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Abstract
This paper examines the determinants of technical efficiency for a sample of 204 industrial vessels
operating in the Southern-Central pelagic fishery of Chile during the 1985-95 period. Data on
vessel’s annual landings and fishing effort, vessel’s size, age, fishing experience and vessel’s
controlling firm are analysed considering a Translog stochastic frontier model à-la Battese-Coelli
(1995), which includes a vessel-specific inefficiency model. Yearly averages for vessel efficiency
vary from 50% to 86%. Close to 90% of the residuals’ total variance is accounted by the
inefficiency term, suggesting a significant disparity in vessels’ catch performance. Vessel age and
scale of operation are found to be significant in explaining efficiency. Larger vessels tend to be the
most efficient and the ones showing least variance in their efficiency. Smaller vessels, which on
average are also the oldest in the fleet, show greater dispersion and lower efficiency scores. We
confirm prior results suggesting vessel-level economies of scale at this fishery, related to fishing
effort intensity. Explanatory variables aggregated at the ship-owner level, which aim at controlling
the firm’s operating scale, are also significant as a whole when explaining vessel-level efficiency.
We find positive search externalities associated to the number of vessels under control of a given
firm, as well as external diseconomies related to each firm’s fleet use. Overall, we report significant
productive heterogeneity in the fleet under study where control variables associated to ‘size effects’
do indeed play a significant role.
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1. Introduction
This paper carries out technical (catch) efficiency estimations for industrial vessels that

operated during the 1985-95 period in the Southern-Central pelagic fishery in Chile. In terms of

landed volumes, currently this is by far the most important fishery in Chile and it is certainly one of

the largest of its kind in the world. In its peak of production (1994-95), this fishery landed 4.5

million tons/year. Today annual landings range around 2 million tons/year, of which a dominant

proportion (about 75%) corresponds to jack mackerel. This trend of declining catches has motivated

different initiatives aimed at achieving more binding access regulations and more effective

enforcement of catch quotas. As part of this process, since early 2001 this fishery operates under a

temporary (2-year) system of individual catch quotas, subject to transferability limits (Peña-Torres,

2002). The issue of how this develops towards more permanent regulations, involving decisions

regarding continuity or reforms of current regulations, is a subject of current controversy.

This policy background motivates this paper. Adjustment towards lower production levels

can involve regulatory as well as industry changes implying non-trivial distributive effects. In

industries that exploit a common-pool resource the significance of these distributive consequences

usually transform them into binding constraints with respect to politically feasible policy reforms.

As a source of differentiated distributive effects, productive heterogeneity in a common-pool fishery

facing downward production adjustments usually is an important influence upon negotiations

aiming at achieving a consensus on policy reforms. In this setting, the main focus of this paper is to

estimate and analyse sources of productive heterogeneity in this fishery.

 This paper analyses ‘productive heterogeneity’ by estimating relative catch efficiencies

achieved by each industrial vessel that operated in this fishery along the decade under study. Our

estimation model calculates vessel-specific technical efficiency scores, relative to the ship having

the highest catch performance. This concept of catch efficiency is defined with respect to the set of

regressors used as control variables in the estimation model.1 We use a stochastic production

frontier methodology, in particular the model proposed in Battese and Coelli (1995) which includes

a vessel-specific inefficiency equation as well. The efficient production frontier is defined as the

maximum quantity of output (annual tons of catch) attainable by a given set of inputs. In this sense

‘technical inefficiency’ corresponds to differences that arise between that theoretical maximum, and

what each vessel actually harvests with these factors. Consequently, estimations in this paper

exclusively refer to technological efficiency and hence exclude allocative efficiency arguments.
                                                          
1 This is a different concept than that of ‘catch per unit effort’ (e.g. tons/hour of fishing), frequently used among fishing
analysts. Our concept of ‘technical efficiency’ is also a measure of harvest yield, but considers a set of relevant inputs
which are proxied by control variables when explaining the levels of landed catch. The set of relevant inputs includes
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Given our focus on productive heterogeneity, we are particularly interested in analysing the

resulting ranking among vessel-specific efficiency scores, their dispersion and how they correlate

with variables that characterise vessel type and vessel-level fishing effort. Arguments more directly

focused on the estimated levels of catch efficiency, or about the pattern and magnitude of technical

change (i.e. productivity growth), are not priorities in this paper.

On the other hand, we are interested in studying possible correlation between vessel-

specific efficiencies and variables aimed at controlling for different fishing operation scales. In

addition to vessel-scale variables, we also test for the possible relevance of scale or size effects that

are defined at greater levels of aggregation; i.e. at the level of the vessel’s controlling firm as well

as for the fishery as a whole. These firm- or fishery-aggregated control variables aim at testing the

possibility of technological externalities having effect on vessel-level catch efficiencies.

Externalities of this type may affect individual incentives when downward adjustments in fishing

efforts are needed.

Generally speaking, the economic literature referring to fishing industries from an empirical

viewpoint is rather scant. This is related to difficulties in accessing relevant information. Regarding

efficiency estimations for fishing industries, there are but a few exceptions. Earlier studies focused

on deterministic frontiers analysis (e.g. Comitini and Huang, 1967; Hannesson, 1983), where all

unexplained variations in the endogenous variable (production or cost levels) are associated with

inefficiency. More recent studies however, have given increasing attention to efficiency as well as

productivity estimates based on stochastic production frontiers. In this vein, recent examples of

fishery studies are Sharma (1999), Squires, Grafton et al. (1998), and Kirkley, Squires & Strand

(1995), all focusing on estimations of efficiency concepts. Squires (1992) and Jin et al. (2001) also

consider stochastic frontier analysis, but aiming more directly on total factor productivity measures

and the corresponding estimates of productivity growth.

In stochastic frontier analysis only a portion of the estimated residuals is associated with

inefficiency terms, the remainder being associated with random sources of errors, be they either

pure random shocks or random measurement and/or specification errors. How the estimated

residuals are separated into these two residual types is something that hinges on the particular

estimation algorithm. In this paper the estimation model resembles a random-effects panel

algorithm, in which the separation between the two types of residuals is achieved by imposing ad-

hoc distributional assumptions.

                                                                                                                                                                                
variables that proxy ‘fishing effort’ (including fixed and variable inputs), as well as state variables that control for fish
stock abundance and for relevant regulatory changes.



4

Regarding Latin-American and Chilean fisheries, as of yet we do not know of any prior

estimates of technical efficiency at the harvesting or processing stages. In the Chilean case, the

appeal for this type of applied analysis goes beyond the fishery studied in this paper. Since the mid-

eighties, several fisheries in Chile (both industrial and small-scale2) have begun to show signs of

growing scarcity of their main fish stocks. This has called for regulatory reforms aiming at

achieving less wasteful allocations of aggregate fishing efforts, leading in turn to a more efficient

use of scarcer fish stocks. This brings forth diverse policy challenges, from consolidating more

effective entry rules up to allowing for more equitable and economically efficient opportunities for

the various participants operating in the sector. In the search for politically feasible solutions,

productive heterogeneity in fishing fleets has had non-trivial economic impacts in the past.

Analysing the sources of differences in catch efficiencies achieved by different sized vessels, can

help assess from a better vantage point the allocative as well as distributive trade-offs that underlie

the general goal of improving allocative efficiency in extractive fishing industries.

This paper is organised as follows. Section 2 describes relevant features of the fishery.

Section 3 presents the theory and its implications while Section 4 describes our econometric model.

Section 5 analyses the estimation results, while Section 6 shows an evaluation of the predictive

power of our estimations. Section 7 presents final considerations.

2. The Southern-Central Fishery
This fishery has currently the greatest volume of landings in Chile. Toward the end of the

decade studied in this paper, this fishery reached its peak annual catch (4.5 million tons), with the

Jack Mackerel as the predominant species. At the peak Jack Mackerel catch reached 4.1 million

tons/year.  Since then the fishery has relapsed significantly. Currently the Jack Mackerel catch is

about 1.5 million tons/year.3

This fishery runs along the central-southern coastline of Chile, starting at the port of San

Antonio in central Chile up to the Valdivia region in the South4 (Figure 1). Along its history,

Chilean owned purse seiners have mostly exploited this fishery. The exception happened during the

years 1980s, when a fleet composed of vessels from Poland, Cuba and Russia fished jack mackerel

in high seas areas in front of Central Chile (as well as in other high seas areas of the South East
                                                          
2  By small-scale fleet we mean vessels which on average rely on less sophisticated technology, relative to industrial
vessels, and have a gross tonnage capacity of no more than 80 tons and vessel length of 18 meters at most.
3 The Southern-Central fishery generates between US$200-250 million/year, in terms of export value and national sales,
valued at current prices. This value represents between 20% and 25% of the yearly exported value by the Chilean
extractive fishing industry. In terms of regional fishing employment, if we consider total national direct employment that
the Chilean fishing sector (extractive and aquaculture sectors) generates on an annual basis, i.e. close to 85,000 regular job
positions, about a quarter of these are based at the Talcahuano region.
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Figure 1: Chilean Southern-Central Pelagic Fishery: Northern and Southern Limits

                                                                                                                                                                                
4 This covers a coastline of about 1000 kms. The historical and still most productive core of this fishery is located in sea
areas of the Talcahuano region.



6

Pacific).5 Industrial fishing is concentrated on pelagic species, primarily destined for the fishmeal

industry. Although in its early industrial development the main harvested species in this fishery

were anchovy and sardine, since the beginning of the eighties jack mackerel has become the

dominant species for industrial vessels. The industrial catch of these three main species fluctuated

between 86% and 98% of the total landings in this fishery during the 1985-95 period.6

The decade under study coincides with a phase of explosive investment (see Table 1).

From 1980 to 1985 the number of industrial vessels doubled, while the fleet’s storage capacity

quadrupled. In the following decade the aggregate storage capacity again increased four times.  This

occurred at a moment when larger vessels began to increase their participation in the fleet.7 In terms

of fishing effort, measured by aggregate annual haul of the fleet, 8 there was an increase of 6.5 times

during the 1985-95 period.

The growth in annual harvest continued uninterruptedly until 1994-95. From then on annual

catch began to fall, following a pattern that was aggravated as a result of the El Niño phenomenon

that began in 1997 and lasted until late 1999.9 If we consider the three main species, current catch

levels are less than half the 1994-95 peak; in the case of Jack Mackerel catches, the drop is still

bigger. Figure 2 illustrates the relationship over time between annual industrial harvest and several

population dynamics variables, all for the Jack Mackerel.

With respect to the regulatory context, the investment boom in the fishery began under free

access conditions, which prevailed from 1978 to 1986. From that point on, access regulations went

into effect that ‘froze’ the fleet’s storage capacity to the limits it had in 1986. However, legal

loopholes remained, allowing for further expansions of the fleet’s fishing capacity10 (column #3 of

Table 1). No further regulatory measures were implemented, except for a ‘minimum catch size’

clause that has been in place since the mid-eighties (Peña-Torres, 1997 and 2002).

Regarding temporary shocks, during the 1985-95 period two events of interest occurred.

Firstly, the presence of an El Niño phenomenon of moderate intensity in 1987.11 The second event

                                                          
5 Fishing operations did occur 210 to 250 miles off the Chilean coast. During the late 1980s, this fleet was composed of
about 70 factory mid-water trawlers. In 1990 they caught about 1.1 million tons of jack mackerel in adjacent high seas
waters in the South East Pacific. Retreat from this fishery in 1992 was an economic consequence of the disintegration of
the ex Soviet Union (Crone-Bilger, 1990, p. 118).
6 Pelagic fish normally swim in high-density schools, in which various species often share the same sea area, competing
for food.
7 The first ships with a storage capacity over 800 m3 began operating in 1989.  In 1995 this size category represented 44%
of total available storage capacity.
8 The concept of haul or aggregate effort proxies the level of use given to the available aggregate fishing capacity. It is
defined as the sum of the storage capacity for all industrial ships, weighted by each vessel’s annual fishing hours.
9 This was the ‘El Niño’ phenomenon of greatest intensity occurring during the 20th century.
10 For example, the substitution of two or more small ships for a larger one was allowed if the resulting storage capacity
remained fixed.  In practice, this allowed for the entry of vessels with greater fishing capacity.
11 This refers to a seasonal warm ocean current whose presence significantly alters the location and survival rates of
different marine species.
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Figure 2
 Biomass and Harvest of Jack Mackerel

Source: Authors’ elaboration based on IFOP information

refers to discussions regarding the enactment of a new fisheries law, which began towards the end

of 1987 and continued until its final approval in September of 1991. During these years the

possibility of assigning individual catch quotas, based on ‘historic catch’ records, was appraised.

Table 1: Southern-Central Pelagic Fishery
Industrial Fleet Landings:  Industrial &

Small-Scale fleets
(106 tons)

Available Biomass

(106 tons)Year
Fishing
Effort

(index)
(1)

Number
of

vessels
(2)

Total Storage
Capacity
(103 m3)

(3)

3 main
species

(4)

Jack
Mackerel

(5)

3 Main
Species

(6)

Jack
Mackerel

(7)
1975 37 4.3 0.023
1980 47 6.3 0.274
1985 100.0 97 27.8 0.960 0.870 17.25 15.42
1986 142.4 93 29.5 1.158 1.075 21.97 20.47
1987 157.0 93 32.7 1.518 1.391 20.96 18.42
1988 192.7 105 40.0 1.714 1.644 20.33 17.32
1989 231.6 108 48.4 2.296 1.861 21.84 18.51
1990 302.3 140 60.3 2.412 1.983 21.95 17.93
1991 356.0 174 76.3 3.342 2.517 20.89 15.89
1992 412.7 173 78.7 3.445 2.735 15.82 12.54
1993 440.8 172 90.8 3.208 2.759 14.34 11.18
1994 511.8 167 97.2 4.507 3.691 13.02 9.94
1995 640.3 177 110.4 4.472 4.089 12.06 7.50
1999
2000

153 122.8 3.115
2.072

1.267
1.065

(1) Total annual haul (AI
t) of industrial fleet, where 

it
i

it
I

t EHA ⋅= ∑  , ∀i that operated at year t, with Hit denoting vessel

i’s storage capacity (in m3) and Eit : i’s annual fishing hours during year t.
(6) - (7): Yearly average stocks estimated by IFOP. Availability measure of  the commercially exploitable stocks (recruits +
older age cohorts) in Southern-Central zone.
Sources: IFOP and Fishing Annals (Sernapesca).
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3.- The Theoretical Model
In this paper we follow the literature that estimates efficient production frontiers using panel

data (Schmidt and Sickles, 1984; Fried, Knox-Lovell and Schmidt, 1993, chs. 1-2; Kumbhakar and

Knox-Lovell, 2000). In this context, panel models present some advantages with respect to those

that rely solely on cross-section data. The former allows for a greater number of observations,

usually enabling more efficient estimation. Additionally, panel models can simultaneously estimate

the technological process underlying a particular industry as well as determinants of productive

efficiency. This increases the options for testing relevant hypotheses.

Following traditional literature on stochastic frontier models (e.g. Aigner, Knox-Lovell and

Schmidt, 1977; Schmidt and Sickles, 1984), the simplest panel data model is:

yit = xitβ + νit− uit   ;  i = 1,2,...,N ; t = 1,2,...,T  (1)

Here yit denotes the logarithm of the product for the ith unit in period t; xit represents a vector

corresponding to technological factors and other variables which may be relevant, and β a vector of

parameters. The νit terms are i.i.d. errors following a N(0,σν
2) distribution, which are independent of

the uit errors, as well as of the explanatory variables xit.

The uit values take into account the technical inefficiency in the model; they are also i.i.d., but

not ‘white noise’ errors since they are non-negative variables corresponding to the positive

truncation of N(0,σu
2). In general, the uit values can be correlated with the explanatory variables.

In this framework, the Battese and Coelli (1995) model specifies that technical inefficiencies,

defined as non-negative random variables, are to be distributed independently, although not

identically.  For the ith productive unit in period t, the technical inefficiency uit is obtained through

the positive truncation of the N(µit,σ2
u) distribution, where the mean value µit of this distribution is

modelled as:

µit = zit δ (2)

with zit representing observable explanatory variables, and δ a vector of parameters. If we estimate

equation (1) using maximum likelihood for example, one estimates the residuals ξit = (νit−uit), and

then, by following Jondrow et al (1982), it is possible to indirectly estimate residue ûit through the

conditional expectation of uit given estimated values of ξit:

E(uit|ξit) = ψ[φ(ξitλ/σs) ⁄ (1−Φ(ξitλ/σs))−(ξitλ/σs)]  (3)
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Here, σ2
s = (σ2

u+σ2
ν); ψ2 = (σ2

uσ2
ν ⁄ σ2

s); λ = (σu/σν); φ and Φ represent the standard normal density

and distribution functions, respectively. With this notation the technical efficiency of the ith unit in

period t is given by:

TEit = exp(−ûit)  (4)

The technical efficiency score of i has a value equal to one if vessel i obtains an estimated

inefficiency equal to zero.  In the remaining cases, TE will be positive but less than one.

Battesse and Coelli (1995) rely on maximum likelihood to estimate their “random-effects”

model.12 The likelihood function itself appears in Battese and Coelli (1992), together with the first

order conditions. They introduce parameter γ = (σ2
u ⁄ σ2

s) with σ2
s = (σ2

ν + σ2
u); here γ takes a value

between 0 and 1. If all parameters corresponding to δ and γ are equal to zero, then the model is

equivalent to a traditional “production function” model, which in principle could be estimated

efficiently through ordinary least squares.

4.-  Functional Form and Variables
The methodology introduced by Battese and Coelli (1995) considers the estimation of a

production frontier as a function of input and state variables, simultaneously with the estimation of

an associated technical inefficiency function. The latter correlates the resulting inefficiencies, whose

proxies are obtained from the residuals obtained when estimating the stochastic production frontier,

with respect to a set of explanatory variables. A subset of these may coincide with some of the

regressors used in the production function.

In our exercise we model the technology that describes the harvesting process by means of a

Translog production function. The model in question is:

cit = β0 + ∑jβjxjit + ∑j∑kβjkxjitxkit + νit – uit (5)

where the indexes i and t indicate observations for vessel i and year t; and indexes j and k indicate

explanatory variables. The variables considered are:

                                                          
12 Although panel data is used in the Battesse-Coelli (1995) model, using assumptions in the line of a random-effects
model, their estimation model does not correspond to the traditional version encountered in the literature on panels. In the
latter case estimates are obtained through generalized least squares or by specifying a different log-likelihood function. In
Battese-Coelli (1995) model, the computational algorithm (T. Coelli’s FRONTIER 4.1 software) pools the panel data
allowing the model, defined by equations (5)-(6), to be estimated as a “cross-sectional model” (private communications
with T. Coelli  and A. Álvarez).
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cit =  natural log of total annual landings (all species) in tons.13

x1 :  hit = natural log of storage capacity (measured in m3).

x2 : eit = natural log of annual fishing hours.

x3 : git = natural log of vessel age (in years).

x4 : xit = natural log of ‘fishing experience’.

x5 : bt  = natural log of total aggregate biomass, measured in tons, at year t−1.

x6: T = trend variable (1985=1, ….., 1995=11)

Age Git is defined as the difference between year t and the vessel’s construction year. The

variable ‘Fishing Experience’ is defined as Xit= (Mit)⋅(Git); where Mit is a variable that accumulates

annual fishing hours from year 1985 up to year t. The variable Xit purportedly measures

accumulated levels of fishing activity, weighted by the ships’ age, aiming to control for possible

“learning by doing” efficiency effects.

The data were obtained from the Chilean Institute for Fishing Development (IFOP),

covering the 1985-1995 period. It includes annual data on: (i) catch per vessel; (ii) storage capacity

of each vessel; (iii) annual fishing hours per vessel; (iv) construction year of each vessel; (v) yearly

average biomass for each of the three main fish species; and (vi) the owning firm of each vessel.

Our model controls for two types of effects: first, it controls for possible time effects, and

second, for vessel-specific factors. For the first kind of effects, we consider a trend that controls for

time changes in the technological frontier. In addition, we use a proxy variable to control for the

fish stock in each year t, denoted by Bt, which is calculated by aggregating all fish stock for year

t−1 to avoid possible endogeneity effects.

Notwithstanding the Zellner, Kmenta, Drèze (1966) argument regarding the exogeneity of

input variables when estimating a production function,14 ad hoc explicit exogeneity tests of the

Hausman variety (Hausman, 1978) were carried out for the more relevant variables in our analysis.

Specifically, a subset of variables −from a larger set consisting of all variables whose exogenous

character is in doubt− was tested for exogeneity using the pooled data panel, namely fishing effort

and fish stock (Holly, 1982; Maddala, 1992). For testing purposes, all quadratic and mixed terms

involving these variables were also included in this subset. The test in question is a Wald type test
                                                          
13 Catch per ship (Cit) considers total species caught. During the period under study, the dominant species in this fishery is
the Jack Mackerel, followed by Anchovy and Sardine. Other species with minor catch shares are Mackerel, Hoki and
Chilean Hake.
14 Assuming that output is stochastic due to uncontrollable shocks such as weather, Zellner et al. suppose that firms
choose their inputs so as to maximise expected profits. However, in stochastic environments entrepreneurs will commit
non-systematic errors (Zellner et al. speak of ‘managerial inertia’ and ‘random human errors’) in their profit-maximising
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which uses for instruments the respective lagged variables of the questionable ‘exogenous’

regressors (i.e. vessel’s fishing effort and fish stock). The Wald test results in an F = 2.42 (p-value =

0.037). This value gives ample support to our proxy variables for fishing effort and fish stock,

especially considering the large number of vessels involved in the fishery (Cox and Hinkley, 1990).

To estimate yearly average biomasses IFOP uses a methodology known as Virtual

Population Analysis (Gulland, 1988). Due to the multi-species nature of this fishery, where

significant price differences between the main species caught are not observed, we define annual

fish stock availability as the sum of the yearly-average exploitable biomasses15 estimated by IFOP

for the three most important species. We also consider a proxy for the biomass linked to the

remaining species caught.16

With respect to the vessel-specific variables, we use storage capacity to proxy fixed factors

that may affect catch yields. Information for other fixed factors (e.g. search technologies; the ship’s

motor power; fishing gear; or the fishing experience of the captain and crew) was not available. As

a further effort to control for the influence of these other fixed factors, we carry out estimations

dividing our total estimation sample into three sub-panels of vessels, differentiated according to

vessel storage capacity. We are therefore implicitly assuming that the joint effect of other fixed

factors is on average positively correlated to vessel size.

The sub-panels defined are: P1: 80-300 m3; P2: 301-800 m3; and P3: 801m3 and more.

Table 2 shows the number of vessels comprising our sample, according to how many vessels were

in operation at each year and for each sub-panel. Table 3 provides information on the average scales

of operation of the ships included in each sub-panel.

The division of the vessels into sub-panels was decided after considering IFOP’s studies

regarding technological characteristics that different sized vessels have in this fishery.  For example,

a significant fraction of the fleet has the capacity to fish beyond the 200 miles limit.  However,

larger vessels (panel P3) are the ones that more frequently carry out longer fishing trips and travel

farther from the coastline, whilst smaller ships (panel P1) tend to concentrate their fishing effort

closer to the coastline.

The remaining vessel-specific variables are: (i) Annual number of hours (Eit) that the vessel

was at sea. This variable adds up the time in which the ship actually carries out catch operations, as

well as the time it spends searching for fish. It aims at approximating the fishing effort performed
                                                                                                                                                                                
endeavours. When these ‘random’ human errors are not correlated with the stochastic shocks from Nature, Zellner et al.
prove that standard OLS estimation procedures are consistent when estimating a production function.
15 Exploitable biomass is smaller than the annually available biomass, because of prevailing regulations on minimum
catch size.
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by each vessel, as a proxy of variable input use; (ii) Age of ship (Git) controls for possible effects

related to technological obsolescence. To the extent that technological innovations might have

occurred, everything else constant, the expected a priori effect would be a negative correlation

between Git and catch efficiency.  However, age may also be associated with accumulated “learning

by doing” type effects. In an effort to control for these effects, presumably having a positive impact

on technical efficiency, we use (iii) the fishing experience variable (Xit) which considers the

accumulated level of each vessel’s fishing effort over the period studied, weighted by the ship’s age.

Table 2: Number of Vessels at the Southern-Central Pelagic Fishery

Year P1 P2 P3 Total
1985 48 24 . 72
1986 47 39 . 86
1987 40 47 . 87
1988 31 58 . 89
1989 31 62 4 97
1990 42 71 8 121
1991 43 78 13 134
1992 33 77 17 127
1993 30 85 25 140
1994 26 79 39 144
1995 20 84 38 142

Total vessels* 61 100 43 204
*: This total corresponds to the number of vessels that fished for at least one year during the
1985-95 period
Source: Authors elaboration based on IFOP information.

The deviations of the data with respect to the frontier (5), are captured by two error terms.

The vit term absorbs measurement and/or specification errors in the model and is assumed to be a

white noise; while the non-negative uit term measures the technical inefficiency.

The model used to explain the uit errors, estimated in the first stage, is:

                                           µit = δ0+ zitδ (6)

where µit corresponds to the conditional expectation of the uit variables, given the residuals ξit = (νit

− uit), and zit is a vector of variables that help explain the efficiency of the vessels, being δ a vector

of parameters.

                                                                                                                                                                                
16 Due to lack of official biomass estimates pertaining the remaining species, a proxy based on catch information was
used. For this we assume that for the remaining species, the (catch/biomass) ratio is equivalent, each year, to the ratio
obtained using the landings and the sum of the biomasses estimated by IFOP for the three main species.
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Table 3: Industrial Fleet’s Scale of Operation
(Yearly averages per vessel, period 1985-95)

Panel
(1)

Annual Catch
(103 tons)

(2)
Annual fishing

trips
(number)

(3)
Annual Fishing
trips with catch

success
(Number)

(4)
Annual fishing

days
(Number)

(5)
[Annual catch/

Storage Capacity]
(# of times)

P1 7.7 145 98 97.2 35.9
P2 22.2 133 98 144.7 42.3
P3 38.9 90.7 76 165.5 39.2

 (1): Catch of three main species; (2): Trips with and without catch success; (5): Number of times the vessel storage
capacity is annually filled with catch.  Source: Authors calculations based on IFOP data.

The variables we consider for (6) are:

z1 : aj
t = natural log of annual haul of all vessels belonging to firm j.

z2 : nj
t = natural log of the number of operating vessels belonging to firm j.

z3 : hj
t = natural log of storage capacity of vessels belonging to firm j

z4 : aI
t = natural log of the aggregate annual haul, of the whole industrial fleet.

z5 : nI
t  = natural log of total number of operating vessels at the industrial fleet.

z6 : eit = natural log of vessel’s annual fishing hours.

z7  : git = natural log of vessel’s age.

z8 : xit = natural log of vessel’s experience.

z9 : bt = natural log of aggregate biomass, at year t-1

D(t) = dummy variable for year t (for t = 1987, 1988, 1989 and 1990).

The Haul variable, defined as Ait= (Hit)⋅(Eit), proxies the use intensity given to the vessel’s

storage capacity Hit. For firm j the haul is defined as Aj
t = ΣiAit (∀i∈j). Thus Aj

t considers the

storage capacity as well as the annual fishing hours of all operating vessels that belong to firm j.

Likewise, aggregate industrial haul of the fishery is defined as AI
t=ΣiAit (∀i that operated during

year t). The latter encompasses the total industrial fleet.

By specifying (6), variables were introduced that relate external factors to the vessel in

question. Firstly, there are variables aggregated at the level of the firms which own the operating

ship: (a) The haul variable defined at firm-j level (Aj
t) captures possible impacts, of the use intensity

given to firm j’s total fleet, on each (j-owned) vessel’s catch efficiency. This variable may be

thought of as a proxy for the complexity level of the fishing activities that firm j performs. On the

other hand, Aj
t also accounts for effects associated with the scale of fishing efforts performed at the

firm level. (b) As an alternative control for effects associated with the level of complexity of fishing

operations at the firm level, we consider the accumulated storage capacity (as a proxy of installed
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productive capacity) of all operating vessels controlled by firm j (Hj
t). (c) The Nj

t variable aims at

controlling effects on efficiency associated with the number of ships belonging to firm j.

Secondly, we also include two variables aggregated at the fishery level. Aggregate haul AI
t

aims at capturing externality effects at the vessel level, related to the aggregate annual fishing effort

performed at the fishery. For instance, congestion effects might prevail, causing a negative impact

on individual vessels’ catch efficiency. On the other hand, positive externalities associated with

collective efforts aimed at fish search could be present. The NI
t variable aims at controlling more

directly for the latter possibility.

Thirdly, we include the biomass variable (lagged 1 year) to control for the possibility that

fish abundance might also affect vessels’ catch efficiency in this fishery, beyond its impact on the

technological frontier. In addition, we include four dummy variables that control for time effects

such as regulatory changes or natural phenomena such as the year-1987 El Niño.  We have included

additive dummy variables only in those years which have been significant in prior studies of this

fishery (Peña-Torres, Basch and Vergara, 2002).

Finally, we have also included three vessel-specific variables that were already considered

in the first stage of the model. Annual fishing hours of the vessel control for possible influences on

catch efficiency arising from the ship’s scale of operation. With a similar motivation we include

vessel’s age and fishing experience. Everything else being constant, we would expect to find a

positive correlation between age and inefficiency and a negative correlation between fishing

experience and catch inefficiency.

To simplify notation, in what follows we use lower-case letters to denote the natural

logarithm of variables (e.g., x = ln X); in addition we eliminate the time sub-index.

To carry out the different hypothesis tests with respect to the parameters in model (5)-(6), a

generalised likelihood ratio (GLR) test is used, defined by:

                                       λ = –2 [l(H0) – l(H1)]                                 (7)

where l(H0) corresponds to the log-likelihood function of the restricted model (as specified in the

null), and l(H1) is the log-likelihood function of the unrestricted hypothesis.  The statistic distributes

asymptotically as a chi-square distribution with degrees of freedom equal to the difference between

the number of parameters in each hypothesis.

To test the null hypothesis of no inefficiency effects in the fishing process, for example, the

hypothesis γ =δ1=…= δ13 =0 is specified (where sub-indexes 1, 2,…,13 denote each one of the

explanatory variables included in equation (6); see Annex 1). In this case, λ asymptotically follows
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a mixed chi-square distribution, where the critical values are obtained from Kodde and Palm (1986).

If the null cannot be rejected, then the estimated function is equivalent to a traditional ‘production

function’ model.

5.- Empirical Results
Prior to carrying out the estimations, outliers were eliminated through the use of a robust

methodology.17 Then equations (5) and (6) were estimated simultaneously. Annex 1 shows the final

results for the model. The estimated parameters of the three sub-panels appear column-wise, as well

as for the entire panel. At the bottom of the chart, we see estimations for σ2
S, γ, log-likelihood, and

the mean technical efficiencies (MTE).

For choosing our final model, we considered all explanatory variables and estimated various

alternative models. The reported results show the best fit using the GLR criterion. In the selection

process, we chose to keep the same variables for all sub-panels, considering that all vessels use the

same fishing technology, all operate in the same fishery, and there hardly exists any heterogeneity

with respect to the dominant final product.18

Table 4 reports values for the GLR tests with respect to parameter restrictions associated

with different hypotheses, the last four of which relate to the inefficiency model.

Table 4: Generalised Likelihood Ratio Results
Null Hypotheses P1 P2 P3 Total

Panel
Critical Value

(95%)
Production Frontier Tests:

1. Cobb-Douglas function 55.4 112.00 39.8 210.6 32.67
2. Trend effects, (T) = 0 164.5 54.50 18.7 160.6 14.07
3. Storage capacity effects, (hi) = 0 150.2 88.2 118.3 155.9 14.07
4. Age effects, (gi) = 0 55.4 33.9 95.3 66.8 14.07
5. Experience effects, (xi) = 0 10.8 104.8 16.8 3.9 14.07

Inefficiency Model Tests:
6. D88=D89=D90= 0 44.0 215.9 3.6a 43.4 7.81
7. γ = δ1=…=δ13 = 0 100.6 147.1 15.35 257.5 21.74b

8. Firm effects, (nj=aj=hj=0) 13.5 15.68 16.7 16.8 5.99
9. Industry effects, (nI=aI=0) 10.2 2.56 2.11 14.4 5.99

a/ Test corresponds to Ho: D89=D90=0. Critical value is 5.99.
b/ The GLR test for γ = δ1 =… = δ13 = 0 follows a mixed chi-square distribution (Kodde and Palm, 1986). The critical
value for panel 3 is 17.67 at a 95% significance, while at 90% it is 16.67.

                                                          
17  The methodology combined the Cook, Huber, and Beaton-Tukey methods (Huber, 1981). Specifically, all observations
having weights equal to zero, after estimating equation (5), were eliminated. Basically, this eliminated vessels that
operated less than 1 month per year from our estimation sample.
18 As we see from Annex 1, some explanatory variables that appear in (5) also show up in (6). This kind of evidence has
shown up before in the literature concerning these models (e.g. Lundvall and Battese, 2000). This brings up the possibility
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Analysis:

(1) The Cobb-Douglas functional form is rejected in all four cases. This implies that

input elasticities are dependent on the production scale. Table 5 shows biomass and fishing effort

elasticities, using annual averages (at year t) for the relevant variables in each elasticity function.19

Estimations for the effort elasticity are consistently greater than one.20 The estimated values for P1

and P2 are similar in magnitude, showing stability over the period. The values for P3 are larger in

magnitude, showing a declining pattern between 1989 and 1995. Values greater than one imply

increasing marginal returns from fishing effort. Differences between panels are consistent with the

observed substitution of P1-vessels in favour of P3-vessels. Likewise, the falling trend evidenced by

the P3-effort elasticity could reflect a gradual exhaustion of scale economies, related to the

increasing effort levels evidenced by P3-vessels.

With respect to the biomass elasticity: (a) for most years of the sample period this elasticity

is different from zero.21 (b) Values estimated for P1 tend to consistently exceed those for P2.  For

the 1993-95 period, a declining trend is observed for the annual averages of this elasticity, for all

panels. For vessels in panels P1 and P2, the 1993-95 period coincides with a declining trend in

yearly average catch efficiencies (see Figure 3). This period also coincides with declining fish

stocks, which in turn is related to sustained increases in total annual landings (Figure 2).

Some of the yearly estimations for the biomass elasticity have negative values: i.e.,

reductions in biomass would be correlated with greater catch levels. A biological process may help

explain this result: in effect, pelagic fish tend to increase their density when their population

decreases, as a defence mechanism from predators. This greater population density would then

imply more catch per fishing effort.

(2) In all panels the hypothesis of no trend effects is rejected.  As we have seen, during

the 1985-95 period aggregate catch levels grew steadily, while fish stock availability was declining

(Figure 2). Additionally, for all sub-panels we observe significant trend-input interactions that

correspondingly affect the respective input elasticities. Figure 3 shows the annual averages of

vessel-level technical efficiency for all panels. Beginning in 1989, a falling trend for efficiency

                                                                                                                                                                                
that some of the estimated coefficients might be inconsistent. As such this issue remains to be solved (personal
communication with G. Battese).
19 For the analytic formula, see Battese and Broca (1997).
20 The null for effort elasticity equal to 1 is rejected for all panels, testing on its average value for 1985-95, the t statistics
being 4.88, 7.57, 8.55, 15.35 for P1, P2, P3, and the total panel, respectively.
21 The null that the biomass elasticity equals zero is rejected for all three sub-panels, for the entire period, being the t
statistics equal to 4.43, 2.63 and -7.83 for P1, P2, and P3 respectively, while for the total panel the value is 3.77.
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scores is observed in panels P1 and P2;22 while the opposite occurs with P3. This is consistent with

a growing substitution in favour of P3-sized vessels, at the expense of smaller ships.

Table 5. Input Elasticities: Biomass and Fishing Effort

Panel 1 Panel 2 Panel 3 Total Panel
Biomass Effort Biomass Effort Biomass Effort Biomass Effort

1985 -1.14 1.41 -1.23 1.12 - - -1.10 1.71
1986 0.56 1.24 0.00 1.19 - - 0.50 1.48
1987 1.73 1.10 0.91 1.20 - - 1.64 1.32
1988 1.52 1.09 0.81 1.19 - - 1.32 1.34
1989 1.27 1.07 0.64 1.17 -2.10 2.11 0.98 1.33
1990 1.49 1.10 0.82 1.15 -0.01 1.71 1.12 1.24
1991 1.65 1.06 0.97 1.15 1.78 1.29 1.21 1.15
1992 1.34 1.00 0.77 1.16 1.93 1.07 0.82 1.13
1993 0.29 1.07 0.02 1.12 -1.36 1.22 -0.28 1.24
1994 -0.26 1.10 -0.35 1.09 -2.64 1.11 -0.97 1.26
1995 -0.78 1.03 -0.64 1.08 -3.71 0.87 -1.55 1.21

Avr.85-95
(St.Dev.)

0.70
(0.15)

1.12
(0.02)

0.25
(0.09)

1.15
(0.01)

-0.87
(0.11)

1.34
(0.04)

0.34
(0.09)

1.31
(0.02)

Figure 3
Vessel-level Efficiency Scores (annual averages)
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22 During 1989 there was a peak in public policy discussions that were assessing the possibility of allocating, free of
charge, individual transferable quotas based on ‘historical presence’. These controversies triggered strong incentives to
maximize that year’s individual landings.
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On the other hand, Figure 4 shows efficiency histograms for all ships in our sample. In the

case of P3, practically all observations have efficiency scores over 50%, with a significant

proportion being in the 75%-96% range.  In the case of P1 and P2, the distributions are less

concentrated in the upper ranges of the ranking; both groups include a distinct proportion of vessels

with efficiencies between 5%-25%.

(3) Catch effects linked to vessel’s storage capacity (in all panels) are overall

significant (equation 5). This supports the hypothesis of systematic differences between vessel-size

categories, with respect to parameters concerning production frontiers and efficiency levels.  In

effect, when testing for the validity of sample segmentation, this hypothesis cannot be rejected.23

(4) Regarding the production frontier equation, the age variable is clearly significant

for all panels considered. With respect to equation (6), a positive correlation is observed between

inefficiency and age; only in panel P3 this effect is no significant,24 though its sign is consistently

maintained.

 (5) Regarding ‘fishing experience’, we have less robust results. Concerning the frontier

equation, the hypothesis of non-significance is rejected for P2 and P3. As for its effect on

inefficiency, we observe significance only for P2, and with the expected sign. We conjecture that

the proxy we use for ‘fishing experience’ probably does not successfully capture the relevant

underlying processes to accumulative productive learning.25

(6) The dummy variables D88, D89 and D90 are jointly significant for all panels; P3

being again the exception. D89 is the most consistent dummy regarding significance; next is D90.

During 1989, the discussion about a possible free assignment of individual fishing rights reached its

maximum intensity. Therefore, the negative sign obtained for D89 supports the hypothesis of

attempting to consolidate fishing rights by increasing individual landings as much as possible.

(7) In three of the four panels the joint non-significance of inefficiency errors and

inefficiency explanatory variables is rejected.  The exception is again P3, although only marginally.

The γ estimates (the proportion of total residual variance attributed to inefficiency residuals) vary

between 0.82 and 0.9 for the various sub-panels.

(8) Considering the above results for sub-panels P1, P2 and the total panel, we observe

significant deviations with respect to the estimated efficiency frontier. The latter supports our

                                                          
 23 The value of the GLR is 451.6, whereas its critical value is 85.3 (this statistic distributes asymptotically as a chi-square
distribution with 84 degrees of freedom).  Therefore, the null hypothesis that the parameters for the three sub-panels are
equal is categorically rejected.
24 Panel P3 has the fewest observations in our sample. This could help explain this finding, as well as other similar results
(implying ‘no statistical significance’) that we obtain for P3.
25 Informal descriptions by fishing sector experts deem the fishing experience of the captain and crew to be clearly
relevant in understanding the rate of success of harvesting operations.



19

hypothesis regarding ample productive heterogeneity related to vessel-size effects. This is also

evidenced at different aggregation (vessel-, firm-, and fishery-) levels.

Figure 4
Vessel-level Catch Efficiency Histograms

(A) Panel 1 (B) Panel 2

(C) Panel 3 (D) Total Panel
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(9) For all panels, the joint set of variables aggregated at the controlling firm level is

significant. The strongest result is found for the total number of vessels under firm j’s control. Its

significance is systematic in all four cases, and with negative sign in three cases. According to this

finding, the number of vessels controlled by a firm correlates positively with vessel efficiency. This

result might be reflecting external economies at the vessel level, related to search efforts for

locating fish patches of productive interest.

Regarding haul at the firm level, a positive and significant sign is obtained in three cases,

the exception being P3.  A positive sign indicates that as firm’s total haul increases, vessel-level

efficiency decreases. This may reflect production diseconomies at the firm level; perhaps reflecting

increasing complexity in the fishing business as firm’s total fishing effort goes up.

The results for the firm-level storage capacity have no clear significance. We obtain

significance only for P1 and P3, but with opposite signs. The fact that hJ is not clearly significant

but that AJ is, reaffirms our interpretation that the external diseconomies, which appear to be related

to the controlling firm’s haul, would be associated to the intensity of use of the available fishing

capacity.

(10) The results obtained for variables aggregated at the fleet level do not show clear

robustness. The joint non-significance of these variables can only be rejected for P1 and the total

panel. The total number of vessels in the entire fleet shows a negative sign for all panels except for

P3; though the negative sign is significant only for P1 and the total panel. With respect to aggregate

haul at the fleet level, its sign is positive for all cases. This might be capturing congestion effects in

terms of aggregate fishing effort productivity. However, this effect is significant only for the total

panel and for P2.

6. Predictions
Annex 2 describes the vessels that operated in this fishery in 2001.26 Of the 29 vessels that

were chosen by entrepreneurs to operate in this fishery during 2001, 26 are in our estimation base: 6

corresponding to panel P2 and 20 to panel P3. Several characteristics of the vessels chosen by the

entrepreneurs are consistent with our results:

• No P1-sized vessel was chosen to operate at year 2001. This is consistent with the efficiency

score ranking that we have found for the three estimated sub-panels (Figure 3).

                                                          
26 Not all of the existing vessels operated that year. There were in total 180 vessels that had valid fishing licenses to
operate in this fishery. Of these, at the beginning of year 2001 only 29 were officially registered by entrepreneurs for
performing fishing operations. The chosen vessels represented about half of the total fleet’s storage capacity.
Entrepreneurs’ choices in this respect were conditioned by regulations introduced at the beginning of year 2001, which
allowed entrepreneurs to freely decide which vessels to use in order to catch their (individually assigned) fishing quotas.
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• In general, the chosen vessels tend to correspond with those of more recent entry to the fishery.

This is consistent with the sign of the correlation found between inefficiency and vessel age.

• The chosen vessels tend to obtain higher efficiency scores than the average efficiency of vessels

in the same size category.

• The chosen vessels tend to have use intensities that are above the corresponding average use for

vessels in the same size category.

However, the matching between the entrepreneurial choice of vessels and our efficiency

ranking is far from perfect27; Tables 6(A)-(B) illustrate the degree of matching.

The vessels chosen to operate at year 2001 implicitly rank the fleet, differentiating between

operating vessels (denote them by O) −29 in total− and non-operating ones (denote them by NO).

Of the 29 vessels in the first group, 26 can be found in our estimation sample. To obtain a matching

matrix, we selected the 26 most efficient vessels according to our frontier model; these are denoted

by EF. Remaining vessels are consequently denoted by INEF. Table 6A shows the matching for the

entire panel.

Of the 26 vessels that were chosen to operate by the entrepreneurs, and which are also part

of our estimation sample, 12 were among the 26 most efficient according to our model (a matching

rate of 5.9%). On the other hand, 164 of the remaining 178 vessels (in total, there are 204 vessels in

our estimation sample; see Table 2) correspond to non-operating vessels and which at the same time

are selected by our frontier model as part of the INEF group (a matching rate of 80.3%). Therefore,

our model obtains overall an 86.2% matching rate. Table 6B shows the results of a similar exercise

but now constraining our database to consider only the 43 vessels that belong to sub-panel P3.

Table 6A: Matching Matrix (for the Total Panel)

Model Selection:
Entrepreneurs’ choice: EF INEF Total
            O 12

(5.9%)
14

(6.9%)
26

            NO 14
(6.9%)

164
(80.3%)

178

Total 26 178 204

                                                          
27 See Peña-Torres, Basch and Vergara (2003) for more detailed analysis on the underlying reasons for this outcome.
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Table 6B: Matching Matrix (only for Panel 3)

Model Selection
Entrepreneurs’ choice: EF INEF Total

O 12
(27.9%)

8
(18.6%)

20

NO 8
(18.6%)

15
(34.9%)

23

Total 20 23 43

In the case of Table 6B, our model achieves an overall 63% matching rate; which is lower

than that for the entire panel. This occurs because the latter includes a significant number of non-

operating vessels which are ‘correctly classified’ according to our model (all P1 vessels and a

majority of those in P2).28

7. Final Comments
One of the key issues that we have tried to convey in this paper relates to the very nature of

the pelagic fishing industry in Chile, where the predominant destination of the landings goes to the

fishmeal industry. With common-pool fish resources, the gist of this type of business is to maximise

the volume of landings per unit of time at the vessel level.29 The latter objective naturally puts a

heavy toll on the fish stocks and contributes to aggravate the ‘tragedy of the commons’. This type of

harvesting frenzy, where the vessels compete against each other for catch, was a major cause for the

collapse of Chile’s Northern pelagic (especially sardine) stocks in the mid 1980s. It is in such a

setting where different size effects appear to be relevant. We have presented ample evidence

showing that the latter are indeed a relevant issue in the Chilean Southern-Central pelagic fishery.

We have obtained evidence of significant effects at three different size levels. At the

individual vessel level, our results indicate that for constant levels of fishing effort, the larger

vessels are more efficient in the harvesting process than the smaller sized boats. Similarly, when we

control for vessel size, we observe greater levels of catch efficiency the larger the fishing efforts of

the vessel are. In the absence of adequate regulation, these results go in the direction of reinforcing

the tragedy of the commons.

When we analyse scale effects at the firm and industry levels, we observe, on the one hand,

that as the number of vessels owned by a single firm increases (or when the same happens for the
                                                          
28  We also calculated alternative matching matrices, e.g. separating between ‘chosen’ and ‘non-chosen’ groups of vessels
according to the percentage share of chosen vessels’ total storage capacity in the whole fleet’s storage capacity.
Considering this criterion, we get a matching rate of 77% (using the entire panel) and 61% for P3-type vessels.
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whole fleet operating in the fishery), vessel catch efficiencies increase likewise, showing evidence

of positive search economies that reinforce incentives to increase individual fishing effort. On the

other hand, our results show that as fishing haul increases at the firm- and fishery-level, catch

efficiency decreases at the vessel level. This result might be interpreted as a negative congestion

effect that in turn might help ameliorate the magnitude of the tragedy of the commons. If the former

effect proves to be strongest, in a ceteris paribus situation, it would help explain the stylised fact of

frequent collapses in various pelagic fisheries around he world (Peña-Torres, 1996). If congestion

effects were to dominate, the event of a fishery collapse might be diminished. Nonetheless, and

albeit the imminence of this danger may be lessened, as long as common-pool fish stocks prevail,

individual vessels will most probably continue to strive in their endeavour of maximising catch

performance.30

Further results are related to the type of production function used. The Translog option is

definitely preferred over the Cobb-Douglas form, confirming prior results in that no scale

invariance is observed in pelagic fisheries with respect to harvest (Peña, Basch & Vergara, 2002);

hence the values of input elasticities differ at different catch levels.

Regarding the influence of some of the proxy variables in our model we obtain mixed

evidence. On the one hand, a strong correlation between vessel age and inefficiency is observed.

This fact endorses the observed evidence in this fishery pertaining to the entry of newer and larger

vessels in the decade under study, where no explicit restraints were enforced in this sense. On the

other hand, We find that for small sized vessels the harvest-biomass elasticity is larger.

Finally, the correlation found between a large proportion (close to 90%) of the residuals in

our model and the inefficiency term could be interpreted as a signal of significant productive

heterogeneity at the vessel level. The larger vessels appear to be the most efficient while showing at

the same time a lower efficiency-score dispersion. Smaller boats are associated with lower levels of

efficiency and with a greater dispersion; at the same time, the latter tend to be the oldest vessels in

the fleet.

Overall, our results hinge upon the type of panel estimation model that we have used, i.e. a

random-effects type algorithm. It remains to be tested whether our conclusions are robust and

remain so with other estimation algorithms.31

                                                                                                                                                                                
29  For other fishing industries, e.g. the Chilean hake fishery where catch is mainly destined for human consumption, the
main objective is to harvest top-grade quality fish. This implies that fish must be handled with care once harvested, not
like their pelagic counterparts which are stored bulkwise in the storage hold of the vessel.
30  In the meantime, beginning in 2001, individual catch quotas have been introduced in this fishery. This has stopped
frenzy harvesting competition and is helping sustain the dwindling fish stocks.
31 The authors are in the process of finishing a new paper with alternative estimation algorithms within a stochastic
frontier setting.



24

References

Aigner, D., K. Lovell, and P. Schmidt (1977), “Formulation and Estimation of Stochastic Frontier
Production Function Models”, Journal of Econometrics vol. 6: 21-37.

Battese. G. E., and T. J. Coelli (1995), “A Model for Technical Inefficiency Effects in a Stochastic
Frontier Production Function for Panel Data”, Empirical Economics vol. 20, 325-332.

Battesse, G. E., and S.S. Broca (1997), “Functional Forms of Stochastic Frontier Production
Functions and Models for Technical Inefficiency Effects: A Comparative Study for Wheat
Farmers in Pakistan”, Journal of Productivity Analysis vol. 8, 395-414.

Comitini, S. and D.S. Huang (1967), “A Study of Production and Factor Shares in the Halibut
Fishing Industry”, J. Political Economy 75 (August): 366-72.

Cox, D.R. and D.V. Hinkley (1990), Theoretical Statistics, Chapman and Hall, London.
Crone-Bilger, C. (1990), International and economic policy aspects of the Soviet ocean going

fishing industry, Ph.D. Thesis in Economics, University of London
Fried, H. O., C.A.Knox-Lovell, and S.S. Schmidt, eds. (1993), The Measurement of Productive

Efficiency: Techniques and Applications. New York: Oxford University Press.
Gulland, J.A., ed. (1988), Fish Population Dynamics, 2nd edition., Wiley, Chichester, UK.
Hannesson, R. (1983), “Bioeconomic production function in fisheries: Theoretical and empirical

analysis”, Can. J. Fish. Aquat. Sci. 40 (March): 968-82.
Hausman, J.A.(1978), “Specification Tests in Econometrics”, Econometrica, 46(6): 1251-71.
Holly, A.,(1982), “A Simple Procedure for Testing Whether a Subset of Endogenous Variables is

Independent of the Disturbance Term in a Structural Equation”, Discussion Paper,
University of Lausanne.

Huber, P. J. (1981), Robust Statistics, John Wiley & Sons, New York.
Jin, D., E.Thunberg, H. Kite-Powell and K. Blake (2001), “Total factor productivity change in the

New England Groundfish fishery: 1964-1993”, Journal of Environmental Economics and
Management (Ideal first articles)

Jondrow, J., Knox-Lovell, I. Materov, and P. Schmidt (1982), “On the Estimation of Technical
Inefficiency in the Stochastic Frontier Production Model”, Journal of Econometrics Vol.
19, 233-238.

Kirkley, J. E., D. Squires, and I.E. Strand (1995), “Assessing Technical Efficiency in Commercial
Fisheries: The Mid-Atlantic Sea Scallop Fishery”, American Journal of Agricultural
Economics, 77, August: 686-697.

Kodde, D. A. and F.C. Palm (1986), “Wald Criteria for Jointly Testing Equality and Inequality
Restrictions”, Econometrica 54, 1243-1248.

Kumbhakar, S. & C.A. Knox-Lovell (2000), Stochastic Frontier Analysis, CUP, Cambridge, U.K.
Lall, S.V. and G.C. Rodrigo (2001), “Perspectives on the sources of heterogeneity in Indian

Industry”, World Development, Vol 29(12), 2127-43.
Lundvall, K., and G. E. Battese (1998), “Firm Size, Age and Efficiency: Evidence from Kenyan

Manufacturing Firms”, The Journal of Development Studies, Vol. 36(3), 146-163.
Maddala, G.S.,(1992), Introduction to Econometrics, 2nd edn., Macmillan, New York.
Peña-Torres, J. (1996). "Sustainability versus Fishing Collapse: A review of causes and welfare

prescriptions", Estudios de Economia, Vol. 23(1), 83-112
Peña-Torres, J. (1997). “The Political Economy of Fishing Regulation: the case of Chile”, Marine

Resource Economics 12(4), 239-248.
Peña-Torres, J., and M. Basch (2000), “Harvesting in a Pelagic Fishery: The Case of Northern

Chile”, Annals of Operations Research 94, 295-320.
Peña-Torres, J. (2002). “Individual Transferable Fishing Quotas in Chile: Recent History and

Current Debates”, submitted to Marine Resource Economic.



25

Peña-Torres, J., M. Basch, and S. Vergara (2002), “Bio-Economic Evolution of the Chilean Pelagic
Fisheries”, Working Paper, Department of Economics, Universidad Alberto Hurtado,
forthcoming.

Peña-Torres, J., M. Basch, and S. Vergara (2003), “Eficiencia Técnica y Escalas de Operación en
Pesca Pelágica: un Análisis de Fronteras Estocásticas”, Cuadernos de Economía (April
issue).

Rezitis, A., K. Tsiboukas and S. Tsoukalas (2002), “Measuring technical efficiency in the Greek
agricultural sector , Applied Economics (preview article), 1-13

Schmidt,P., and R.C. Sickles (1984), “Production Frontiers and Panel Data”, Journal of Business
and Economic Statistics  Vol. 2, 367-374.

Sharma, K.R. (1999), “Technical Efficiency of the Longline Fishery in Hawaii: An Application of a
Stochastic Production Function”, Marine Resource Economics vol. 13(4).

Squires, D. (1992), “Productivity measurement in common property resource industries: an
application to the Pacific coast trawl fishery”, RAND Journal of Economics vol.23 (2), 221-
236.

Squires, D., R. Q. Grafton, M. F. Alam, and I. H. Omar (1998), “Where the Land Meets the Sea:
Integrated Sustainable Fisheries Development and Artisanal Fishing”, Working Paper 98-
26, Department of Economics, University of California, San Diego.

Tybout, J.R. (2000), “Manufacturing firms in developing countries: How well do they do, and
why?”, Journal of Economic Literature vol. 38, 11-44.

Zellner, A., J. Kmenta and J. Drèze, (1966), “Specification and Estimation of Cobb-Douglas
Production Function Models”, Econometrica, 34, 784-95.



26

Annex 1: Stochastic Frontier Model

(I) Technological Model:
Variables P1 P2 P3 Total Panel
Constant 534.57

(537.1)*
411.71
(3.56)*

2863.1
(2873.0*

491.71
(493.9)*

Biomass (b) -65.78
(-91.5)*

-48.59
(-3.68)*

-324.0
(-446.8)*

-63.46
(-98.7)*

Storage Capacity (hi) -2.18
(-2.25)*

1.56
(0.36)

-64.2
(-67.07)*

3.42
(3.58)*

Effort (ei) 7.66
(8.2)*

-3.26
(-0.77)

32.07
(34.28)*

7.63
(8.34)*

Age (gi) -5.48
(-5.5)*

-1.62
(-0.56)

9.26
(9.30)*

-0.75
(-0.77)

Experience (xi) -0.72
(-0.79)

1.18
(0.48)

-5.23
(-5.90)*

-0.67
(-1.27)

Trend (T) -0.07
(-0.11)

-0.73
(-1.01)

-26.42
(-26.88)*

0.76
(2.18)*

b2 2.03
(38.1)*

1.52
(3.96)*

9.35
(56.86)*

2.07
(57.1)*

hi
2 0.55

(3.63)*
0.06

(0.28)
1.53

(2.20)*
-0.10

(-2.67)*
ei

2 -0.17
(-3.65)*

0.03
(0.2)

-0.24
(-2.25)*

-0.14
(-3.06)*

gi
2 -0.04

(-0.13)
0.00

(-0.02)
-0.04

(-1.51)
-0.03

(-2.6)*
xi

2 0.04
(1.96)*

0.02
(0.69)

0.01
(1.12)

0.00
(0.15)

T2 -0.01
(-1.46)

0.01
(2.06)*

0.04
(3.65)*

-0.01
(-2.21)*

b⋅hi -0.10
(-0.42)

-0.23
(-1.04)

2.51
(3.95)*

-0.32
(-5.44)*

b⋅ei -0.33
(-2.84)*

0.06
(0.28)

-1.43
(-4.74)*

-0.44
(-7.67)*

b⋅gi 0.55
(3.22)*

0.19
(1.11)

-0.45
(-4.73)*

0.07
(1.21)

b⋅xi 0.03
(0.53)

-0.13
(-0.91)

0.20
(2.66)*

0.03
(1.1)

b⋅T 0.01
(0.34)

0.06
(1.3)

1.52
(15.75)*

0.00
(0.08)

hi ⋅ei 0.17
(1.3)

0.26
(1.62)

-0.27
(-0.36)

0.51
(9.1)*

hi⋅gi -0.69
(0.83)

-0.22
(-1.91)++

-0.11
(-0.61)

-0.07
(-1.92)++

hi⋅xi -0.02
(-0.21)

0.05
(0.6)

0.21
(1.77)++

0.01
(0.54)

hi⋅T -0.03
(-0.6)

0.03
(1.27)

0.45
(2.52)*

-0.01
(-1.12)

ei⋅gi 0.19
(0.46)

-0.01
(-0.1)

-0.09
(-1.90)++

0.01
(0.19)

e⋅xi -0.02
(-0.35)

0.07
(0.86)

0.02
(0.41)

0.01
(0.75)

ei⋅T -0.05
(-2.28)*

-0.01
(-0.53)

-0.32
(-9.21)*

-0.08
(-8.79)*

gi⋅xi -0.13 -0.04 0.00 0.00
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(-1.04) (-0.51) (-0.28) (0.46)
gi⋅T 0.14

(2.06)*
0.07

(3.22)*
-0.05

(-2.66)*
0.02

(2.87)*
xi⋅T 0.01

(0.87)
-0.05

(-2.95)*
0.03

(2.57)*
-0.00

(-1.54)
(II) Inefficiency Model:

P1 P2 P3 Total Panel
Constant 0.05

(0.05)
1.19

(0.16)
0.07

(0.07)
0.36

(0.36)
Firm´s Haul (aj) 0.25

(2.17)*
0.15

(1.71)++
-0.43

(-1.69)++
0.2

(2.13)*
Firm´s Storage Cap. (hj) -0.52

(-3.22)*
-0.01

(-0.09)
0.96

(2.84)*
-0.09

(-0.67)
Firm´s Number Ships (nj) 0.33

(2.29)*
-0.24

(-2.75)*
-0.49

(-2.78)*
-0.24

(-3.45)*
Industry Haul (aI) 0.36

(1.39)
0.48

(1.66)++
0.06

(0.24)
0.5

(3.39)*
Industry Number Ships (nI) -1.46

(-2.27)*
-0.44

(-0.81)
0.04

(0.04)
-1.4

(-3.94)*
Age (gi) 1.96

(4.1)*
0.37

(3.52)*
0.12

(1.41)
0.16

(3.78)*
Experience (xi) 0.00

(0.07)
-0.29

(-3.5)*
0.07

(1.58)
0.02

(0.68)
Biomass (b) 0.05

(0.29)
0.01

(0.03)
-0.12

(-0.51)
0.13

(1.35)
Effort (ei) -0.92

(-6.74)*
-0.92

(-3.75)*
-0.06

(-0.28)
-0.98

(-11.76)*
D87 0.05

(0.25)
0.01

(0.07)
. -0.04

(-0.37)
D88 0.33

(2.06)*
-0.12

(-0.85)
. -0.02

(-0.19)
D89 -0.77

(-3.25)*
-0.38

(-2.21)*
0.35

(0.81)
-0.47

(-3.76)*
D90 0.26

(2.01)*
0.08

(0.77)
0.23

(0.87)
0.3

(3.93)*
Parameters
Nº   observations 391 707 149 1255
       2

Sσ 0.16
(12.1)

0.12
(8.28)

0.07
(10.9)

0.21
(17.8)

        γ 0.82
(19.8)

0.9
(36.5)

0.88
(16.36)

0.88
(49.06)

Log-likelihood -71.7 -2.9 47.5 -198.7
 MTE 0.66 0.68 0.80 0.72

Note: in parenthesis values of t statistics; *: significant at 95%, ++: significant at 90%; )/()exp( NTuMTE tiit −Σ=
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Annex 2
Operating Vessels in 2001, at the Southern-Central Jack Mackerel fishery

(Vessels which are also part of our estimation sample)

Ship
(1)

Panel
(2)

Construction
Year

(3)a

Efficiency
Score

(4)
Storage

Capacity (m3)

(5)a

Fishing  Days
per Year

1 2 1992 0.94 750 177
2 2 1991 0.92 650 229
3 2 1967 0.88 710 145
4 2 1993 0.84 700 110
5 2 1993 0.83 700 212
6 2 1992 0.82 710 159

Average  a
Min. a
Max. a

2 1974
1942
1993

0.68
0.05
0.96

144
30

253
1 3 1979 0.95 1255 161
2 3 1978 0.94 1300 193
3 3 1979 0.92 970 148
4 3 1993 0.91 1000 165
5 3 1992 0.91 710 176
6 3 1993 0.86 910 178
7 3 1993 0.86 1000 147
8 3 1993 0.86 850 197
9 3 1994 0.83b 1200 213b

10 3 1978 0.81 1000 182
11 3 1992 0.80 850 180
12 3 1993 0.79 1000 126
13 3 1977 0.78 1200 162
14 3 1967 0.76 1000 187
15 3 1976 0.75 1700 200
16 3 1990 0.74 960 243
17 3 1978 0.73 910 184
18 3 1993 0.67 1065 158
19 3 1993 0.64 1200 171
20 3 1978 0.60 850 102

Average  a
Min. a
Max. a

3 1981
1950
1994

0.80
0.57
0.96

166
31

253

a/  Average 1994-95.
b/ Calculated using information for 1995.  This vessel was built in 1994 and only reached full operational capacity
in 1995.


