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1 Introduction

Viewed from space two great bands of green —the equatorial, tropical forests and northern,
temperate and boreal forests —encircle the globe. Deforestation has been extremely rapid
in tropical forests relative to their northern counterparts. One reason for this is the greater
prevalence of illegal extraction which often negates or overturns attempts to sustain forest
cover in tropical areas. Understanding why illegal extraction is often sanctioned or facilitated
is therefore likely to be central to countering tropical deforestation.
The current importance attached to understanding the determinants tropical deforesta-

tion stems from a growing realization that the disappearance of these forests will have impacts
that extend beyond national boundaries. Globally, deforestation accounts for almost 20 per-
cent of annual emissions of greenhouse gases, with the bulk of this coming from tropical
forests. To put this in perspective, deforestation contributes more greenhouse gas emissions
than the global transportation sector, and roughly the same amount of emissions as the en-
tire United States. Tropical forests are also the most biodiverse environments on the planet
and their disappearance brings with it with a mass extinction of species which deprives fu-
ture generations of the value associated with this genetic diversity.1 These dual concerns of
climate change and biodiversity have served to put tropical deforestation, and particularly
understanding how to counter illegal extraction, towards the top of the current global policy
agenda (Hansen and DeFries 2004; Stern 2006; Nabuurs et al. 2007; IPCC 2007; Kindermann
et al. 2008).
The vast majority of tropical forests are owned and managed by national governments,

which in turn rely on local bureaucrats and politicians to enforce national logging rules.
Central monitoring of these local offi cials is imperfect, and these offi cials can (and do) allow
deforestation above and beyond the amount offi cially sanctioned by the central government.
As a result, it is not uncommon in tropical areas for the majority of the wood extracted to
involve some illegal action.2

This paper uses Indonesian data to examine three forces which may affect the decision
by local bureaucrats and politicians to allow more or less logging in their jurisdictions: the
number of administrative jurisdictions in the area, which may affect the degree of market
power each jurisdiction has in the local wood market; the timing of local elections, which
may affect local offi cials’effective discount rates; and the availability of alternative sources
of rents for local offi cials, which may affect the costs local offi cials face from being caught in
illegal activity.
Indonesia is, in many ways, an ideal context for such a study. It contains one of the

largest stands of tropical forest in the world.3 Rapid deforestation places it just behind the

1Despite covering only 7% of the earth’s surface these forests are home to more than half of known plant
and animal species (Urquhart 2001).

2In Indonesia, for example, up to 60 to 80 percent wood yield may involve some illegal action —much of
which may be condoned in some form by these local offi cials (CIFOR 2004).

3The other big stands of tropical forest in the world are in the Amazon Basin (mainly Brazil) and the
Congo Basin (mainly Demoratic Republic of Congo).
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US and China as the third largest producer of greenhouse gases worldwide.4 And the unique
features of post-Soeharto institutions and institutional change generate plausibly exogenous
variation in all three of the incentive channels mentioned above.
Since so much deforestation in Indonesia is a result of illegal logging, we cannot rely on

offi cial production statistics to capture deforestation. Instead, we use a novel dataset that we
constructed from MODIS satellite imagery which allows us to capture deforestation across
the entire country. Using these data, we can detect deforestation at a 250 meter by 250
meter resolution annually for all of Indonesia from 2001 to 2008 (Hansen et al. 2009). We
combine the pixel-level data on deforestation from our MODIS data with GIS data on district
boundaries and land-use classifications to construct a dataset that captures deforestation
across localities and across four land use zones —the production and conversion zones where
some amount of logging is legal (for specific amounts within specific concessions), and the
conservation and protection zones (where all logging is strictly illegal).
To test the impact of the number of political jurisdictions on deforestation, we take

advantage of the fact that Indonesia has experienced a remarkable increase in the number of
divisions over the past decade. Between 1998 and 2008, the number of districts in the main
forest islands of Indonesia more than doubled, from 146 districts in 1998 to 311 districts in
2008. Exploiting the differential timing of these district splits, we estimate that subdividing a
province by adding one more district increases the overall deforestation rate in that province
by 7.8 percent. The increase appears in both land use zones where logging can be either
legal or illegal, as well as in the land use zones where all logging is illegal.
While there are multiple reasons why subdividing administrative jurisdictions could in-

crease deforestation, the evidence appears consistent with a model in which Indonesian
district governments engage in Cournot-style competition in determining how much wood to
extract from their forests. We show that the increase in administrative jurisdictions drives
down prices in the local wood market: adding one more district to a province reduces local
prices in the province by 3.3 percent, implying a local demand elasticity for logs of about
2.3. A back-of-the-envelope calculation suggests that the magnitude of the increase in de-
forestation we observe is consistent with what a simple, static Cournot model would predict
given this elasticity.
To test for the presence of political cycles, we exploit the fact that, starting in 2005,

district heads began to be chosen through direct popular elections rather than being in-
directly selected by the local legislature. These direct elections were staggered, with the
timing determined by when the previous district head’s term came to an end, which in turn
was determined by the timing of district head appointments under Soeharto (Skoufias et al.
2010). Using these asynchronous local elections, we document a “political logging cycle”
where logging increases in the years leading up to local elections. Specifically, deforestation
in the land-use zones where all logging is illegal increases by as much as 42 percent in the
year prior to an election. The pattern is consistent with the idea that local offi cials’effective
discount rate increases in the years leading up to an election, either because of an intense

4This prompted Norway to sign in 2010 an agreement with Indonesia for reducing emissions from defor-
estation and forest degradation (REDD) worth US$ 1 billion.
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need for campaign funds or votes or because their time in power may soon be coming to an
end.
To test for substitution between illegal logging and other sources of rent extraction, we

exploit changes in a district’s oil and gas revenue-sharing receipts over time. Oil and gas
reserves are highly unevenly distributed across Indonesia, and the revenue sharing rules put
in place by post-Soeharto governments mean that the amount of revenue a district receives in
a given year depends on oil and gas prices, production in own and surrounding districts, and
the number of districts in the province. Consistent with the existing literature on short-run
substitution between alternate forms of corruption (Olken 2007, Niehaus and Sukhtankar
2009), we find that rents from illegal logging and the potential for rents from oil and gas
revenue sharing are substitutes in the short-run. In the medium term, however, we show that
over half of this effect disappears. We provide suggestive evidence that the effect disappears
over time because the higher oil and gas rents lead over time to the formation of new, higher
rent-extraction political coalitions (as in Brollo et al. 2009).
The results in this study provide new evidence on how potentially corrupt bureaucrats

and politicians respond to incentives. All three of the main results in the paper are consistent
with rent maximization by local offi cials: as an offi cial’s market power diminishes (due to
district splits), he increases the rate of rent extraction; as his discount rate increases (due
to an upcoming election), he increases rent extraction; and, as alternative sources of rents
increase (due to increased oil and gas revenue), so that he has more to lose from being found
engaging in illegal activity in the forest sector, he decreases rent extraction. The results
thus provide an example of how potentially illegal behavior can be explained by standard
economic models (as in Becker and Stigler 1974, Shleifer and Vishny 1993, and Olken and
Barron 2009).
The remainder of this paper is organized as follows. In the next section we discuss the

background on institutional change and deforestation in Indonesia and on how we study
these processes using a variety of data sets. Section 3 examines how the splitting of districts
affected deforestation, which we interpret in the light of a model of Cournot competition.
In Section 4 we study the interaction between patterns of deforestation and the timing of
elections. Section 5 investigates whether having access to alternative sources of public finance
incentivizes or disincentivizes districts to engage in logging. Section 6 concludes.

2 Background and Data

Indonesia comprises an archipelago of islands in South-East Asia stretching from the Indian
Ocean to the Pacific Ocean. It is a vast country. From tip-to-tip (from Sabang in Aceh to
Merauke in Papua), Indonesia is 3250 miles across; this is the same as the distance from
Tampa, Florida to Juneau, Alaska. The conditions in Indonesia are ideal for the growth of
forests and without the involvement of humans, Indonesia would be largely covered in forest.
In this section we first trace out the dramatic political changes that Indonesia has experi-

enced in its recent past, and document how these changes have resulted in a tug of war over
the control of the forest sector. We then outline how we monitor forest loss using satellite
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data, and discuss how we capture political changes in our data. This section thus prepares
the ground for the analysis of the political economy of deforestation which ensues in the
subsequent three sections.

2.1 Background

2.1.1 Decentralization in Post-Soeharto Indonesia

The East Asian crisis brought to an end the thirty-two year regime of President Soeharto
on May 21st, 1998. Soeharto had governed Indonesia since 1967, and his New Order regime
had become synonymous with the Soeharto family extracting rents from all key sources of
economic activity in the country (Fisman 2001).
Soeharto’s departure ushered in one of the most radical reconfigurations of a modern

state (Bertrand 2008), combining a democratic transition with a radical decentralization of
power. Amidst fears that the multi-ethnic country would break apart, substantial admin-
istrative and fiscal authority was devolved to the approximately 300 district governments.5

Off-Java regions which were rich in natural resources like forests, oil and gas were particu-
larly strident in their demands for more of the revenue from their extraction to accrue to
them (Cohen 1998, Tadjoeddin et al. 2001, WB 2003, Hofman and Kaiser 2004, Wulan et al.
2004). The decentralization laws, which were passed in 1999 and took effect in 2001, de-
volved approximately 25% of the national budget to the districts in the form of block grants
and dramatically increased their authority over almost all sectors of government. Local gov-
ernments also received a substantial share of the natural resource royalties originating from
their district, with some fraction of royalties going to the producing district, some fraction
being shared equally among all other districts in the same province, and the rest remaining
with Jakarta. Districts were administered by Bupatis (district heads), who were in turn
indirectly selected by local legislatures.
The allure of self-government where districts could enjoy significant new political and

fiscal powers, as well as a high fixed fee, low per-capita fee structure in the block grant
formulas, led to a significant amount of district splitting. The total number of districts
increased from 292 in 1998 to 483 in 2008. In contrast, the number of districts in Indonesia
had remained largely unchanged during the New Order regime (1967-1999) (BPS 2007).
District splits thus represented a significant mechanism for the further decentralization of
power in the country (Cohen 2003; Fitrani et al. 2005). At the same time, they also
introduced a certain amount of disorganization as many districts lacked the human resources,
technical capacities and institutional structures to take on these new administrative powers
(Tambunan 2000).
Soon after decentralization took effect, pressure mounted for a new reform, since it was felt

that the 1999 regional governance law gave too much control to the local district parliament

5Unusually, Indonesian decentralization transferred power to the approximately 300 district governments,
rather than the approximately 30 provincial governments, since districts, unlike provinces, were perceived to
be too small for separatist tendencies (Hull 1999; Niessen 1999).
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and, thus, made the system susceptible to corruption and elite capture (Mietzner 2007; Erb
and Sulistiyanto 2009). Consequently, in 2004 a revised decentralization law considerably
increased accountability by introducing direct election of the district head. Direct elections
were to be held after the previous district head selected by the previous system had served
his full tenure. The tenure of appointed district heads, in turn, was dependent on when the
terms of district heads appointed under Soeharto had to come to an end. This introduces
asynchronicity in district elections.6 Since the timing was driven by idiosyncratic factors
from previous decades, it can be viewed as plausibly exogenous with respect to forest loss;
indeed Skoufias et al. (2010) demonstrate that the timing of district elections is uncorrelated
with virtually all pre-existing socioeconomic or geographic characteristics.

2.1.2 Implications for the Forest Sector

During the Soeharto regime, the 1967 Basic Forestry Law gave the national government
the exclusive right of forest exploitation in the so-called ‘Forest Estate’(Kawasan Hutan);
an area of 143 million hectares equivalent to three-quarters of the nation’s territory (ROI
1967; Barber and Churchill 1987; Barber 1990). This is a substantial amount of forest: by
comparison, it is roughly equivalent to the U.S. states of California, Montana, and Texas
put together, and is roughly double the size of the U.S. national forest system.
The entire Forest Estate was managed by the central Ministry of Forestry, based in

Jakarta. The Ministry in turn awarded a small group of forestry conglomerates (with close
links to the regime’s senior leadership) most of the timber extraction concessions in the
Forest Estate, amounting to an area of about 69 million hectares inside the area designated
as ‘Production Forest’(CIFOR 2004). These exploitation rights were non-transferrable, were
issued for up to 30 years and required the logging companies to manage the forest sustainably
through selective logging. The second category inside the Forest Estate was the ‘Conversion
Forest’, in which the largest wood producers could use ‘Wood Utilization Permits’ (Izin
Pemanfaatan Kayu or IPK ) to clear-cut the forest and set up plantations for industrial
timber, oil palm or other estate crops. Logging was prohibited in the remaining zones of the
Forest Estate, which were designated for watershed protection (the ‘Protection Forest’) and
biodiversity protection (the ‘Conservation Forest’).
The control over these forest zones changed with the passing of the Regional Autonomy

Laws in 1999. In particular, the primary change was that the district forest departments
became part of the district government, answerable to the head of the district (the bupati),
rather than a division of the central Ministry of Forestry.
The district forest offi ce is the main point of control over much of the forest estate, both in

terms of authorizing and monitoring legal logging and in terms of controlling illegal logging.
For legal logging, the precise role of the district forest offi ce varies depending on the forest
zone. For production forest, for example, the district forest offi ce works with concession

6For instance, only one-third of all (434) districts held direct elections in June 2005. By 2007, about 30%
of all districts still had a district head that had not been elected directly.
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holders to develop, monitor, and enforce annual cutting plans.7 For conversion forest, the
district government initiates proposals to the central government that land be converted
from forest to other uses, such as oil palm, and is responsible for ensuring that conversion is
carried out in the designated areas only.8

Given their central role in enforcing forest policy, the district forest offi ce is the key
gatekeeper for illegal logging in these zones. For example, a district forest offi ce employee
is supposed to be stationed at the gate of every concession to monitor all logs leaving the
concession, and at the entrance of all saw mills to check all logs entering the saw mills. All
legally felled logs require a transport permit from the district forest offi ce, which is not only
checked at sawmills and export points, but also verified at regular road checkpoints and at
occasional roadblocks. Extracting more than the legal quota from a concession, transporting
it, or bringing illegally sourced logs into a mill, therefore requires the complicity of the district
forest offi ce. The district forest offi ce are also supposed to conduct regular spot-checks in the
forest to ensure that the trees that were felled match those specified in the annual cutting
plan, and that no additional trees are felled.
District forest offi cials also play a key role in controlling deforestation in the protection

and conservation areas. For protection forest, the district forest offi ce has the responsibility
to patrol and ensure that no illegal logging is taking place. Conservation forest —much
of which is national parks —is the only part of the forest estate legally still under central
control. However, since the district forest offi ce enforces the processing of logs at sawmills and
monitors transportation of logs, logging in those zones also requires the de facto acquiescence
of the district forest offi ce.9

Anecdotal evidence confirms that district governments play an important role in facilitat-
ing illegal logging in a variety of ways. For example, district heads have been found to allow
logging to take place outside offi cial concessions (Barr et al. 2006), to facilitate the creation
of new oil palm plantations inside national forest areas, and to sanction the transport and
processing of illegally harvested logs (Casson 2001a). District offi cials also have been known

7In particular, each year the concession holder, working with the district forest offi ce, proposes an annual
cutting plan (Renana Kerja Tebang), based on a survey they conduct in coordination with the district forest
offi ce to determine how much can be sustainably cut. The district government then negotiates the cutting
plan with the national Forest Ministry, which coordinates all of the annual cutting plans nationwide to ensure
that they do not exceed the total national annual allowable cut.

8In addition, during the period from 1999-2002, district governments were legally allowed to issue a variety
of small-scale, short-term forestry permits themselves, without central government approval. These licenses,
both for the ‘Production’ and ‘Conversion Forest’, often directly overlapped with the large-scale logging
concessions and sometimes even the boundaries of national parks and protected areas (see, e.g., Barr et al.
(2001), Casson (2001b), McCarthy (2001), Obidzinski and Barr (2003), Samsu et al. (2004) and Yasmi et al.
(2005)). In 2002, under pressure from the main forest concession holders, the national government revoked
the right of district governments to issue these small-scale permits. Note that we have verified that the main
results in the paper are robust to dropping 2001, so that they are identified only from the period 2002-2008
where districts had no de jure power over forest licenses. See Appendix Tables 13 - 15 in the online appendix
for these results.

9Local police can also play an important role, since they can also instigate enforcement actions for illegal
logging (or threaten to do so).
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to issue conversion permits to clear cut forest and plant oil palm on their own, even though
they do not have the legal authority to do so (CIFOR 2011). Estimates suggest that illegal
logging makes up as much as 60-80% of total logging in Indonesia, making illegal logging a
roughly US $1 billion a year market, suggesting that these forces play a substantial role in
determining the total amount of deforestation (CIFOR 2004).

2.2 Data

2.2.1 Constructing the Satellite Dataset

Given the prevalence of illegal logging, it is crucial to develop a measure of deforestation
that encompasses both legal and illegal logging. To do so, we use data from the MODIS
sensor to construct an annual measure of forest change for each year from 2001-2008. The
resulting dataset traces, at a spatial resolution of 250 meters by 250 meters, the patterns
of forest clearing across the entire country over time. This section describes how the forest
change dataset is constructed from the raw satellite images.
There are two main challenges in constructing satellite-based images of deforestation.

First, humid tropical regions like Indonesia have persistent cloud cover that shrouds the re-
gion year round. This makes it diffi cult to use high-spatial resolution sensors, like Landsat,
which have been used to measure annual forest cover change in less cloudy environments
(INPE 2002). Since these satellites typically only revisit the same area once every 1-2 weeks,
cloud-free images are less frequently recorded in Indonesia. An alternative to this is to draw
on moderate spatial resolution sensors, such as the MODerate Resolution Imaging Spectrora-
diometer (MODIS) that pass over the same spot every 1-2 days. This considerably increases
the likelihood of obtaining cloud-free observations, but at a coarser spatial resolution of 250
meters by 250 meters instead of the 30 meter spatial resolution available via Landsat.
To generate the data used in this paper, MODIS thirty-two day composites were used as

inputs and included data from the MODIS land bands (blue (459—479 nm), green (545—565
nm), red (620—670 nm), near-infrared (841—876 nm), and mid-infrared (1230—1250, 1628—
1652, 2105—2155 nm)) (Vermote et al. 2002), as well as data from the MODIS land surface
temperature product (Wan et al. 2002). Composite imagery represent the best land observa-
tion over the compositing period, in this case 32 days. To produce a more generalized annual
feature space that enabled the extension of spectral signatures to regional and interannual
scales, the 32 day composites were transformed to multitemporal annual metrics. Annual
metrics capture the salient features of vegetation growth and senescence without reference to
specific time of year and have been shown to perform as well or better than time-sequential
composites in mapping large areas (Hansen et al. 2003).
For each annual interval, a total of 438 image inputs were used (146 metrics per year plus

their calculated differences) (Hansen et al. 2005). This amount of information, in effect 438
dimensions for each 250 meter by 250 meter pixel, is used to quantify forest cover loss per
year for that pixel. By contrast, the human eye, with its three types of cones, measures only
three bands, which correspond roughly to the blue, green, and red areas of the visual spec-
trum. The MODIS-derived data set is thus considerably richer than just a series of visual
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images at comparable resolution. The next step is to take the composited MODIS inputs and
implement a computer algorithm to discriminate between forest and non-forest. The key idea
of remote sensing is developing an algorithm that identifies what spectral signatures or set of
signatures —i.e., what combinations of MODIS-derived spectral and temporal information —
best discriminate forest cover and its loss. For example, plants absorb electromagnetic radi-
ation in the visual red part of the electromagnetic spectrum, but reflect or scatter radiation
in the near-infrared part. One common metric for measuring vegetation productivity is the
NDVI (normalized difference vegetation index), which captures the difference in reflectance
of the near-infrared and red parts of the electromagnetic spectrum, and is a useful spectral
signature for indicating the presence or absence of vegetation (Tucker 1979). Foster and
Rosenzweig’s pioneering work relating forest cover to economic factors in India, for example,
used satellite-based NDVI measures to detect forest change (Foster and Rosenzweig 2003).
In practice, one can do much better than using NDVI by exploiting additional dimensions

of the data. For example, forests tend to be cooler than surrounding areas, so bands that
measure temperature can also be used. Moreover, trees have different spectral signatures
than other types of crops and plants (Jensen 1995). To take maximal advantage of the
richness of the MODIS data, we use a statistical learning procedure known as a decision tree
bagging algorithm to determine which spectral signatures best correspond to forest (Breiman
1996).
Specifically, we start with much higher resolution training images. For each of these

images (consisting of best available Landsat data), experts classify each pixel as having
experienced forest cover loss (clearing) or not. We then relate these labels to corresponding
MODIS data using the decision tree algorithm. The decision tree algorithm is a non-linear,
hierarchical tool for recursively partitioning a data set into less and less varying subsets
regarding the variable of interest, in this case forest cover loss. The method makes no
assumptions on the distribution of the data in spectral space, allowing for the robust and
precise division of the spectral data into estimates of forest cover loss using a series of nested
partitioning rules. One then extrapolates the derived rule set over the entire MODIS dataset
to predict, for each year, a per pixel probability of forest cover loss. We code a pixel as
cleared if the estimated probability of deforestation exceeds 90%.
The final outputs are annual forest change estimates for 2001-2008 for each of the 34.6

million pixels that make up Indonesia. Note that these estimates will provide a lower bound
for forest change, as a 250 meter by 250 meter pixel is only coded as deforested if the majority
of the area represented by the pixel is felled. This will reliably pick up clear-cutting, but
will not necessarily capture selective logging if the forest canopy remains largely intact, and
therefore will under-estimate total logging. Identified change is to be treated as an indicator
of likely forest change. The measure will also capture deforestation due to large-scale burns,
which can be either intentional (for land clearing purposes, usually after logging of valuable
trees has already taken place) or unintentional.
This cell-level data is then summed by district and forest zone (i.e., the four forest cate-

gories in the ‘Forest Estate’: the ‘Production’, ‘Conversion’, ‘Protection’and ‘Conservation
Forest’). This yields our final left-hand-side variable deforestdzt, which counts the number
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of cells likely to have been deforested in district d in forest zone z and year t.
Figure 1 gives an idea of what our underlying forest cover data looks like. To do this we

zoom in onto a small area, since the detailed nature of this dataset makes it impossible to
visualize the 34.6 million pixels that make up Indonesia in a single map. It focuses on one
of the main hotspots of deforestation during this time period (Hansen et al. 2009), namely
the province of Riau on the island of Sumatra. The deforested cells are indicated in red,
forest cover is shown in green and non-forest cover in yellow. The map clearly shows that
substantial amounts of forest have been deforested during the period from 2001 to 2008.
Furthermore, forest clearing seems to spread out from initial areas of logging, as access will
be easier from already logged plots.
In addition to the satellite data, to obtain data on prices we also examine logging statis-

tics from the annual ‘Statistics of Forest and Concession Estate’(Statistik Perusahaan Hak
Pengusahaan Hutan), published by the Indonesian Central Bureau of Statistics for 1994-
2007. These statistics report the quantity and value of logs cut at the province level and the
associated price by wood type, for 114 different types of wood.10 Because they are derived
from production, they include both clear-felling as well as selective logging; on the other
hand, they capture only logging that was offi cially reported by the forest concessions, and so
likely miss most illegal logging. Since they report the wood cut from the production forest,
they should be compared to the satellite data from the ‘Production’zone. We divide value
by quantity to obtain data on the price of woods; since market prices are determined by both
legal and illegal logging, these prices will reflect the market equilibrium for both types. We
use this second dataset as a consistency check for our satellite data and to examine impacts
on prices, as described in further detail in Section 3 below.

2.2.2 Descriptive Statistics of Forest Change

Figure 2 illustrates the distribution of pixels coded as likely deforested at the district level
across Indonesia over time. In particular, it shows the number of cells coded as likely de-
forested at the district level in 2001 and 2008. We focus our analysis on the main forest
islands of Indonesia: moving from West to East, these are Sumatra, Kalimantan, Sulawesi
and Papua. The remaining islands (Java, Bali, NTB/NTT, and Maluku), shown in white,
have negligible forest cover in the baseline period and are not included in our sample. In
this map, low levels of likely deforestation are shaded in green, whereas high levels of likely
deforestation are indicated in orange and red. The figures suggest that most of the defor-
estation occurs in Kalimantan and in the lowlands of Sumatra along its eastern coast. From
2001 to 2008, there is a shift in deforestation in Kalimantan from the West to the East, and
there is an intensification in deforestation in Sumatra, particularly in the provinces of Riau
and Jambi in the east-center of the island. There is also some intensive deforestation in the
Southern part of Papua in 2001, but high deforestation rates are not maintained in this area
over time.
10We drop the ‘other’(Lainnya) and ‘mixed wood’(Rimba Campuran) category, since their composition

varies considerably across provinces and over time.
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Table 1 reports the trends in forest cover over time in more detail, and Table 2 displays
the summary statistics for our main measure of deforestation. The data in both tables is
reported for the entire ‘Forest Estate’, the subcategories of the ‘Forest Estate’where logging
may be legal (‘Production/Conversion Forest’) and where all logging is illegal (‘Conserva-
tion/Protection Forest’) as well as the individual subcategories of the ‘Forest Estate’. Table
1 shows the changes in the forest area measured in MODIS pixels (each of which represents
an area approximately 250 meters by 250 meters). Total deforestation between 2000 and
2008 amounts to 783,040 pixels. Although MODIS pixel change does not detect all forest
change (as some forest change occurs below the level detectable by MODIS (Hansen et al.
2009)), it is worth noting that 783,040 pixels represents 48,940 square kilometers; this is
roughly twice the size of Vermont.
Most of this change occurs in the ‘Production Forest’, where 486,000 pixels (representing

an area of 4.2 million hectares) were coded as likely deforested. Much smaller changes
are reported for the other forest zones: 179,000 pixels were deforested in the ‘Conversion
Forest’and only 116,000 pixels were deforested in the ‘Conservation’and ‘Protection Forest’
combined. However, this last estimate will only provide a lower bound of the actual changes
on the ground, since logging is prohibited in these parts of the ‘Forest Estate’. To the extent
illegal logging is selective and, thus, occurs on a much smaller scale, moderate resolution
sensors like MODIS will underestimate these changes.
Table 2 shows the summary statistics of our main left-hand side variable, deforestdzt,

which counts the number of cells likely deforested for district d in forest zone z and year t.
On average, 113 pixels (the equivalent of 704 hectares) are deforested annually at the district
level. However, the variance of 464 pixels (4 times the mean) suggests that there is a lot of
variability in deforestation both across years and districts. The pattern of the results mimics
the previous findings, i.e. most of the changes occur in the ‘Production Forest’, where on
average 232 pixels (representing 1,451 hectares) are coded as likely deforested in each district
and year.

2.2.3 Political Economy Data

To capture increasing competition in the wood market, we take advantage of the extensive
partitioning of districts following the collapse of the New Order regime. Figure 3 illustrates
the distribution of district splits in our forest island sample. It displays the total number of
districts that the original 1990 district partitioned into by 2008.11 High numbers of splits
(3-7) are denoted by orange and red in the figure, whereas low numbers (0-2) of splits are
denoted by blue and green. It is evident from this map that district splits happen all over
the country. Most districts split at least once or twice, so that very few of the 1990 districts
remain intact. In addition, the map suggests that the largest districts in 1990 split into more
new administrative units.
11During the Soeharto regime, only 3 new kabupaten or kota were created outside of Jakarta prior to 1990:

Kota Ambon (PPRI No. 13 Thn. 1979), Kota Batam (PPRI No. 34. Thn. 1983), and Kab. Aceh Tenggara
(UURI NO. 4 Thn. 1984). Jakarta itself was split into 5 city parts in 1978.
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We use the offi cial date that the national parliament approved the formation of a new
district to code the number of districts present at a given area at t. For the province-level
data, we simply calculate the total number districts and municipalities in province p on
island i in year t, NumDistrictsInProvpit.12 In addition, we construct two more variables
at the district level. Firstly, we count into how many districts and municipalities the original
1990 district d on island i split into in year t, NumOwnDistrictsdit. Secondly, we sum across
all the other districts within the same province, NumOtherDistrictsdit.
We also obtain other district-level covariates as follows. To examine the impact of po-

litical election cycles, we obtain district-level election schedules obtained from the Centre
for Electoral Reform (CETRO)13, and use them to construct a dummy for the year the
election for district head was held, Electiondit. To examine the impact of other sources of
rents available to district governments, we examine oil and gas revenues per capita at the
district level, PCOilandGasdt.14 We obtain the revenue data from the Indonesian Ministry
of Finance webpage (http://www.djpk.depkeu.go.id/datadjpk/57/) and the population
data for 2008 from the Indonesian Central Bureau of Statistics. It is important to note that
new districts often do not record their own share of revenue for the first few years after the
split, as the district is not fully functioning yet. We therefore allocate each new district the
revenue share of its originating district until it reports its own share of revenue for the first
time.
Figure 4 displays oil and gas revenue per capita in 2008 at the district-level. These natural

resources are much more spatially concentrated than forest, so that most districts receive
none or very little revenue shown as blue and green respectively. The districts that receive the
largest share of revenue from oil and gas extraction are located in Eastern Kalimantan and in
the province of Riau on Sumatra. Moreover, the map shows that there is some heterogeneity
across districts within each province, where provinces are delineated with thick black borders.
These differences are due to the revised revenue sharing rules, where the producing and non-
producing districts each receive the same percentage of oil and gas revenue, which is then
split evenly between the districts in each category (ROI 1999). Since the non-producing
districts are usually larger in number, their final share of revenue will be smaller.

3 Increases in Political Jurisdictions

In this section, we consider the implications of subdividing political jurisdictions for defor-
estation. As discussed above, across all of Indonesia, the number of districts increased from

12Each province is located on only one of the four islands —Sumatra, Kalimantan, Sulawesi, and Papua.
We use the island subscript, i, as we will allow for differential time trends by island in the empirical analysis
below.
13CETRO is an Indonesian NGO (http://www.cetro.or.id/newweb/index.php). We use the most up-

to-date district-level election schedule available, which provides election dates up to 2011.
14Oil and gas is by far the largest source of natural resource rents for districts. For instance, in 2008 the

average district-level revenue from oil and gas was 114.5 billion rupiah, whereas the corresponding figure for
forestry was 5.3 billion rupiah.
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292 prior to decentralization to 483 in 2008. The increase is even more dramatic in the
forest islands (Sumatra, Kalimantan, Sulawesi, and Papua) that are the focus of this study
—from 146 districts prior to decentralization to 311 districts in 2008, an increase of 113%.
We exploit the staggered timing of these changes in administrative boundaries to identify
the relationship between the number of administrative units and deforestation.
What would theory predict about the impact of subdividing a political jurisdiction?

Suppose that each period, district governments choose the quantity of forest to extract. As
discussed above, this can occur in a variety of ways: by determining how many illegal log
transport permits to issue, how many conversion permits to issue, etc. Once they determine
quantities, prices are determined through the market. We assume that transport costs, the
need to process logs locally before export (Indonesia bans the export of raw, unprocessed
logs), and capacity constraints at local sawmills combine to generate local downward-sloping
demand curves for logs in each market. This assumption is discussed in more detail below.
The problem districts face is thus that of oligopolistic competition in a nonrenewable

natural resource.15 Lewis and Schmalensee (1980) show that many of the standard, static
Cournot results generalize to this dynamic setting. In particular, they show that a greater
number of actors in a market —in our case, more districts —leads to lower prices and greater
resource extraction.16 We will test this prediction empirically below, consider whether the
magnitudes appear consistent with what one would expect from a Cournot model, and
consider several alternative explanations for the results, such as changes in enforcement at
the time districts split.

3.1 Empirical Specifications

To examine the impact of the number of political jurisdictions, we examine how deforestation
responds when a district is subdivided to create new administrative jurisdictions. In doing
so, a key question is what determines the timing of these district splits. As analyzed in
detail in Fitrani et al. (2005), the splitting of districts was driven by three principal factors:
geographic area, ethnic clustering, and the size of the government sector.17 Since all analysis

15For simplicity, in this section we abstract away from issues involved in tree regrowth and instead treat
forests as an exhaustible natural resource. This is consistent with substantial de-facto logging practice in
many tropical forests, including those in Indonesia, where virgin forests are heavily logged, and then either
left in a degraded state or converted to a non-forest use, such as palm plantations. This type of non-
sustainable clear-cutting and land conversion is also the type of forestry we will primarily be able to observe
in the satellite data.
16Because the resource is subsequently depleted more quickly with more actors, they also show that the

price then subsequently rises more quickly with higher N than with lower N as the resource moves more
quickly towards exhaustion. In our case, since the rate of extraction is small relative to the reserves (e.g.,
about 0.5% per year, see Section 2.2.2 above), the increase in prices may happen too slowly to be observed
in our data.
17Specifically, the Soeharto era districts were often quite large, so naturally they find that districts that

were larger geographically are more likely to split to make administration easier. Second, there are often
ethnic tensions in Indonesia, particularly off Java. Those districts where the different ethnic groups were
clustered geographically were more likely to split. Finally, the block grant fiscal transfer (DAU) had a fixed-
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in this paper is identified from the timing of the splits, not whether they occur, however, the
key question from the perspective of this paper is not whether a district splits, but rather
what determines the timing of the split.
Several idiosyncratic factors appear to influence the timing of the splits. First, the

process of splitting a district is quite cumbersome, involving a number of preliminary steps
(e.g., formal agreement of the district legislature, the district head, the provincial governor,
and the provincial legislature; documentation of the new districts’ ability to meet fiscal
requirements; documenting a reason for the split (ROI 2004)) and, ultimately, the passage of
a special law by the national parliament for each split that takes place. The amount of time
each of these steps take varies, which in turn influences the total amount of time required.
Moreover, there was a national moratorium on splits from 2004 (when the criteria for splits
were revised) through 2007. This moratorium also creates plausibly exogenous delays in
timing of splits, as many districts that may have been close to completing the process in
2004 had their split postponed by three years due to the moratorium.18 In the empirical
analysis below, we show empirically that the timing of these splits is not are associated with
pre-trends in deforestation, though a priori there is little reason to believe they would be. In
Appendix Table 1, we also show that the year a district split is uncorrelated with factors such
as population, area, oil and gas revenues, share of land that is forested, or the pre-period
rate of deforestation.
To test the Cournot theory, a key question is what definition we should use for the

“market” for wood products. While wood and wood products are traded on international
markets (and hence, one would expect the market to be global), there are several factors that
make wood markets in Indonesia more local. In particular, since 2001 Indonesia has banned
the export of raw logs. Instead, all timber felled in Indonesia must first be transported (either
by river, when possible, or by road) to local saw mills, plywood mills, and paper mills, where
it is processed before export. These factors imply that prices may differ across regions.
We focus on the province as the key definition of a market, since provincial boundaries are
coincident with the major river watersheds used for transporting logs by water. Province
boundaries are also coincident with mountain ranges which make transporting logs across
provinces by road generally more diffi cult than transporting logs by road within provinces.
Provincial boundaries are also the smallest level at which our price data is available.
We will examine several empirical predictions of the Cournot theory outlined above.

First, taking a province as a measure of the market, we use panel data to test whether
the number of districts in the province affects the prices and quantity of wood felled in the
province. For this purpose, we will use our two complementary sources of forestry data. For

component per district. While this gives all districts an incentive to split, they find that it is particularly
likely in those districts with a large wage bill, who presumably are in greater need of the revenue. They
find little consistent relationship between natural resources and splitting, with positive coeffi cients in the
1998-2000 period and negative coeffi cients in the 2001-2003 period, implying zero effect on average. Details
of these regressions can be found in Fitrani et al. (2005).
18Unfortunately, we do not observe when the district began the process of filing for a split, as we only

observe the date the final split law was passed by the Parliament, so we cannot exploit this three-year
moratorium directly as an instrument.
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our primary measure of deforestation, we will use the MODIS satellite based data, which
captures both legal and illegal deforestation. To examine the impact on prices and estimate
elasticities, we will examine the offi cial forestry statistics.
Specifically, for the satellite-based forestry data, since our key dependent variable is a

count —i.e., how many pixels were deforested in a given year —we will run a fixed-effects
Poisson Quasi-Maximum Likelihood count model (Hausman et al. 1984, Wooldridge 1999;
see also Wooldridge 2002), with robust standard errors clustered by province to account for
arbitrarily serial correlation over time within provinces. Specifically, this estimates, by MLE,
equations such that

E (deforestpit) = µpi exp (βNumDistrictsInProvpit + ηit) (1)

where deforestpit is the number of pixels deforested in province p (located on island i) in year
t, NumDistrictsInProvpit counts the total number of districts in province p in year t, µpi
is a province fixed-effect, and ηit is an island×year fixed effect. Including island×year fixed
effects allows for flexible time trends in deforestation across different parts of the country
over time.19 The coeffi cient β in equation (1) represents the semi-elasticity of deforestation
with respect to the number of districts in the province. The reason we use the Poisson QML
count specification for the satellite data, rather than estimate a log dependent variable with
OLS, is that we have many observations (more than 25%) where the dependent variable is
0, so a count model is more appropriate. The Poisson QML count model in (1) is robust to
arbitrary distributional assumptions, so long as the conditional mean is specified by (1). The
robust standard are clustered at province boundaries.20 We estimate this equation separately
by land use zones.
For the price (and quantity) data from the offi cial production statistics, we will run an

analogous OLS fixed effects regression, as follows:

log(ywipt) = βNumDistrictsInProvpit + µwpi + ηwit + εwipt, (2)

where ywipt is the price or the quantity of wood type w harvested in province p and year
t. The regression also controls for wood-type-by-province and wood-type-by-island-by-year
fixed effects, µwp and ηwit respectively. Since there is a substantial variation in quantity of
wood across wood species and provinces —the 5th percentile of the quantity variable is 42
m3, whereas the 95th percentile of the quantity variable is 204,804 m3 — this regression is

19As discussed above, there are four islands in our sample: Sumatra, Kalimantan, Sulawesi, and Papua.
Each province is located on only one island.
20Note that province borders changed over our sample period. In 1990 (i.e., under Soeharto), there were

17 provinces in our sample area; in 2001, at the start of our data, there were 19 provinces in our sample
area, and in 2008, at the end of our data, there were 21 provinces in our sample area. Districts are not split
across province lines. Since the finer provinces correspond more naturally to geographic units (e.g., West
Sulawesi; West Papua), in our main specifications we use the finer 21-province definitions for the analysis,
but cluster standard errors at the original 17-province level. If we use the 17-province level 1990-era borders
for the analysis instead, the estimates with no lags attenuate, but the estimates with lags remain virtually
unchanged. See Appendix Tables 2-4.
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weighted by the volume of production of wood type w in province p in the first year that we
have data, so the coeffi cient is approximately interpretable as the effect on average prices in
the province. Note that if one takes logs of equation (1), the coeffi cient β in equation (1) is
directly comparable to the coeffi cient β in equation (2); both represent the semi-elasticity of
deforestation with respect to the number of districts in the province.21

Second, we will examine the impact of splits at the district level. In particular, we will test
whether splits affect deforestation in the district that splits vs. how it affects deforestation
in the remainder of the province. We estimate via Poisson QML a model such that:

E (deforestdit) = µdi exp(βNumOwnDistrictsdit + γNumOtherDistrictsdit + ηit) (3)

where deforestdit is the number of cells cleared in district d (located on island i) between year
t−1 and t, NumOwnDistrictsdit counts into how many districts the original 1990 district d
split into by year t, and NumOtherDistrictsdit counts into how many other districts there
are within the same province in year t. It also includes district * forest zone fixed effects µdi
and island-by-year fixed effects ηit. An observation is based on the 1990 district boundaries,
and the robust standard errors are clustered at the 1990 district boundaries. The conditional
log-likelihood function is again estimated separately by land use zones.

3.2 Impacts on Quantities

Table 3 begins by estimating equation (1). The table reports the findings separately for each
subcategory of the ‘Forest Estate’. Column 1 presents all categories of the Forest Estate
pooled together, Column 2 presents results for the zones where legal logging can take place
(i.e., the ‘Production’and ‘Conversion’zones), and Column 3 presents results for the zones
where no legal logging can take place (i.e., the ‘Conservation’ and ‘Protection’ zones).22

Columns 4-7 report the estimates for each zone individually.
The total estimated impact of district splits on deforestation is shown in Column 1 of

Panel A. We find that the annual rate of deforestation increases by 3.85% if an additional
district is formed within a province.
Looking across the various zones of the forest estate, the point estimates suggest broadly

similar impacts on extraction in the zones where logging could be legal or illegal (production:
5.35%, statistically significant at 1%; conversion: 3.87%, not statistically significant) and
in one of the zones where deforestation is clearly illegal (conservation: 9.76%, statistically
significant at 5%). This suggests that the impact of the increasing number of political
jurisdictions is not merely being driven by changes in the allocation of legal cutting rights,
but that something is happening with regard to illegal logging as well.

21The only difference is that equation (2) is weighted by initial volumes in production (deforestwp0),
whereas the Poisson model implicity uses contemporaneous volumes for weights (deforestwpt) (see VerHoef
and Boveng 2007). We show in Appendix Table 6 that using contemporaneous weights when estimating
equation (2) produces virutally identical results.
22As discussed above, since the Poisson model weights each observation by the quantity, when we combine

observations from multiple zones we obtain the correct weighted average effect.
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Panel B reports the estimates of the medium-run impact of district splits by including 3
lags of the NumDistrictsInProvpit variable.23 In virtually all cases, the medium-run impact
estimated by calculating the sum of the immediate effect and all 3 lags is even larger than
in the main specification. For example, three years after the split, a district split increases
deforestation in the entire ‘Forest Estate’by 8.22%. The estimates for deforestation in legal
and illegal logging zones, reported in Columns 2 and 3, respectively are now both significant
and of similar magnitude —8.09% on average for the production and conversion zones (where
logging could be legal or illegal) and 10.1% for the conservation and protection zones (where
all logging is illegal). The fact that the cumulative effect on logging three years after the split
is even larger than the immediate impact, especially in the zones where all logging is illegal,
suggests that the impact is not merely being driven by declines in enforcement associated
with new district creation.
An important potential concern is that the timing of splits is correlated with pre-trends

in logging. To investigate this, Table 4 tests for the presence of differential trends in the
data by including three leads of the NumDistrictsInProvpit variable. We find that the
our main results are robust to the inclusion of leads. Furthermore, and most importantly,
the p-value of a joint significance test for the leads is large and statistically insignificant
for all zones (ranging from 0.20 to 0.71, depending on specification), suggesting that there
are no substantial pre-trends. (By contrast, the p-value of the joint significance test for the
immediate and lagged effects of the number of districts is highly statistically significant in
all specifications). In contrast to the sum of the lags, the sum of the leads is also statistically
insignificant in all specifications. These results are reassuring, as they suggest that the results
are indeed picking up the causal impact of district splits on both legal and illegal logging in
the ‘Forest Estate’and are not being driven by unobserved trends.

3.3 Impacts on Prices

If the Cournot theory outlined in Section 3.1 is important, we would expect increasing
numbers of political jurisdictions to not only increase quantities of deforestation, but also to
decrease prices. To examine this, we turn to the offi cial production data. This data captures
the value and quantity of all logs from the offi cial forest concession reports, separately for
each species, province, and year. By dividing value by quantity, we can obtain the price the
concession obtained for the wood. Although the offi cial production statistics will not capture
illegal logging, the prices concessions receive for their legally felled timber should reflect the
prevailing market prices in the area, which will be determined by the quantities of both legal
and illegal logging.
Table 5 reports results from estimating equation (2), using the data on prices and quan-

tities from the offi cial forest concession reports. Columns 1 and 2 provide the estimates for
our main specification, which includes all wood types and covers the period 2001-2007.24

23The results do not change substantially if we use five lags instead.
24Data is not yet available for 2008, so this is the most comparable time period to that used in the satellite

data analysis below.
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Columns 3 and 4 show the results for the same sample period, but restrict attention to a
balanced panel of wood types, where we observe production of the wood type in all years
for a given province. Columns 5 and 6 present the results for all wood types for a longer
time horizon that also includes the years of the pre-decentralization period for which the
offi cial logging publications were also available, i.e. for 1994-2007. Panel A displays the es-
timates for the contemporaneous effect (i.e., estimating equation 2 with no lags), and Panel
B estimates the medium-run impact by including 3 lags of the number of districts variable.
Columns 1, 3, and 5 present equations where the natural log of prices are the dependent
variables, and Columns 2, 4, and 6 present equations where the natural log of quantities are
the dependent variables.
Consistent with the theory, the main results in Columns 1 and 2 of Panel A show that

adding one additional district in a province decreases prices by 1.7% and increases the quan-
tity of logs felled by 8.4%, though the impact on prices is not statistically significant. Panel
B estimates the medium-run impact of the number of districts on prices and quantities by
including 3 lags of the NumDistrictsInProvpit variable.25 The medium-run impact esti-
mated by calculating the sum of the immediate effect and all 3 lags is even larger than in
the main specification, as at the end of 3 years prices have fallen by 3.4% and quantities
increased by 13.5%, and the impact on prices is now statistically significant at the 5% level.
Similar results are obtained for the alternative samples shown in Columns 3 through 6, and
the price effect becomes statistically significant in both Panel A and B when we use the
entire sample.
Since increasing the number of districts is essentially a supply shock, one can infer the

slope of the demand curve from the ratio of dLnQuantity to dLnPrice. Combining the
estimates from Columns 1 and 2 implies a demand elasticity of −5.24. However, since the
offi cial production statistics miss illegal logging, a more reliable estimate of the elasticity
can be found by taking the price effects from the offi cial data and the quantity effects
from the satellite estimates in Table 3. Using the satellite data estimates in Table 3 that
adding an additional district increases quantities by 3.85%, we obtain a demand elasticity
of −2.27. Alternatively, using the medium-run estimates — the increase in quantities of
8.22% from Panel B of Table 3 and the increase in prices of 3.4% from Panel B of Table
5 —we obtain an estimated medium run elasticity of −2.41 —almost exactly the same as
the short-run elasticity estimate of −2.27. Given that the downward sloping demand curve
within a province is determined by transportation costs across provincial boundaries, we
would expect that demand for forest products should be reasonably elastic, consistent with
the high elasticities we find in the data.
We have also verified that these results are robust to a variety of alternate specifications.

In particular, we have shown that the results are similar if, instead of weighting by the
quantity in the first year, we instead weight by current quantities. This weighting is most
similar to the one applied by the Poisson Quasi-Maximum Likelihood. We have also shown
that the results are robust to excluding from the district count kotamadya (major cities),
which do not control any forest and hence should not affect logging (See Appendix Tables

25The results do not change substantially if we use five lags instead.
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5 and 6). A falsification test where we include only kotamadya shows no impact in most
specifications, though the results are very noisy given the small number of cities. Finally, we
have repeated analysis of leads of district splits in from Table 4 above for the offi cial data
in Appendix Table 6. The medium-run impact of district splits on prices and quantities is
robust to the inclusion of leads and is similar in magnitude and significance to Table 5. For
our main specification (Columns 1 and 2), both the sum of the leads and the p-value from
a joint F-test of all three leads together are statistically insignificant, indicating that there
are no pre-trends in our main specification. While there is scattered evidence of significant
effects on the leads in one of the alternate specifications (Column 5 of Appendix Table 6),
in the main time period and specification we examine —2001 through 2007 —we find no
evidence of significant pre-period differential trends.

3.4 Interpreting Magnitudes in a Cournot Framework

The empirical analysis above showed that as the number of independent jurisdictions within
a province increases, the quantity of deforestation in that province increases and the price
of wood in that province falls, as one would expect from a model of Cournot competition.
Specifically, focussing on the satellite data (which captures both legal and illegal extraction),
the overall semi-elasticity of quantity produced with respect to the number of jurisdictions
was 0.0385 in the short run and 0.0822 in the medium run. The estimated price elasticity of
demand was around 2.3 in both the short and medium run.
In this section we examine whether these magnitudes are broadly consistent with what

would expect from a stylized, textbook Cournot model. The point is not that a simple model
will provide an exact description of our setting, but rather just a consistency check that the
magnitudes we estimate are broadly consistent with what theory might predict.
To be concrete, suppose we have a continuum of logging firms in each district d, each

of whom can extract logs at marginal cost c. To extract logs, each firms needs to secure
a permit from the district government, at cost b per unit extracted.26 Suppose the inverse
demand function is P (Q) where Q is the total quantity of wood produced in the province.
Each firm f in district d solves

maxqfdp (Q) qfd − cqfd − bqfd.

Firms are thus willing to pay bribes up to b = p (Q)− c to obtain logging permits.
We assume that each district government determines the quantity of permits to issue in

its district, and then sells the permits to firms. Each district d solves

maxqdb (qd) qd

Substituting yields the familiar Cournot equation

maxqdqdp
(∑

q
)
− cqd (4)

26Since the cost structure for firms is constant across firms and linear in quantities, the optimal price
structure for bribes that districts will set will be linear in equantities as well.
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The first order condition is
qdp
′ + p− c = 0 (5)

Suppose there are n identical districts in the province, so that total quantity Q = nqd.
Rewriting and substituting Q = nqd yields the familiar Cournot equation:

(p− c)

p
=
1

nε
(6)

where ε is the price elasticity of demand.
To derive a formula for the semi-elasticity of quantity with respect to the number of

districts, we need to posit a functional form for the inverse demand function. Suppose we
have constant elasticity of demand, i.e. p = a

qλ
, where ε = 1

λ
. Substituting p = a

qλ
into

equation (5), taking derivatives, and simplifying yields:

1

Q

dQ

dn
=

1

n2 − nλ
(7)

Are the empirical estimates broadly with equations (6) and (7)? In the beginning of our
period (2001), we have 116 districts in 21 provinces who are producing logs, so on average
we have n = 5.2. Substituting the empirical elasticity estimates and the number of districts
into equation (7) suggests that the semi-elasticity of quantity with respect to the number of
districts ( 1

Q
dQ
dn
) should be approximately 0.034. Empirically, we estimate using the satellite

data that 1
Q
dQ
dn
is 0.038 in the short run and 0.082 in the medium run. The short-run estimate

exactly matches the theoretical prediction, and more generally, these estimates are of the
same order of magnitude as that predicted by the theory.
Checking the other prediction —the prediction about the markup in equation (6) — is

necessarily more speculative, since we do not observe the markup directly. Substituting our
estimates into equation (6) suggests that the markup ( (p−c)

p
) should be around 0.08.

How can we estimate the markup in practice? One way to gauge the markup is to look
at the bribes charged by corrupt offi cials who determine qd. As discussed in Section 2.1.2,
within a district, there are many small firms who are willing to fell wood illegally, but they
must bribe district offi cials to obtain an illegal transport permit in order to do so. Suppose
that the district sells qd illegal log transport permits to these small firms in return for bribes.
In equilibrium, as in the simple model, the firms will be willing to pay up to the full markup,
p− c, in the form of bribes b.27

How large are the bribes b in practice? Direct estimates are scant, but Casson and
Obidzinski (2002) estimate that they are of the same order of magnitude as the a relatively
small share of the total price, consistent with what equation (6) would suggest. Based on
fieldwork in Kalimantan, Casson and Obidzinski (2002) estimate that in one district the
bribe to receive an illegal wood transport permit is $22/m3 of wood. They also note that
district offi cials only require sawmills to purchase these illegal permits for 20% of the wood

27Formally, the district governments solvemaxqi bqi, and free entry among firms ensures that in equilibrium
b = p− c, so this problem ends up being identical to (4).

19



they process, so the effective bribe required is about $4/m3. Since wood prices vary from
$120 to $250/m3, the bribes are equal to between 0.01 and 0.03 of the total price of the wood.
This is only the transport permit: there are also (presumably) additional bribes to fell the
wood. If the additional bribes are similar in magnitude, that would mean that the total bribe
is between 0.02 to 0.06 the total price of the wood. In a second district that they study, the
district government levies offi cial “fees”on illegal timber of about $20/m3, or between 0.08
and 0.16 of the total price. Although in this second case the fees go to the district treasury,
they mention that district offi cials get some return from collecting these fees in the form of
higher popularity with their constituents. Although these data are admittedly very rough,
they suggest that the bribes collected are quite small as a share of the total value of the
woods, and are on the same rough order of magnitude as the 0.08 range predicted by the
theory.

3.5 Direct versus Indirect Effects of District Splits

Since the satellite data show us deforestation at a very fine pixel level, we can further
disaggregate logging by district as well as forest zone. This allows us to separately estimate
the direct effect of a district splitting —i.e., the impact in the district that splits itself —from
the indirect effect of the district splitting —i.e., the impact on logging on other districts in
the same province.
The results from estimating equation (3) are shown in Table 6, and paint a very different

picture for direct and indirect effects of district splits for the production/conversion zones and
the conservation/protection zones. For direct effects —the impact of a split on the district
that splits —the overall impact effect shown in Panel A is negative (though insignificant).
This is driven by substantial decline in deforestation in the production zone —a decline of
20.4%. On the other hand, there appears to be an increase in logging in illegal zones —
deforestation in the conservation zone (i.e., national parks) increases by 14.1% —when the
district splits.
Panel B shows, however, that the pattern of these direct effects begins to change over

time. By the time the district has been in existence for three years, deforestation in legal
logging zones begins to increase, partially offsetting the initial declines, so that the third
lag on the number of district splits is positive and statistically significant. While the net
effect (the sum of the lags) is not distinguishable from zero, the p-value on a joint test
of the contemporary effect and all 3 lags in the legal logging zones (Column 2) is < 0.01,
suggesting that the pattern we observe —a decline in deforestation initially, followed by an
increase —is indeed highly statistically significant. Meanwhile, deforestation in illegal logging
zones continues to intensify, so that the net effect in illegal logging zones is an increase of
25.5% (Panel B, Column 3, sum of lags), driven by a 37.7% increase in conservation zones
(Column 6) and a 13.5% increase in protection zones (Column 7). On net, the total increase
in deforestation in the district that splits after 3 years (shown in Column 1) is 3.6%, though
this is not statistically significant.28 In results shown in the Appendix, if we look even further

28Appendix Table 8 shows that the main results are robust to the inclusion of the leads, and that we do
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out and include 5 lags in the model, the total increase in the deforestation in the district
that splits after 5 years is 8.9%, though once again this is not statistically significant (see
Appendix Table 7).
For indirect effects, i.e., the effect on other districts in the same province, by contrast,

the impact on deforestation is positive and immediate, and occurs in both legal and illegal
logging zones. The impact effect of a district splitting is to increase overall logging by 6.8%
in all other districts in the province (Panel A, Column 1) and the medium-run impact is
9.5% (Panel B, Column 1, sum of lags).
The difference between the direct and indirect effects of a new district forming suggests

a consistent explanation for the results in this section along the following lines. When a
district splits, the initial disorganization initially disrupts legal logging activities, as (for
example) forest offi cials are reassigned. Other districts within the same province increase
logging immediately. This may reflect a combination of two forces: other districts increasing
the quantity of illegal logging in response to the lower extraction from the district that split
and other districts further increasing extraction as they anticipate that prices will fall once
the new districts are fully established and begin to log more. Of these, the first is an example
of static Cournot effects and the second is an example of dynamic Cournot effects with a
non-exhaustible resource as in Lewis and Schmalensee (1980). Both forces may be in action
at a given time.
For the conservation and protection zones, where we know all logging is illegal, the im-

pacts begin in the own district immediately and intensify over time. As with the provincial
level results, the fact that the impacts on illegal logging intensify over time, rather than
decline, suggests that this is not merely driven by a decline in enforcement capability asso-
ciated with the new district’s formation. In a benchmark static Cournot model, with equal
and constant marginal costs, we would expect that the district that splits should experience
an increase in its own production, which is what we observe. The impact on other districts
in the same province in such a model is theoretically ambiguous.

3.6 Alternative Explanations

The results in this section suggest that having more political jurisdictions is associated with
an increased rate of deforestation and lower prices in wood markets. Although we have
focused on Cournot competition between districts as one plausible interpretation of these
findings, there are several alternative explanations as well. This section considers several of
these alternative explanations.

not find a significant sum of leads for the NumOtherDistrictsdit variable. In almost all specifications in
Appendix Table 8, we do not find statistically significant effects on either the sum of the leads, or on the joint
test of significance of all leads. The only exceptions is the sum of the leads for own splits in the conservation
zone (Column 6), but given that we find significance at the 10 percent level in only 3 out of the 28 lead tests
we consider it is likely that these are just noise, rather than true differential trends.
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3.6.1 Enforcement

One possible alternative explanation is that the creation of a new district could result tem-
porarily in a decline in enforcement capacity as a new district government sets up its own
district forest offi ce. There are, however, several pieces of evidence against this idea that a
decline in enforcement is responsible for the increase in deforestation associated with the cre-
ation of new districts. First, if enforcement was the issue, we would expect that there would
be a large increase in deforestation initially, with declines over time as the new districts
established themselves. Instead we see the opposite pattern: an increase in deforestation
initially that intensifies over time.
Second, we can test whether the increase in deforestation is greater in the new part of

the district (i.e., the part of the district which after the split will be governed from a new
district capital) as opposed to the old part of the district (i.e. the part of the district which
after the split will be governed by the same forest offi ce as before the split). If enforcement
capacity was driving the results, we would expect the increase in deforestation to be greater
in the new part of the district, but if it was driven by Cournot forces, we would not expect
differential results between the old and new parts of the district. In results shown in the
Appendix, we show that there is little differential impacts between the new and old parts
of the district, and if anything, there is a stronger effect in the old part of the district (see
Appendix Table 9). Combined, these results suggest that a decline in enforcement due to
the creation of a new district is unlikely to be driving the results.

3.6.2 Changes in the Assignment of Central Logging Quotas

As discussed above, the amount of legal logging in production and conversion zones is deter-
mined by a negotiation between the districts and the center. One could imagine that in such
a negotiation, increasing the number of districts in a province could increase that province’s
bargaining power in these negotiations, so that the province as a whole receives a higher
legal cut quota.
While this explanation could explain changes in the production and conversion zones,

for illegal logging, however, this negotiation force should not be present. As shown in Table
3 above, we find increases in the rate of deforestation of approximately equal magnitude
in the land use zones where logging should be legal or illegal (production and conversion)
and the zone where no logging should take place (conservation and protection). Moreover,
in production zones, legal logging is the selective felling of individual trees, not the type of
clearing of 250 meter by 250 meter pixels that should appear in our MODIS satellite data.
While these reallocations of legal logging quotas may be taking place, they do not seem to
be the main driver of these results.

3.7 Discussion

On net, the results in this section suggest that increasing the number of districts increases the
rate of deforestation, as would be predicted by a Cournot-style model of competition between
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districts. Although we can not rule out all possible stories, several points of evidence provide
suggestive evidence in favor of the Cournot-type story compared to alternative explanations.
First, the fact that increasing jurisdictions not only increases quantities, but also reduces
prices, confirms that there is to some degree a downward sloping demand curve for logs in
each province. Second, the fact that this occurs in zones where all logging is illegal suggests
that this is not merely an artifact of changing allocation rules from the central government.
Third, the facts that the impact of new jurisdictions on deforestation rates increases over
time, rather than decreases, and the fact that deforestation is not more likely to occur in
the new part of the district suggest that declines in enforcement in the illegal logging zones
are not primarily driving the results. Finally, a back of the envelope calculation suggests
that the quantitative impact of increased political jurisdictions on deforestation is consistent
with what one would expect from a simple Cournot model given the equilibrium elasticities
observed in the data.
These findings also speak to a recent literature that has suggested that decentralized

management of forests at the community level may lead to less deforestation (Somanathan
et al. 2009, Baland et al. 2010). The results here results provide a counter-example to this
idea, and suggest that, where districts may be large enough to have some market power in
wood markets, and where district offi cials can obtain rents from allowing illegal logging but
not necessarily from preserving forests for future generations, subdividing jurisdictions may
lead to more deforestation.

4 Political Logging Cycles

4.1 Empirical Tests

The literature on political business cycles suggests that politicians tend to increase expen-
ditures and postpone tax increases in the years leading up to elections, both at the national
level (e.g., Nordhaus 1975, MacRae 1977, Alesina 1987, Rogoff and Sibert 1988, Akhmedov
and Zhuravskaya 2004) and at the local level (e.g., Poterba 1994, Besley and Case 1995,
Levitt 1997, Finkelstein 2009). This section examines whether political cycles affect not
only the legal actions by the state, but the state’s permissiveness towards illegal activity. In
particular, we examine whether logging in general, and illegal logging in particular, increases
in the years leading up to a district election.
To do so, we take advantage of the fact that the timing of district-level elections in

Indonesia varies from district-to-district. As discussed in Section 2.1.1, prior to 2005, the
heads of districts (known as Bupati) were indirectly selected by the district parliament.
Starting in 2005, Bupatis were to be directly elected by the population in special elections
(ROI 2004). Crucially, the direct elections of Bupatis were phased in as the prior Bupati’s
term expired, so that some districts had their first direct elections as early as 2005 while
others had them as late as 2010.29 As documented in detail by Skoufias et al. (2010), the

29No direct elections for Bupati were held in 2009, as national Presidential elections were held that year.
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timing of these direct elections was determined exclusively by when a Bupati’s term expired,
which was in turn driven by idiosyncratic factors, such as retirements and appointments of
Bupatis to posts during the pre-1998 Soeharto regime (Emmerson 1999). Skoufias et al.
(2010) examine this empirically and verify that the resulting timing of local elections is
uncorrelated with a host of economic, social, and geographic characteristics.30

To estimate the impact of elections on logging, we use the satellite data and estimate
fixed-effects Poisson QMLE models on the various subcategories of the ‘Forest Estate’that
estimates the following equation:

E (deforestdit) = µdi exp

(
t+2∑
j=t−2

βjElectiondij + ηit

)
(8)

where j indexes leads and lags of the Election variable, which is a dummy for a Bupati
election taking place. As in equation (3) above, we include district fixed effects and island-
by-year fixed effects, and cluster standard errors at the 1990 district level, but since elections
take place at the district boundaries in force at any point in time, we use the finest boundaries
we have (i.e. the 2008 district boundaries, interacted with forest zone and year) as the unit
of observation. We include up to 2 leads and 2 lags of the Election variable to fully capture
the 5 year election cycle.31 Note that since the offi cial forestry statistics are only at the
province level, whereas our variation is in the timing of elections within provinces, we cannot
use the offi cial forestry statistics dataset for this purpose.

4.2 Results

The results from estimating equation (8) are shown in Table 7. Panel A shows the impact
effect of elections (i.e., no leads and lags); Panel B presents the results with 2 leads and lags
of the Election variable. As before, we present results for the entire ‘Forest Estate,’as well
as broken down by land use zone.
The results show clear evidence of a political logging cycle in the illegal forest zones.

Focusing on Column 3 of Panel B, which shows the impact on the conservation and protection
zones where no legal logging is allowed, we find that illegal logging increases dramatically in
the years leading up to an election: by 29% 2 years prior to the election and by 42% in the

Those Bupatis whose term was ending in 2009 were extended on an interim basis and direct elections were
held in 2010 instead.
30Specifically, Skoufias et al. (2010) run a regression of the probability of holding a direct election by 2007

and regress it on the end date of the previous Bupati’s term and the following variables: unemployment rate,
log real per capita district GDP, log real per capita district GDP without oil and gas, share of minerals in
district GDP, share of energy in district GDP, dummy for district having oil and gas, share of population
that is urban, share of asphalt roads in the district, share of rock roads in the district, access to telephones,
distance to provincial capital, dummy for being a split district, share of mountainous areas in the district,
share of coastal areas for the district, share of valley areas in the district, a city dummy, and 5 island
dummies. Other than the end date of the previous Bupati’s term, only 1 of the 21 variables they consider (a
Sulawesi island dummy) is statistically significant at the 10% level. See Table A-1 of Skoufias et al. (2010).
31The omitted category is therefore the years prior to 2 years before the first direct election.
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year before the election. Illegal logging then falls dramatically (by 36%) in the election year
and does not resume thereafter. Looking zone-by-zone, we see that the pattern is strongest
statistically in the protection zone (Column 7), but that the point estimates suggest a very
similar pattern in the conservation zone as well (Column 6).
There are several possible explanations for the increase in illegal logging in the years

leading up to the elections. One set of explanations has to do with the elections increasing
the politician’s effective discount rates. For example, district heads who think they are likely
to lose re-election may ramp up illegal logging in the years before leaving offi ce, since the
main penalty from being caught in illegal logging is being removed from offi ce, which may
happen anyway because of the election. Their effective discount rates might also increase
since, if they lose reelection, they would forfeit the opportunity to collect bribes from the
selling trees in the future, so they may wish to sell them all now.32

A second set of explanations has to do more directly with the campaign. For example,
district offi cials may permit logging in return for funds to fight elections.33 Alternatively,
perhaps district offi cials simply reduced enforcement of logging in the conservation and pro-
tection zones in order to increase their popularity and win votes. Since these two sets of
explanations are observationally equivalent in terms of the predicted impact on deforestation,
it is not possible to tease them apart empirically.
Turning at the zones where logging may be legal or illegal (conversion and production),

we see a different pattern. In the conversion zone, we find a 40% increase in logging in
the year of the election and a 57% increase in the year following the election. We find no
impact on the production zone. According to Barr et al. (2006), many district governments
have redirected their interest towards the development of oil palm plantations and other
agroindustrial estates in recent years. It is possible that the observed increase in clear-
cutting in the ‘Conversion Forest’after the election is a repayment for favors or funds during
the election campaign. Alternatively, it could be an attempt to grab rents upon being elected.
Once again, these stories are observationally equivalent, so it is not possible to tease them
apart empirically with the existing data. Since the effects in the conservation/protection
zone and the production/conversion zones have different patterns, Column 1 shows little
impact overall.

32To test this theory, one would ideally like to find X variables that predict the probability of an incum-
bent’s re-election. Unfortunately, we have not found variables with enough predictive power on incumbent’s
re-election to do so. Interacting the election cycle variables with whether the incumbent actually won re-
election produces largely inconclusive results, which would be consistent with the incumbent’s re-election
probability being hard to predict.
33Although we know of no direct qualitative evidence for this link at the district level, at the national

level Greenpeace Indonesia (2009) has asserted that political parties ammassed campaign funds for the 2009
general election through facilitating illegal logging.
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5 Substitutes or Complements? Logging versus Other
Potential Sources of Rents

5.1 Empirical Implementation

An important question in the economics of corruption is how corrupt offi cials with multiple
opportunities for rent extraction respond if one type of corruption becomes harder or easier.
If corrupt offi cials behave like classical profit maximizing firms, and there are no spillovers
from one type of corrupt activity to the other, then they would optimize separately on each
dimension, and there would be no impact of a change in one type of corruption opportunity
on the other type of corruption.
More generally, however, one could imagine effects going in either direction. If corrupt

offi cials worry about being detected, and if being detected means the offi cial loses both types
of corruption opportunities, then the two types of corruption will appear to be substitutes,
and increasing corruption opportunities on one dimension will lower them on the other di-
mension. On the other hand, if there are fixed costs of being corrupt (for example, those
with a low disutility from being corrupt selecting into the civil service), multiple corruption
opportunities could be complements. The two existing studies that have examined this ques-
tion empirically (Olken 2007 and Niehaus and Sukhtankar 2009) have both found evidence
that alternative forms of corruption appear to be substitutes.
In this section, we examine this question by examining how logging responds to changes in

another source of local rents for district governments: oil and gas revenues. Under Indonesia’s
Fiscal Balancing Law (ROI 1999), a fraction of all oil and gas royalties received by the central
government is rebated back to districts, with half of the rebate going to the district that
produces the oil and gas and the other half of the rebate being shared equally among all
other districts in the same province. This can amount to a substantial amount of revenue —
as much as US$729.63 per capita in the highest district —which can in turn be a tempting
source of rents for district offi cials.34 Moreover, the precise amount of oil and gas revenue
allocated to each district varies substantially over time as oil and gas production fluctuates,
oil and gas prices change, and district boundaries change. The idea that oil revenues are a
source of illegal rents is consistent with findings from other contexts (e.g., Brollo et al. 2009,
Caselli and Michaels 2009).
A key distinction between our context and the existing literature is that while the existing

34District government offi cials have recently been exposed in a wide variety of strategies to capture rents
from the oil and gas revenue sharing fund. In Kabupaten Kutai Kartanegara, East Kalimantan, for example,
the national Anti-Corruption Commission recently documented that in 2001 the Bupati issued a decree giving
himself, top district government offi cials, and district parliamentarians an offi cial monthly stipend equal to 3
percent of the amount the government received in oil and gas revenue, amounting to over US$9 million over
a 4 year period (KaltimPost 2009b, KaltimPost 2009a). In Kabupaten Natuna, Sumatra, a former Bupati
was arrested in 2009 by the Anti-Corruption Commission for allegedly embezzling US$8 million in oil and
gas revenue funds, by appropriating the funds to a fake committee that he never set up (Kompas 2009). In
Kabupaten Karawang, West Java, in 2004 the Bupati allegedly simply deposited US$600,000 in oil and gas
revenue sharing funds into his personal account rather than the district treasury (KoranTempo 2006).
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literature (Olken 2007 and Niehaus and Sukhtankar 2009) studies short-run substitution
from one type of corruption to another, our setting allows us to examine both the short and
medium run. If the fixed costs of corruption are important, adjustment may take time, and
the short and medium-run effects could be quite different.
To examine the short-run impact of oil and gas rents on illegal logging, we estimate a

version of equation (3). Since district splits influence oil and gas prices through the sharing
formula, we control for district splits directly, and estimate the following equation:

E (deforestdit) = µdi exp (βPCOilandGasdit + γNumdistrictsdit + ηit) (9)

where PCOilandGasdit is the per-capita oil and gas revenue received by the district (in US$).
Note that in computing Numdistrictsdit when estimating (9), we count a district as having
split only when it reports receiving its own oil and gas revenue.35 Each observation is a
district (using the 2008 borders) × forest zone × year. As above, µdi is a district fixed-effect,
ηit is an island×year fixed effect. We report robust standard errors adjusted for clustering
at the 1990 district boundaries. Since district oil and gas sharing revenue is, on average,
20 times larger than that generated by the forestry sector, one would not expect forestry
decisions to influence oil and gas choices, so we would expect oil and gas revenue to be
exogenous with respect to deforestation. To examine the medium-run impacts of oil and gas
rents on illegal logging, we estimate (9) as above, but include 3 lags of PCOilandGasdit.36

5.2 Results

The results from estimating equation (9) are shown in Table 8. Panel A, which shows the
immediate impact effect of oil and gas revenue on logging, confirms evidence of short-run
substitution between deforestation and oil and gas rents. Specifically, each US$1 of per-capita
oil and gas rents received by the district reduces logging by 0.3%. These effects are found in
both the legal logging zones (0.3% in production/conversion; Column 2) and in the illegal
logging zones (0.6% in the conservation/protection zones). To interpret the magnitudes, note
that the standard deviation of PCOilandGasdit after removing district fixed effects is 23.7;

35As described above, de facto establishment of a district takes 1-3 years after the offi cial de jure imple-
mentation. Since we care about district splits in this case because they affect the oil and gas allocation
formula, it is important to control here for the de facto date the district split took effect, as that is the date
the oil and gas formula would be affected.
36Note that we do not have district-level data for PCOilandGas prior to 2001, so there is a question of

how to assign lag values of PCOilandGas in the early years of our sample. Prior to the new revenue sharing
rules taking effect in 2001, there was very little of this type of revenue sharing with districts. For example, in
2000 (prior to decentralization), for all of Indonesia, the total for all royalties (oil and gas plus other revenue
sharing) shared with districts was 538 billion. In 2001, the first year of the new revenue sharig regime, it
was 9,312 billion Rupiah. Given that total revenue sharing prior to 2001 was less than 5% of the value in
2001 and after, we assume that oil and gas revenue was 0 prior to 2001 in computing lags. Using missing
values for these lags instead produces qualitatively similar results in aggregate, though the reversal between
short and long run is now limited only to the production / convserion zone (see Appendix Table 12 in the
online appendix).
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so a one-standard deviation change in PCOilandGasdit decreases deforestation by 7.1% in
the production/conversion zones and by 14.2% in the conservation/protection zones.37

Panel B shows, however, that the short-run and medium-run effects are quite different.
While the immediate effect of oil and gas revenue on logging is still negative (0.5% per US$1,
Panel B, Column 1), the sum of the lags is now positive and statistically insignificant. That
is, after three years, the total medium-run effect of US$1 of per-capita oil and gas rents is
to increase logging by 0.2%. Once again, this shift occurs equally in the legal logging zones
(0.2%, Column 2) and illegal logging zones (0.1%, Column 3). While none of these effects
are statistically significant, we can reject the null hypothesis that the sum of the lags and the
immediate effect are the same at the 1% level. This suggests that the short and medium-run
impacts are different, and in the medium run, oil and gas rents and rents from logging are
no longer substitutes.
An important question is why the effects might change over time. One natural hypothesis

is that the higher oil and gas rents attract a different type of politician to offi ce who is
more interested in rent extraction. These politicians would then extract more rents on all
dimensions, both from the oil and gas sector and from forests. To investigate this hypothesis,
we begin by interacting oil and gas revenues with a dummy that captures whether the new
direct election for district heads has taken place or not, i.e.

E (deforestdit) = µdi exp

(
βPCOilandGasdit + δPostElectiondit

+πPCOilandGas× PostElectiondit + γNumdistrictsdit + ηit

)
(10)

The key coeffi cient of interest is π, which captures how the coeffi cient on PCOilandGas
changes after the direct election. We continue to control for NumDistricts as in equation
(9).
The results are presented in Table 9. The results show that π is positive, i.e. the

negative effect of oil and gas revenues on logging attenuates once the direct election is
held. Specifically, the point estimates suggest that 35% of the substitution effect between
oil and gas revenues and forest extraction disappears once the direct election is held. This
provides suggestive evidence that the medium-term reversal in the negative oil and gas effect
is mitigated through a change in the political equilibrium.
What about the political equilibrium might be changing? In results shown in Appendix

Table 10, we find that higher oil and gas revenues lead to fewer candidates running in the
direct election, and instead lead to the new Bupati representing a larger coalition of parties,
using data from Skoufias et al. (2010). We find no impact on the probability the incumbent
is re-elected. It is possible that these larger coalitions engage in more rent extraction as
they have more people with whom to share the spoils of offi ce. Consistent with this, we also

37One might be concerned that these effects reflect labor market substitution, as labor moves into the oil
production sector when prices are high. However, we have verified that the same results separately both for
oil producers and non-oil producers, where the results for non-oil producers are driven only by the revenue
sharing they receive from other oil producing districts in the same province, suggesting this is not driven by
labor market factors.
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find evidence that having fewer candidates or a larger coalition is associated with a greater
increase in logging, though the effects are only statistically significant in some forest zones
and only in some specifications (see Appendix Table 11). Together, these results, as well as
the results in Tables 8 and 9, suggest that the higher political rents lead to a change in the
political equilibrium, which in turn undoes the short-run substitution between oil rents and
forest extraction. The idea that oil rents affects outcomes by affecting who is in offi ce echoes
recent findings from Brazil (Brollo et al. 2009).

6 Conclusions

The world’s tropical forests are rapidly disappearing and climate change and biodiversity
concerns have made countering tropical deforestation a key global policy challenge. In com-
mon with other natural resources that fall under national ownership, command and control
systems for forests in tropical countries are typified by weak governance. Monitoring of local
bureaucrats and politicians who de facto control forest extraction, including that which is
not offi cially sanctioned, is often imperfect. In these situations the decision to extract or
conserve forests may be affected by the return these offi cials face in timber markets, by their
short-term electoral needs, and by the availability of potential alternative sources of rent
extraction.
Where these incentives do not line up with national forestry policy illegal extraction

can become widespread and actual extraction can exceed planned extraction. By combining
detailed satellite imagery with data on competition between jurisdictions, elections and local
resource rents we have shown that local political economy factors are critical to understanding
the pattern of tropical deforestation in Indonesia, home to some of the largest tropical forest
reserves in the world. We find that increases in the numbers of political jurisdictions are
associated with increased deforestation. Illegal logging increases dramatically in the years
leading up to local elections. And having access to rents from local oil and gas reserves
dampens incentives to engage in illegal logging in the short but not the medium term.
The results in this paper suggest that, to the extent that policy makers seek to encourage

conservation in countries like Indonesia, Brazil and the Democratic Republic of Congo —
which contain the last great stands of tropical forest —central government policies though
necessary may not be suffi cient. Therefore the raft of measures under the REDD —Reducing
Emissions from Deforestation and Forest Degradation —banner, which are now a central
plank in efforts to combat global climate change and biodiversity loss, may not work unless
they also take on board the decisions of local bureaucrats and politicians. Similarly the
broader class of Payment for Environmental Services (PES) schemes (see Ferraro 2002; Jack
et al. 2008; Wunder 2008; Bond 2009) will need to beyond the formal owners of the forest
resource (e.g. central government) and consider how to properly incentivize local offi cials
who are currently enjoying rents from the removal of this resource.
Illegal extraction is often thought to be a core problem for natural resources management

in the tropics. These issues apply not just to forests, but also to fisheries and conservation
efforts directed at particular species of animals or plants. The combination of standard
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economic theories with innovative means of monitoring illegal extraction can offer powerful
insights into what drives this behavior.
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Figure 1: Forest cover change in the province of Riau, 2001-2008 
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Figure 2: District-level logging in Indonesia using the 2008 district boundaries, 2001 and 2008 
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Figure 3: Total number of district splits using the 1990 district boundaries 
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Figure 4: Oil and gas revenue per capita using the 2008 district boundaries, 2008 
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Table 1: Summary Statistics 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Year 
Total land 

pixels 
2000 2001 2002 2003 2004 2005 2006 2007 2008 

Change 
2008-2000 

            
All Forest 18,986,240 17,567,200 17,493,600 17,353,440 17,287,520 17,199,840 17,115,200 16,946,560 16,855,840 16,784,160 -783,040 
Production/Conversion 11,894,240 10,865,280 10,803,360 10,697,280 10,640,320 10,567,840 10,492,640 10,348,320 10,264,640 10,199,200 -666,080 
Conservation/Protection 7,092,000 6,701,760 6,690,240 6,656,160 6,647,200 6,631,840 6,622,560 6,598,080 6,591,200 6,584,960 -116,960 
Conversion 3,098,080 2,652,160 2,633,600 2,607,040 2,591,520 2,570,400 2,545,920 2,512,640 2,490,560 2,472,800 -179,360 
Production 8,796,320 8,213,120 8,169,760 8,090,240 8,048,800 7,997,440 7,946,720 7,835,680 7,774,080 7,726,400 -486,720 
Conservation 2,731,840 2,515,200 2,510,720 2,490,240 2,485,920 2,478,400 2,475,520 2,460,960 2,457,120 2,454,880 -60,320 
Protection 4,360,000 4,186,560 4,179,520 4,165,920 4,161,120 4,153,440 4,147,040 4,137,120 4,134,080 4,129,920 -56,640 

            
Changes in all forest   -73,440 -140,320 -65,920 -87,680 -84,640 -168,640 -90,720 -71,680 -783,040 
Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest pixels by year and forest zone. The units are the number of MODIS 
pixels in each class, where a MODIS pixel represents an area approximately 250m * 250m in size. 

Table 2: Summary statistics of pixels deforested in pixels by district×year 

 (1) (2) (3) (4) (5) (6) (7) 
Logging All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 

        

Mean  113 203 32 152 232 40 26 
Standard deviation 464 641 164 423 735 221 106 

        
Observations 6952 3280 3672 1184 2096 1520 2152 
Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest cells by year and forest zone. The variable shown here is the key 
dependent variable analyzed in Sections 3-5. 
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Table 3: Satellite Data on Impact of Splits, Province Level 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
Panel A        

Number of districts  0.0385** 0.0443** 0.0472 0.0387 0.0535*** 0.0976** 0.00870 
in province (0.0160) (0.0179) (0.0331) (0.0305) (0.0199) (0.0411) (0.0349) 

  
Observations 608 296 312 128 168 144 168 
Panel B: Lags        
Number of districts  0.0385 0.0448 0.0900*** 0.0538 0.0520 0.113*** 0.0691* 
in province (0.0287) (0.0333) (0.0294) (0.0398) (0.0352) (0.0391) (0.0393) 

Lag 1 0.0425 0.0448 -0.127* 0.0117 0.0426 -0.160 -0.0776 
 (0.0459) (0.0477) (0.0672) (0.0653) (0.0448) (0.131) (0.0635) 

Lag 2 -0.0723*** -0.0747*** 0.0209 -0.0925*** -0.0624** 0.104 -0.0780 
 (0.0271) (0.0254) (0.0808) (0.0356) (0.0258) (0.157) (0.0765) 

Lag 3 0.0735* 0.0660 0.118* 0.112 0.0472 0.0949 0.138** 
 (0.0435) (0.0436) (0.0665) (0.0892) (0.0387) (0.0634) (0.0670) 
        

Observations 608 296 312 128 168 144 168 
Joint p <0.001 <0.001 0.0162 <0.001 <0.001 0.0205 0.0610 
Sum of contemp. + lags 0.0822*** 0.0809*** 0.101** 0.0850 0.0795*** 0.151*** 0.0513 

 (0.0204) (0.0193) (0.0426) (0.0594) (0.0217) (0.0575) (0.0373) 
Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest cells by year and forest zone. Note that 1000HA = 10 square 
kilometres. Number of districts in province variable counts the number of districts within each province. The regression also includes province and island-by-year fixed effects. The robust standard errors are 
clustered at the 1990 province boundaries and reported in parentheses. *** 0.01, ** 0.05, * 0.1 



41 

Table 4: Satellite Data on Impact of Splits, Leads 
 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
        

Number of districts  0.0390 0.0433 0.0844** -0.0155 0.0631 0.124** 0.0173 
in province (0.0389) (0.0455) (0.0379) (0.0351) (0.0491) (0.0550) (0.0633) 

Lag 1 0.0245 0.0205 -0.110 -0.0146 0.0171 -0.130 -0.0595 
 (0.0504) (0.0534) (0.0738) (0.0853) (0.0492) (0.112) (0.0794) 

Lag 2 -0.0574 -0.0532 0.0108 -0.0646 -0.0389 0.0651 -0.0737 
 (0.0366) (0.0347) (0.0902) (0.0565) (0.0332) (0.135) (0.0866) 

Lag 3 0.0844 0.0749 0.131 0.148 0.0578 0.141 0.132 
 (0.0551) (0.0530) (0.0935) (0.121) (0.0440) (0.0962) (0.105) 

Lead 1 0.0891 0.0930 0.0522 0.329* 0.0371 0.167 0.0444 
 (0.109) (0.115) (0.135) (0.170) (0.106) (0.137) (0.147) 

Lead 2 -0.137 -0.168 -0.0601 -0.315* -0.152 0.0347 -0.103 
 (0.149) (0.149) (0.187) (0.185) (0.145) (0.232) (0.207) 

Lead 3 0.0527 0.0740 -0.00308 0.173 0.0708 -0.0549 0.0260 
 (0.105) (0.103) (0.120) (0.120) (0.106) (0.153) (0.133) 
        

Observations 456 222 234 96 126 108 126 
Joint p contemp. + lags <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.00133 
Sum of contemp. + lags 0.0904*** 0.0855*** 0.116* 0.0534 0.0991*** 0.200** 0.0164 

 (0.0279) (0.0238) (0.0667) (0.0681) (0.0224) (0.0972) (0.0771) 
Joint p leads 0.939 0.993 0.909 0.165 0.413 0.334 0.708 
Sum of leads 0.00488 -0.000459 -0.0110 0.188 -0.0439 0.147 -0.0326 

 (0.0635) (0.0555) (0.0968) (0.135) (0.0537) (0.152) (0.0870) 
        

Notes: See Notes to Table 3. *** 0.01, ** 0.05, * 0.1 
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Table 5: Impact of District Splits on Prices and Quantities: Legal Logging Data 

 (1) (2) (3) (4) (5) (6)

 
2001-2007 

All wood observations 
2001-2007 

Balanced panel of wood observations 
1994-2007 

All wood observations 
VARIABLES Log Price Log Quantity Log Price Log Quantity Log Price Log Quantity 

Panel A       
Number of districts -0.017 0.084* -0.019 0.103** -0.024** 0.080*** 

in province (0.012) (0.044) (0.013) (0.039) (0.010) (0.017) 

       

Observations 1003 1003 532 532 2355 2355 

       
Panel B: Lags       
Number of districts -0.025* 0.096 -0.029 0.123 -0.031*** 0.072** 

in province (0.014) (0.076) (0.016) (0.082) (0.009) (0.024) 

Lag 1 0.010*** -0.039 0.009** -0.033 0.011*** -0.004 

 (0.003) (0.034) (0.004) (0.041) (0.003) (0.034) 

Lag 2 -0.001 0.040 -0.001 0.021 -0.000 0.019 

 (0.009) (0.041) (0.010) (0.022) (0.005) (0.028) 

Lag 3 -0.017** 0.038 -0.018* 0.045 -0.015* 0.033 

 (0.007) (0.042) (0.008) (0.044) (0.008) (0.036) 
 
 

      

Observations 1003 1003 532 532 1960 1960 

Joint p contemp. + lags 0.000917 0.000477 0.00366 0.000724 6.74e-05 0.00890 

Sum of  contemp. + lags -0.0336** 0.135** -0.0384** 0.156** -0.0344** 0.119*** 

 (0.0134) (0.0561) (0.0150) (0.0592) (0.0139) (0.0383) 
Notes: The log price and log quantity data has been compiled from the `Statistics of Forest and Concession Estate'. The Number of districts in province variable counts the number of kabupaten and kota within 
each province. The regression also includes wood-type-by-province and wood-type-by-island-by-year fixed effects and are weighted by the first volume reported by wood type and province. The robust standard 
errors are clustered at the 1990 province boundaries and reported in parentheses. *** 0.01, ** 0.05, * 0.1 
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Table 6: District Level Analysis: Direct versus Indirect Effects 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
Panel A   
Number of districts in  -0.0984 -0.166* 0.0680 -0.0144 -0.204** 0.141* -0.0281 
original district boundaries (0.0779) (0.0934) (0.0522) (0.148) (0.0893) (0.0768) (0.0845) 
Number of districts  0.0680** 0.0937*** 0.0363 0.0386 0.118*** 0.0757* 0.0130 
elsewhere in province (0.0277) (0.0317) (0.0314) (0.0493) (0.0331) (0.0443) (0.0330) 

        
Observations 3152 1488 1664 536 952 688 976 
Panel B: Lags        
Number of districts in         
original district boundaries -0.0590 -0.0921 0.111** 0.0182 -0.125 0.157* 0.0465 

Lag 1 (0.0834) (0.105) (0.0542) (0.153) (0.100) (0.0874) (0.0586) 
 -0.0185 -0.0775 -0.0766 0.207 -0.141 -0.0847 -0.0305 

Lag 2 (0.130) (0.159) (0.104) (0.240) (0.142) (0.142) (0.0805) 
 -0.0772 -0.127 0.0249 -0.436 -0.0611 0.153 -0.143 

Lag 3 (0.115) (0.151) (0.0969) (0.285) (0.132) (0.165) (0.104) 
 0.190*** 0.217*** 0.196** 0.157 0.241*** 0.152 0.262** 

Number of districts  (0.0669) (0.0735) (0.0795) (0.139) (0.0785) (0.0939) (0.106) 
elsewhere in province 0.0676* 0.0864* 0.0919*** 0.0366 0.111*** 0.113*** 0.0802** 

Lag 1 (0.0376) (0.0442) (0.0318) (0.0608) (0.0393) (0.0422) (0.0374) 
 0.0601 0.0819 -0.142** -0.0298 0.0971 -0.192* -0.0858 

Lag 2 (0.0589) (0.0646) (0.0589) (0.0878) (0.0622) (0.103) (0.0570) 
 -0.0656 -0.0543 0.0215 -0.00852 -0.0521 0.0987 -0.0550 

Lag 3 (0.0479) (0.0520) (0.0799) (0.0666) (0.0543) (0.122) (0.0992) 
 0.0328 0.0122 0.0954 0.0974 -0.0232 0.0765 0.0979 
 (0.0398) (0.0427) (0.0599) (0.0787) (0.0445) (0.0537) (0.0648) 

Observations 3152 1488 1664 536 952 688 976 
Joint p original 0.0644 0.00805 0.0460 0.117 0.00576 0.195 0.0115 
Sum of lags original 0.0356 -0.0794 0.255*** -0.0546 -0.0866 0.377** 0.135** 

 (0.114) (0.115) (0.0962) (0.190) (0.116) (0.177) (0.0683) 
Joint p elsewhere 0.0126 0.00453 0.0245 0.586 0.00189 0.0105 0.136 
Sum of lags elsewhere 0.0948** 0.126*** 0.0668* 0.0957 0.132*** 0.0963 0.0373 

 (0.0391) (0.0434) (0.0385) (0.0599) (0.0480) (0.0636) (0.0322) 
Notes: See Notes to Table 3. A unit of observation is a 1990-borders district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. Number of districts in original district boundaries 
variable counts the number of districts the district split into and the Number of districts elsewhere in province variable counts the number of districts all other districts within the same province split into. The 
regression also includes district-by-forest zone and island-by-year fixed effects. *** 0.01, ** 0.05, * 0.1 
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Table 7: Elections 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
Panel A   
ElectionYear -0.133 -0.0732 -0.593*** 0.124 -0.128 -0.398*** -0.658*** 

 (0.0959) (0.112) (0.155) (0.156) (0.107) (0.117) (0.214) 
        

Observations 6464 3064 3400 1112 1952 1360 2040 
         

Panel B: Leads & Lags        
ElectionYear 0.0277 0.0804 -0.364** 0.405* -0.00920 -0.125 -0.493*** 

 (0.142) (0.155) (0.152) (0.241) (0.151) (0.187) (0.183) 
Lead 1 0.200 0.173 0.427** 0.242 0.134 0.244 0.501** 

 (0.130) (0.140) (0.216) (0.226) (0.146) (0.171) (0.220) 
Lead 2 0.131 0.120 0.294** 0.295 0.0869 0.223 0.300** 

 (0.166) (0.185) (0.130) (0.223) (0.184) (0.149) (0.134) 
Lag 1 0.282* 0.305* 0.140 0.579** 0.235 0.352 -0.111 

 (0.155) (0.170) (0.217) (0.236) (0.186) (0.282) (0.201) 
Lag 2 -0.0427 -0.0463 0.0180 0.0896 -0.0671 0.0892 -0.103 

 (0.173) (0.193) (0.266) (0.302) (0.205) (0.339) (0.236) 
        

Observations 6464 3064 3400 1112 1952 1360 2040 
Joint p contemp. + lags 0.00305 0.00447 0.000358 1.61e-06 0.0383 0.0695 0.0257 
Sum of contemp. + lags 0.267 0.339 -0.206 1.074 0.158 0.315 -0.708 

 (0.429) (0.470) (0.547) (0.733) (0.489) (0.664) (0.500) 
Joint p leads 0.291 0.458 0.0598 0.413 0.641 0.252 0.0418 
Sum of leads  0.331 0.293 0.721** 0.536 0.221 0.468* 0.801** 

 (0.270) (0.295) (0.314) (0.418) (0.302) (0.283) (0.320) 
Notes: See Notes to Table 3. A unit of observation is a 2008-borders district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. ElectionYear variable is a dummy equal to 1 if the 
district holds district head election that year. The regression also includes district-by-forest zone and island-by-year fixed effects. *** 0.01, ** 0.05, * 0.1 
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Table 8: Substitutes or Complements? 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
Panel A  
Oil and Gas Revenue -0.00316** -0.00284* -0.00597** -0.00912*** -0.00220 -0.00474** -0.00986*** 
per capita (0.00160) (0.00165) (0.00252) (0.00165) (0.00146) (0.00218) (0.00147) 

        
Observations 6464 3064 3400 1112 1952 1360 2040 
Panel B: Lags        
Oil and Gas Revenue -0.00492*** -0.00432** -0.0113*** -0.0115*** -0.00362** -0.0109*** -0.0118*** 
per capita (0.00186) (0.00190) (0.00257) (0.00181) (0.00174) (0.00368) (0.00181) 

Lag 1 0.000652 8.87e-05 0.00561*** 0.00423** 0.000245 0.00797*** -0.00149 
 (0.00103) (0.00126) (0.00113) (0.00201) (0.00106) (0.00147) (0.00177) 

Lag 2 0.00112 0.00132 0.000731 -0.00112 0.00166 0.00206 0.00103 
 (0.00130) (0.00151) (0.00138) (0.00177) (0.00155) (0.00144) (0.00174) 

Lag 3 0.00519*** 0.00530*** 0.00574 0.0119*** 0.00401*** -8.39e-05 0.0140*** 
 (0.00163) (0.00160) (0.00372) (0.00307) (0.00150) (0.00288) (0.00527) 

        
 6464 3064 3400 1112 1952 1360 2040 

Joint p 1.08e-07 4.56e-08 0 0 3.39e-06 5.91e-10 0 
Sum of contemp. + lags 0.00205 0.00240 0.000768 0.00344 0.00230 -0.000962 0.00172 

 (0.00134) (0.00154) (0.00195) (0.00347) (0.00155) (0.00210) (0.00448) 
Sum of contemp + lags = contemp. <0.001 <0.001 <0.001 <0.001 <0.0010 0.003 0.0171 
effect p-value        
Notes: See Notes to Table 3. Oil and Gas Revenue per capita variable reports the value of per capita revenue from oil and gas extraction at the district-level in US dollars. A unit of observation is a 2008-borders 
district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. The regression also includes district-by-forest zone and island-by-year fixed effects and the number of districts the 
1990 district has split into by year t (and 3 lags of this variable in Panel B). *** 0.01, ** 0.05, * 0.1 
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Table 9: Oil Before and After Direct Elections 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection 
Panel A   
Oil and Gas Revenue -0.00523*** -0.00457*** -0.0122*** -0.0115*** -0.00369** -0.0124*** -0.0123*** 
per capita (0.00143) (0.00159) (0.00174) (0.00300) (0.00155) (0.00275) (0.00178) 
Post-election 0.0218 0.0240 0.0299 -0.0352 0.0552 0.277 -0.208 
 (0.110) (0.118) (0.217) (0.187) (0.125) (0.263) (0.168) 
Oil and Gas ×  0.00175* 0.00147 0.00517*** 0.00253 0.00121 0.00527** 0.00325* 
Post-election (0.000989) (0.000976) (0.00180) (0.00171) (0.000923) (0.00246) (0.00179) 

        
 6403 3037 3366 1099 1938 1346 2020 
 0.00128 0.0161 <0.001 <0.001 0.0579 <0.001 <0.001 

Oil + Oil * Post-election -0.00348*** -0.00310** -0.00698*** -0.00892*** -0.00248* -0.00713*** -0.00904*** 
 (0.00129) (0.00140) (0.00134) (0.00174) (0.00127) (0.00144) (0.00137) 

Notes: See Notes to Table 8. Robust standard errors clustered at 1990 district borders in parentheses. The regression also includes district-by-forest zone and island-by-year fixed effects and the number of districts 
the 1990 district has split into by year t (and 3 lags of this variable in Panel B). *** 0.01, ** 0.05, * 0.1 

 


