.S.						
MCM	1.8000	0.5000	-0.4217	0.2019	0.4000	0.2000
Liverpool	0.6000	-0.5000	-0.1791	0.3045	0.2000	3.1000
VAR	0.4000	0.3000	-0.0127	-0.0659	-0.9000	-0.1000
OECD	1.1000	0.1000	-0.3628	0.0843	0.6000	0.2000
LINK	1.2000	0.2000	-0.1647	-0.1621	0.5000	0.0000
MSG	0.9000	0.4000	-0.5540	0.2693	-0.1000	0.6000
EEC	1.2000	0.2000	-0.2990	0.0773	0.6000	0.1000
MINIMOD	1.0000	0.1000	-0.2172	0.0818	0.3000	0.2000
Effect on "Europe"						
MCM	0.7000	1.4000	0.0912	-0.0737	0.4000	0.3000
Liverpool	-0.0000	0.3000	0.4566	-2.3097	0.6000	0.8000
VAR	-0.0000	0.5000	-0.0183	0.1559	0.0000	-0.3000
OECD	0.4000	1.5000	0.2583	-0.1564	0.3000	0.7000
LINK	0.1000	1.2000	0.0420	-0.1349	0.0000	0.1000
MSG	0.3000	1.1000	0.4246	-0.0991	0.5000	0.1000
EEC	0.3000	1.3000	0.3499	-0.4931	0.2000	0.8000
MINIMOD	0.3000	1.6000	0.1058	-0.0423	0.1000	0.2000

Table 7：Nash Non－cooperative Equilibrium（Monetary and Fiscal Policies）

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MODEL SUBSCRIBED TO} \& \multicolumn{5}{|l|}{MLDEL SURSCRIEED TO EY EUROFE} \\
\hline \& MCM \& LIVFOOL \& L VAR \& OECD \& LINK \& MSG \\
\hline \multicolumn{7}{|l|}{MCM} \\
\hline NASH POINT： \(\begin{aligned} \& \text { STAELE？} \\ \& \text { STEPS }\end{aligned}\) \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& YES \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { VES } \\
\& 3 \ni
\end{aligned}
\] \& YES \({ }_{3}\) \& \[
\begin{aligned}
\& \text { YES } \\
\& \text { ЭЭ }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{DEVIATION OF NASH} \\
\hline \multicolumn{7}{|l|}{FROM EASELINE} \\
\hline me \& 84．1E1 \& －．． 379 \& \(-こ 1.4 \epsilon_{1}\) \& 16こ． 355 \& E1． \(1^{15}\) \& 289．611 \\
\hline \(\mathrm{Mus}^{\text {un }}\) \& 61.319 \& 11.514 \& －7E． 894 \& 121.011 \& 1．033 \& 451．317 \\
\hline \(\mathrm{G}^{\text {e }}\) \& －4．641 \& 0.179 \& 16.644 \& －11．797 \& こ． 383 \& －7E． 760 \\
\hline \(\mathrm{G}^{\mathbf{e}}\) \& －10．454 \& －4． 258 \& 7.988 \& －18．054 \& － 5.346 \& －Es．SOE \\
\hline \multicolumn{7}{|l|}{FERCEIVED DEUIATION OF TARGET} \\
\hline \multicolumn{7}{|l|}{FRCM EASELINE} \\
\hline \multirow[t]{3}{*}{EUR． \(\begin{aligned} \& \mathrm{Y} \\ \& \text { CA }\end{aligned}\)} \& 6． \(8=4\) \& －0．164 \& －モ．7ミ3 \& 17.478 \& 9.043 \& －こヲ． 594 \\
\hline \& \(-0.41 E\) \& －1．845 \& －8．670 \& －1．6コ7 \& －13．708 \& －50．453 \\
\hline \& －E． 244 \& －2．707 \& －4．133 \& －5． 716 \& \(-2.870\) \& －7． 370 \\
\hline \multirow[t]{3}{*}{us \(\begin{array}{ll} \\ \\ \& \mathrm{CA} \\ \& \mathrm{P}\end{array}\)} \& 2． 081 \& －3． 256 \& －4．635 \& 6． 383 \& －1．843 \& 15． 503 \\
\hline \& こ．こЭヲ \& 1.602 \& 1． 4 E E \& \& 1.787 \& 4.051 \\
\hline \& － \(3.1 \Xi 4\) \& －0． 377 \& 1． 308 \& －5． \(6 こ 9\) \& －1．117 \& －9． 381 \\
\hline \multicolumn{7}{|l|}{ferceived deviation df target} \\
\hline \multicolumn{7}{|l|}{FROM GOAL} \\
\hline \multirow[t]{3}{*}{ELR． \(\begin{aligned} \& \text { Y } \\ \& \\ \& \\ \& \\ \& \text { CA }\end{aligned}\)} \& －3．806 \& －10．884 \& \(-13.453\). \& 6.798 \& －1．65こ \& －50．094 \\
\hline \& \[
-2.025
\] \& －0．057 \& －0． 617 \& －E． 606 \& －1．173 \& \[
-51.434
\] \\
\hline \& 0．55E \& 0.091 \& －1． 353 \& －1．116 \& －0．070 \& －6． 470 \\
\hline \multirow[t]{3}{*}{US \(\begin{array}{ll}\text { r } \\ \& \mathrm{CA} \\ \& \mathrm{P}\end{array}\)} \& －E． 889 \& －8． ezs \& －9．605 \& E．01ق \& －6．315 \& 10．5ここ \\
\hline \& －0． 377 \& －1．074 \& －1． 254 \& 0． E ¢ 3 \& －0．883 \& 1． 375 \\
\hline \& 1.476 \& 4.803 \& 4.308 \& －1．0es \& 5． 481 \& －5． 531 \\
\hline \multicolumn{7}{|l|}{FERCEIVED GAIN FOR：} \\
\hline EUR． \& e． 3065 \& 1． 9517 \& 9．1457 \& 1．シーヨ \& こ．\(こ .50\) \& \(-384.0674\) \\
\hline us \& 1．Эもここ \& \[
0.2180
\] \& －6．505 \& E．0996 \& 0.8432 \& －1．0544 \\
\hline \multicolumn{7}{|l|}{LIVPOOL} \\
\hline \multirow[t]{2}{*}{NASH FOINT：STAELE？ STEFS DEVIATION OF NASH} \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { YES } \\
\& \\
\&
\end{aligned}
\] \& \[
Y_{G}
\] \& \[
\begin{aligned}
\& \text { YES } \\
\& \\
\&
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DEVIATION OF NASH \\
FRDM EASELINE
\end{tabular}}} \\
\hline \& \& \& \& \& \& \\
\hline Me \& 25． 561 \& 7.07 E \& －14． 385 \& －85． 700 \& 21.304 \& こヒ． 344 \\
\hline \multirow[t]{2}{*}{Mus
\(\mathrm{G}_{4}\)} \& 4.000 \& 6.330 \& －7E．656 \& －64．895 \& E． 234 \& 19．3こ1 \\
\hline \& 5． 175 \& －0．783 \& 14.017 \& －8．5こ6 \& 4． 598 \& 1.401 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GUSGEIVED DEVIATION OF TARGET}} \& －11．7ご \& 31.945 \& \(4 E .645\) \& －15．035 \& －z1．3ee \\
\hline \& \& \& \& \& \& \\
\hline \multicolumn{7}{|l|}{FROM BASELINE} \\
\hline \multirow[t]{3}{*}{EUR． \(\begin{aligned} \& \mathrm{Y} \\ \& \\ \& \\ \& \mathrm{CA} \\ \& \mathrm{F}\end{aligned}\)} \& 4.454 \& 0.473 \& －E． 0.7 \& －17．903 \& B．ここら \& －1． 334 \\
\hline \& －1．710 \& －1．942 \& －8．677 \& 11.333 \& －1． 596 \& －11．745 \\
\hline \& －1．097 \& －E． 714 \& －4．143 \& 1.337 \& －E． 304 \& －4． 4 E \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{ll}
\text { US } \& Y \\
\& C A \\
\& F
\end{array}
\]} \& \(-6.302\) \& －̇．EGE \& 4． \(3+8\) \& －8．05 \& －1． E \& －〒．369 \\
\hline \& E．4E4 \& 0.970 \& こ．ミア \& －6． 544 \& こ．EE \& 1．40E \\
\hline \& －4． －\(^{\text {a }}\) \& \(-4.37 E\) \& －－Eこう 7 \& －5．130 \& －－． 271 \& \(\rightarrow-\mathrm{F}\) \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{FERCEIVED DEVIATIUN CF TAREET}} \\
\hline \multicolumn{2}{|l|}{FROM SCAL} \& \& \& \& \& \\
\hline \multirow[t]{3}{*}{EUR． \(\begin{aligned} \& \text { Y } \\ \& \\ \& \\ \& \\ \& \\ \& \text { CA }\end{aligned}\)} \& －6．\(z_{4} \epsilon\) \& －10． 2 E3 \& －12．579 \& －Е8．605 \& －2．475 \& －1玉．6ご \\
\hline \& －ミ．こここ \& －0．0．05 \& －9．ЄこE \& 10.764 \& －1．7こ7 \& －1E． 907 \\
\hline \& 0.713 \& 0．09E \& －1．348 \& 4． 697 \& －0． 104 \& －1．6ここ \\
\hline \multirow[t]{3}{*}{} \& －3． \(37 \%\) \& －6．63E \& －\％． \(6=\) \& －11．0こ1 \& －E． \(\mathrm{O}_{1} 1\) \& －7．039 \\
\hline \& －シ．\(こ ゙\) \& －4． 747 \& －0．342 \& －E．0． 1 \& －3．4こı \& －4． 311 \\
\hline \& －9．ese \& －9． 3 － \& －0．ロご \& \(-6.490\) \& －¢．-71 \& \(-\therefore .3+1\) \\
\hline \multicolumn{7}{|l|}{FEFEEIVED GAIN FOR：} \\
\hline EUR． \& 1．0こ14 \& 2.990 \& 9.0342 \& －ご．73こ0 \& \& －ご．7ヒご \\
\hline US \& E．06．3 \& 1．654．3 \& －． \(20 \cdot 3\) \& 9． EES \& C． \(7+3 \mathrm{E}\) \& こ． 9515 \\
\hline \multicolumn{7}{|l|}{VAR} \\
\hline \multirow[t]{2}{*}{NASH FOINT：STAELE？} \& \[
\begin{aligned}
\& \text { YES } \\
\& 10
\end{aligned}
\] \& \[
\begin{array}{r}
\text { YES } \\
\\
\hline
\end{array}
\] \& YES \({ }_{4}\) \& \[
\begin{aligned}
\& \text { YES } \\
\& \ni \ni
\end{aligned}
\] \& YES 3 \& \[
\text { YES }_{3}
\] \\
\hline \& \multicolumn{6}{|c|}{DEVIATION OF NASH} \\
\hline FRDM EASELINE \& \& \& \& \& \& \\
\hline \multirow[t]{2}{*}{Me
Mus} \& －71． 884 \& －12．492 \& －E®8．10ミ \& －77． 296 \& 2e． 046 \& －17．041 \\
\hline \& 21．711 \& 7.424 \& 51.877 \& 24.68 s \& －ミ．こここ \& 5． 373 \\
\hline \(\mathrm{G}_{\mathrm{e}}\) \& 21.248 \& 1.197 \& 105． 304 \& －0．836 \& 3.800 \& 9． 386 \\
\hline \(\mathrm{G}_{\text {us }}\) \& 2コ． 978 \& 8． 17.0 \& 41.477 \& 23．06 \& 0.006 \& 7． 906 \\
\hline \multicolumn{7}{|l|}{perceived deviatidn of tareet} \\
\hline \multirow[t]{3}{*}{} \& 6． 418 \& －0． 890 \& 15． 3 E® \& －5． 677 \& 9.057 \& 1 こ．097 \\
\hline \& －0．EES \& －1．847 \& －7．811 \& 7.197 \& －9．700 \& こ．ธоє \\
\hline \& －ミ．174 \& －2．703 \& － 2.91 \& －0．111 \& －E．SEF \& －E． 490 \\
\hline \multirow[t]{3}{*}{US \(\begin{array}{ll}\mathrm{C} \\ \& \mathrm{CA} \\ \\ \mathrm{P}\end{array}\)} \& 4.454 \& 5.447 \& 3．E59 \& 4.595 \& E． 6.90 \& 5． \(5=0\) \\
\hline \& 4.7 － \& 0.840 \& 7． 380 \& 5.4 EB \& －1．713 \& 0.507 \\
\hline \& －4． 653 \& －4． 544 \& －4．754 \& －4．679 \& \(\rightarrow\)－4E \& －4． 534 \\
\hline \multicolumn{7}{|l|}{FERCEIVED DEVIATIGN DF TARGET} \\
\hline \multicolumn{7}{|l|}{FROM GOAL} \\
\hline \multirow[t]{3}{*}{EUR．

CA

F} \& －4． 280 \& －11．570 \& 5． 2 E \& -16.577 \& －1．641 \& こ．こヲヲ

\hline \& －き． 78 \& －0．06 3 \& \& ． 6.273 \& －1．172 \& こ．4E6

\hline \& 0．$£ こ €$ \& 0.097 \& 0． 517 \& こ． 689 \& －0．069 \& 0． 510

\hline \multirow[t]{3}{*}{US $\quad \begin{aligned} & \text { Y } \\ & \\ & \\ & \\ & \mathrm{CA}\end{aligned}$} \& －0． 506 \& 0.477 \& －1． 311 \& －0．67E \& 1．119 \& 0．SE0

\hline \& 2．0ez \& －1． 906 \& 5． 355 \& こ．Єコこ \& －4．4E4 \& －を．こう8

\hline \& －0．059 \& 0.056 \& －0．154 \& －6． 079 \& 0.151 \& $0.0 \in 6$

\hline \multicolumn{7}{|l|}{FERCEIVED GAIN FOR：}

\hline EUR． Us \& 2． 1063
1． 3568 \& $1.79 E 8$
1.7870 \& 11.0198
$0.376 E$ \& $-6.5 E 60$
1.7463 \& 2． 5316

0.983 \& $$
\begin{aligned}
& 1.96 \ni 7 \\
& 1.8944
\end{aligned}
$$

\hline
\end{tabular}

Table 7 （cont．）

MODEL SUBSCRIRED TO		MODEL SUBSCRIEED TO BY EUROFE				MSG	
	MCM	LIVFOO	L VAR	OECD	LINK		
OECD							
NASH POINT：STAELE？	yEs 4	YES ${ }_{4}$	YES $3 \ni$	YES	YES	YES ${ }_{3}$	
DEVIATION OF NAG：－ FROM EASELINE							
$\mathrm{Me}^{\text {m }}$	70． 151	13.439	－1こ5． 230	E4E．431	17．155	こう． 7 ¢8	
$\mathrm{Mus}^{\text {un }}$	33． 330	5Е．091	－Е5．8こ6	5．．736	37．54こ	47.445	
$\mathrm{G}^{\text {es }}$	－2．054	－1． 574	60.347	－E6． 119	E． 076	－1．703	
	-13.553	－13．782	－10． 3 e0	－5．411	－15． 901	－16．341	
FERCEIVED DEVIATION OF TARGET FROM ERGELINE							
Eur．$\underset{\text { cA．}}{\text { y }}$ ．	5． 857	0． 3 ここ	5．365	10.048	8．ミころ	－0． 497	
	－0．974	－1．853	－8．ごら	1.163		－10．470	
	－2．087	－2． 718	－3．270	－ミ．ヒヲコ	－2． 304	－4．246	
us $\begin{gathered}\text { ¢ } \\ \text { ch } \\ \text { E }\end{gathered}$	2． 173	0． 359	－18．613	12． 3 9 1	－1． 2×0	1.01ϵ	
	3.631	4． 196	8． 3 こ	1． 2.44	4.483	3． 353	
	-3.501	－玉． 730	4．Eics	－7．7ニこ	－玉．ごご	－3．046	
ferceived deviation of thrget FROM GOAL							
EUR．Y	－4． 8 Ej	－9．7Es	－4．734	－の，もせこ	－ミ． 477	－11．197	
	－3．537	－9．053	－9．2．3	$\bigcirc \cdot 250$	－1．753	－11． 510	
	O．711	－． 0 Es	－$\therefore-20$	9． 1.17	－9．164	－1．44E	
US Y	－E． 737	－4． $6 こ 1$	－ミこ．ぐ3	B． $0 ¢ 1$	－5． 298	－5．354	
Ca 1	9．635	1.947	E． $5: 4$	－1．314	1．4．5	0.834	
Pr	1.093	1.8 ± 0	7． 503	－3．15こ	2． 475	1． 554	
FERCEIVED GAIN FOR：							
EUR．	1． 1 อร9	2． 18 ce	11.0793	5.8105	こ．こ¢こ0	－16．47E	
US	E． $1 \in 61$	1.9353	－11．123	0．7333	1． 5341	1.3767	
LINK							
NASH POINT：STARLE？ STEPS	YES 1	YES 1	YES	YES	YES ${ }_{1}$	YES	
DEVIATION OF NASH							
Me	15.625	－0． 607	－218．097	259． 271	18． 504	7．151	
Mus	24.752	25.187	19．722	26.012	24.793	24.881	
$\mathrm{G}_{\mathbf{e}}$	6.036	0.016	100． 706	－28． 713	5． 196	4.470	
Gus	－4．172	－4．038	－5．538	－3．312	－4．162	－4．131	
PERCEIVED DEVIATION OF TARGETFROM BASELINE							
EUR．${ }_{\text {Y }}^{\text {C }}$	5.608	－0．056	14． 158	9.093	8． 300		
	－1．096	－1．845	－7．893	1． 535	－0．814	－3．285	
	－2． 056	－E． 710	－2．457	－3．5こ5	－2． 976	－3． 344	
Us $\begin{aligned} & \text { C } \\ & \\ & \\ & \text { CA } \\ & 0\end{aligned}$	2． 777	1.439	12.974	2． 548	E． 706	2． 356	
	1.078	－0． $30 \leq$	11.573	0.8410	1． 005	－．EEe	
	－4．EEi	－4． $5=3$	－4．741	－4．557	\because－．$=00$	－4．5E4	
PERCEIVED DEUIATION OF TARGET－－FROM GOAL							
EUR．${ }_{\text {C }}{ }_{\text {CA }}$	－5．092	－10．756	3.458	－1．6is7	－1．800	－4． 208	
	－E． 709	－0．058	0． 153	0． 616	－1．285	－4．3こ6	
	0.744	0.090	0． 343	． 0.864	－0．076	－0． 544	
US ${ }_{\text {Y }}^{\text {C }}$	－2． 191	－3．531	8． 004	－2． 4 Eこ		－こ． 634	
	－ヨ． 257	－3． 637	B． 244	－2．435	－こ． 3 こ	－2．715	
	0.039	0． $0 \in E$	－0．141	0.043	0.040	0.046	
FERCEIVED GAIN FOR：0．046							
EUR．	1． 7114	1.9795	11.8074	2． 755 a	2． 4888		
us	2． 0846	1.4613	－E． $7 こ 79$	1.7380	$\text { E. } 0584$	1.3110	
MSG							
NASH FOINT：STABLE？ STEFS	$\begin{aligned} & \text { YES } \\ & 39 \end{aligned}$	YES	$\begin{aligned} & \text { YES } \\ & \boldsymbol{9 3} \end{aligned}$	YES 39	YES	YES_{7}	
DEVIATION OF NASH							
Me	－340． 337	－2． 383	－38． 936	106． 250	2こ．878	－35． 344	
Mus	－350．455	－13． 214	－65． 358	52.193	－8．425	-53.195	
$\mathbf{G}_{\mathbf{e}}$	63.777	0.151	24.059	－13．5こ9	3． 513	$\text { 16. } 357$	
	-13.097	－2． 250	0.353	2． 725	0.360	－0．35こ	
PERCEIUED DEVIATION OF TARGET							
EUR． $\begin{aligned} & Y \\ & \\ & \\ & \text { CA } \\ & p\end{aligned}$	－5． 278	－0．193	－1． 378	5． 3 E 5	9．056	11.880	
	－6． 837	－1． 846	－8． 608	2． 747	－0．702	1.637	
	－0．464	－2． 709	－3． 939.	－2．016	－2．969	－こ． 7 －	
US $\quad \begin{aligned} & r \\ & \\ & \\ & \\ & \mathrm{CA}\end{aligned}$	－30． 631	－3．134	2．081	8． 324	2．316	－0．714	
	－5． 377	0.884	2． 185	3．83E	E．डEB	1.487	
	－5． 204	－4．232	－4．487	－4．755	－4． 515	－4． 377	
FERCEIVED DEVIATION OF TARGET							
FROM GOGL							
EUR．${ }^{\text {Y }}$ CA	－15． 378	－10．093	－12．073	－4．775	－1． 544	0.580	
	－8． 500	－0．059	－0． 557	1.030	－1．174	9． 537	
	こ． 5 ± 5	9．09：	－1．193	1．78 ${ }^{\text {a }}$		0.075	
Us $\begin{aligned} & \text { Y } \\ & \\ & \\ & \mathrm{CA} \\ & \mathrm{F}\end{aligned}$	－3E．60：	－8． 1.64	－玉． 289	2．354	－三．	－5．6e4	
	－0． 833	－E．0ce	－0．7こ1	9． 367	－6．5ड8	－1．+18	
	1． 376	D． 513	0.113	－0．155	0.104	O． 2 ここ	
FERCEIVED GAIN FDR：							
EUR．	－10． 2147	1.3498	9． 5853	2．0こ80	こ． 5509		
Us－	－15．8102	1．35心5	2．17E	2.0714	2．$こ こ 34$	$1.8 .332$	

＊ 33 Indicates more than eo steps required for cenvengence

MODEL SUBSCRIBED TO
BY THE UNITED STATES－－－MOM SUBSCRIBED TO BY EUROPE

白出出品

$$
\stackrel{m}{\infty} \dot{m}
$$

$$
88 \cdot \mathrm{I}
$$

$$
\vec{i}
$$

$$
\begin{aligned}
& \because G \\
& \hdashline G \\
& \hdashline G
\end{aligned}
$$

MCM

$$
\begin{array}{r}
0.0002 \\
0.00101
\end{array}
$$ に $\begin{array}{ll}0.0003 & 0.00000\end{array}$五

$$
\begin{array}{r}
0.030 \\
-0.139 \\
0.041
\end{array}
$$

$$
\begin{aligned}
& 2.3575 \\
& 9.3584
\end{aligned}
$$

x-3.971
-1.649
0.730
-1.297

$$
-0,240
$$

$$
\begin{array}{r}
-0.340 \\
0.442
\end{array}
$$

$$
\begin{aligned}
& -0.442 \\
& -0.134 \\
& -2.113
\end{aligned}
$$$-2.67 \Xi$

9.1010.000 E
0.0001

$$
\begin{array}{r}
94.647 \\
-6.347 \\
-10.613
\end{array}
$$

$$
-\Xi .513
$$

$$
\begin{array}{r}
1.829 \\
0.072 \\
-1.06 \\
-2.971
\end{array}
$$

$$
\begin{array}{r}
0.0001 \\
0.0000
\end{array}
$$

8
8

$$
\begin{aligned}
& \overrightarrow{5}+9 \\
& 0.0 \\
& 0.8
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 88 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
$$

Table 8：Bargaining Solution
（Movement from Non－cooperative to Cooperative Solution） Model subscribed to model subscriend to by eurofe MODEL SUBSCRIBED TO
BY THE UNITED STATES
MCM LIVFOOL VAR OECD LINK MSG

rie	78． 359	こ．7E9	5． 891	－42． 735	3.897	－193．811
Mus	5こ． 340	15．EOE	4.048	－30． 387	－12．$\frac{\text { こa }}{}$	－315．885
G_{e}	－10． 246	－0．4ここ	－0． 389	－0． 434	－0．Э5	5こ． 659
$\mathrm{G}_{\text {us }}$	－モ．Зこヲ	－̇．ड1є	－ミ．43シ	4．$\frac{\text { ¢ }}{}$ ¢	2． 544	$4 \mathrm{E}$.
－${ }^{\text {deeived }}$ Change in targets						
EUR．Y	1.253	0． 150	1． 241	－9．687	0.208	30.014
CA	0.402	0． 085	1． 160	1． 144	0.101	34.382
F	－1．855	－0． 507	－0． 513	－1． 388	－0． $3 \in 5$	9． $4 \in 7$
US Y	3.433	－0．687	－3．05s	－3． 189	－0．631	－12． 369
CA	－0．400	－1．090	－0．871．	－1． 506	－1．013	－1．784
F	－3． 174	－0．063	－0．941	－0． 878	－0．630	E． 391
ERCEIVED GAIN FOR：6． 3						
EUR．	0.0001	0．000こ	0． 0.01	0.0001	0．000E	341.6131
US	0． 0007	0.0000	0.0001	0.0001	0.0001	3．14E3

 0
0
0
0
0
0
0 M
品
品
寺 5
4
-8
-8 0
8
8
0.8

 0%
0
6
6 88$9.0 E 4$
-39.930 -1.786
-0.543
 9
0
0
1 3
-3
$\underset{i}{3}$
3
8
8

$$
\begin{array}{ll}
47 & 8 \\
\pi & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

－פэ INDICATES MORE THAN EO STEFS REQUIRED FOR COHERGENCE

Table 9：TRUE GAINS FROM COORDINATION FOR US

MODEL SUESCRIEED TO		MODEL SUESCRIEED TO EY EUROFE				
	MCM	LIVFOOL	VAR	QECD	LINK，	MSG
MCM						
MODEL REFRESENTING REALITY：						
MCM	0.0007	0.0000	0.0001	0.0001	0.0001	3．14E3
LIVF＇OOL	－417．0703	－ 3.5530	3.7415	89．0こも5	－ここ．5915	Eヒ7．Эこコ7
VAR	－10ヒ，ヒごこ	－7．7E87	5． 341 E	74．E1E8	－1．1505	1514.1071
OECD	－7．77ここ	－0．118こ	－0．150E	5． 6047	O．ここヒ1	137.1037
LINK	－14．ここご	－0．3771	4.0174	10．E110	－1．8597	404．ここ40
MGG	－17．76こも	－9．74こ9	2． 4105	こも． 1971	$0.8 こ 74$	E57． ESFE $^{\text {a }}$
LIVFOOL						
MODEL REFRESENTING	REFLITY：					
MCM	－1．903ヲ	－0．50こ1	E． 277 J	54．4EES	7． 3414	9.8998
LIVPOOL	0.0001	0.0000	0.0015	E． $5 ¢ 48$	0.0001	0.0000
VAR	－ 3.0777	－0．7547	14．5411	73.8011	Э．atos	E．8E4E
OECD	－0．49こ0	－0．ここ07	3． 9436	42．651E	こ．E54E	－1．E8EE
LINK	－1．8ご仡	－0． 3444	11．こЭもこ	95．0969	E．8645	－1E．ЄЈЭこ
MSG	－4．0ヨモ7	－0． 316 E	10．13こ1	105．こもち7	E． 1541	－4．747E

VAR

MODEL REFRESENTING REFLITY：

MCM	0.5074	0.1400	13З． 9095	30． 5077	－0．1103	1． $9 \ni 68$
LIVFOOL	95．100\％	0.6575	7ここら． 9709	こ10．175Э	－0．71E	Эこ． 4674
VAR	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
OECD	－0． 2307	0.1881	111．6EOS	ここ．44ここ	－0．7517	E． 0946
LINM，	0.1694	0.0716	16． 7006	14.8435	－0． 3587	0． 2 O 1
MSG	こ．こ140	0：1051	318.0400	E9．4E97	－0．17ड7	4．134E

OECD
MODEL REFRESENTINE REALITY：

MCM－－． 9503
LIVFOOL
UAR
OECD
LINK
MSG
$-396.3 こ 05$
－ЗЕ．5ตもE
0．0001
-10.1591
-7.0943
－Е． 0147
－－Зこ． 7359
－-0.3116
0.0000
-7.0590
$-18.4 E 1 E$

1．00ここ
－0．ЭЭ
141．こここ8
10．8E11
0.0001
-0.3550
1.4717
154.3106

0． $57 \in 7$
0． $56 \in 9$
0．Еヨうも
－1．6533

Э． 13 こヲ
0.7415

$-0.3444 \quad-1+.7290 \quad-5.1153$

－1．3」こム
-0.6074
\cdots－ち．245
－－゙き．ご357
一4．Зごら4
1.8500
-4.4792
－0．1E11
0.0001
0.0001

MGG
MODEL REFRESENTING REALITY：

MCM
LIVFOOL
VAR
OECD
LINK
MGG

100．ЗЄ5
ここの7． 6754
日Gこ． EG 0
E09．6473
こ8． 6763
0.0001
$-0.398=$
0.0414
-0.4793
－0．0ecs
0． 3415
0.001
$0.5+11$
E．0741
0.1030
-0.555Ξ
E0． 6517
4． 1806
0.7412
0.4119
0.0000

0．75ヒ1
－1シ．1 コヨコ
－0．0595
－0．ここ40
-0.1055
0.0000
－6．89ご
－0． $5 こ 77$
0．3096
0.0001

Table 10；TRUE GAINS FROM COORDINATION FOR EUROFE

MODEL SUBSCRIEED TO		MODEL SUBSCRIBED TO BY EUROFE				
	MCM	LIVFOOL	VAR	OECD	LINK	MSG
MCM						
MODEL REFRESENTING REALITY：						
MCM	0.0001	－5．7115	E．E05こ	－0． 5567	－10．0076	104E．こちЭ1
LIVFOOL		0.0003	3.9337	10ここ．Єここち	－31．6800	7487．10Eこ
VAR	－13Э．47Є7	－5．7958	6． 0001	104.1679	こ． 0774	846．5881
OECD	－0．9016	O．-703	4． E 4 JE	0.0001	－1．8Eこ7	E31．8こ59
LINK	－106． 4474	0.6750	3． 5786	E3． 3150	0.000 E	680．4074
MSG	－EOE． 7456	－5．75ご	0.1807	$1 こ も .3151$	－ご．こ457	$341.61 \Xi 1$

LIVFOOL						
MODEL REFRESENTING	REALITY：				－	
MCM	0.0001	－0． 3040	15．$こ ヲ 9$	35． 36 E4	－モ．アフミア	－1玉．7178
LIVFOOL	ーご．ここころ	0.0001	－19．8030	315． 3757	－モ9．1こご	－こ0．E1ご
VAR	－5．59こ0	－0．09ここ	0.0084	58.4797	－0．504こ	11．1753
OECD	－0．6888	－0．19こ7	E．7303	ここ．こ700	－7．ESOE	－5． 2158
LINK	－9．5156	0.0171	E．5EEこ	E4．GOE8	0.0003	－ご． 9587
MSG	－4．7639	－0． 5015	14．197E	79.1707	－14．匹7ここ	O．000E

UAR
MODEL REFRESENTING REALITY：

MCM	0.0003	0.015	1．5¢コこ	10．1595	0． 78 E 0	こ．050こ
LIVFOOL	ち1．Є5こ	0.0001	30こЭ．1691	E19．6790	4．ごご	44．5¢ 3
VAR	－0． 5496	0.0138	0．000E	E4．0867	0.0444	－0． 5179
OECD	4.5541	0.0855	ごE． 3468	0.0005	1． 4147	11．$こ 411$
LINK	3． 1547	－0．0141	143.6578	こ5．8744	0.0001	1.0776
MSG	4.1138	0．03ヲE	344.7457	74.3334	0.9335	0.0040

OECD
MODEL REFRESENTING REALITY：

Mcm	0．000	－18．ちぎ44	1．EE89	E． $5: 60$	7．ここきこ	－18．7440
LIVFOOL	－860． 393 J	0.0015	E08．6597	ごブ．04もこ	－ご．Јここ0	－4E． 0 E60
UAR	－64．01コこ	－7．6985	0.0310	7．ごは	10．7674	13．4161
OECD	－シ． 097 E	－4．0098	こ0．1705	0.000 O	－0．39E3	－19．1394
LINK	－ちこ．5301	－0．47こ7	Э．48ご	10.4912	0.000 E	－こ．E157
MSG	－1E0．0077	－こ0．000こ	－已． 1904	55.8701	－0．9412	O． 0000

LINK
MODEL REFRESENTING REFLITY：

MCM	0.0001	－9．007	99．4058－141．9玉04	9．ごこも	O． 2545
LIVFOOUL	－47．ごご	O．000ここ	1060．9430－5458．4715	－13， 3573	－10．Зこご
VAR	－1玉．ごもE	－0．日ecs	こ． $3575-171.6056$	－5．こ763	4.1767
OECD	－3．036	0.0784	12 EE ． 309 O ¢001	－1． 2477	－．－70こ
LINK	0.1139	O．OEこも	795．5こ09－Е54．こอ3E	0.000 E	－1．7709
MSG	－0．5550	－0．6450		1． 5012	0.0001

MGG
MODEL REFREGENTING FEFLITY：
－IVFOOL
VAR
OECD
1Е11玉． 1999 ごき，0にけ
-1.2375
$4.12 E=$
-810
0．40こ4 7E． 4930
77.9596

ジア．EJ3こ
$-1 E .1070$ －-4.7393

LINK
MGE
761．0ち1ヶ
0.0599 －57こ日
11.9010
-0.9504
0．081E
0.0597 － 50.28
0.0000
－0． 3154
-1.3503
－ヒール
B． 7 E 9 B
0．000Е
-6.8501
0．03EO－E．3こ＇ヨロ
47.43 EO
－ 2.3069
－． 000 J
to the LIVPL model, the resulting package of coordinated policy changes takes exactly the form urged by many economists in the 1980s: a U.S. fiscal contraction, accompanied by a fiscal expansion in the rest of the OECD and monetary expansion all around. 16 This package is considered desirable because it would depreciate the dollar and reduce the U.S. current account deficit (and European and Japanese surplus) without causing a large world recession. 17 But most other possible kinds of policy packages occur as well: U.S. fiscal contraction and monetary expansion accompanied by either European expansion (6 cases) or European fiscal contraction and monetary expansion (9 cases); general U.S. contraction accompanied in Europe by either general expansion (1 case), loose fiscal and tight money (3 cases), tight fiscal, loose money (3 cases) or general contraction (1); general U.S. expansion accompanied in Europe by either general expansion (3), monetary expansion and fiscal contraction (1), or general contraction (1); and, finally, U.S. fiscal expansion and monetary contraction accompanied in Europe by either general expansion (1), fiscal expansion and monetary contraction (2), fiscal contraction and monetary expansion (2), or general contraction (3). 18

Tables 9 and 10 show the true gains from coordination for the U.S. and Europe, respectively. Again we find that coordination necessarily improves U.S. welfare if the U.S. model turns out to be the correct one, and European welfare if the European model turns out to be the correct one, but that otherwise welfare can go down. Of the total 512 combinations of all eight models, the United States has gains
in 282 cases, losses in 228 , and no perceptible effect in 2 . Europe has gains in 283 cases, losses in 219 , and no effect in 10 . If we take only the 336 combinations where the U.S. model, European model and true model are all different, bargaining results in U.S. gains in 183 cases and losses in 153, and for Europe gains in 166 cases and losses in 170. Thus the odds for successful coordination appear to be no better when policy-makers can take advantage of the monetary-fiscal mix than when the degree of monetary ease is alone at stake.

Section 4: Extensions
This paper has made the simplest assumptions to examine the topic at hand. But many extensions suggest themselves. Most have to do with the introduction of uncertainty, which would seem to come hand-in-hand with the consideration of disagreement regarding the true model. We here briefly discuss four such possible extensions.

To begin with, even if we retain our assumption that each policy-maker believes in his own model with certainty, he may be uncertain as to the model in which the other policy-maker believes. In the present paper it was assumed that each observes directly the other's policy settings, money supplies or government expenditures, so that each has no need to know the other's model. (Each could infer the other government's model from its policy actions, if it cared to.) But one could assume instead that the policy-maker does not observe the foreign governments policies continuously (think of the central bank's M1 target, as opposed to current M1) and that when it is making its
decision, it must guess what the other might do based on (uncertain) guesses as to the other's model. Then the policy-maker will set its policies so as to maximize expected welfare, a weighted average of the economic consequences of each of the policy-settings that the foreign government would choose under each of the possible models in which it might believe. The foreign government's policy settings in turn will depend, not just on its model, but also on its beliefs about what the first country's model, and therefore its actions, might be. So the ordinary Nash equilibrium involves an extra degree of simultaneity.

The U.S. central bank chooses m to minimize

$$
\sum_{i=1}^{8} \pi_{i}^{*} W_{i}\left(m_{i}, m_{i}^{*}\right)
$$

where π_{i}^{*} is the U.S. estimate of the probability that Europe believes in model i and m_{i}^{*} is the money supply Europe will pick if it belleves in model i. If the U.S. central bank believes in, for example, model 1 , then the first order condition is similar to equation (7), but with the foreign money supply replaced by a weighted average of the possibilities:

$$
m_{1}=M_{1}+N_{1} \sum_{i=1}^{8} \pi_{i}^{*} m_{i}^{*}
$$

or

$$
m_{1}=M_{1}+N_{1}\left(\pi^{*^{\prime}} \mathrm{m}^{*}\right)
$$

where π^{*} is the row vector of π_{i}^{*} and \underline{m}^{*} is the column vector of m_{i}^{*} (each for $i=1,8$, assuming eight possible models).

Similarly the European central bank chooses m^{*} to minimize

$$
\sum_{i=1}^{8} \pi_{1} W_{i}^{*}\left(m_{1}, m^{*}\right)
$$

where π_{i} is the European estimate of the probability that the United States belleves in model 1 , and m_{1} is the money supply the United States will pick if it believes in model i. If the European central bank believes in, for example, model 2 , then the first order condition is

$$
m_{2}^{*}=Q_{2}+R_{2}\left(\pi^{\prime} m\right)
$$

where π^{\prime} is the row vector of π_{1} and \underline{m} is the column vector of m_{1}. We have one version of equation (7') for each of the eight models in which the U.S. central bank might belleve, giving

$$
\underline{m}=\underline{M}+N\left(\underline{\pi}^{* 1} m^{*}\right)
$$

and similarly for Europe,

$$
\underline{m}^{*}=\underline{Q}+\underline{R}\left(\underline{\pi^{\prime} m}\right)
$$

where $M, \underline{N}, \underline{Q}$ and \underline{R} are the vector forms of M_{1}, N_{1}, Q_{1} and R_{1}, respectively. Substituting and solving,

$$
\begin{equation*}
\underline{m}=\left[\underline{I}-\underline{N} \pi^{*^{\prime}} R \pi^{\prime}\right]^{-1}\left[\underline{M}+N \pi^{*^{\prime}} \mathrm{Q}\right] . \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\underline{m}^{*}=\left[\underline{I}-\underline{R} \pi^{\prime} N \pi^{*+}\right]-1\left[\underline{Q}+\underline{R} \pi^{\prime} M\right] \tag{13}
\end{equation*}
$$

where I is the identity matrix.
Equations (12)-(13) represent the 8×8 computable Nash
non-cooperative solutions for the 8×8 combinations of models in which the two policy-makers could believe. As a concrete example we could try putting equal weight on each of our eight Brookings models: $\pi_{i}=\pi_{1}^{*}=1 / 8(1=1,8)$. The bargaining solution remains the same as before, assuming that each policy-maker reveals his model as part of the
cooperative bargain. As before we could calculate in each case the gain or loss in welfare entailed in the move from one equilibrium to the other, where the true effect of any given pair of money supplies is judged by each of the eight models in turn.

The second extension would view policy-makers as not so stubborn as to believe in their own models with certainty. Now they assign some probability to the possibility that each of the eight models may be true, and choose their policies so as to maximize expected welfare, as in Brainard (1967). 19 In a simple version we could go back to assuming that each knows the views of the other policy-maker (now a set of probabilities). We could even assume that each modifies in a Bayesian manner his own beliefs when he learns the beliefs of the other player. However if each is so reasonable as to base his beliefs solely on the statistical estimator that optimally combines the data available to him with that available to the other player, then each will come to the same conclusion. To get disagreement about the model -- and it is the premise of this line of research that such disagreement is an accurate description and crucial characteristic of the actual policy-making environment -- it is necessary that the policy-makers have either incomplete access to each other's data or (what can be thought of as much the same thing) different Bayesian priors.

The third extension would be to assume both uncertainty about the true model (as in the second extension) and uncertainty about what probabilities the other policy-maker assigns to the models (as in the first extension). Here it would be possible to assume that the
policy-makers originally shared the same priors, but that they have observed different sets of data and have come to different conclusions for that reason. Let Z_{1} be the set of data from which U.S. economists obtained the maximum likelihood point estimates of the parameters that we have been calling model 1. Such estimates come with standard errors that imply (in terms of classical statistics) the probabilities that one could have observed Z_{1} conditional on each of the other models in fact being true, or (in terms of Bayesian statistics) the probabilities that each of the models could in fact be true conditional on the known fact that Z_{1} has been observed. Similarly if Z_{2} is the set of data from which European economists obtained a maximum likelihood estimate that we have been calling model 2 , then Bayesian methods will give us (conditional on Z_{2} and a set of priors, which may be the same as the U.S. set of priors) European probabilities that each of the models is true. Then each policy-maker will choose his money supply so as to maximize expected welfare, taking into account all the different data sets that the other central bank could have drawn and the money supplies that it would consequently set, and also taking into account the different possible true models and the consequent eifects on the macroeconomy. The interesting application of Bayesian principles comes in the realization that the two kinds of uncertainty are not independent. The probability that a given action by the foreign central bank will have the consequences implied by model 2 is greater if that action is the one that would be optimally chosen based on the observation of the
data set Z_{2}, i.e., that data set that would imply model 2 as the maximum likelihood estimate.

These three extensions are more elaborate models of the Nash non-cooperative equilibrium, but none offers an evident reason for altering our conclusion that the bargaining solution is as likely to reduce welfare as to improve it. For those interested in making coordination work, it is natural to ask whether there might not be some other cooperative solution concept (that is, mapping from the players' beliefs and welfare functions to their policy settings) that would turn out to improve welfare by light of the true model more often than does the Nash bargaining equilibrium in Tables 4 and 5.

Under certain conditions, the weighted average of two statistical estimators will be a better estimator of a parameter than either considered alone. If the policy-makers' models are treated as different statistical estimators of the true model, it might be better to channel the bargaining process to focus on parameters rather than directly on policy settings, and then to set policy so as to maximize joint welfare under the compromise model. It is not obvious what is the relevant stage at which to "average to get the best parameter estimate." Do we want the best estimates of the structural parameters such as the elasticities of money demand? The best estimates of functions of those such as the reduced form money multipliers C and D? Functions of those like the reaction parameter N ? These alternatives are not equivalent because the functions are nonlinear. If, following the Nash bargaining solution, the goal is to maximize the product of the countries' expected
welfare gains relative to the Nash noncooperative equilibrium, then the first-order conditions turn out to be stated in terms of expected products of multipliers such as $\mathrm{E}(\mathrm{CH})$, the expectation (based on available data) of the product of the multiplier of U.S. money on U.S. income and the multiplier of European money on U.S. income. If we were willing to think of each model's estimate of CH as being equal to the true CH plus an independent random error (which could be either of equal or different variances across models), then the best estimate of CH conditional on any two available models 1 and 2 would be a weighted average of their estimates $\theta(\mathrm{CH})_{1}+(1-\theta)(\mathrm{CH})_{2}$ (with either equal or unequal weights, as appropriate). The coordinating agent would then calculate the value of m and m^{*} that satisfied the first order conditions in terms of these averaged multiplier-products, and would instruct the two central banks to adopt those monetary policies, assuming they wish to avoid a breakdown to the Nash non-cooperative equilibrium. The extension of the present line of research would be to calculate the effects of such compromises by using, again, each of the eight models as possible true models, and to see if the result is an improvement in the countries' welfare levels any more often than when the conventional Nash bargaining solution is used. If so, the prescriptive implication would be that policy-makers in OECD or G-7 meetings might better spend their time debating directly their views of the world, rather than debating only over the policies that they would like each other to adopt.

Abstract

It is not a matter of deciding whether the treatment in the present paper is adequate. Extensions such as those sketched in this section need to be pursued. It is only a matter of sorting out which extensions are highest priority, a process in which we trust some of our readers will assist.

FOOTNOTES

Hamada (1976) is generally credited with the birth of the topic in its modern analytic form (though under the assumption of fixed exchange rates). More recent contributions include Canzoneri and Gray (1983). Miller and Salmon (1985), Rogoff (1985) and Buiter and Marston (1985). For good introductions to the literature and further references, see Oudiz and Sachs (1984) or Cooper (1985).

There are two important qualifications to the generality of the proposition that coordination improves welfare under the standard assumption that policy-makers know the true model. The first is that if policy-makers have enough independent instruments to reach their optimum target goals regardless of each others' actions, then coordination is moot. The second is that Rogoff (1985) and Kehoe (1986) have shown that if coordination reduces governments' ability to precommit to anti-inflationary policies, credibly to their own peoples, then it can reduce welfare. The present paper is a counterexample along very different lines.

3 Oudiz and Sachs (1984) and Ishii, McKibbin and Sachs (1985).
4 The project was entitled "Empirical Macroeconomics for Interdependent Economic." Frankel (1986a) discusses the disagreements among the 12 models.

5 Indeed many of the authors in the coordination literature decline to take any position at all on whether the problem with the Nash non-cooperative equilibrium is that it is too contractionary or too expansionary, etc. They leave it for econometricians to fill in the correct parameter values at some later date.

One's intuition is that players who disagree about the model will find it harder to agree on a package of joint policy changes. The correct way to interpret this intuition is probably that, even if there exists a bargaining solution that is believed Pareto-superior to the non-cooperative solution, it will be harder for the players to agree on a mechanism to enforce the bargaining solution if they do not share a common view of the world. In an interesting account that he believes may carry lessons for macroeconomic coordination, Cooper (1986) describes the history of international cooperation in the sphere of public health; cooperation was first proposed early in the 19 th century, but because there were conflicting schools of thought on whether diseases were carried internationally by travelers, actual cooperation did not take place until a consensus was achieved around 1900 as to the correct model of the transmission of disease. If there are positive costs to an enforcement mechanism and some parties believe the gains from coordination are small, then it will not take place.

7 This holds in the eight econometric models considered in the following section except the LIVPL and MSG models.

8 More often, it has been private economists, and the governments of smaller countries, who have urged such coordinated expansion; e.g.,

Bergsten, et al (1982). The 1981-84 Reagan Administration opposed coordination.

9 In equations (3) and (4), one could simply redefine m^{*} as fiscal policy, and let $y^{*} \equiv y, x^{*} \equiv x$, and $\omega^{*} \equiv \omega$. As long as the two policy-makers have different parameter estimates, there will still be scope for coordination. The only difference is that in Figure 2 the true optimal points P and 0 would coincide.
10. The positive effect of a monetary expansion on the current account via currency depreciation is offset by a negative effect via higher income. In the Mundell-Fleming model the positive effect on the current account must dominate, to match the net capital outflow that results from lower interest rates, giving negative transmission abroad. But in more modern models the net capital flow may be reversed, in response to perceived overshooting of the exchange rate. The theoretical literature contains many other ways of reversing the Mundell-Fleming transmission results as well. (See Mussa (1979) or, for an optimizing approach, Svensson and van Wijnbergen (1986)). On the models used in the Brookings simulations, see Frankel (1986a), or other papers in Bryant and Henderson.

11 The alternative weights tried were: first, equal weight on both targets and, second, a weight of 20 times greater on the current account than on GNP (for both countries). Different targets tried were: a GNP target 95% of the baseline level for the US, and a GNP target of 95% of the baseline level for Europe. For these experiments, the magnitude of the changes in targets and instruments was the same as in the example presented. The total count for true gains and losses for the two countries were:

Relative weight ω (income/current account)

$1 / 1$	154	156
$1 / 20$	168	178

Target changed to:

$$
\begin{array}{lll}
\bar{y}=95 \% \text { of baseline } & 169 & 163 \\
\bar{y}=55 \% \text { of baseline } & 180 & 163
\end{array}
$$

There is only one case of technical instability, the combination of the MSG and VAR models. In this case the U.S. reaction function is steeper than the European reaction function because the transmission effects are strong relative to the own multiplier effects.

13 The diagonal entries of the three-dimensional matrix are the cases where both policy-makers have the correct model. The calculations correspond conceptually to those in Oudiz and Sachs (1984) for the MCM and EPA models.

14 The most bizarre combination occurs when the U.S. believes the LIVPL model and Europe believes the OECD model. Under this combination, the Nash non-cooperative equilibrium entails a mutually destructive increase in the European money supply of almost 100 percent and decrease in the U.S. money supply of over 100 percent (!) (Evidently the problem is that the Liverpool model shows European monetary expansion raising U.S. output much more than does U.S. monetary expansion, as can be seen in Table 1.)

15 All combinations show technical stability, but convergence is slow in several cases.

16 Examples include Blanchard and Dornbusch (1984), Layard et al (1984) and Marris (1985).

17 Table 8 shows that according to the MSG model this change in the monetary/fiscal mix, though increasing non-U.S. output 0.1 percent and having the desired effect on the current accounts, would in fact reduce U.S. output 0.7 percent. There are several other combinations in the table where this same change in mix results from coordination, all of them involving the LIVPL model; but none of them shows quite the expected effects on the target variables.

18 As in the case of coordination of monetary policy alone, there are a few cases of absurdly large changes, in particular the two combinations with the MSG and MCM models. The explanation, again, is that these changes offset absurdly large changes implied by the move from the baseline to the Nash equilibrium in Table 7.

19 Brainard assumed a continuous probability distribution for the parameters (rather than assigning discrete probabilities to 12 models, as suggested here). Roubini (1986) applies this assumption to international coordination.

REFERENCES

Bergsten, C. Fred et al. 1982. Promoting World Recovery: A Statement on Global Economic Strategy by Twenty-Six Economists from Fourteen Countries. Institute for International Economics, December.

Blanchard, Olivier and Rudiger Dornbusch, 1984. "U.S. Deficits, the Dollar and Europe," Banca Nazionale del Lavoro Quarterly Review, no. 148, March, pp. 89-113.

Brainard, William, 1967. "Uncertainty and the Effectiveness of Policy: American Economic Review.

Branson, William, 1986. "The Limits of Monetary Coordination As Exchange Rate Policy." Brookings Papers on Economic Activity 1 , 175-188.

Bryant, Ralph and Dale Henderson. eds., Empirical Macroeconomics for Interdependent Economics, Brookings Institution, Washington, D.C.

Buiter, Willem and Richard Marston. 1985. International Economic Policy Coordination. Cambridge University Press, Cambridge.

Canzoneri, Matthew and JoAnna Gray. 1983. "Monetary Policy Games and the Consequences of Non-Cooperative Behavior." International Economic Review, forthcoming.

Cooper, Richard. 1985. "Economic Interdependence and Coordination of Economic Policies." In Handbook in International Economics Vol. II, Edited by R. Jones and P. Kenen. Amsterdam: North Holland.
1986. "International Cooperation in Public Health as a Prologue to Macroeconomic Cooperation." Brookings Discussion Papers in International Economics No. 44, March 1986.

Frankel, Jeffrey. 1986. "The Sources of Disagreement Among International Macro Models and Implications for Policy Coordination," NBER Working Paper No. 1925, May 1986. Forthcoming in R. Bryant and D. Henderson, eds., Empirical Macroeconomics for Interdependent Economics, Brookings Institution, Washington, D.C., as "Ambiguous Macroeconomic Policy Multipliers, in Theory and in Twelve Econometric Models" (1986a) and "The Implications of Conflicting Models for Coordination Between Monetary and Fiscal Policy-Makers" (1986b), International Monetary Fund, Oct.

Hamada, Koichi. 1976. "A Strategic Analysis of Monetary Interdependence." Journal of Political Economy 84. Aug. pp. 77-99.

Ishii, Naoko, Warwick McKibbin and Jeffrey Sachs. 1985. "The Economic Policy Mix, Policy Cooperation, and Protectionism: Some Aspects of Macroeconomic Interdependence Among the United States, Japan, and Other OECD Countries." Journal of Policy Modeling 7(4), 533-572.

Kehoe, Patrick. 1986. "International Policy Cooperation May Be Undesirable" Federal Reserve Bank of Minneapolis Research Department Staff Report 103, February.

Layard, Richard, et al. 1984. "The Case for Unsustainable Growth. CEPS Discussion Papers (Brussels: Center for European Policy). April.

Marris, Stephen. 1985. Deficits and the Dollar: The World Economy at Risk. Institute for International Economics, Policy Analyses in International Economics No 14. December.

Miller, Marcus and Mark Salmon. 1985. "Dynamic Games and the Time Inconsistency of Optimal Policy in Open Economies" Economic Journal vol. 85 (Supp.) pp. 124-137.

Mussa, Michael. 1979. "Macroeconomic Interdependence and the Exchange Rate Regime." In International Economic Policy: Theory and Evidence, edited by R. Dornbusch and J. Frenkel. Baltimore: Johns Hopkins.

Oudiz, Gilles and Jeffrey Sachs. 1984. "Macroeconomic Policy Coordination among the Industrialized Economies." Brookings Papers on Economic Activity l-76.

Rogoff, Kenneth. 1985. "Can International Monetary Policy Cooperation be Counterproductive?" Journal of International Economics 18, pp. 199-217.

Roubini, Nouriel. 1986. "International Policy Coordination and Model Uncertainty." Harvard University, May.

Svensson, Lars and Sweder van Wijnbergen. 1986. "International Transmission of Monetary Policy." National Bureau of Economic Research Summer Institute Paper. August.

[^0]: ＊ 39 indicates more than eo stefs required for convergence

