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First-price auctions, Dutch auctions, and buy-it-now prices with
Allais paradox bidders

Daisuke Nakajima
Department of Economics, University of Michigan

This paper investigates first-price and Dutch auctions when bidders have prefer-
ences exhibiting the Allais paradox. We characterize an equilibrium for both auc-
tions, paying particular attention to the dynamic inconsistency problems that can
arise with such preferences. We show that the Dutch auction systematically yields
a higher revenue than the first-price auction. This stands in sharp contrast to the
presumption that these auctions are strategically equivalent, which is indeed valid
in the expected utility case. We also show that introducing a “buy-it-now price”
to the first-price auction increases seller’s expected revenue when bidders have
Allais paradox preference, while it does not for expected-utility maximizers.

Keywords. Dutch auctions (descending auctions), Allais paradox, buy-it-now-
prices.
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1. Introduction

A Dutch auction is a descending auction in which an auctioneer first announces a very
high price and gradually lowers it until it is accepted by one of the bidders. The winning
bidder obtains the object and pays the prevailing price at that time. The Dutch auction
is considered to be a strategically equivalent to the first-price auction. Since the Dutch
auction immediately ends once somebody accepts the price, a bidder cannot make his
stopping price contingent on other bidders’ behaviors. All he can do is to internally
determine the price at which he stops, and the bidder with the highest stopping price
wins the auction and pays his stopping price. It is clearly equivalent to the first-price
sealed-bid auction, in which everybody writes down a price on paper simultaneously
and the bidder who submits the highest price wins and pays his price.

Strategic equivalence is the strongest possible equivalence notion and implies rev-
enue equivalence without the need for particular assumptions. In contrast, revenue
equivalence results between the first-price (or Dutch) and the second-price (or English)
auctions (such as Myerson 1981 and Riley and Samuelson 1981) fail once we drop any of
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the assumptions such as private values, risk neutrality, and identical and independent
distributions of bidders’ types. Even the revenue equivalence between the second-price
and the English auctions depends on the assumption of private values. In contrast, the
equivalence between the first-price auction and the Dutch auction does not depend on
the various assumptions listed above.

The equivalence does, however, depend on the assumption that bidders have
expected-utility preferences. Indeed, expected-utility preferences guarantee that bid-
ders’ incentives do not change as the price goes down in the Dutch auction. Absent this
dynamic consistency, the two auctions may result in different outcomes.

To see this, suppose that a bidder (a) prefers winning at price $400 with probability
40% to winning at price $500 with probability 50%, but (b) prefers winning at price $500
for sure to winning at price $400 with probability 80%. This preference clearly violates
the independence axiom and, indeed, is a simplified version of the Allais (1953) paradox.

Let us assume that the probabilities that nobody other than the bidder himself writes
down or stops at a price above either $500 or $400 are 50% and 40%, respectively. How
does he behave in the first-price auction and the Dutch auction, respectively?

In the first-price auction, by (a), he prefers a gamble and bids $400 to win with prob-
ability 40%. On the other hand, in the Dutch auction, he initially prefers to take a risk by
waiting until $400. However, once the price drops to $500, by updating his winning prob-
ability, his choice becomes either winning at $500 for sure (by stopping immediately) or
winning at $400 with probability 80% (by waiting until $400), so he is tempted to stop at
$500 by (b). Therefore, when the bidders’ preferences exhibit the Allais paradox, we can
expect that the Dutch auction yields a higher revenue to the seller than the first-price
auction.

Notice that this is not the case when bidders are expected-utility maximizers. For
these bidders, (a) and (b) could never both hold. Thus, their incentives at the beginning
of the Dutch auction remain unaltered as the price declines. Hence, the two auction for-
mats are indeed strategically equivalent when bidders have expected-utility preferences.

There are several experimental studies of these two auction formats. Earlier labora-
tory experimental results consistently reject our theoretical predictions based on Allais
paradox bidders. Coppinger et al. (1980) and Cox et al. (1982) report that the first-price
auction yields a higher revenue than the Dutch auction in laboratories.

On the other hand, the results of recent experiments are consistent with our theo-
retical predictions. Lucking-Reiley (1999) conducts a field experiment by actually selling
magic cards in an Internet auction and reports that the Dutch auction results in a higher
revenue than the first-price auction. Also, Katok and Kwasnica (2008) obtain the same
result in a laboratory experiment by making price drops in the Dutch auction slower.
These two experiments suggest that the Dutch auction tends to result in higher revenue
than the first-price auction when the speed at which the price falls is relatively slow.
Katok and Kwasnica (2008) and Carare and Rothkopf (2005) explain this observation by
hypothesizing that bidders incur the cost of monitoring the Dutch auction or the oppor-
tunity cost of time spent in the auction. We discuss in Section 5 how to distinguish their
explanations from the one based on the Allais paradox.
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There are several previous theoretical papers on this topic.1 Karni (1988) first points
out that these two auctions are equivalent if and only if bidders are expected-utility max-
imizers. Weber (1982) shows that the first-price auction yields a higher revenue than the
Dutch auction when bidders’ preference exhibits the counter Allais paradox. Neverthe-
less, none of them characterizes the equilibrium of the Dutch auction when bidders’
preferences exhibit the Allais paradox. This paper is the first paper to characterize the
equilibrium of the Dutch auction with Allais paradox preferences.

Another closely related theoretical paper is Bose and Daripa (2009), which shows
that the seller can extract an entire surplus if bidders have a special class of ambiguity
aversion preference (the epsilon-contamination model) on which their clearest result
depends. In this paper, we assume bidders have a preference over risks that exhibits the
Allais paradox, but we do not impose any other parametric restriction to characterize
the equilibria of auctions.

A robust principle that emerges from our analysis is that, since bidders with Allais
preferences become more risk averse when they expect to win the auction with a higher
probability, they are subject to exploitation by institutional arrangements that raise the
“ex post” probability of making a winning bid. That is, seller’s revenues are enhanced by
making bidders optimistic at the time of their decisions. From this viewpoint, we demon-
strate that adding a buy-it-now-price to the first-price auction, which normally hurts
the seller because it causes a distortion at the top, turns out to enhance seller’s expected
revenue against the Allais paradox bidders.

The organization of the paper is as follows. In Section 2, we discuss conditions on
bidders’ preferences and derive several properties. Section 3 characterizes an equilib-
rium in the first-price auction. Section 4 characterizes an equilibrium in the Dutch auc-
tion. Section 5 compares the seller’s revenues in the two auctions. In Section 6, we apply
our framework to a buy-it-now-price attached to the first-price auction and the Dutch
auction, respectively. Section 7 concludes the paper.

2. Preference over lotteries

There is a single object to be sold. There are n bidders and each bidder i has a type, de-
noted by xi, that represents his monetary value of the object and is only known to bid-
der i. Each xi is identically and independently distributed over [0�1] with a distribution
function F that admits a positive and continuous density f . Define G(x) = (F(x))n−1

and g = G′. The probability that a bidder is the highest type conditional on his type
being x is G(x).

For b≥ 0 and q ∈ [0�1], let (b�q) be a lottery such that a bidder is awarded the object
and pays b with probability q, and no transaction occurs with probability 1 − q. Let L
be the set of all such lotteries. Denote type x’s preference over lotteries in L by �x. We
do not need to consider bidder’s preferences over lotteries that are not included in L.
Notice that any lottery that results from a pure strategy in the first-price auction or the

1Nonexpected utilities are used to study English (ascending) auctions and second-price auctions, see,
for example, Karni and Zvi (1986, 1989a, 1989b).
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Dutch auction is included in L.2 Therefore, we can restrict our attention to lotteries
in L, which makes the model general and highly tractable. Let �x and �x be the strict
preference and the indifference relationship derived from �x, as usual.

Throughout the paper, we always assume the following conditions, which are stan-
dard in most of the literature.

• The operator �x can be represented by a utility function u(b�q;x), which is
continuously differentiable in all arguments including x and is normalized to
u(0�0;x) = 0.

• For any x and b, (x�1) �x (b�0).

• If q > 0, then (b�q) �x (b
′� q) for any b < b′.

• If b < [>]x, then (b�q)�x [≺x] (b�q′) for any q > q′.

In addition, we impose two conditions on �x as follows:

Condition 1. If x > b> b′ and (b�q)�x (b
′� q′), then (b�q) �x′ (b′� q′) for any x′ > x.

Condition 2. If x > b > b′ and (b�q) �x (b′� q′), then (b�q/α) �x (b′� q′/α) for any α ∈
[q�1).

Condition 1 requires that if a lower type prefers a safer lottery (i.e., more likely to
win but pays more on winning), then a higher type must also prefer the safer one. This
condition is virtually universal in the literature. Indeed, it is satisfied if �x can be rep-
resented by a type-homogeneous expected utility function exhibiting risk-neutrality or
risk-aversion.

Condition 2 can be interpreted as follows: if a bidder considers that the difference
between two winning probabilities q and q′ is large enough to cause him to accept a
higher price b rather than b′, then he regards the difference of the two scaled-up prob-
abilities between q/α and q′/α as also large enough to cause him to accept the higher
price. Therefore, the subjective difference between 100% and 80% is perceived as greater
than or equal to that between 50% and 40%, for example. It is easy to see that an ex-
pected utility satisfies Condition 2, but the example discussed in the Introduction also
meets it. Condition 2 basically accommodates the common ratio effect reported by
many experiments such as Kahneman and Tversky (1979) and MacCrimmon and Lars-
son (1979).

For convenience, we name some classes of preferences as follows:

Definition 1. Suppose {�x}x∈[0�1] satisfies Conditions 1 and 2.

(i) It is called an expected-utility (EU) preference if, for every x ∈ [0�1], (b�q) ∼x

(b′� q′) with q > q′ implies (b�q/α) ∼x (b
′� q/α) for any α ∈ [q�∞).

2One may wonder if a bidder might be strictly better off by playing a mixed strategy, which yields a
lottery that is not included in L. However, unless he has a commitment to implement his randomization,
he is tempted to play any pure strategy that is strictly better than all other pure strategies and, indeed, such
a strategy exists for almost all types. Therefore, we can always ignore mixed strategies.
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(ii) It is called an Allais paradox (AP) preference if it is not an EU preference. Fur-
thermore, it is called a strict Allais paradox (SAP) preference if, for every x ∈ [0�1],
(b�q) ∼x (b

′� q′) with q > q′ implies (b�q/α)�x (b
′� q/α) for any α ∈ [q�1).

Finally, we define a function φ to express bidder’s attitude toward risks:

φ(b�q;x) = −uq(b�q;x)
ub(b�q;x) · q�

This is the reduction of the winning price required to keep a bidder indifferent with re-
spect to a 1% decrease in his winning probability (proportional to the current winning
probability). Therefore, if a preference has a higher φ than another preference, it ex-
hibits more risk-aversion.

Let us examine important properties of φ implied by Conditions 1 and 2.

Lemma 1. Under Condition 1, φ(b�q;x) is nondecreasing in x.

Proof. Suppose for some x < x′ and (b�q), φ(b�q;x) > φ(b�q;x′). Then we can find
m ∈ (φ(b�q;x′)�φ(b�q;x)) and ε > 0 such that

(b�q) �x (b−mε�(1 − ε)q) and (b�q)≺x′ (b−mε�(1 − ε)q)�

which contradicts Condition 1. �

Lemma 1 is simple. Condition 1 requires that a higher type prefers a safer lottery
than a lower type, so the higher type’s φ must be no less than the lower type’s φ.

Lemma 2. Under Condition 2, φ(b�q;x) is nondecreasing in q. Furthermore, (i) it is con-
stant in q if the preference is EU and (ii) for almost all (b�q), it is strictly increasing in q if
the preference is SAP.

Proof. Suppose φ(b�q′;x) < φ(b�q;x) for some q < q′. Then we can find some m ∈
(φ(b�q′;x)�φ(b�q;x)) and ε > 0 such that

(b−mε�(1 − ε)q′;x) �x (b�q
′;x) and (b−mε�(1 − ε)q;x) ≺x (b�q;x)�

The second preference, coupled with Condition 2, implies

(b−mε�(1 − ε)q′;x) ≺x (b�q
′;x)�

which contradicts the first preference.
If (i) is not true, we can find four lotteries (b�q) �x (b

′� q′) but (b�q)≺x (b
′� q′), where

q/q′ = q/q′ in a similar way, so it cannot be an EU preference. If (ii) is not true, we
can find (b�q) ∼x (b

′� q′) and (b�q/α) ∼x (b
′� q′/α), which violate a definition of the SAP

preference. �

Lemma 2 characterizes an important property of an individual EU preference: his
attitude toward risks (captured by φ) is independent of the current winning probability,
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which means that for a fixed price level b, he demands the same amount of price reduc-
tion when the winning probability is reduced from 50% to 40% and from 100% to 80%.
It is easy to see that if his preference is EU with utility function q · v(b;x), we have

φ(b�q;x) = v(b;x)
qv′(b;x) · q = v(b;x)

v′(b;x)�

which shows that φ is indeed independent of q. (Conversely, if φ is independent of q, it
is indeed an EU preference. We can construct an EU-form representation of a preference
with φ.)

Alternatively, AP preference’s φ can be increasing in q, which means that he is more
risk-averse when q is high (so he is more optimistic about his chance of winning). There-
fore, he may demand a greater price drop when the winning probability is lowered from
100% to 80%, but demand less when it drops from 50% to 40%.

3. The first-price auction

In the first-price auction with a reserve price r > 0, bidders, who participate in the auc-
tion simultaneously, submit bids b ∈ [r�1], and the bidder who has the highest bid wins
the object and pays his bid. If no bidder participates, the seller keeps the object. Assume
that ties are broken with equal probabilities.

A strategy in the first-price auction is a bidding function b : [r�1] → [r�1], where b(x)

is a bid made by a bidder with type x. We can ignore bidders whose types are below r, as
they do not participate in the auction.

We focus on a symmetric equilibrium, where all bidders use the same bidding func-
tion b∗. Suppose all other bidders follow b∗. Then by bidding b, a bidder wins the auction
with probability

W b∗
(b) =

(∫
b∗(x)<b or x<r

dF(x)

)n−1

+
n−1∑
i=1

(n−1
i )

i+ 1

(∫
b∗(x)=b

dF(x)

)i(∫
b∗(x)<b or x<r

dF(x)

)n−i−1

�

so bidding b yields a lottery (b�W b∗
(b)). We drop the superscript on W when this does

not lead to confusion. Naturally, we can define an equilibrium of the first-price auction
as follows.

Definition 2. A bidding function b∗ : [r�1] → [r�1] is a symmetric equilibrium of the
first-price auction with reserve price r if and only if

(b∗(x)�W b∗
(b∗(x))) �x (b�W

b∗
(b))

for all x ∈ [r�1] and b ∈ [r�1].

We now characterize b∗. First, it is pretty straightforward that Condition 1 implies
that b∗ must be strictly increasing and continuous. Therefore, in equilibrium, type x
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gets payoff u(b∗(x′)�G(x′);x) by making the same bid as type x′ does, so this function is
maximized at x′ = x. Taking a first-order condition, we have

ub(b
∗(x)�G(x);x)b∗′(x)+ uq(b

∗(x)�G(x);x)g(x) = 0�

Rearranging the above condition, we get a differential equation that characterizes an
equilibrium:

b∗′(x) = −uq(b
∗(x)�G(x);x)

ub(b∗(x)�G(x);x) · g(x) ≡φ(b∗(x)�G(x);x) · g(x)

G(x)
�

This is a unique equilibrium as is shown in Appendix A.

Proposition 1. Under Condition 1, the first-price auction with reserve price r > 0 has a
unique equilibrium b∗, which is characterized by the differential equation

b∗(r) = r and b∗′(x) = φ(b∗(x)�G(x);x) · g(x)

G(x)
� (1)

Equation (1) is easy to interpret. If type x pretends to be a slightly lower type x − ε,
the percentage drop of his winning probability is g(x)ε/G(x). To keep him indifferent,
his payment on winning must drop by φ · gε/G. Equation (1) guarantees that the actual
price drop b∗′(x)ε is indeed equal to this amount, so he has no incentive to increase or
decrease his bid from b∗(x).

4. The Dutch auction

We now analyze the Dutch auction. We consider a bidder who behaves in a sophisti-
cated way in the sense that (i) he fully understands his incentive may change later and
rationally predicts what to do if he does not stop the auction right now, and (ii) he com-
pares what he gets from stopping immediately and waiting now, and makes a decision
optimally at every price.3

The second requirement causes a problem if the price drops continuously. To eval-
uate what he gets from waiting, he must know which price he actually stops at. It may
not be well defined if prices are continuous.

To avoid this problem, we first analyze a discrete-price model in which the seller
lowers the price discretely. Formally, we define a price grid as B = {b0� b1� � � � � bm} with
r = b0 < b1 < · · · < bm = 1 and define the grid size of B as maxi=1�����m(b

i − bi−1). In the
Dutch auction with price grid B, the auctioneer first announces bm. The bidders si-
multaneously choose between stopping and waiting. If only one bidder stops, he wins
the object and pays bm, and the auction ends at this point. If more than one bidder
stops, each bidder who stops is chosen as the winner with equal probability. If no bidder
stops, then the auctioneer announces bm−1 and the same process is continued until b0

is reached. The auctioneer keeps the object if no bidder stops at price b0.

3This formulation is in the same spirit as the “multi-selves” approach to such problems suggested by
Strotz (1955–1956) in his seminal paper on time inconsistent preference. This approach is widely adopted
(see, for instance, Goldman 1979, Laibson 1997, and O’Donoghue and Rabin 1999).
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With price grid B, the bidder’s strategy is a mapping from B× [r�1] to {s�w}, denoted
by {DB

b (x)}b∈B�x∈[r�1], where DB
b (x) = s (w) indicates that if price b ∈ B is announced, a

bidder with type x stops (waits). From a strategy DB
b , we can derive the actual stopping

price of each type: dB(x) = maxb∈B{b ∈ B | DB
b (x) = s}, which we call the bidding function

induced by DB.
Given this, we now define an equilibrium. To do so, imagine a bidder who believes

the bidding function of other bidders is d̃. At every price, he understands that he cannot
control his future behaviors if he waits now. Therefore, he is playing a game with |B|
selves for fixed strategies of other bidders. Let us see how he behaves when price bi is
actually reached. This happens with probability4

Sd̃(b)=
(∫

d̃(x)<b or x<r
dF(x)

)n−1

�

By Bayes’ rule, he gets (bi�W d(bi)/Sd(bi)) from stopping immediately. Then he cor-
rectly predicts what to do if he does not stop now. Suppose the next highest price
at which he may stop is bi

′
if he waits now. Then what he obtains from waiting is

(bi
′
�W d̃(bi

′
)/Sd̃(bi)). He stops if he prefers the former lottery and waits otherwise. Ac-

tually, we can derive his behavior by backward induction starting from price b0 (= r) at
which he should stop as long as the valuation exceeds r.

Let DB be the strategy derived as above and let dB be the induced bidding function
from it. Then we call dB a response to d̃. If a bidding function is a response to itself, it is
an equilibrium. This concept is formalized as follows.

Definition 3. For the Dutch auction with reserve price r and price grid B, a bidding
function dB is a response to another bidding function d̃ if and only if there exists strat-
egy DB such that

(i) Strategy DB
r (x) = s if and only if x ≥ r.

(ii) For any i = 1� � � � �m, if DB
bi
(x) = s [w], then

(bi�W d̃(bi)/Sd̃(bi)) �x [x] (bi′�W d̃(bi′)/Sd̃(bi))�

where bi′ = max{b ∈ B | DB
b (x) = s and b < bi}.

(iii) Function dB is derived from DB (i.e., dB(x) = maxb∈B{b ∈ B | DB
b (x) = s}).

We say d∗B is a symmetric equilibrium of the Dutch auction with price grid B if and only
if it is a response to itself.

We now establish the existence of an equilibrium with any price grid. To do so, we
utilize the technique developed by Athey (2001), who shows the existence of a pure-
strategy equilibrium for an incomplete information game when (i) there is a continuous

4We drop the superscript on S when it does not cause confusion.
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type space, (ii) there is a finite action space, and (iii) a response to any strategy is non-
decreasing, that is, a higher type selects a greater action than a lower type.

Thus, we need to prove that whenever dB is a response to some other bidding func-
tion, it must be nondecreasing. However, Condition 1 alone does not guarantee that dB

is nondecreasing, because the next price at which the bidder stops if he waits at some
price b depends on his type in general. Consider the following example.

Example 1. Suppose B = {$1�$2�$3} and the initial probabilities of winning by stopping
at $1, $2, and $3 are �1, �2, and �4, respectively, and assume that the probability of ties is
negligible. The preference of type x includes ($1� �5) �x ($2�1) and ($1� �25) ≺x ($3�1),
while the preference of type x′ (> x) includes ($2�1) �x′ ($1� �5) and ($2� �5) �x′ ($3�1). ♦

In this example, type x stops at $1 and $3, and waits at $2, while type x′ stops at $1
and $2, and waits at $3. Hence, lower type x actually stops earlier than higher type x′.
Notice that the above preference does not violate Condition 1. However, it is excluded
by Condition 2. To see this, apply Condition 2 to ($1� �5) �x ($2�1). Then we have
($1� �25) �x ($2� �5) so ($3�1) �x ($2� �5). Therefore, ($3�1) �x′ ($2� �5) by Condition 1.
This is a contradiction.

Lemma 3. Under Conditions 1 and 2, if dB is a response to another bidding function d̃B,
then dB must be nondecreasing.

The formal proof of Lemma 3 is provided in Appendix B. Given this and some extra
work in Appendix B, we get the existence result by Athey’s (2001) technique.

Proposition 2. Under Conditions 1 and 2, the Dutch auction with reserve price b and
price grid B has a symmetric equilibrium d∗B and it is nondecreasing.

Now, we let the grid size converge to zero and investigate the limit of the equilibrium
bidding function. Consider a sequence of price grids {Bk}, where the grid size of Bk con-
verges to zero. Let d∗Bk be an equilibrium bidding function with price grid Bk. Since d∗Bk

is uniformly bounded and nondecreasing, the sequence of d∗Bk must have a convergent
subsequence. We show that any convergent sequence must converge to the particular
function d∗, which is characterized in Proposition 3. Therefore, any sequence converges
to the unique d∗.

Proposition 3. Suppose Conditions 1 and 2 are satisfied. Let d∗Bn be a symmetric equi-
librium of the Dutch auction with price grid Bn and reserve price r. If the grid size of Bn

converges to zero as n goes to infinity, then d∗Bn converges to d∗, which is characterized by
the differential equation

d∗(r) = r and d∗′(x) =φ(d∗(x)�1;x) · g(x)

G(x)
� (2)
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Proof. Here we provide only the outline of the proof. Showing that d∗ is continu-
ous and strictly increasing is similar to the standard first-price auction case, with sev-
eral complications because of time inconsistent preferences. Therefore, in the limit,
S(d∗(x)) =W (d∗(x)) =G(x). We now show equation (2).

Finding the lower bound of d∗′ is relatively easy. Notice that at any price greater than
d∗Bk(x), type x prefers waiting until d∗Bk(x) to stopping immediately. Therefore, it must
also be true in the limit and we obtain

u(d∗(x+ ε)�1;x) ≤ u

(
d∗(x)� G(x)

G(x+ ε)
;x

)

for any x ∈ [r�1] and ε > 0, which implies

d∗′(x) ≥ φ(d∗(x)�1;x) · g(x)

G(x)
�

Alternatively, finding the upper bound of d∗′ is not straightforward because

u

(
d∗(x− ε)�

G(x− ε)

G(x)
;x

)
≤ u(d∗(x)�1;x) for small ε > 0

may not be true. This is because the equilibrium condition requires that type x prefer
stopping at d∗Bk(x) to waiting only until his next stopping price, which depends on k.
Concretely, fix any ε > 0. Since d∗Bk converges to the continuous and strictly increasing
function d∗, there exists ε′ ∈ (0� ε) such that d∗Bk(x) > d∗Bk(x−ε′) > d∗Bk(x−ε) when k

is large. Since by Lemma 3, type x stops at d∗Bk(x− ε′) if it is reached, his next stopping
price after d∗Bk(x) is greater than d∗(x−ε). Therefore, we can never compare his payoffs
from stopping at d∗Bk(x) and from waiting until d∗Bk(x− ε) when k is large. This is why
the above inequality may not hold even for small ε > 0.

However, by Lemma 3, for any ε > 0 and k, type x must stop at d∗Bk(x − ε) because
lower type x − ε stops at this price. Therefore, we can find prices d∗Bk(x − ε) = d0 <

d1 < · · · < dmk < d∗Bk(x) such that when price dl (l ≥ 1) is reached, he prefers stopping
immediately to waiting until dl−1.

The upper bound of d∗′(x) is reached at the greatest difference between d∗Bk(x) and
d∗Bk(x− ε). This occurs when a bidder is very risk-averse (has greater φ) in this region.
Since φ is nondecreasing in q, the value of φ in this region is at most

φ̄k = max
x̃∈[x�x−ε]

φ(d∗Bk(x̃)�1;x)�

Therefore,

dl − dl−1 ≤ φ̄k · W (dl)−W (dl−1)

S(dl)

≤ φ̄k · W (dl)−W (dl−1)

S(d∗Bk(x− ε))
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for all l = 0� � � � �mk. By summing the above inequalities for l = 0� � � � �mk, we obtain

d∗Bk(x)− d∗Bk(x− ε) ≤ φ̄k · W (d∗Bk(x))−W (d∗Bk(x− ε))

S(d∗Bk(x− ε))
�

Taking the limit of both sides with respect to k, we obtain

d∗Bk(x)− d∗Bk(x− ε) ≤ max
x̃∈[x−ε�x]

φ(d∗(x̃)�1;x) · G(x)−G(x− ε)

G(x− ε)
�

which implies

d∗′(x) ≤ φ(d∗(x)�1;x) · g(x)

G(x)
� �

Remark. Although we derive an equilibrium of the first-price auction with a contin-
uous price space, it can also be obtained as the limit of equilibria with discrete price
grids.

It is easy to see that (2) can be obtained by taking the first-order condition

du(d∗(x̂)�G(x̂)/G(x);x)
dx̂

∣∣∣∣
x̂=x

= 0� (3)

Equation (3) can be interpreted as follows: Imagine that the price drops continu-
ously and every bidder follows a bidding function d∗, which is continuous and strictly
increasing. Suppose that the price reaches d∗(x). Then the probability of winning if
type x waits until d∗(x̂) is G(x̂)/G(x), so if the left-hand side of (3) is negative, the bid-
der has an incentive to wait at d∗(x). Alternatively, if the left-hand side is positive, then
by continuity it is true at a slightly higher price level, so the bidder is tempted to stop at
some higher price. Therefore, d∗ must satisfy the first-order condition as given in (3).

Before ending this section, let us discuss several previous works that study the Dutch
auction with nonexpected utilities. Karni (1988) shows that the first-price and the Dutch
auctions are equivalent if and only if bidders are expected-utility maximizers. Weber
(1982) considers a particular class of counter Allais paradox preferences (i.e., Condi-
tion 2 is reversed) and shows that the first-price auction dominates the Dutch auctions
in terms of the revenue in the equilibria.5

Unlike this paper, these works implicitly assume that bidders are naive in the sense
that they do not realize that their future incentives may be different from their current
incentives, so they always (wrongly) believe that they wait and stop according to the
current incentives. However, there is no work that characterizes an equilibrium of the
Dutch auction with the Allais paradox and naive bidders. Indeed, it is extremely difficult.

To illustrate how differently the sophisticated and the naive behave, consider the
following example.

5In their research report in 2001 (made available to the author), Soo Hong Chew and Naoko Nishimura
show that Weber’s result can be extended when bidders have heterogeneous preferences.
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Example 2. Consider the same setting as in Example 1, but type x’s preference is now

($2�1) �x ($1� �5) and ($1� �25) �x ($3�1) �x ($2� �5)�

Suppose the current price is $3. If he is naive, he waits because ($1� �25) �x ($3�1),
wrongly believing that he waits at $2, although he actually stops at $2 because of
($2�1) �x ($1� �5). A sophisticated bidder understands this and he stops at $3 since
($3�1) �x ($2� �5). ♦

This suggests that for a fixed strategy of all others, a sophisticated bidder’s actual bid
is higher than a naive bidder’s bid because he has another incentive to stop earlier: to
prevent his future selves from behaving against his current intention.6 Indeed, it can
happen in the equilibrium. To see this, consider the equilibrium with sophisticated bid-
ders and type x finds that price d∗(x) is actually reached. At this point, what he gets from
waiting until d∗(x̂) (x̂ ≤ x) is (d∗(x̂)�G(x̂)/G(x)). Let us look for the marginal gain/loss
of waiting:

du(d∗(x̂)�G(x̂)/G(x);x)
dx̂

= u1 ·
(
d∗′(x̂)+ u2

u1
· g(x̂)

G(x)

)

= u1 ·
(
φ(d∗(x̂)�1; x̂)−φ

(
d∗(x̂)� G(x̂)

G(x)
;x

))
· g(x̂)

G(x̂)
�

The sign of this expression is not clear because φ is increasing both in x and q. It is
negative if the effect of the Allais paradox is large (φ is rapidly increasing in q), in which
case u(d∗(x̂)�G(x̂)/G(x);x) may not be maximized at x̂= x.7,8

Therefore, the equilibrium with naive AP bidders cannot be characterized simply by
taking the first-order condition, because a naive bidder does not stop unless doing so
generates a higher revenue than waiting until any lower price. At this point, all we can
say is that the sophisticated bidders stop at a weakly higher price than the naive bidder,
but both types stop at (weakly) higher prices than the ex ante optimal stopping price for
a fixed strategy of other bidders.

5. The revenue comparison

In this section, we compare the revenues of the first-price auction and the Dutch auction
(when the price grid size converges to zero) with the same reserve price r. Propositions 1
and 3 show that the equilibrium bidding functions b∗ of the first-price auction and d∗ of
the Dutch auction are characterized by (1) and (2).

By Lemma 2, φ(b�q;x) ≤ φ(b�1;x), so we have b∗′(x) ≤ d∗′(x) whenever b∗(x) =
d∗(x). Hence, b∗ can never be above d∗. Also, if φ(b∗(x)�G(x);x) < φ(b∗(x)�1;x), then

6A similar phenomenon appears in O’Donoghue and Rabin’s (1999) “immediate reward model.”
7In extreme cases, x̂= x locally minimizes u(d∗(x̂)�G(x̂)/G(x);x). This happens when φx(d

∗(x)�1;x) <
φq(d

∗(x)�1;x) so the du/dx̂ < 0 in when x̂ is close to x.
8The characterization of the Dutch auction equilibrium by Weber and Chew–Nishimura is based on the

first-order condition. This is possible because φ is decreasing in q with counter Allais preferences, so the
above derivative is positive for all x̂ < x.
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d∗(x) cannot be equal to b∗(x) because, if so, d∗(x − ε) < b∗(x − ε) for any small ε > 0.
Furthermore, if the preference is SAP, then φ(b�q;x) is strictly increasing in q for almost
all (b�q), so unless the preference is degenerate, b∗(x) < d∗(x) for all x > r.

Proposition 4. Under Conditions 1 and 2, the Dutch auction yields no smaller revenue
than the first-price auction for any realization of bidders’ types. Furthermore, if the pref-
erence is SAP, the Dutch auction yields a strictly higher revenue than the first-price auction
for almost all realizations of bidders’ types unless the preference is degenerate in the sense
that φ(b∗(x)�G(x);x) =φ(b∗(x)�1;x) for all x ∈ [r�1].

Proposition 4 shows that the Dutch auction dominates the first-price auction in
terms of revenue. If a bidder’s preference is risk-averse and SAP, then the Dutch auc-
tion also outperforms the English (ascending) auction, which is known to be expected-
revenue inferior to the first-price auction with risk-averse bidders (Maskin and Ri-
ley 1984). Therefore, the Dutch auction is the best among all of the popular auction
mechanisms.

Finally, let us discuss another possible explanation of why the Dutch auction dom-
inates the first-price auction as put forth by Katok and Kwasnica (2008) and Carare and
Rothkopf (2005). Their explanations are based on the cost of waiting in the Dutch auc-
tion (the opportunity cost of time or the cognitive cost), which is in line with Katok and
Kwasnica’s (2008) experiments, where the Dutch auction generates a higher revenue
when the price goes down slowly, and provides an explanation based on the opportunity
cost of time spent in the auction.9

To distinguish the opportunity cost model from our model based on the Allais para-
dox, we can vary the stake of the Dutch auction to see how the difference between the
first-price and the Dutch auction changes. As the stake gets larger, the opportunity cost
model predicts that the difference vanishes, while our model predicts a persistent dif-
ference as long as the Allais effects persist at higher stake levels.10

6. Buy-it-now price

In some auctions, a seller sets a buy-it-now price (BP). Any bidder, by accepting the BP,
can obtain the object at that price immediately, while the object is sold via the first-price
auction if nobody accepts the BP. As an example, consider a governmental procurement

9Another possible reason why a slow Dutch auction generates a higher revenue than a quicker one is as
follows: Bidders have AP preferences but may not have enough time to update their beliefs and reconsider
their actions during the quick Dutch auction. If so, a quick Dutch auction is almost the same as a first-price
auction, as bidders behave according to their initial plan. (The speeds of price drops in these experiments
are about .75 to 2% of initial price per second in Cox et al. (1982), 5% of initial price per 5 minutes in Katok
and Kwasnica (2008), and about 5% of the current price per day in Lucking-Reiley (1999).) To seriously
study this, one needs to explicitly provide a model that involves the bounded rationality of bidders.

10The opportunity cost model is not a good explanation for Lucking-Reiley’s (1999) field experiment on
the Internet. Although the auctions in this experiment are very slow, the costs of waiting for cheaper prices
are not very large, because the prices drop only once a day and interested bidders can receive updates of
the Dutch auction automatically via daily e-mails.
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auction in which the company that offers the lowest price wins the project and receives
that price, which is equivalent to the first-price auction. Occasionally, the government
decides the winner prior to the auction when that company accepts some reasonable
price. Such a price can be interpreted as a BP. Another example of the use of a BP is in
some Internet auctions. A seller may set a BP and wait for someone to accept it. When
bidders believe that she holds the first-price auction later if nobody accepts the BP, this
is the same situation as the previous example.

However, attaching the BP to the first-price auction seems unwise for the seller be-
cause it causes “a distortion at the top.” When two bidders with relatively high valua-
tions are willing to accept the BP, the object is awarded to the one who accepts the BP
earlier and the highest type may lose, unlike in the first-price auction without a BP. Such
a distortion typically reduces the seller’s expected revenue.

Nevertheless, when bidders’ preferences are AP, attaching a BP to the first-price auc-
tion has another effect. Suppose nobody accepts the BP and now the object is sold via
a first-price auction. Then a bidder can infer that types of his opponents are not so
high, which raises the probabilities of winning. Thus he becomes more risk-averse at the
time he places a bid, which forces him to make a higher bid than the initially optimal
one. We show that this positive effect dominates the negative effect when the BP is set
appropriately.

To focus on the effect of the Allais paradox, we model a BP in a way that keeps bidders
strongly symmetric, as follows.

1. The seller sets a BP (b̄) and a reserve price (r), where b̄ ∈ (r� b∗(1)).

2. Without knowing the order of arrivals, n bidders arrive sequentially.

3. The first bidder can either accept or reject the BP. If he accepts, he obtains the ob-
ject at price b̄ and the game ends at this point. If he rejects, the second bidder has
the same choice. This process continues until someone accepts the BP or all bid-
ders reject the BP. If nobody accepts the BP, the object is sold by a first-price auction
with reserve price r.

Thus, a bidders’ strategy is a pair of (A�b), where A ⊂ [r�1] is a set of types who ac-
cept the BP and b : [r�1] → [r�1] is a bidding function in the (post-BP) first-price auction.

First, we consider equilibrium bidding in the first-price auction after the BP is re-
jected by all bidders. Notice that conditional on the first-price auction taking place (i.e.,
all bidders decline the BP), the probability of winning when bidding b is

Ŵ (b) = (
∫
x/∈A�b(x)<b dF(x))

n−1

(
∫
x/∈A dF(x))n−1 � (4)

Thus, in the first-price auction, a bidder makes optimal bids by referring to Ŵ as the
winning probability of bidding b.

Next, we consider the decision about the BP. By accepting the BP, a bidder wins the
object at b̄ for sure. Alternatively, suppose he rejects the BP and bids b in the post-BP
auction. Conditional on being offered the BP (i.e., all bidders arriving before him decline
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the BP), the probability that the post-BP auction takes place (i.e., all subsequent bidders
decline the BP) is given by

π̂ = (
∫
x/∈A dF(x))n−1

1
n · ∑n−1

j=0 (
∫
x/∈A dF(x))j

� (5)

Thus, he obtains the object at price b with probability π̂Ŵ (b).11 Therefore, we can define
a symmetric equilibrium of the BP as follows:

Definition 4. The set (Â� b̂) is a symmetric equilibrium of the BP if and only if

u(b̂(x)� Ŵ (b̂(x));x) ≥ u(b′� Ŵ (b′);x) for all x and b′

and

u(b̄�1;x) ≥ u(b̂(x)� π̂Ŵ (b(x));x) if and only if x ∈ Â�

where Ŵ and π̂ are defined by (4) and (5).

By applying the same argument as in Lemma 3, we can establish the monotonicity
of a BP equilibrium. That is, b̂ is strictly increasing and the BP is accepted only by types
above some cutoff type x̂ ∈ (r�1), who are indifferent between accepting and rejecting
the BP. Thus, in the equilibrium, Ŵ (b(x)) and π̂ become

Ŵ (b(x)) = G(x)

G(x̂)
for x≤ x̂

π̂ = G(x̂)
1
n

∑n−1
j=0 (F(x̂))j

� (6)

Particularly for cutoff type x̂, Ŵ (b(x̂)) = 1, that is, the cutoff type wins for sure when
everybody declines the BP. Hence, when he has the BP choice but declines it, he wins
the object with probability π̂. Therefore, we obtain Proposition 5, which characterizes
an equilibrium of the BP.

Proposition 5. Under Conditions 1 and 2, a symmetric equilibrium (Â� b̂) of the BP
exists12 and is characterized by the following conditions:

(i) Variable Â = [x̂�1] for some x̂ ∈ (r�1). That is, a bidder accepts the BP if and only
if his type is no less than x̂.

(ii) Variable b̂ is given by

b̂′(x) =φ

(
b̂(x)�

G(x)

G(x̂)
;x

)
· g(x)

G(x)
for x ∈ [r� x̂] (7)

with b̂(r) = r and b̂(x) = b̂(x̂) for x > x̂.

11We ignore the possibility of ties in the first-price auction.
12Since π̂ increases as x̂ goes up, multiple equilibria may exist. However, all of the following propositions

hold for any equilibrium of the BP.
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(iii) Type x̂ is indifferent between accepting and rejecting the BP. That is,

u(b̄�1; x̂)= u(b̂(x̂)� π̂; x̂)�

where π̂ is given by (6).

The existence of an equilibrium and the cutoff type is shown in Appendix E. Given
the latter conclusion, the rest of the proposition is straightforward.

Now we compare the expected revenue to the seller between the BP and the first-
price auction without a BP. To illustrate the effect of the Allais paradox, first investigate
the case with EU bidders.

Since φ is independent of q for EU preferences, (7) is equivalent to the equality that
characterizes the equilibrium of the first-price auction (without the BP) in Proposition 1.
Therefore, if no one has a type greater than x̂, both the first-price auction (without the
BP) and the BP result in the same outcome, in which the highest bidder wins and pays
his bid b∗. Alternatively, when there is a bidder with a type greater than x̂, the first-
price auction allocates the object to the highest type, while the BP chooses the winner
randomly among bidders whose types are greater than x̂.

Thus the allocation is ex post efficient in the first-price auction but not in the BP.
Maskin and Riley (1984) show that if the payment on winning depends only on the win-
ner’s type, the object should be awarded to the bidder with the highest valuation as long
as a virtual value is increasing in an actual type.13 Therefore, attaching a BP to the first-
price auction against EU bidders reduces the seller’s expected revenue.

Now, we consider SAP bidders. Contrary to the case of EU bidders, the equilibrium
bidding function after the BP is rejected by all bidders is higher than that of the first-
price auction without a BP, because bidders’ winning probabilities get higher at the time
of making a bid, so they are more risk-averse. We can confirm this by looking at (7). Now

φ

(
b̂(x)�

G(x)

G(x̂)
;x

)
>φ(b̂(x)�G(x);x)�

so it must be that

b̂(x) > b∗(x) for x ∈ (r� x̂]�
Thus, attaching a BP to the first-price auction has another effect on the seller’s rev-

enue. When the BP is declined by all bidders, the seller obtains a higher revenue than he
would get without the BP.

Suppose a seller sets a BP slightly lower than b∗(1), say b̄ = b∗(1) − ε. Then the BP
is accepted by types close to 1 and the probability of acceptance is proportional to ε.
The expected revenue from these types might increase or decrease, but such a change
is proportional to ε. Therefore, it is just a second-order effect. Alternatively, when the

13Maskin and Riley (1984) characterize the optimal auction for risk-averse bidders, which involves trans-
fers to losers. When we restrict our attention to mechanisms without payments from (or transfers to) losers,
the optimal auction is the first-price auction if x− (1 −F)/f is monotone. This can be derived by restricting
a(θ)= 0 in their papers.
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BP is set, any type who rejects the BP increases his bid in proportion to ε, compared to
the first-price auction without a BP. Since the probability that the BP is declined by all
bidders is close to 1, this is a first-order positive effect. Therefore, if ε is small, the gain
outweighs a possible loss, so the seller’s expected revenue is increased. The formal proof
is given in Appendix F.

Proposition 6. (i) Assume the bidders’ preferences are EU and satisfy Condition 1. In
addition, assume x− (1 − F(x))/f (x) is increasing in x. Then attaching a BP with
b̄ < b∗(1) to the first-price auction reduces the seller’s expected revenue.

(ii) Suppose the bidders’ preferences are SAP. Then there exists ε > 0 such that if b̄ ∈
(b∗(1) − ε�b∗(1)), attaching a BP to the first-price auction strictly increases the
seller’s expected revenue.

Before ending the discussion, let us consider an alternative form of the BP, in which
each bidder submits his bid right away when he declines the BP.

This alternative format is strategically equivalent to the standard BP when bidders
have EU preferences, but is no longer equivalent when they are Allais paradox bidders.
In the original form of the BP, if a bidder has a chance to place a bid, he knows that
everybody has declined the BP, so his bid is guaranteed to be considered at the time he
places it. In the alternative form of the BP, he only knows that all bidders who arrive
before him reject the BP, so his bid is considered only if all subsequent bidders reject the
BP. Therefore, at the time of placing his bid, his chance of winning is lower in the alter-
native format, which makes him more risk-taking when he places a bid. Therefore, this
alternative format is strictly worse for the seller.

Nevertheless, Proposition 6 still holds with a slight modification of the proof. This is
because, even in this alternative format, each bidder knows that all other bidders who
arrive before him decline the BP, which makes him more risk-averse compared with the
beginning of the game. Therefore, if the BP is appropriately chosen, the expected rev-
enue of a seller is strictly higher than the first-price auction without a BP when bidders’
preferences are AP.

7. Conclusion

We show that the Dutch auction yields a higher revenue than the first-price auction,
provide a complete characterization of symmetric equilibria with sophisticated bidders,
and give an explicit treatment of the dynamic inconsistency issues that Allais prefer-
ences cause. These results are consistent with the recent field and laboratory experi-
mental results reported by Lucking-Reiley (1999) and Katok and Kwasnica (2008).

Also, we observe several interesting effects of Allais preferences. Attaching a BP to
the first-price auction and choosing the BP appropriately yields a strictly higher ex-
pected revenue to the seller, contrary to the case when bidders’ preferences are EU.

These results reflect a general principle: when bidders have Allais preferences, the
seller should make bidders more optimistic at the time they make a decision. Apply-
ing this principle to other economic environments is one possible direction for future
research.
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There are a few recent papers that examine the impact of Allais preferences in strate-
gic models. Nakajima (2005) shows that the hypothesis that bidders’ preferences are EU
systematically underestimates the seller’s expected revenue when the seller raises the
reserve price of the first-price auction. Chew and Nishimura (2003) show that even in
the private value case, if the object sold is risky, the second-price and the English auc-
tions do not result in the same outcome with AP bidders. Eliaz et al. (2006) use Allais
preferences to explain “choice shift” in group decision making, where each member of
the group tends to move from one extreme to the other more than when each member
makes a decision on his or her own.

The very interesting open question is the structure of optimal auctions when bid-
ders have Allais preferences. Unfortunately, this is also a very difficult question because
(among other issues) we cannot rely on the revelation principle anymore. For instance,
the equilibrium of the Dutch auction cannot be replicated by any simultaneous-move
game.

Maskin and Riley (1984) characterize the optimal auction when the bidders are risk-
averse (and expected-utility maximizers). Their mechanism involves transfers to losers,
so that the highest possible type is perfectly insured and all other types are partially in-
sured. Given this result, we can immediately conclude that the Dutch auction is not op-
timal in general. For instance, if bidders are significantly risk-averse and have very weak
Allais paradox preferences, then the expected revenues between the first-price auction
and the Dutch auction are very close, while Maskin and Riley’s mechanism yields a sig-
nificantly higher expected revenue than the first-price auction. Since their mechanism
needs information from all bidders, it cannot be implemented in a descending manner
like the Dutch auction. At this point, we have little idea of what the optimal auction
looks like.

Finally, we note that this research suggests a range of interesting experiments. Re-
cent experiments suggest that the slow Dutch auction yields a higher revenue than the
first-price auction. As we discuss in Section 5, a good test of our theoretical result would
be an experiment with a slow Dutch auction where the effect of the opportunity costs of
time is carefully mitigated.

We also present several results about setting a buy-it-now price. It should be rela-
tively easy to experimentally test the nonequivalence between buy prices prior to and
during the first-price auctions, as the equilibrium bidding functions are clearly different
between the two games.

Appendix A: Proof for Proposition 1

First, we prove that b∗ is strictly increasing and continuous in x. Suppose x < x′
exists such that b∗(x) > b∗(x′). Then by type x’s incentive, (b∗(x)�W (b∗(x))) �x

(b∗(x′)�W (b∗(x′))), so (b∗(x)�W (b∗(x))) �x′ (b∗(x′)�W (b∗(x′))) by the Condition 1, so
b∗ cannot be an equilibrium. Hence, b∗ must be nondecreasing. The proofs that b∗ is
strictly increasing and continuous are the same as those in standard models and are
omitted.
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Given this, for any ε > 0,

u(b∗(x)�G(x);x) ≥ u(b∗(x+ ε)�G(x+ ε);x)�

Since u is continuously differentiable, and b∗ and G are continuous, there exists ε′ ∈
[0� ε] such that

ub(b
∗(x+ ε′)�G(x+ ε);x)(b∗(x+ ε)− b∗(x))

+ uq(b
∗(x+ ε′)�G(x+ ε′);x)(G(x+ ε)−G(x)) ≥ 0�

Therefore,

b∗(x+ ε)− b∗(x)
ε

≥ −uq(b
∗(x+ ε′)�G(x+ ε′);x)

ub(b∗(x+ ε′)�G(x+ ε);x) · G(x+ ε)−G(x)

ε
�

We can apply the same arguments using type x + ε’s incentive and obtain the right
derivative. Exactly the same step for ε < 0 shows that the left derivative is also equal
to φg(x)/G(x).

Alternatively, suppose b∗ satisfies (1). Then

du(b∗(x̂)�G(x̂);x)
dx̂

= ub(b
∗(x̂)�G(x̂);x)

(
b∗′(x̂)−φ(b∗(x̂)�G(x̂);x) · g(x̂)

G(x̂)

)

� ub(b
∗(x̂)�G(x̂);x)

(
b∗′(x̂)−φ(b∗(x̂)�G(x̂); x̂) · g(x̂)

G(x̂)

)
(for x̂� x)

= 0�

where the second inequality comes from Lemma 1, ub < 0, while the last equality is
from (1). Therefore, type x maximizes his utility by bidding b∗(x), so b∗ is indeed an
equilibrium.

Appendix B: Proof for Lemma 3

Suppose dB is a response to another bidding function and let DB be a strategy inducing
dB. We show whenever DB

bi
(x) = s, that DB

bi
(x′) = s for any x′ > x by induction. This is

true for i = 0, so assume that it is true for any i ≤ k − 1. Let i′ = maxj{j < k | DB
bj
(x) = s}

and i′′ = maxj{j < k | DB
bj
(x′) = s}. By the induction hypothesis, i′ ≤ i′′.

If i′ = i′′, we can apply the same argument for the first-price auction, so the state-
ment is true for i = k. Suppose i′ < i′′ and DB

bk
(x) = s. Then by type x’s incentives at

bk and bi
′′
, we have (bk�W (bk)/S(bk)) �x (b

i′�W (bi
′
)/S(bi

′
)) and (bi

′
�W (bi

′
)/S(bi

′′
)) �x

(bi
′′
�W (bi

′′
)/S(bi

′′
)). By Condition 2, the second relationship implies (bi

′
�

W (bi
′
)/S(bk)) �x (bi

′′
�W (bi

′′
)/S(bk)) because W (bi

′
) ≤ W (bi

′′
)/S(bi

′′
) ≤ S(bk). Thus,

we have (bk�W (bk)/S(bk)) �x (bi
′′
�W (bi

′′
)/S(bk)). Therefore, by Condition 1, we have

(bk�W (bk)/S(bk)) �x′ (bi
′′
�W (bi

′′
)/S(bk)), so type x′ must stop at bk.
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Appendix C: Proof for Proposition 2

Fix price grid B = {b0� � � � � bm}. For any nondecreasing function d : [r�1] → B (we drop
the superscript on d to simplify the notation), define a(d) = (ad1 � � � � � a

d
m) as adi =

sup{x | d(x) ≤ bi−1}. Then set 	 ≡ {a(d) | d : [r�1] → B, nondecreasing} as a compact sub-
set of Rm. Now define the following correspondence from 	 to itself:

BR(a(d)) = {a(d̃) | d̃ is a response to d in the Dutch auction with price grid B}�
This correspondence is well defined because a response to d is always nondecreasing by
Lemma 3, and BR(a(d)) cannot be empty because price grid B is a finite set.

Indeed, BR(a(d)) is a single-valued function. To see this, suppose both d̃ and d̂ are
responses to d but a(d̃) �= a(d̂). Then there exists j such that aj(d̃) < aj(d̂). Therefore,

there exists x and x′ such that aj(d̃) < x′ < x′′ < aj(d̂). By construction, d̃(x) > bj−1 and

d̂(x) ≤ bj−1 for x= x′�x′′. Therefore, the function

d∗(x) =
{
d̃(x) for x �= x′′

d̂(x) for x= x′′

is a response to d, but d∗(x′′) < d∗(x′), which contradicts Lemma 3. Hence, BR(a(d)) is
a single-valued function.

We now prove that BR(a(d)) is continuous. Take any sequence {a(dn)} converging
to a(d). For each n, define a(d̃n) = BR(a(dn)). Suppose sequence {a(d̃n)} converges to
a(d̃). We show that a(d̃) = BR(a(d)).

Suppose x ∈ (ai(d̃)� ai+1(d̃)). Then x ∈ (ai(d̃n)�ai+1(d̃n)) for sufficiently large n.
Therefore, d̃(x) = d̃n(x) = bi. We show that type x’s response to d must involve waiting
until bi and stopping at bi.

For each n, consider Bn = {b̂ ∈ B | Db(x) = s and D is a best responding strategy to
dn}. By construction, maxBn = bi. Since price grid B is a finite set, there exists B′ such
that B′ = Bn for infinitely many n. Without loss of generality, assume B′ = Bn for all n. (If
not, take such a subsequence of {a(dn)}.)

Then a strategy that stops if and only if b ∈ B′ is best responding to each dn. There-
fore, for all bk ∈ B with k > 0,

(bk�W
dn(bk)/S

dn(bk)) �x (x) (b′
k�W

dn(b′
k)/S

dn(b)) if b ∈ B′ (b /∈ B′)�

where b′
k = max{b̂ ∈ B′ and b̂ ≤ bk}. Since Sdn(bj) = G(aj+1(dn)), Sdn is continuous in

a(dn). It can also be checked that W dn is also continuous in a(dn). Therefore, we have

(b�W d(b)/Sd(b)) �x (x) (b′�W d(b′)/Sd(b)) if b ∈ B′ (b /∈ B′)�

which implies that stopping if and only if b ∈ B′ is also a best responding strategy to d,
so type x actually stops at bi. We can make the same arguments for all x (except when
x = ai(d̃) for some i) and verify that d̃(x) is indeed a response to d. Therefore, a(d̃(x)) =
BR(a(d(x))).

Hence, by Brower’s fixed point theorem, BR has a fixed point a(d∗
B), and such d∗

B is
an equilibrium of the Dutch auction with price grid B.
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Appendix D: Proof for Proposition 3

First we show d∗ is a strictly increasing function. Suppose not. Then there exist x and
x′ (> x) such that for any ε > 0, d∗Bk(x′)− d∗Bk(x) < ε holds for sufficiently large k, and
we can find b′ ∈ Bk satisfying b′ ∈ (d∗Bk(x′)�d∗Bk(x′) + 2ε). Then if type x stops at b′,
compared to waiting until d∗Bk(x), he can increase his winning probability by at least
(G(x′)−G(x))/2, while the payment on winning increases by less than ε. Therefore, he
is tempted to stop at b′, so d∗Bk cannot be an equilibrium. Consequently, d∗ must be
strictly increasing.

Next we prove d∗ is a continuous function. Suppose not. Then there exists x∗
such that limx′↑x∗ d∗(x′) < limx′↓x∗ d∗(x′). Since d∗ is strictly increasing, for any x, all of

W d∗Bk (d∗Bk(x)), W d∗Bk (d∗Bk(x)), Sd
∗Bk (d∗Bk(x)), and Sd

∗Bk (d∗Bk(x)) converge to G(x).
Suppose d∗(x∗) > limx′↑x∗ d∗(x′). Then for sufficiently large k, the next stopping

price of type x∗ after d∗Bk(x∗) is either bk′ = limx′↑x∗ d∗Bk(x′) or the price just above bk′
(let this price be bk′′). This is because (i) type x has no incentive to stop strictly between
bk′′ and d∗Bk(x∗), since if the price drops below d∗Bk(x∗), the probability that some other
bidder stops the auction before bk′ is zero, and (ii) type x must stop at bk′′, since bk′′ is
accepted by a type slightly lower than x, by Lemma 3.

As k goes to infinity, the difference between the winning probabilities of stopping
at d∗Bk(x∗) and waiting until bk′ or bk′′ converges to zero, because d∗Bk converges to
a strictly increasing function. However, d∗Bk(x∗) − bk′′ is bounded away from zero, so
type x is tempted to wait at d∗Bk(x∗), because his next stopping price is either bk′ or bk′′.
Therefore, d∗(x∗) = limx′↑x∗ d∗(x′).

Suppose now that d∗(x∗) < limx′↓x∗ d∗(x′). Then for each k, define bk′ =
min{d∗Bk(x) | x > x∗}. Then limbk′ = limx′↓x∗ d∗(x′). Again, as k goes to infinity, the
difference between the winning probabilities of stopping bk′ and waiting until d∗Bk(x∗)
converges to zero, so types stopping at bk′ are tempted to wait until d∗Bk(x∗), because
bk′ − d∗Bk(x∗) is bounded away from zero. Hence, d∗Bk cannot be an equilibrium, so
d∗(x∗) = limx′↓x∗ d∗(x′). Therefore, d∗ is continuous.

Now, we show that d∗ satisfies the differential equation (2).
Consider any x and x′ such that x > x′. Then

u

(
d∗Bk(x′)� W (d∗Bk(x′))

S(d∗Bk(x))
;x′

)
≥ u

(
d∗Bk(x)�

W (d∗Bk(x))

S(d∗Bk(x))
;x′

)

for all k; otherwise type x′ would be tempted to stop at d∗Bk(x). As u is continuous, the
inequality is true at the limit, so we obtain

u

(
d∗(x′)� G(x′)

G(x)
;x′

)
≥ u(d∗(x)�1;x′)�

so for any x > x′, we have

d∗(x)− d∗(x′)
x− x′ ≥ −uq(b�q;x)

ub(b�q;x) · G(x)−G(x′)
G(x)

· 1
x− x′

(8)

= φ(b�q;x) · 1
q

· 1
G(x)

· G(x)−G(x′)
x− x′
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for some b ∈ [d∗(x)�d∗(x′)] and q ∈ [G(x′)/G(x)�1].
Next we find the upper bound of the above value. Let

B̃k = {
b̃ ∈ Bk | D∗Bk

x (b̃)= s and b̃ ∈ [d∗Bk(x′)�d∗Bk(x)]}�
which is a set of prices between dBk(x′) and dBk(x) at which type x stops if they are
reached with price grid Bk. Clearly, d∗Bk(x) ∈ B̃k and Lemma 3 implies d∗Bk(x′) ∈ B̃k.
Let us order the elements of B̃k as d∗Bk(x′) = b̃0 < b̃1 < b̃2 < · · · < b̃mk = d∗Bk(x). Then
type x’s incentive at each price in B̃k implies

u

(
b̃l�

W l

Sl+1
;x

)
≤ u

(
b̃l+1�

W l+1

Sl+1
;x

)

for all l ∈ {0� � � � �mk − 1}, where Sl = Sd
∗Bk (b̃l) and W l = W d∗Bk (b̃l). The above inequality

implies that for any l ∈ {0� � � � �mk − 1}, there exist b̂l ∈ [b̃l� b̃l+1] and ql ∈ [W l�W l+1], and

b̃l+1 − b̃l ≤ −uq(b̂
l� ql/Sl+1;x)

ub(b̂l� ql/Sl+1;x)
· W

l+1 −W l

Sl+1

= φ(b̂l� ql;x) · W
l+1 −W l

ql

≤ φ(b̂l�1;x) · W
l+1 −W l

ql

≤ max
b∈[b̃0�b̃mk ]

φ(b�1;x) · W
l+1 −W l

W 0 �

where the equality comes from the definition of φ, the second inequality follows from
Lemma 2, and the last inequality is because b̂l ∈ [b̃0� b̃mk] and ql ≥ W l ≥ W 0. Summing
both sides of the above inequality for l = 0� � � � �mk − 1 gives

d∗Bk(x)− d∗Bk(x′) ≤ max
b∈[b̃0�b̃mk ]

φ(b�1;x)W
mk+1 −W 0

W 0 .

Taking the limits of both sides, we obtain

d∗(x)− d∗(x′)
x− x′ ≤ max

b∈[d∗(x′)�d∗(x)]
φ(b�1;x) · 1

G(x′)
· G(x)−G(x′)

x− x′ � (9)

Hence, (8) and (9) imply

lim
x′↑x

d∗(x)− d∗(x′)
x− x′ =φ(d∗(x)�1;x) · g(x)

G(x)
�

Exactly the same argument shows that the right derivative of d∗ coincides with the left
derivative, and so we obtain (2).
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Appendix E: Proof for Proposition 5

First we show (i). Take any x ∈A. Then it must be that

u(b̄�1;x) ≥ u(b̂(x)� π̂Ŵ (b̂(x));x)�
Take any x′ > x. Since type x bids b̂(x) rather than b̂(x′) in the auction after the BP is
declined, it must be that

u(b̂(x)� Ŵ (b̂(x));x) ≥ u(b̂(x′)� Ŵ (b̂(x′));x)�
Condition 1 implies Ŵ (b̂(x)) ≤ Ŵ (b̂(x′)), so applying the contraposition of Condition 2,
we obtain

u(b̂(x)� π̂Ŵ (b̂(x));x) ≥ u(b̂(x′)� π̂Ŵ (b̂(x′));x)�
Thus we get

u(b̄�1;x) ≥ u(b̂(x′)� π̂Ŵ (b̂(x′));x)�
Therefore, by Condition 1, the above inequality holds strictly for type x′, so x′ ∈ A.
Therefore, A= [x̂�1] for some x̂ ∈ [r�1].

Given that result, in the auction after the BP bidders know that all of them have types
less than x̂, it is immediate that b̂ is strictly increasing and continuous, so if the post-BP
auction takes place, then bid b̂(x) wins with probability G(x)/G(x̂). Hence, b̂ is given
by the differential equation in the proposition. Obviously b̂(r) = r and b̂(x) = b̂(x̂) for all
x > x̂. (If type x > x̂ declines the BP, he wins for sure by bidding b̂(x̂) once the auction
takes place.) Thus (ii) is proven.

Now we show x̂ ∈ (r�1). Since b̄ > r, type r strictly prefers to reject the BP, so it must
be x̂ > r. Alternatively, if no type accepts the BP (so x̂ = 1), then the differential equation
in (ii) is exactly the same as the one that characterizes the first-price auction equilib-
rium, so we have b̂(1) = b∗(1). Since b̄ < b∗(1), the highest type x = 1 strictly prefers to
accept the BP, so it must be x̂ < 1. Hence we obtain x̂ ∈ (r�1) and the cutoff type must be
indifferent, which proves (iii).

Finally, we establish the existence. Suppose any type above x̃ accepts the BP and any
type below x̃ rejects the BP. Let π̂(x̃) be the probability that the BP is rejected by all other
bidders conditional on a particular bidder choosing to accept or reject the BP. For x≤ x̃,
define b̃(x; x̃) by

∂b̃

∂x
= φ

(
x− b̃(x; x̃)� G(x)

G(x̃)
;x

)
g(x)

G(x)

with b̃(r; x̃) = r. Then x̂ ∈ (r�1) is an equilibrium cutoff type if and only if it is a solution
to

u(b̄�1; x̂) = u(b̃(x̂; x̂)� π̂(x̂); x̂)� (10)

Notice that in (10), the right-hand side is strictly greater than the left-hand side when
x̂ = r, because b̄ > r, and the left-hand side is strictly greater than the right-hand side
when x̂ = 1, because π̂(1) = 1, and b̃(1;1) = b∗(1), and b̄ < b∗(1). Therefore, there exists
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x̂ ∈ (r�1) satisfying (10) because of the continuity of all functions in (10). This establishes
the existence of an equilibrium and (iii).

Appendix F: Proof for Proposition 6

Let b1 = b∗(1) and b̄ = b1 − ε. Suppose b̂ε is the equilibrium bidding function after the
BP is declined and x̂ε is the equilibrium cutoff type. Then the difference between the
expected revenues of the BP and of the first-price auction is given by

R(ε) ≡
∫ 1

x̂ε

(b1 − ε− b∗(t))dG(t)+
∫ x̂ε

r
(b̂ε(t)− b∗(t))dG(t)

≥
∫ 1

b∗−1(b1−ε)
(b1 − ε− b∗(t))dG(t)+

∫ b∗−1(b1−ε)

r
(b̂ε(t)− b∗(t))dG(t)

≡ R̃(ε)�

The inequality holds because type x ∈ [x̂ε� b∗−1(b1 − ε)] accepts the BP, which is
greater than b̂ε(x) = b̂ε(x̂ε). Now we show R̃′(0) > 0. Since b∗−1(b1) = 1, b̂0(1) = b∗(1),
we have

R̃′(0) =
∫ 1

r

∂b̂0(t)

∂ε
dG(t)�

Notice that

∂b̂0(x)

∂ε
≥ 0 for any x ≥ r�

so R̃′(0) ≥ 0. Suppose R̃′(0) = 0. Then it must be that

∂b̂0(x)

∂ε
= 0 for any x ≥ r�

Since

b̂ε(x) =
∫ x

r
φ

(
b̂ε(t)�

G(t)

G(b∗−1(b1 − ε))
; t

)
g(t)

G(t)
dt�

we obtain

db̂0(x)

dε
=

∫ x

r

(
−φb

∂b̂0(t)

∂ε
+φq

G(t)g(1)
b∗′(1)

)
g(t)

G(t)
dt

=
∫ x

r
φq

g(1)g(t)
b∗′(1)

dt

= 0�

which is impossible because φq > 0 as bidders have SAP preferences. Hence it must be
that

∂b̂0(x)

∂ε
≥ 0 for any x ≥ r�
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because any type who rejects the BP bids higher in the auction after the BP is rejected
than in the first-price auction. Thus, inside the integral must be positive, R̃′(0) > 0.
Hence for small ε > 0, R(ε) > R̃′(ε) > 0, so the expected revenue when the seller sets
the BP is greater than the first-price auction without a BP, when ε is small.
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