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Abstract

We build a model of competitive pooling and show how insurance contracts
emerge in equilibrium, designed by the invisible hand of perfect competition.
When pools are exclusive, we obtain a unique separating equilibrium. When
pools are not exclusive but seniority is recognized, we obtain a different unique
equilibrium: the pivotal primary-secondary equilibrium. Here reliable and un-
reliable households take out a common primary insurance up to its maximum
limit, and then unreliable households take out further secondary insurance.
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1 Introduction

Traditional general equilibrium theory treated insurance as a special case of securities
with contingent payoffs. A household with a low endowment in some state could
“insure” himself by buying a security which delivered when he most needed the
money.

What is missing from this traditional approach is adverse selection. In prac-
tice, an insurance company issues a generic contract, to pay in case of “accident.”
Different clients sign the same insurance contract, but they purchase thereby dif-
ferent securities, because their “accident” states are different. The shareholder in
the insurance company in effect holds a pool of liabilities, and suffers from adverse
selection because households with more probable accident states may be more than
proportionately represented in the pool.

This has been recognized by the burgeoning field of contract theory, in which a
classic problem is how insurance companies will design contracts to protect themselves
from adverse selection. Rothschild and Stiglitz [3] wrote a pioneering article in this
field, in which they described a separating equilibrium that (sometimes) arises when
oligopolistic, risk-neutral insurance firms have the power to impose exclusive contracts
prohibiting their clients from taking insurance elsewhere. They found that only two
contracts would actually be offered, with reliable agents choosing one and unreliable
agents choosing the other. Rothschild and Stiglitz noted that there are robust regions
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in which no equilibrium, as they defined it, exists. Having departed from standard
models of perfect competition, in order to study contract design, this phenomenon
might have been inevitable.

In this paper we develop a general theory of competitive pooling, taking up the
question of insurance from the point at which traditional general equilibrium theory
stopped. A primitive example is the land pool in which households contribute part
of their land to a common pool, whose collective output is then distributed in pro-
portion to the acres put in. It is a short leap from there to the pooling of promises,
like mortgages and insurance, that play such an important role in modern financial
markets. Our treatment is firmly in the tradition of perfect competition, but with
one significant twist. When there is no trade in a pool, potential investors do not
have the requisite information to anticipate what deliveries will be forthcoming from
the pool, even if they observe the analogous pool in other economies. By a simple
device, reminiscent of the trembling hand in game theory, we fix their anticipations
at the most optimistic level consistent with cautious rationality.

The upshot is that equilibrium with competitive pooling always exists.. Though
there are no insurance companies deliberately designing contracts, in equilibrium
the choices that emerge for households resemble the complex contracts found in the
insurance design literature. When we restrict to exclusive pools, we always get a
unique equilibrium, similar to the separating equilibrium found by Rothschild and
Stiglitz, but with two differences. First, in our equilibrium every quantity limit is
marketed, so that a household faces a complete schedule of price for every level of
insurance he might take out. Households choose only two of these, because they
prefer the two to all the others, not because insurance companies deliberately choose
only two to offer. Second, our equilibrium always exists, even when theirs does not,
as one would expect from a perfectly competitive theory.

It is not realistic, however, to suppose that insurance companies can prohibit their
clients from taking out any more insurance. Therefore we consider a new model in
which households can contribute to at most one pool j € J = {1,...,J}, as before,
but thereafter are free to contribute more to a pool J + 1. We prove that when the
rates in pool J+1 are contingent on how much a household contributes to his primary
pool j € J, there is a unique equilibrium which we call the pivotal primary-secondary
equilibrium.

In this pivotal equilibrium, reliable and unreliable households take out primary
insurance up to a prescribed maximum. The rate they pay reflects the “proportional
representation” in the pool. The unreliable households take out further insurance on
the secondary pool J+ 1, receiving a much worse rate because by doing so they reveal
themselves to be bigger risks. The maximum quantity of primary insurance is set
at the level at which reliable agents are just indifferent to taking out the first penny
of secondary insurance. We call the contract pivotal because if its primary quantity
limit were set any lower, reliable households would mix with unreliable households in
the secondary pool.

Our primary-secondary insurance contract conforms much better with practice
than the exclusive contracts posited in Rothschild—Sliglitz. But our contracts rep-



resent a rudimentary form of seniority. In the insurance and reinsurance markets
of today, clients can take out many insurance policies, provided that each dollar of
insurance is clearly ordered. We describe such a model in our final section, and prove
that our pivotal primary-secondary contract survives as an equilibrium. We do not,
however, examine the question of uniqueness. (In fact, we suspect equilibrium is not
unique.)

2 The Land Cooperative

Imagine households h € H = {1, ..., H}, each of whom owns one acre of land on which
there remains no work to be done. The land of household & yields a risky output of
el € R, bushels of wheat depending on the state of nature s € S = {1,...,S}. We
assume (e}, ...,el) = e #£ 0.

Every household h is risk-averse and his ex ante utility of consumption is given
by a continuous, strictly monotonic and strictly concave function

uh:RiHR.

If the output risks are not perfectly correlated, the households might wish to
diversify by pooling their land in a cooperative. Each household would then receive

K, = % Ze’;
heH

bushels in state s € S, in lieu of his contribution.

Such a cooperative could well turn out to be fruitful for all its members. If, for
example, individual risks are not just uncorrelated but also identically distributed,
and if households have the same von Neumann—Morgenstern utilities, then we would
indeed obtain u"(K) > ul(eh) for all h € H, where K = (K1, ..., K;). But if some
households begin with relatively high expected e”, they could easily stand to lose by
contributing all their land to the cooperative pool. To make membership attractive,
it might be needful for the cooperative to amend its rules and solicit voluntary con-
tributions. Then at least there would be the guarantee that no household loses from
joining.

3 The Voluntary Cooperative

Let each household h contribute a share ¢ € [0, 1] of his land. The pool then holds

> her @ acres of land and produces K(¢) = (1/Y ;e #') S pen ¢€l, s € S, per

acre, where ¢ = (¢, ..., o). (If 3,4, ¢" = 0, we define K (p) to be arbitrary.)
Household h receives

" Ks(p)

bushels in each state s € S from his contribution of " acres, and thus finally con-
sumes
wy = ey + " (Ks(p) — ef)



bushels in each state s € S.

The rules of the cooperative define a noncooperative game. At any (pure-strategy
Nash) equilibrium, no agent is worse off than he was before the cooperative was
formed, since he can always choose " = 0. The incentive for household % to con-
tribute " > 0 arises because in some states s, he has relatively low el

Both the quantity ), ©" of land in the pool and its average quality K (o) are
endogenous. In equilibrium there may be considerable adverse selection. Households

with relatively high e may contribute relatively less land.

4 The Perfectly Competitive Cooperative

In the game, households must anticipate that their contributions alter the pool quality
K(p). When the number of households is very large, this quality effect becomes
almost negligible. By ignoring it, any one household can concentrate on the far
simpler problem of determining how much of the “net trade” (K — e®) he wishes to
acquire.

We now postulate a world in which it is perfectly rational for each household to
take K as given, independent of his action. This simplifies the analysis of equilibrium,
without compromising the economic phenomena of adverse selection and signalling.

Let us imagine a continuum of households ¢ € (0, H], where all ¢t € (h — 1,h] are
of type h and are identical: ! = e”, u' = u". Given a measurable choice of actions
¢ : (0,H] — [0,1] (which we also write ¢ € [0,1]@H]), the pool holds ¢ = [ tdt
acres and produces Ks(¢) = %_[OH otel per acre, if @ > 0. It is clear that no single
household in the continuum (0, H] can affect Ks(¢) by changing his actions. From his
point of view, the trading opportunities are specified by the fixed vector K = K(¢).
Household t € (b — 1, ] consumes

7y = Xo(¢' K) = e + ' (K — €f)
bushels in each state s € S. His budget set is given by
SHK) ={(6,y) € [0,1] xRY 1y = X"(6, K)}.

We will say that (K, ¢,z) € RS x [0, 1]OH] RiX(O’H] is an equilibrium for the
economy ((u”,e™)pep) iff ¢ and x are measurable and

(1) K =1 [ ¢leldtif >0
(2) (¢',2") € argmax(g et (k) u' (y)-

Notice that we are silent on how K should be formed when p = 0. By taking
K = 0 (or sufficiently small, provided the marginal utilities of u" are bounded),
we can always sustain an inactive equilibrium (K, p,x) in which ¢! = 0 almost
everywhere. With only one cooperative this is not a serious matter, since we lose
little by confining our attention to equilibria (K, ¢, x) which are active, in the sense



that @ > 0. But when we consider multiple cooperatives, we will always find that
many of them are effectively inactive in equilibrium, and then the choice of their K
becomes a crucial issue, which we shall discuss at length. For the moment observe
that, by its presence, K “opens” the inactive cooperative’s doors for business: every
household ¢ knows that he will receive 0K in exchange for fe; if the cooperative pool
is inactive in equilibrium, it is in spite of this trading opportunity, and all households
are choosing voluntarily not to go there.

We shall say that equilibrium (K, o, ) is type-symmetric if ¢* = p" (and so x! =
xh) for allt € (h—1, h]. In this case we often denote (¢, x) by ((¢', ..., o%), (21, ..., zH)).

5 Pooling Equilibrium and Adverse Selection

To make our analysis concrete, we shall return frequently to the following canonical
example and its straightforward generalization, which we shall call the microeconomic
version of the insurance problem.

Let there be H = 6 household types, and S = 3 states of nature. Suppose
households have the same utility

3
1
ut(z1, w9, 23) = Zgu(azs), for all ¢t € (0,6],
s=1

where v/ > 0, v” < 0, and lim,_,o v/ () = co. The endowments of the households are
given by

0 1 1
et = 1 ;=10 ,e3= 1 1;
1 1 0
1 0 0
et = 0 ];e=[11];¢e=1]0
0 0 1

Since households {1,2,3} and {4,5,6} are symmetric across states, we suspect
that there must be a symmetric equilibrium in which ¢! = ¢!l = 2 for all
t € (0,1] and all ¢t € (3,4]. In these equilibria we perforce get K1 = Ky = K3 =
k. The analysis collapses to a 2-dimensional picture. Every household begins with
an endowment of 1 in his “good” state(s) and 0 in his “bad” state(s). His final
consumption xg will only depend on whether s is good or bad for him. The first
three household types (whom we shall call reliable and label R because two-thirds of
the states are good for them) have utility of consumption

Wz, p) = 3u(ze) + tu(zp).

Similarly the unreliable household types h € {4,5,6} have utility

uU(mg,xB) = %u(xg) + %u(xB).



If the pool quality is K = (k, kK, k), then by contributing 6, the household on
net gives up (1 — k) in his good state, and receives 0 in his bad state. Thus his
consumption must lie on the “k-price line” joining (1,0) to (0,x/(1 — k)). We can
describe the same situation from a different point of view by observing that after
giving up € bushels in his good state, the agent receives Ok in both states. His final
consumption must therefore also lie on the “f-quantity line” starting at (1—6,0) and
moving northeast at 45°.
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From strict concavity of the utility functions, it is clear that each agent ¢t has a
unique optimal choice 2 on the k-price line. This choice can be implemented by a
unique #°. Thus it is evident that any symmetric equilibrium must be type symmetric.
We call it supersymmetric to mean symmetric and type symmetric, and we denote it
(K, %, ).

In the obligatory cooperative, ¢! = 1 for every household, so

_ 3450 545 1

U+l 141 2

In the voluntary cooperative, reliable households are likely to curtail their contribu-
tions because they recognize that their land delivers more on average than the pool,
which is “debased” by the unreliable agents. When ¢t < U the pool quality is
worse than the population average of 1/2, and we say that the pool displays adverse
selection.

We can see pictorially why there is a tendency for adverse selection. If at some
k > 0 the reliable agents voluntarily contribute 0 < ¢® < 1, consuming zff =
eft + pf(K — eft), then their indifference curve I through z® must be tangent to
the k-price line. But the unreliable indifference curve IV through x% is flatter, and
so the unreliable must be choosing ¢V > . We make this precise below.
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Theorem 1 There exists at least one active, supersymmetric equilibrium with K, =
Ky = K3 = k. And every active, symmetric equilibrium has 0 < ot < oY =1, and
1/3 < k < 1/2, i.e., pooling always creates adverse selection.

Proof Every household acts to

Orélgécl[(l —mu(dr) +mu(l —0(1 — k)| = Hax, fr(6,K)
where 7/t = 2/3 and 7V = 1/3. Clearly f; is strictly concave in 6, and so achieves a
unique maximum at 0 (x), a continuous function of k. Notice that
(0
W = (1 - m)/ (Ok)k — T/ (1 — 0(1 — K))(1 — k).

When & > 0, 0fx(6,k)/00|g=0 = 00, so we must have 0,(x) > 0 whenever x > 0.

Clearly m > k if and only if 7(1 — k) > (1 — m)k. Hence when x > 0, the optimal
0 = 0r(k) must satisfy «'(0k) > u/(1 — (1 — k)). This happens precisely when
0k <1—0(1— k), that is when 6 < 1. Conversely, if 7 < k, we must have 0,(x) = 1.

Consider now the map v : [1/3,1/2] — [1/3,2/3] given by

301/3(k) + 309/3(k)
) — 3°1/3 372/
Vik) 01/3(K) + 0a/3(k)

Since 6, /3() > 0 and 0y,3(k) > 0 for all x € [1/3,2/3], the function ¢ is continuous
and indeed lies in the range [1/3,2/3]. Hence it must have a fixed point £* = (k*).

Observe that since 01/3(k*) > 0 and 0y/3(k*) > 0, 1/3 < &* < 2/3. Hence
01/3(k*) =1 and 6y/3(k*) < 1. Therefore k* < 1/2.



Clearly k*, 01/3(x*), and 65/3(k*) generate a supersymmetric equilibrium. But
conversely, any active symmetric equilibrium being supersymmetric, generates k,
61/3(k), B2/3(k) which constitute a fixed point of . [ |

In the special case where u(x) = log(x), we obtain a unique active supersymmetric
equilibrium which can be easily calculated. If 6, < 1,

Ofx(0,K) 1 7r
i i w1
From this we deduce that 6, = (1—m)/(1—k) if o, <1, or else ¢, = 1. Substituting

T=2/3 for the reliable agents, and recalling from the theorem that ¢V = 6, 3 =1,
we get " = 0y/3 =1/3(1 — k), and

—k)=0.

1 2 1
_ —1+§'ﬂ

Rearranging terms shows that there is a unique solution K = (5 — \/_ 5) / 6~ 0. 46.
Then oV = 1 afy =2l =k~ 46, and u¥ &~ $1log(.098). Also ¢ ~ .62, 2l = 2,
ot ~ 28, and uf? &~ 1 log(.126).

This equilibrium i 1s pictured in Figure 3.
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Had the pool restricted to quantities 6§ € [0,Q] with @ < 1, the argument in
Theorem 1 would only give the conclusion ¢t < oV = @, allowing the possibility

that adverse selection is suppressed and ot = V.

6 Insurance

The classical insurance problem can be embedded in our model of cooperatives, and
turns out to be a straightforward generalization of our canonical example.



6.1 The Insurance Problem

.

As in Rothschild—Stiglitz, we consider a continuum of two types of households: “re-
liable” (R) and “unreliable” (U), with population measures Ag and Ay respectively.
Fach household knows his own type, but not that of the others. Each household
has wealth (for simplicity, 1 dollar) in his “good” (no-accident) state, but nothing
in his “bad” (accident) state for which he seeks insurance. Accidents occur indepen-
dently across households. The unreliable households are more accident-prone than
the reliable. Thus if 7 denotes the probability of a good state for type h, we have
it > 7V,

The utility for x units of money is u(x), invariant of the state as well as household-
type. As is standard, we assume that u is strictly concave (u” < 0) and strictly
monotonic, and u'(z) — oo as x — 0. The consumption of (z¢,zp) across the two
states yields expected utility

mu(zg) + (1 — 7")u(xp)

to a household of type h = R, U. For ease of presentation we take 7 to be a rational
number m/n.

6.2 A Microeconomic Representation of Insurance

We recast the Rothschild—Stiglitz story into our framework, building a microfounda-
tion for the insurance problem in the process. The key step is to represent probability
distributions of accidents by states of the world which make explicit who has an acci-
dent there. This makes it clear that “identical” insurance policies for two households
of the same type do not pay off identically, since the households will have accidents
in different states, even if their probabilities are the same.

Within our framework of finite states and household types, we cannot maintain
both the hypotheses that accidents occur independently, and that the same proportion
of each type has an accident in every state. We drop the independence hypothesis,
which actually plays no role in the theory anyway.

Since probabilities are rational, let 7 = r/n and let 7¥ = u/n. To convert
the insurance problem into our framework, take S = n, and suppose there are (") =
n!/[r!(n—r)!] subtypes of reliable households, each with population measure o (], ) Ag,
where o is a positive scalar. Similarly, suppose there are (I') subtypes of unreliable
households, each with population measure o(!") Ay .

Each subtype 7 is identified with the set S; C S of its bad states (r in number if
reliable, u in number if unreliable). All households ¢ of subtype 7 have endowments
equal to 1 is s € S\S;, and equal to 0 if s € S;.

The reader can verify that each household has the right probability of accident
(r/n if reliable, u/n if unreliable), and that in every state the appropriate fraction of
reliable and unreliable households have accidents.

An equilibrium of the insurance problem corresponds to a supersymmetric equi-
librium of its representation, to which we therefore confine attention.



Recalling our numerical example of the previous section, note that it corresponds
to the insurance problem with 7% = 2/3, 7¥ = 1/3, A = Ay = 1. Hence, in the
micro-economic representation provided by our example, S = 3. There are (‘;’) =3
reliable subtypes, each of measure (3)0 = 3 = 1 (setting 0 = 1/3), and (3) =3
unreliable subtypes, each of measure (‘;’)(r =1.

6.3 Restriction to Symmetry

When we come to study the insurance problem, we should realize that every triple
(t,t+1,t+2) of households in the microeconomic representation (where t € (0, 1] or
t € (3,4]) corresponds to one household in the insurance problem. Therefore we shall
always restrict attention to the symmetric situations where such triplets choose the
same @t = i+l = t+2,

Observe that symmetry is much weaker than supersymmetry, which requires in
addition that all triplets with ¢ € (0,1] behave identically, and similarly for all
triplets with ¢ € (3,4]. Supersymmetry will be imposed later only on equilibrium
actions, while the weaker notion of symmetry will be assumed even when we consider
deviations from equilibrium. (Of course, since we have a continuum of households,
deviations by three agents give the same effect as deviations by each of the three
separately.)

7 The Pooling of Promises

The cooperative required land for membership. But the land was only instrumental.
It indicated how much wheat its contributor promised to deliver to the pool, and at
the same time it provided a benchmark for measuring his share in the pool. One
might have imagined that land put into the cooperative was painted blue, and land
held back was painted red. At a glance the villagers could survey the aggregate blue
land held by the cooperative.

The modern world has more sophisticated and less cumbersome methods of ac-
counting, which enables the delinking of promises and shares from the land. This
leads us to think of a cooperative in which promises are pooled.

Such a cooperative must specify the nature of one unit of promise for each po-
tential contributor. Abstractly we can represent this simply as a vector whose com-
ponents e depend on h and s. It should be evident that the mathematics of pooling
promises is identical to the land cooperative.

In the modern world one sees many examples of pools of promises, e.g., insurance
pools, mortgage pools, credit card pools, and betting pools. Often entry into a pool
is signified by a virtual promise which, like our land, is identical across agents. It
is understood, however, that different households will actually deliver differently.
The mechanisms by which these different deliveries come about involve options and
default (and give rise to moral hazard). But as long as actual deliveries are foreseen,
the analysis we do in this paper will remain relevant in the study of equilibrium. We
have focused attention on the default option in [1].

10



The modern pools we alluded to take the further step of decoupling contributions
to the pool from ownership of the pool. We have discussed this development in [1].

8 Quantity Limits

We imposed the restriction ¢! < 1 because every household was assumed to have one
acre of land, and we imagined that the contributed land would have to be turned over
and identified as the property of the cooperative. But if we reinterpret contributions
as promises, then there is no reason why ¢' could not exceed 1. The household is
typically able to deliver even when ¢! is a little larger than 1, out of his receipts from
the pool (assuming that the cooperative makes it feasible to net deliveries from the
pool against promises to the pool). And often the household would like to do so. For
example, in Figure 3, we can see that the unreliable household would prefer ¢V > 1.

Returning to our example, but now without the quantity constraint @' < 1,
household ¢’s budget is expanded to

ZH(K) ={(0,y) € Ry xR 1y = X'(6, K)}.

With log utilities, it can easily be checked that there is a unique active supersymmetric
equilibrium in which oY = 6/5, pft = 3/5, k = 4/9, 2Y, = 1/3, 2% = 8/15, u¥ ~
110g(.095), and zf = 2/3, 2 = 4/15, v ~ $log(.12).
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Notice that although each unreliable household ¢ wants to trade o' = 6/5 > 1,
the upshot of all the unreliable households doing so is to reduce the quality of the
pool from k = .46 to kK =~ .44 and to lower every household’s utility, including their
own.

Thus the cooperative can help everybody by imposing a quantity restriction,
@t < 1.

11



Needless to say, there is no reason why the quantity restriction ¢' < 1 should be
optimal. Tt is possible that setting a bound ¢' < Q < 1 will make everybody still
better off (though not in this example). Reducing the limit @ further will help the
reliable households and hurt the unreliable households. Reducing @) even further will
hurt both households.

How will the cooperative set its quantity limit Q)7

9 Competing Cooperatives

Different quantity limits may, as we saw, impinge on households differently. But if
a cooperative cannot discriminate between households, it can set only one quantity
limit. This gives an opportunity for a new cooperative to form, with a different
quantity limit, to lure away dissatisfied members. How will this competition turn
out?

Let us imagine a collection of cooperatives j € J = {1,...,J}, all entailing the
same promises e’, but different quantity restrictions goz- < Q.

Now household ¢ chooses a vector 8 = (61, ...,0;) € R, where 6; denotes the
number of promises (or the quantity of land) contributed to pool j. Suppose that for
each pool 7, the households anticipate deliveries K 7 in state s, per unit contributed.
Denote K7 = (K7, ..., K%) and K = (K',..., K7). Houschold ¢ then consumes

X0, K) =+ 0;(K) — ).
JjeT

His budget set is
SHEK) ={(0,y) eRI xRS : 0; <Qj for all j € T, y = X' (0, K)}.

When Zje 70; < 1, the interpretation of the budget set is evident. House-
hold t is simply dividing his land among different cooperatives, taking into ac-
count his anticipations of the various pool qualities. In that case the constraint
e+ cs 05 (K7 —e') > 0 is redundant. But we allow for Y, 6; > 1, provided that
household ¢ can cover each of his promises out of receipts from the same pool, or
from other pools. (Note that the netting of promises and deliveries is now across all
pools, so we may view it as supernetting.)

9.1 Equilibrium

Abbreviate “almost all ¢ in (0, H|” by “a.a.t,” and the integral ]OH f(t)dt by f. The
vector (K, p,x) € R‘ZXS X RS?’H]XJ X RSB’H]XS is said to be an equilibrium of the
economy ((u”, e pnem, (Qj)jer) if ¢ and x are measurable, and

(1) K =21 [T oteldtif o, >0,V € T
J

?
(2) (¢',2") € arg maxg ,)ext(K) u'(y) for a.a.t.

12



10 Cooperatives without Managers, Contracts without
Designers

In our framework the cooperative j makes no decisions. It simply stands open for
business. Its quantity limit @); is its defining characteristic, rather than a strategic
choice made by its manager. And its K7 is determined by the forces of perfect
competition in equilibrium.

The current orthodox view is that insurance is impossible without strategic inter-
mediaries, actively designing contracts. This view was most elegantly expressed by
Rothschild and Stiglitz (1976), who described an economy with perfectly competi-
tive consumers and oligopolistic, risk-neutral insurance companies. These companies
designed and marketed insurance contracts (@, K) specifying the quantity @ of in-
surance available and its price K.

From the point of view of the household in our model, there is a potentially
complex menu of nonlinear contracts. But this sophistication is owing entirely to
“the market,” not to any manager—designer. We will see that only a few (Q;, K7)
have $; > 0 among all potential j € J. The set of active contracts, that are played
out at equilibrium, is thus sharply determinate. And it is designed entirely by the
“invisible hand” of perfect competition.

10.1 Perfect Competition and Entry

In the Rothschild-Stiglitz model of insurance, equilibrium was required to be immune
to entry by new insurance companies who might offer contracts (Q, K ) that would
turn a profit by luring households away from their old contracts. One might well ask
whether our equilibrium is immune to entry. The answer is that whatever new Q
could be imagined is already present and embodied by one of the pools j, and it’s
associated quantity limit QQ; = Q. Tts price K7 is set by the market. If the price K7 is
set sensibly, and if at that price no household wants to join pool j, then we conclude
that entrants using contracts (Q;, K) cannot upset the equilibrium, for any K.

For this conclusion to be apt, we must be careful to make sure that the associated
K are appropriate. High K encourage entry, and thus have the potential to upset
equilibrium. Of course K cannot be arbitrarily high. It must be set at a level at
which pool j can “reasonably expect” its receipts to cover its commitment to deliver
K. If KV is the highest K consistent with this commitment, then consistent contracts
of type (Qj, K) must have K < K7. But since (Qj, K7) rendered pool j inactive, so

will (Q;, K).

11 Equilibrium Refinement

With only one cooperative, we were content to confine our attention to equilibria in
which the pool was active. With many cooperatives, the analogue would be to assume
that all pools are active. But, as we have said, in the typical case every equilibrium
effectively renders most pools inactive. Thus we have no choice but to confront how

13



anticipations K7 will be formed when pool j is inactive, since it is those anticipations
themselves that are responsible for the inactivity.

Our definition permits any pool j to be inactive, i.e., to have ¢; = 0. Many
potential pools in the real world are also inactive. One possible explanation is that
people anticipate unduly pessimistic deliveries from them and are thus discouraged
from joining them. There is nothing so far in our definition to prevent this from
happening. When pool j is active, there is a “reality check” on K7, since (by (1))
K7 must conform to actual deliveries. But for inactive pools j, there are no real
deliveries to compare K7 to. If K7 were set suitably low, then no household ¢ would
be willing to contribute to pool j, for he would get very little per unit but incur a
relatively large obligation to deliver e!. Indeed, given an arbitrary subset of pools,
we can always obtain equilibria which render them inactive by choosing their K7 to
be low enough.

We believe that unreasonable pessimism does prevent many real world markets
from opening, and provides an important role for government intervention. But
it is interesting to study equilibrium in which anticipations are always reasonably
optimistic. It is of central importance for us to understand which markets are open
and which are not, and we do not want our answer to depend on the agents’ whimsical
pessimism.

Anticipated deliveries from inactive pools are analogous to beliefs in game theory
“off the equilibrium path.” Selten [4] dealt with the game theory problem by forcing
every agent to tremble and play all his strategies with probability at least € > 0, and
then letting ¢ — 0. We shall also invoke a tremble, but in quite a different spirit. Our
tremble will be “on the market” and not on households’ (players’) strategies. Indeed,
no household could tremble the way we want: we introduce an external player who
delivers more per unit than any of the real households.! This extraordinary delivery
is what banishes whimsical pessimism.

Consider an external e-agent who contributes e(n) = (¢j(n))jes > 0 to every
pool, and delivers an exogenously fixed vector e = (e,...,e) per unit contributed.
We require that e > maxpcy e? for all s € S. Any e satisfying this requirement
will be called an optimistic external delivery. The vector e indicates the boosting
of household anticipations brought about by the external e-agent. We assume that
e(n) — 0 as n — oo, so one might interpret this agent as a government which
guarantees delivery on the first infinitesimal promises.

Formally, we say that an equilibrium E = (K, p,x) € ]Rij X ]RS?’H] is a refined
equilibrium if there is a sequence E,(n) = (K(n),¢(n),z(n),e(n)) € R/ x REE’H]J X
]RS?’H]S xR such that e is optimistic, ¢(n) and (n) are measurable for all n = 1,2, ...
and

(1) K(n) — K and ¢'(n) — ¢!, 2t(n) — 2! for a.a.t

(2) (¢H(n),2"(n)) € argmaxg yyexr(k(n)) u'(y) for a.a.t and all n

'Were we to invoke a tremble on strategies, e.g., forcing each household ¢ to contribute e(n) > 0
to every pool, this would not meet our needs.
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(3) j(n) > 0if @;(n) =0, for all j € J and all n, and e(n) — 0
(4) For all n and for all j € J* = {j € J : ¢; = 0},

Ki(n) = Wl%(n) [q(n)e + /0 ! goz-(n)eidt} .

The external e-agent may boost the delivery rate K7 (n) above the level achieved
by the real households in E.(n). As n — oo this boost disappears for pools that
are active in the limit. But for inactive pools, his presence prevents the limiting
anticipations from sinking too low, and steers them away from undue pessimism. In
fact, at first glance, one might think that given his extraordinary deliveries, no pool
will be inactive in equilibrium. We shall see, however, that quite the opposite is true:
many pools will be effectively inactive.

One can prove that a refined equilibrium always exists by explicitly adding an e-
external agent to the market (who contributes ¢;(n) = 1/n on every pool and delivers
(1/n)e), showing that a (1/n) — e-equilibrium exists, and finally letting n — oo and
taking limits. Computing such an equilibrium would be hard, because it would involve
computing a different equilibrium for each n. Our definition captures this spirit, but
makes the computation much easier by dropping €;(n) > 0 unless @;(n) = 0 (where
the external boost €;j(n) > 0 is really needed) and also dropping the condition that
K7(n) = actual deliveries for active j € J\J*, since we know where these K7(n)
must converge anyway.

11.1 Elimination of Trivial Equilibria

Our refinement eliminates trivial equilibria in which K is set absurdly low. Let
KM= 13 cg el be the average delivery of household type h. Since e # 0, k" > 0
for all h € H, and kK = minyep £® > 0. It is easy to see that there cannot be any
refined equilibrium (K2, ..., K7, ¢) in which for some pool j, KI < k for all s € S.
In the case of H = 2, and J = 1, the pool is active in a refined equilibrium if and
only if there are gains to trade, i.e., there is some 0 < o < 1 and 0 < B < 1 with

ul (ae! + Be?) > u(el) and v?((1 — a)e! + (1 — B)e?) > u?(e?).

11.2 Hierarchical Refinement

Suppose that we have a hierarchy on J given by a partial order < on J. We specialize
our notion of refinement to respect this order by strengthening (3) to

(3*) gj(n) > 0 if @;(n) = 0, for all j € J and all n, and e(n) — 0; moreover,
gj(n) < Le;(n) whenever i < j.

This notion will play a decisive role when we introduce seniority ranking of the
pools. (Read “i < j” as “i is senior to j.”) Our hierarchical refinement requires that
the boosting provided by the external agent is an order of magnitude higher on a
senior pool compared to any of its juniors.
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12 Insurance with Competitive Pooling

Let us return to our canonical example of insurance, with reliable household types h €
{1,2,3} and unreliable types h € {4,5,6}. Fix the economy ((u",e")ner, (Qj)jer)
with multiple pools j € J = {1,...,J} whose quantity limits form a fine grid Q; <
Q2 < -+ < Qy, ie, max;i{Q;11 — Q;}, Q, and 1/Q are all small, enabling us to
approximate continuous quantities.

Theorem 2 shows that the economy with competitive pools has a continuum of
equilibria, all of which entail a piecewise linear schedule in which the price rises with
the quantity of insurance taken out. (This rise, in contrast to volume discounts, is
the result of adverse selection.)

In Section 13 we show that with exclusivity the whole continuum of equilibria
disappears, and a unique (separating) equilibrium takes its place.

In Section 14 we introduce seniority instead of exclusivity, and we find that the
separating equilibrium disappears and a unique (pivotal) equilibrium emerges from
out of the continuum.

Theorem 2 There is a continuum of distinct (in consumption) refined symmetric
equilibria (K, p,x), KV = (K7, ...,k%). In each such equilibrium, delivery rates k7 take
on at most three values: 1/3 or & or 1/2, where 1/3 < & < 1/2. No household con-
tributes to a pool before exhausting the quantity limits of all pools with higher delivery
rates. The reliable households actively contribute only to pools j with x/ € {1/2,k}.
The unreliable households contribute at least as much as the reliable households on
every k-level, and are active on at most one level below the reliable. All inactive pools
have the same delivery rate = minje 7 K.

XB/

Figure 5

We prove Theorem 2 over the next two subsections.
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12.1 The Continuum of Equilibria

We can easily characterize the continuum of equilibria of Theorem 1.

12.1.1 Primary-Secondary Equilibria

Let us first focus on the case where k takes on at most two values. In all these
equilibria both types take out equal amounts ¢* of a primary contract (i.e., each
contributes ¢* over a set of primary pools with the same delivery rate), followed by
different amounts 0 < @ < @Y of a secondary contract. This set of equilibria can
be parametrized by ¢*.

At the maximum level of ¢*, we have the equilibrium depicted in Figure 6. (For
simplicity we will assume throughout that all points of tangency are exactly achievable
via the quantity grid {Q1,...,Qs}. Otherwise, obvious though tedious modifications
need to be made to our statements.)

Xg 4
R
|Y !
xU
1/3-price line «R
1/2-priceline
45° 45° (1,0
oU < U >| XG
Figure 6
As ¢* is lowered we obtain
XB A
[ 1/2-priceline
- - XU
1/3-price line |U
xR [R
45° 45° (1,0
——fU— ¢ ——  Xo
Figure 7
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In the middle is the equilibrium of Figure 8, which will assume a prominent role later.
We call it pivotal because the reliable households are ready to switch to being active
on the secondary contract, were its rate improved by a penny. This equilibrium also
constitutes a critical point between two regimes: one where both types take out the
secondary contract, the other where only the unreliable do so.

Xg A
1/2-priceline
- - XU
1/3-price line |U
I R
xR
45° 45° (1,0)
<—o¢U >< o* > Xe

Figure 8: The Pivotal Equilibrium

As ¢* is lowered still further, the reliable households also take out the secondary
contract (whose delivery rate & as a result rises above 1/3):

Xg A
1/2-priceline
xY
K-priceline.” U
R
«R I
45° 45° 45°
Ny,
|<— PR >— o* —> XG
< QU >
Figure 9

At the bottom end of this continuum, ¢* = 0 and we get the pure pooling equi-
librium of Figure 4.

To show that all these equilibria are refined, we simply put x/ = & for every
inactive pool j, where & is the delivery rate of the active secondary contract. In
the refining sequence we let households spread themselves over all these pools in the
same proportion they are spread on the secondary contract. In fact this even shows
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that there is an equilibrium of each type in which all pools are active (and thus
automatically refined).

12.1.2 Primary-Secondary-Tertiary Equilibrium

These are as in Figure 5. We leave the details to the imagination of the reader.
We have pictured the continuum of equilibria. Their geometry can easily be made
algebraically precise, as we do for the pivotal equilibrium in Section 14.3.

12.2 No Other Equilibrium

We now present the proof that there can be no other equilibrium.

Proof Let (k,¢,x) be an arbitrary refined symmetric equilibrium, and let
3
Th={ieT: [ ¢>0)
Jo

-6
7' =i [ o>0)

be the sets of pools on which R and U households are active. (Since u/(z) — oo as
x — 0, and k; > 1/3 for all j € J by refinement, it is evident that J% # ¢ and
JY # ¢.) Arrange {+/ : j € JRUJY} in descending order: s/t > k%2 > ... > KiL,
Any household ¢ (which may be of R or of U type) could obtain consumption anywhere
on the piecewise linear path 7 given in Figure 10. Since min{x/ : j € 7%} > 1/3 = &!
foralli e J U\j R, the unreliable households are acting alone on at most the last link
k7L, Tt follows, from the strict concavity and monotonicity of the utilities, that each
type has (and is choosing) a unique optimal consumption on 7. By the argument made
in the proof to Theorem 1, the unreliable need more insurance, so their consumption
2V must lie on 7 to the northwest of the reliable consumption %, i.e., starting from
(1,0) and proceeding to 2V on 7, the unreliable keep constant company with the
reliable till the latter drop off at 2! (at which point, the unreliable proceed further).
On links j; where the two types act together till the end, x;, must be 1/2. Therefore
the part of 7 on which R households act has at most two distinct 7. If there are two
links, k71 = 1/2 and 1/3 < k%2 < 1/2. The theorem now follows. [
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13 Exclusivity and Rothschild—Stiglitz’s Separating Equi-
librium

Pools can compete more effectively if they are allowed to be exclusive, i.e., to prohibit
any household from contributing elsewhere if he contributes there. The contribution
0 € ]RJJr of any household must then satisfy

0 € RY (exclusive) = {# € R] : 0; > 0= 0; =0 Vj #i}.
Thus we define the budget set of ¢ to be
YL (K) = {(0,y) € Z'(K) : 6 € R (exclusive)}.

Substituting %, for ¥, we then define refined equilibrium exactly as before.

The exclusivity constraint destroys the entire continuum of equilibria that we
obtained in Section 11, when simultaneous access was permitted across all pools.
Indeed many of those equilibria had households contribute to more than one pool,
and so are ruled out a priori. The only feasible candidates are the pure “pooling”
equilibria.

We showed in [2] that, in the presence of the exclusivity constraint, pooling equi-
libria cannot survive the test of our refinement. Let us informally see why.

Suppose we have a pooling equilibrium (drawn with both types up against the
quantity restriction Q;):
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The crucial point is that if U and R act on the same pool, then by the argument
of Theorem 1, oV > ¢ and k/ < 1/2, and the R-indifference curve will cut the U-
indifference curve from northwest to southeast. How will % be set for an inactive pool
¢ with @); slightly less than ();7 Consider the point z formed by the intersection of
the Q;-quantity line and 7. Then z lies below IV. Let & be the price line determined
by z. By continuity, & ~ x/ < 1/2 < 2/3. If k' > &, then reliable types will rush
to join the pool, and i will not be inactive. On the other hand, if k' < &, then no
unreliable type will be close to wanting to join pool i. By the refinement x* > 2/3, a
contradiction.

With exclusivity, a new kind of equilibrium emerges. By the exclusivity hypoth-
esis, each household can contribute to at most one pool. By type-symmetry, all the
reliable households will choose one pool ¢ , and the unreliable households will choose
another pool j, as indicated in Figure 12.

Xg A
1/2 [2/3-priceline
1/3-price line—| " ,’
X 4

’// \\\ | u
a0 S IR
Q k—oR—l1 xg

< oy >

Figure 12
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Let us briefly see why equilibrium of this sort always exists. (For rigorous details,
see [2].) Take any quantity constraint Qp with Q; > ! = the quantity taken out by
the reliable households. The @, quantity line will intersect the IV indifference curve
first, at a point x = x(Q¢) that lies below the I indifference curve. The price line
kL = ap /Q¢ would make unreliable households just indifferent to switching pools,
but leave the reliable households completely uninterested. In the refining sequence,
it is therefore easy to combine a dwindling measure of unreliable households with the
dwindling external agent to produce deliveries k‘(n) = . Letting x*(n) = 2/3 and
k7 (n) = 1/3 throughout, all the households are optimizing.

If on the other hand Q; < ¢, the Q,-quantity line will intersect the It indif-
ference curve first, at a point y, below the IV indifference curve. Let k¢ = yp /Qq.
Then x* > 2/3, and at that price reliable households are just indifferent to switching,
while unreliable households are uninterested. Our refinement sequence will allow for
a mixture of the reliable, and the external agent, who collectively will deliver at the
rate xt.

13.1 Comparison to Rothschild—Stiglitz

Our “separating” equilibrium produces the same consumption and the same active
contracts as the Rothschild-Stiglitz separating equilibrium, when the latter exists.
However in the Rothschild—Stiglitz equilibrium, households have just two quantity
choices. In our equilibrium, every quantity choice ); comes with a “price” k7. House-
holds choose from an entire schedule (where higher Q; come with lower 7, i.e., higher
premiums), though they end up picking only two.

Our equilibrium always exists, whereas the Rothschild-Stiglitz equilibrium ro-
bustly fails to exist.

14 Primary and Secondary Pools

It is unrealistic to suppose that an insurance company can prohibit its clients from
taking out any further insurance from other carriers. Many people (including one of
the co-authors of this paper) take out multiple life insurance policies, many profes-
sional athletes and musicians have multiple accident insurance contracts, and many
agencies have multiple disaster insurance contracts.

We consider the simplest variant of our exclusivity model, in which primary pools
1,...,J remain mutually exclusive, but none of them can prohibit households from
contributing to a secondary pool J + 1. Pool J + 1 also has no quantity limit (or else
Q41 is very large).

In Section 14.1 we investigate equilibrium when the delivery rate x/*! is the
same for all contributors. In Section 14.2 we investigate equilibrium when pool J + 1
can segregate contributors into subpools, conditional on the size of their primary
contributions Q);, j < J. This reflects the scenario, often seen in the real world, when
secondary insurers make it a point to find out how much primary insurance has been
taken out, and then charge accordingly.
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We prove that with a conditional secondary pool, there is a unique equilibrium,
namely the pivotal primary-secondary equilibrium defined earlier.

Primary and secondary pools constitute a primitive form of seniority, which we
begin to study in greater generality in Section 15.

14.1 The Unconditional Pool
Denote J ={1,...,J,J + 1}. The budget set of any household ¢ is

f)t(K) ={(0,y) € ]RiHXRi 10, <Q;VieJ, (01,..,05) € Ri(exclusive), X'(0,K) =y}

Substituting X¢(K) for X¢(K), we define refined equilibrium exactly as before.
With the onset of an unconditional pool, the separating equilibrium disappears.

Theorem 3 Consider the model of multiple pools with exclusivity. Suppose, in ad-
dition, there is an unconditional secondary pool. Then the set of all refined supersym-
metric equilibria coincide in consumption with the bottom-half of primary-secondary
equilibria, starting at the pivotal equilibrium and descending all the way to the pooling
equilibrium.

The proof is in the Appendix.

14.2 The Conditional Pool: Simple Seniority

We now turn to the case where households can be segregated into secondary subpools
depending on how much they contributed on their primary pool. It is simplest to
think of this segregation as the creation of J secondary pools.

For each primary pool i € {1,...,J} with quantity limit Q;, we have its corre-
sponding secondary (junior) pool o (i) with a large quantity limit Qy(;). For sim-
plicity we take Q) = Q41 for all i € {1,...,J}. Thus the set of pools is J =
{1,...,J,0(1),...,0(J)} with the partial order: i < o (i) (i.e., 7 is senior to o(i)). The
budget set of household ¢ now takes the form

YUK) = {(6,y) e R xRS :0; <Q; Vj €, (61,...,0) € R] (exclusive),
0;=0= 0, =0for 1 <i<J, x"(0,K) =y}
Then hierarchically-refined equilibrium is defined as before, substituting X% (K) for
YHK).
14.3 The Pivotal Primary-Secondary Insurance Contract

Recall our canonical insurance model with reliable and unreliable households. Let
the pools J be defined by the simple seniority tree of two levels described in the last
section. We shall show that equilibrium must be in accordance with Figure 13 below.
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Since g(0) =4 x 2 -2 =16 > 0, and g is monotonically and continuously decreasing,

and ¢(@) is near —2 for # near % — %91, it follows that 5 is uniquely defined.

Theorem 4 All hierarchically refined supersymmetric equilibria (of the insurance
model with simple seniority) lead to the same consumption. Reliable households
consume (zf,2%) = (1 — 361, 361) and unreliable households consume (xf,xY) =
(1-— %91 - %92, %91 + %92). An equilibrium which sustains this consumption has one

primary pool i and one secondary pool (i) as its only active pools, and
%R = SOZU =Q; =01; 905(2') =0, 903@ =02 < QJy1s K= %, K7 = 1/3.

The proof is in the Appendix.

15 The General Seniority Tree

In many cases, insurance companies cannot prohibit a household from going elsewhere
to obtain additional insurance, or stop the other companies from giving it to him. At
most, the companies can reveal to each other how much insurance the household has
with each of them.
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We return to the situation in which households can contribute to as many pools
as they wish. We shall now suppose that contributions are public information. A
household or corporation getting insurance must (in some cases) declare from where
each dollar of insurance comes. Catastrophe insurance might cover the first $100,000
of damage; the next $200,000 might come from some other (re)insurer. The second
insurer is aware of the primary coverage, and will charge a rate depending on how
much primary insurance there is. We incorporate this notion of seniority by suppos-
ing that pools limit entry to households based upon their history of contributions
elsewhere.

Let Q be a collection of quantities Q CR4 4, Q={q1 < - < ¢ < -+ < qum}-
We now introduce seniority levels £ = 1,2, 3, ... on pools. The pools J are defined by
the nodes of a rooted tree (except for its root), which in turn is defined as follows.
Starting from any node, the branches that issue out correspond to the elements of
Q. A pool or node of level ¢ is therefore denoted by j = mimsa...mg, which describes
the unique path from the root to that node. It has quantity limit (); = g,,. This
pool is junior to precisely all its predecessor nodes (pools) in the tree, namely the
¢ — 1 nodes (mq), (myimsz), ..., (myma...my_1). A node i is said to be senior to j if j
is junior all the nodes in the infinite tree of which it is the root.

Seniority means that each household’s contributions must lie on one path in the
tree. We further assume that he can make only a finite (albeit arbitrarily large)
number of contributions. A household in effect chooses a node, and then chooses
nonnegative, feasible contributions to pools along the path from the root to the
node.

The fact that the tree is infinite, and that there is no upper bound on the number
of positive contributions, means that a household, regardless of his history of pools
joined, is always free to join a new pool. But that pool is cognizant of his history
and indeed is open only to households with the same history.

If the tree has only one level, then seniority is identical to exclusivity.

15.1 Equilibrium

Let J denote the (partially ordered) set of all nodes of the infinite tree, except for
its root. (Thus J represents the hierarchically arranged pools potentially available
to the households.) And let K € R‘Z *S be the anticipated delivery rates from these
pools.

The budget set of household ¢ is then given by

SUK) = {(0,y) eRI xRS : (1) 0, <Q; Vj €T,
(ii) 3j* € J such that 6; > 0 only if i is senior to j*, (iii) y = x*(0, K)}.

Notice that, on account of (i), x'(6, K) = €' + Y ; 0;(K? — ') is well defined,
since 0; is zero except possibly for finitely many j. We restrict attention to maps
Y € R{X(O’H] for which there is a B < oo such that, a.a.t, go?- = 0 if the level of j
is bigger than B. With this proviso, we define hierarchically refined equilibrium as
before, using the budget sets S¢(K).
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Theorem 5 In the insurance model with a general seniority tree, there always exists
a hierarchically refined equilibrium which yields the same consumption as the pivotal
primary-secondary equilibrium, and which moreover has just two active pools, one
from the first level and one of its juniors from the second level.

The proof is in the Appendix.

16 General Existence of Equilibrium

We were able to exploit the special structure of the insurance economy (like the
single crossing property) to construct equilibrium and to verify it to be so. In general,
constructing equilibrium can be quite difficult, but there is no question of its existence
(except, perhaps, for the general seniority tree with its infinite set of pools). Theorem
6 assures us that equilibrium exists even without special structure, for example, even
if reliable households have utility v # u so that the v and u indifference curves cross
more than once.

Theorem 6 Consider any of our perfectly competitive pooling models with a finite
set J of pools. Then a refined (and, if J is partially ordered, a hierarchically refined)
equilibrium exists.

This is a corollary of Theorem 7 in [1]. It is worth noting that equilibria, in the general
setting of Theorem 6, need not be type-symmetric on account of the nonconvexity of
budget sets (brought on by exclusivity or seniority). It is a happy circumstance that
they turn out to be so in our canonical insurance framework.
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Appendix

Proof of Theorem 3 Let (k,p,x) be a refined, supersymmetric equilibrium. Sup-
pose the reliable households (who are all making the same choice, since ¢ is type-
symmetric by assumption) have contributed on primary pool j. Then all unreliable
households must also have chosen primary pool j. For suppose they chose primary
pool i # j. Then 1/3 = k' < k¥ = 2/3. Let xk > 1/3 be the delivery rate on pool
J + 1. (k cannot be less by our refinement.) Then any household ¢ of type U can
do strictly better by switching to pool i and then (if necessary) contributing more on
pool J + 1. This is a contradiction, proving that consumption at (k, ¢, x) must be in
accordance with one of the primary—secondary equilibria.

We next show that no primary-secondary equilibrium, which lies strictly above
the pivotal, survives the test of refinement.

Xp A

B
xU
|U
xR . .
y 1/3-priceline
1/2-priceline &
//, \\\ |R
450/,\/450 e« Y/Qj-priceline

<—Q —1 xg
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Figure 14

Consider any refined supersymmetric equilibrium (k, ¢, x) with consumption as in

Figure 14 above. Let j be a primary pool with @; just below ¢*. Suppose (k(n), ¢(n), z(n),e(n))>,
refines (k, v, x). Let U(n), R(n) be the sets of households of U, R type who contribute

positively on pool j in ¢(n). Then there exists ¢ > 0 such that

AU(n)) > A(R(n)) ()

for all large enough n, where A = Lebesgue measure. Otherwise, by our refinement
k7 (n) — k/ > 2/3, and each R household could asymptotically achieve much more
utility than his equilibrium level I, by contributing Q; on pool j. For the same
reason, denoting by ¥ the intersection of the @)j-quantity line and the I R indifference
curve,

K < Y5 ()

J

By (%) and (*x), there is a non-null set of U-households, each of whom can consume
(via his contribution ¢%(n) on j) only some point arbitrarily close to the triangle
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formed by y, (1 — Q;,0), (1,0). But after this consumption, ¢ can do further trade
only via pool J + 1 at the rate x”*1(n) — s’/ = 1/3. All such trade keep ¢ bounded
strictly below IY, contradicting that he was maximizing.

This proves that the equilibrium cannot be refined.

Finally we must show that any primary—secondary equilibrium of the bottom half
is in fact a refined equilibrium of ((e”, u")nen (Q)jec7)-

Xg /
xl(n) =«I-priceline
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XU ~ g XR
xS IR .
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Let the primary—secondary equilibrium be as pictured above, with both household
types contributing ¢* = @)+ on primary pool j*; and gpI}H, <P§+1 respectively on
pool J 4 1. We must assign x to all the pools and show that they can be justified via
refinement.

Let “y-line” name the common tangent to IV (at 2V) and I (at ). For any
j € I\{j*,J + 1}, let 27 = intersection of the @;-quantity line with the y-line. If
Qj < " +¢Y 4, define k7 = 23, /Q;. I Q; > ¢* +¢Y |, define k7 = 2} /(¢* +¢Y ).

Now we construct the refinement E.(n) = (k(n),p(n),z(n),e(n))>2 . First set
e=zkL/Q1 and k/(n) = K for all j € J and all n. Take a (symmetric) set W(n) of
U-households of measure 1/n, and divide it into disjoint sets W7 (n), j € {1, ..., J}, of
equal measure. In ¢(n), the households in W (n) will deviate from their equilibrium
actions, while all other households will stick to their equilibrium actions. If @; <
©*+¢Y 1, each t € WI(n) sets ¢%(n) = Qj toreach 27 at the anticipated delivery rate
#?(n) = k1. Then he further contributes ¢4, | —Q; on J+1 to advance from @7 to 2V
at the anticipated delivery rate x”/*1(n) = x/*1 If Q; > ¢* + @Y, |, let t € Wi(n)
contribute ¢* + gog 41 on j to advance directly to 2V at the anticipated delivery rate
K (n) = ki = 2% /(¢* + ¢, ). Finally we define ej(n) for all j € J\{j*,J + 1} to
make k7(n) become real with the e-external agent. (Needless to say, take €;(n) =0
for j = j* or j = J +1 throughout). Thus let £;(n) be the unique ¢ which solves the
equation
_eeg+ AW (n))0;(n)

j ) J
=+ A(W3(n))0; ()
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where we have denoted

Q; if Q; < "+ U
ej(n):{ 4{ U if ] SO* Spﬁ—‘rl -
g HQ > 0"+ 97,

It can be easily checked that our sequence refines the equilibrium. |

Proof of Uniqueness in Theorem 4 First let us notice an implication of hier-
archical refinement which will be useful for us in the proof, and which may also be
of some independent interest. We say that K is boosted on the refining sequence
Ec(n) = (K(n),p(n),n(n),e(n)) if either

(1) @;(n) >0 for all large n and K > limsup,, % _fOH @l (n)eldt
or
(2) ;(n) =0 infinitely often (in which case Kl =e).

If (2) holds we say that K7 is superboosted on E(n). Let us also define pool j to
be non-negligible compared with pool ¢ in the sequence Eg(n) if lim infn{_[OH goz- (n) —
B fOH @k(n)dt} > 0 for some B > 0. Then, if E is hierarchically refined by E.(n), it
is easy to see that the following property will hold:

i <J;
Jj is non-negligible in E.(n) compared with 7; » = K7 is not boosted Vs € S.
K is not superboosted for some s

Let us now turn to the proof of uniqueness. Arguing exactly as in the proof of
Theorem 3, we see that consumption must correspond to one of the primary-secondary
equilibria. Consider any such consumption allocation below the pivotal equilibrium,
in which reliable households are active in the secondary pool. Let € denote the total
of reliable contributions on both pools (see Figure 16). And let k* denote the delivery
rate of the active secondary pool. Since reliable households are contributing on the
secondary pool, k* > 1/3.

Label by IV and I (as usual) the indifference curves of the U and R types
through 2V and 2.
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Let ¢ denote the primary pool with quantity limit @Q; just above 6. Let y denote
the intersection of the Q;-quantity line with I'?, with associated price line & = yp/Q;.

First note that x < & < e, otherwise any reliable household could obtain higher
utility than I by contributions on pool 4. Suppose (k, ¢, x) is an equilibrium with ac-
tive pools as in Figure 16, refined by the sequence E.(n) = (k(n), ¢(n),z(n),e(n))s ;.
Then x7()(n) < k%(n), else nobody acts on i and so by refinement x*(n) = e, a con-
tradiction.

Let U(n), R(n) be the sets of U, R households who contribute positively to pool

i in ¢(n). Then, as in the proof of Theorem 3,
Je > 0 such that A(U(n)) > cA\(R(n)) for all n. (%)

Observe that every ¢ € U(n) must be contributing a nonvanishing amount on o (i),
since contributing at most @Q; at x*(n) < & will not get him close to IV. Combining
this with (x) (and noting that all contributions on ¢ are bounded by Q;), we conclude
that o (i) is non-negligible compared with i in E.(n). Also, since k' < e, k' is not
superboosted. Thus, by hierarchical refinement, o(7) is not boosted.

Note that if no reliable household contributes to o(i), then k?®(n) ~ 1/3 (be-
cause o (i) is not boosted). But then the unreliable households cannot get near IV,
contradicting U(n) # ¢. Hence it suffices to show that for large enough n, no reliable
household contributes to (7).

Next observe that we cannot have k% (n) = «’(n), for any n. Otherwise the
common price line from (1,0) would (nearly) be tangent to IV, and therefore far from
I% implying that no reliable households act on o (3).

Thus £°® (n) < k%(n). From this it follows that any reliable household contribut-
ing on (i) must have contributed the full @; on 7. If he does act on ¢ (i), and via
k7 (n) gets close to I'%, then k7()(n) is above (or at worst infinitesimally below) the
|slope| of I at y. But with such a high k() (n), the unreliable could do much better
than IV, since Qo(i) = Qu+1 is huge. Thus for all large n, no reliable household acts
on (i), and we are done. [ |
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Finally we must also rule out consumption above the pivotal equilibrium. Con-
sider one such, figured below.

Xg A
B U
xR
\
\
\
X \ IR
\ ~ . .
K_
YV priceline
0 \
45 (1,0 _
7
< Qi > Xa
< 0 >
Figure 17

Consider i with Q; just below 6. Using the same notation as before, notice x*(n) <
Rk < e, where & is the |slope| of the line joining (1,0) to y, and y = intersection
of the Q;-quantity line with the I curve. We can now show as before that the
contributions of R(n) on o(i) are zero for large n. But, A(U(n)) > cA(R(n)) for all
n as before, and all ¢ € U(n) need to make nonvanishing contributions to o(7) to get
to IV, contradicting hierarchical refinement as before. |

Proof of Existence This is identical to the proof of Theorem 5, replacing 7 (7)
by {& (i)} throughout; and, in the refinement, putting the aggregate contributions on
J (i) = the contribution on (7). (As a result, the refinement here becomes simpler
than in Theorem 5.) [ |

Proof of Theorem 5 We begin by verifying that there is indeed an equilibrium of
the type we claim.

Consider a pivotal primary-secondary equilibrium as described in Figure 13. Sup-
pose g = 01. Then define ¢}, = 6 for all t € (0,6], ¢} = 0 for j € J\{m*} and
t €(0,3], phepp = b2 for t € (3,6], ¢ = 0 for j € J\{m*,m*M} and t € (3,6]. This
clearly leads to the consumption shown in Figure 13.

First we assign k; to all pools j other than m* and m*M in a way that leads all
households to take the equilibrium actions.

Next we show that we can find a sequence K(n) — K such that given any node
J = mima...my in the tree, unreliable households could obtain the same utility by
positively contributing on all pools senior to j (with possibly further contributions
to j and its juniors).
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Third, we specify ¢(n) by taking a small population of unreliable households,
and assigning their choices differently, so that every node in the tree has a positive
amount of contributions.

Lastly, we check that the K7(n) satisfy condition (3*).

For each primary pool m; (i.e., a pool m; of level 1), we shall describe k™, as
well as a uniform k = ™2™ for all pools mims...my that are junior to m;.

Consider the following diagram and focus on the (-line, which is the common
tangent to IV (at 2V) and I'? (at z%).

N

|U
B-line
IR
xU
Xg(My) p----~~------== xR
- X (rrip)
Om,-quantity line — I N
e b \ \\\\\\\
d \\\ m_ .
| 45° X(mlzl/ 45° K prlcelln?
l/ 62 \|/ 61 N
< qm1 >
Figure 18

Suppose g, < 01+ 62. Find the point x(m;) which lies at the intersection of the
45° line starting at X (m1) = (1 — g, ,0) and the (-line. Define

mi B (ml ) )
dm,

K

To check this formula, note that ™! /(1 — ™) should be the |slope| of the x]** price
line, so k™ /(1 — k™) = zp(m1)/(1 —xg(m1)) = xp(m1)/(gm, —xp(m1)), since the
gm, quantity line rises at 45°. Inverting both sides gives 1/k™ —1 = ¢y, /xp(m;1) —1
and hence our formula.

For any pool mima...my junior to my, define g™1™2--" =1 /3,

Next, let 2z be the unique point on IV such that the ray from (1,0) through z is
tangent to IV. Let (1 —63,0) = Z be the unique point on the horizontal G-axis such
that the 45° line moving northeast from Z intersects z.
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Let 61 + 02 < gm, < 63. Proceed northeast at 45° from the point Z(mi) =
(1 = @y, 0) until the point z(m1) is hit on the IV indifference curve. Define

i _ 2B (m1)

qm;

As before, k™ /(1 — k™) describes the [slope| of the dotted price line from (1,0) to
z(m1). A household contributing g,,, units to pool mi, and anticipating delivery rate
k™ would end up at z(my).

Consider the unique 7 such that 7/(1 —7) is the absolute value of the slope of the
1Y indifference curve at z(myq). For all pools mima...my junior to my, define

mima...myg

K =17.
Finally, for g,,, > 03, put
my _ #B
03’
and also for every pool mims...my junior to my, put
gmima...me Z_B = g
03

We must now show that with these K, we have a hierarchically-refined equilib-
rium. First note that our assignment of x constitutes an equilibrium, for it is evident
that no agent can improve by trading through any of these pools.

Let us now define a sequence of perturbations E.(n) = (K (n), ¢(n),z(n),e(n)) —
E. First we specify e. Recall that the smallest positive quantity constraint is q; > 0.
Let x be the point on the (-line which intersects the 45° line proceeding northeast
from (1 — q1,0). Recall that we put x' = zp/q;. Fix e with e > k.

Next we specify K (n). It will be convenient to consider the same three cases.
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Case 1 @gm, <01+ 0>.
Let k™ (n) = k™, and k™2 (n) = g™ Mm2-M = 1/3 for all n, and all pools

m1Mme...my junior to ms.

Case 2 03 > qp, > 01 + 6s.
Let z(m1,n) be the point on the line joining Z(m1) to z(my), such that ||z(m;) —
z(mq,n)|| = 1/n. (See Figure 20.) Put
() = 2801

qm,

Next let a(my,n) be the absolute value of the slope of the straight line through
z(my,n) that is tangent to the IV curve (2(my,n) = point of tangency in Figure 9).
Let n(my,n) be the unique solution of the equation /(1 —n) = a(my,n), and put

ijlmz...mg (n) — n(m17n)

for all n, and all pools myma...my junior to my. Notice that ™' (n) — k™! and
/{mlmz...mg (n) N /{mlmz...mg as n — 00.

A\ mm,..m, (n)-line

z
Z(my, n)
z(my)
xU
z(my, N) X 1/n
|U
k™ (n)-line
Z(my) |« Om, > (1,0)

Figure 20

Case 3 qn, > 0s.

Recall that Z = (1 — 03,0) and z = the intersection of IV with the 45° line
moving northeast from Z. Define k™ (n), k™ ™2™ (n) exactly as in Case 2 with Z,
z substituted for Z(m;), z(m) respectively. Once again note that ™ (n) — K™
and /lemg...mg (n) — /lemg...me.

This finishes the description of K(n) in E(n). Next we specify (¢(n), z(n),e(n)).
To this end, let J* = {1, ..., M}\{m*} be the set of all inactive pools of level 1; and
for each m; € J*, let J(m1) denote the set of all pools that are junior to m;. We
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shall take disjoint sets W,,(m1) of unreliable households, for m; € J*, such that each
Whp(my1) has measure 1/n. (Needless to say, Wy(mq) is symmetrically distributed
over the three unreliable subtypes 4, 5, 6.) All t € W),(m1) will deviate in ¢(n) from
their equilibrium actions in F, to actions on the pools {m;} U J(m;) in the manner
about to be described. All other households will stick to their equilibrium actions.

Case 1 @gm, <61+ 0>.
Each t in W,,(m1) contributes gy,, to m; at the presumed anticipation K™ (n) =
K™ to arrive at the point x(mq). We set e, (n) to be the unique ¢ which solves

_ce+ AW (m1)) 3Gm, _get () 3%m
e + AWy (m1))gm, e+ () am

m1

Letting p = %le, this gives

()~ 3
e—Kk™(n)

E =

Next we must show how the households ¢ € W,,(m;) continue their actions on
pools in J(my). All these t € W, (m1) will wind up with consumption #V. The rest
of their trades will therefore net them 2V — x(m;). Since all their trades in these
j € J(mq) will be conducted at the same x/ = 1/3, and since (1/3)/(1—1/3) = 1/2,
it follows that each ¢ will contribute 6(m1) = 2(z¥, — x¢(m1)) across all their pools.
But we shall have them split their contributions differently.

Take L so big that 6(m1)/L < qi. Splitting their contributions evenly over at
least L pools enables them to achieve 8, and their contribution to any one pool is less
than q;.

There are a countable number of pools in J ™ (my) = {j € J(mq) : j is of
level at least L + 1}. Hence we can divide W, (m1) into countable disjoint sets
Wi, (myma...,my) of positive measure corresponding one to one with nodes myms...my,
{>L+1,in jf“(ml). Let each household ¢ € W,,(mima...,my) contribute 6/(¢ —
1) < q1 to each pool myma, mimams, ..., mima...my.

Thus every pool in J(my) is activated in E(n). We use the freedom, allowed by
our definition of hierarchical refinement, to put ¢;(n) = 0 for all j € J(m1).

This brings each t € W,,(m;) to the consumption zV.
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Case 2 03 > g, > 01+ 0-.

Each ¢ in Wy, (mq) contributes gm,, to m; at the presumed anticipation ™! (n)
to arrive at the point z(my,n). Since all ¢ € W;,(m1) must ultimately end up with
final consumption Z(mq,n), and since all pools j € J(my) junior to m; have the
same x/ = n(mi,n), each t must contribute a total of #(my,n) across all these

pools j € J(my). (See Figure 22.) We shall again need to split these contributions
differently for different t.

AN
Z(my, n)
n(my, n)-line
45°
> Z(mq, N)
X
8 (my, n) ™ (n)-line
45°
Am, (1.0
Figure 22

Note first that we may assume that 6(mi,n) < ¢, for all m; with 6; + 62 <
Gm, < 03, since #(myj,n) — 0 as n — oo. For each node j = myma..my €
J(mq) junior to mq, define a disjoint subset Wy, (mima...,mg) C Wy(my) of mea-
sure (1/M)*1(1/n)*B(n), where B(n) is chosen so that B(n) > ;°,(1/n)* = measure
(Wr(m1)) = 1/n. (We restrict to n > 2.) Each t € W,(myma...,my) contributes
O(mi,n)/(¢ — 1) on each pool mima, mimams,...,mima...,my. on the path from
mima to myma...,my. Notice that for n > 2, 370, (1/n)¢/ 3772 (1/n)f = 1/n.
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Finally, we need to check that we can find ¢;(n) satisfying our hierarchical refine-
ment. So define ey, (n) as the unique ¢ solving
mi ge + )‘(Wn(ml))%le
K™ (n) = .
€+ AWa(m1))gm,

This gives

) W)

Emy =

For each j = mymg...my € J(my), define €(n) as the unique ¢ to solve

1 46
ge + Z E /\(VVn(ml...nu...ml;))g 1
n(ml’n) = K:m1m2...m@ _ ZZZ mi...Myg...Mj i
e+ Z E )\(I/Vn(ml...mg_._mg))m

ZZZ mi...Mmg...Mj
ce + i;(n)}
=)
giving
(n(m1,n) - 3)
i(n) = ————=2nu.(n).
10 = G =t 5
Observe that for fixed n, if j is at level £ + 1 and is an immediate successor of
i, then €j(n)/ei(n) = p;(n)/p;(n). Since households associated with pools at higher
levels contribute less to each pool, this ratio is no more than

Z Z )‘(Wn(mlme+1m2)

222—1—1 my..Mey1...M;

Z Z )\(Wn(ml...mg__mg)

gze mi...My...Mj

00 _ i—1
AWo(mp)) 3wt (%) L B

[>0+1

00 : -1
AWa(ma)) 3 M1 (%) L B(n)
>0 "

Thus we have constructed €;(n) satisfying hierarchical refinement.

Case 3 qm, > 0s.

This is entirely analogous to Case 2. (Reread Figure 11 substituting Z for Z(m;)
and z for z(my).) Put ¢'(my) = 03 at the anticipated rate k™! (n), to reach z(mq,n)
and again let ¢ spread contributions over all j € J(m;) as in Case 2 to total §(mq,n)
and to advance from z(my,n) to Z(mq,n) on the IV curve.

It is easy to check that the sequence (K(n),¢(n),z(n),e(n))s; validates E =
(K, @, x) as a hierarchically-refined equilibrium.
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