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Abstract

Two general forms of standard licensing policies are considered for a non-drastic

cost-reducing innovation: (a) combination of an upfront fee and uniform linear

royalty, and (b) combination of auction and uniform linear royalty. It is shown

that in an oligopoly, the total reduction in the cost due to the innovation for

the pre-innovation competitive output forms the lower bound of the payoffs

of both outsider and incumbent innovators. Further, the private value of the

patent is increasing in the magnitude of the innovation, while the Cournot

price and the payoff of any other firm fall below their respective pre-innovation

levels. Sufficiently significant innovations from an outsider innovator are li-

censed exclusively to a single firm. Otherwise, all other firms, except perhaps

one, become licensees. The dissemination of the innovation is generally higher

with an incumbent innovator compared to an outsider. For both outsider and

incumbent innovators, the monopoly does not provide the highest incentive to

innovate; for sufficiently insignificant innovations, it is the duopoly that does

so, and, the industry size that provides the highest incentive increases with the

magnitude of the innovation. Finally, it is argued that significant innovations

are more likely to occur when the innovator is an incumbent firm.

Keywords: Non-drastic innovation, outsider innovator, incumbent innovator,

FR policy, AR policy.

JEL Classification: D21, D43, D45.
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1 Introduction

Patent licensing by means of a combination of upfront fee and royalty is one

of the most commonly observed licensing policies in practice [see, e.g., Taylor

and Silberstone (1973), Rostoker (1984)]. This paper considers optimal com-

bination of upfront fee and royalty for licensing of a cost-reducing innovation

and discusses its impact on the price and the structure of the market, payoffs

of the agents, and incentives and dissemination of innovation in case of both

outsider and incumbent innovators. The formal analysis of patent licensing was

initiated by Arrow (1962). Considering licensing of a cost-reducing innovation

by means of uniform linear royalty only, he concluded that the innovator’s li-

censing rent in a perfectly competitive industry exceeds that when the same

innovation is sold to a monopolist. However, Arrow (1962) did not consider

the aspect of strategic interaction among the firms, which plays a crucial role

in an oligopoly. The effect of innovations in such an industry depends, among

other factors, on whether the innovator is an outsider or an incumbent firm.

A cost-reducing innovation is said to be drastic [Arrow (1962)] if the

monopoly price under the new technology does not exceed the competitive price

under the old technology; otherwise, it is non-drastic. Clearly, if an incumbent

innovator is a monopolist, or if she is endowed with a drastic cost-reducing

innovation, she extracts the entire monopoly profit with the new technology.

The same fact is true for an outsider innovator when the industry size is at

least two. When an outsider innovator faces a monopolist, then irrespective of

whether the innovation is drastic or not, the innovator obtains the difference

between the respective monopoly profits with the new and the old technology.

Thus, the issue of patent licensing is non-trivial only in case the innovation is

non-drastic. For this reason, we shall only consider non-drastic innovations.

The interaction of an outsider innovator and the firms was first studied in
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a formal game-theoretic setting independently by Kamien and Tauman (1984,

1986) and Katz and Shapiro (1985, 1986). The literature mainly considers

three standard policies of licensing, namely, (1) a flat pre-determined upfront

fee, (2) a uniform per-unit linear royalty payment, and, (3) auctioning off a

limited number of licenses through a first-price sealed-bid auction, where the

highest bidders pay their bids and get licenses. In what follows, we provide

a brief overview of the literature. We refer to Kamien (1992) for an excellent

survey on patent licensing. See also Reinganum (1989) for a comprehensive

survey on various aspects of innovation, including licensing.

Katz and Shapiro (1985) have considered a three-stage game of an asym-

metric duopoly, where in the first stage, an outsider innovator sells the patent

to one of the firms by auction. In the second stage, the licensee decides ei-

ther to exclude his rival, or to share the license through a licensing policy

based exclusively on upfront fee and in the final stage, the firms are engaged

in strategic competition. Investigating the pattern of licensing and exclusion,

Katz and Shapiro (1985) have found that while minor innovations will be li-

censed when firms are equally efficient, exclusion will occur in case of major

innovations. Considering the auction policy as the licensing scheme of the

patent, Katz and Shapiro (1986) have shown that while the seller’s incentive

to develop the innovation may be very high, the incentive to disseminate it may

be too low. Considering licensing by means of either an exclusive upfront fee

or an exclusive linear royalty, Kamien and Tauman (1986) have shown that for

linear demand, both for the innovator, and from social point of view, licensing

by upfront fee is better than royalty. Further, like Arrow (1962), they have

shown that with royalty licensing, the perfectly competitive industry provides

the highest incentive for innovation. For upfront fee licensing, however, there

is no sharp conclusion regarding the relation between the industry size and

the incentive to innovate, and, it depends on the magnitude of the innovation.

Kamien, Oren and Tauman (1992) have extended these results for general de-
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mand and have shown that among the three standard policies, licensing by

means of royalty is inferior to the other two while upfront fee is inferior to

auction, both for consumers and the innovator. Erutku and Richelle (2000)

have shown that in an oligopoly with at least two firms, an outsider innova-

tor can always design an upfront fee plus royalty policy which enables her to

extract the entire monopoly profit with the new technology.1 This result is

obtained with a non-linear royalty which depends on the total output of the

industry and individual outputs of potential licensees. However, to the best of

our knowledge, such policies are not observed in practice.

Although the theoretical literature shows the superiority of both auction

and upfront fee to royalty, as licensing schemes, royalties and combination of

upfront fee and royalty policies are more prevalent than other standard forms

of licensing. In the oft-quoted survey of Rostoker (1984) of corporate licensing,

upfront fee plus royalty policy was observed in 46% of cases, whereas licensing

by means of exclusive royalty was observed in 39% of the firms surveyed. An

attempt to bridge the discrepancy between empirical observations and theoret-

ical predictions was made by Wang (1998), who considered a model of Cournot

duopoly where the innovator is not an outsider, but one of the firms.2 In this

framework, licensing by means of royalty yields better payoff to the innovator

than upfront fee licensing. Extending the work of Wang (1998), Kamien and

Tauman (2002) have shown that in a Cournot oligopoly, for sufficiently sig-

nificant (but non-drastic) innovations, licensing by means of linear royalty is

superior to both auction and upfront fee policies for an incumbent innovator.3

1For other selling mechanisms that enable the innovator to obtain the maximum industry

profit with the innovation, see Kamien, Oren and Tauman (1992) and Sen (2002a).
2Katz and Shapiro (1985) have considered a duopoly where one of the firms is a patent

holder. However, they only dealt with upfront fee licensing.
3The role of asymmetric information has also been considered to explain the prevalence

of royalty licensing. See, e.g., Beggs (1992), Sen (2002b).
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In this paper, we merge this new line of enquiry with the standard literature

and consider both outsider and incumbent innovators. We propose licensing

schemes that are more general than the standard policies examined in the

literature.4 Specifically, we consider two policies: (i) the “upfront fee plus uni-

form linear royalty” (FR) policy, where each licensee pays a pre-determined

upfront fee, and a uniform royalty per-unit of production;5 and, (ii) the “auc-

tion plus uniform linear royalty” (AR) policy, where the innovator announces

a uniform linear royalty and the number of licenses to be sold, say m; then,

each firm bids for the license and m highest bidders win the license, and, pay

their respective bids in addition to the announced uniform royalty per-unit

of production. Clearly, these policies encompass the three standard licensing

policies, viz., upfront fee, royalty, and auction. It should be mentioned that

for both outsider and incumbent innovators, if the number of licensees is less

than the industry size, then the AR policy is superior to the FR policy, and

the FR policy is superior otherwise.6

It is shown that the total reduction of cost due to the innovation for the pre-

innovation competitive quantity forms the lower bound of the payoff of both

outsider and incumbent innovators. Further, in both cases, the payoff of the

innovator is increasing in the magnitude of the innovation, while the Cournot

price and the payoff of any other firm fall below their respective pre-innovation

levels. Thus, consumers are better off and firms are worse off as a result of the

innovation. Other results of this paper depend on whether the innovator is an

incumbent firm or not.

When an outsider innovator faces a monopolist, she extracts the difference

4With the possible exception of Erutku and Richelle (2000).
5This licensing policy was first examined by Kamien and Tauman (1984), but only asymp-

totic results (with respect to the industry size) were obtained.
6This holds unless the auction includes a floor price, in which case, the two policies

coincide. However, note that the FR policy is more attractive as it is simpler to implement.
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between the respective monopoly profits with the new and the old technology

through an upfront fee. When the industry size is at least two, then sufficiently

significant innovations are sold to an exclusive license, which is consistent with

Firestone (1971) and Caves, Crookell and Killing (1983), where it was pointed

out that patents from independent innovators are often licensed exclusively.

Relatively less significant innovations are sold to all firms, except perhaps one.

For an incumbent innovator, sufficiently significant innovations are sold to all

firms, whereas less significant innovations are sold to all firms, except one.

Thus, the dissemination of the innovation is generally higher with an incumbent

innovator. The results can be summarized in the following table.7

−[Insert Table 1]−

Regarding the incentives to innovate, the conclusions are qualitatively the

same for both outsider and incumbent innovators. We show that for both

cases, the industry size that provides the highest incentive to innovate is in-

creasing in the magnitude of the innovation. In particular, for both cases, the

monopoly never provides the highest incentive. When the innovation is suffi-

ciently insignificant, the duopoly does so, and, as the innovation becomes more

significant, a more competitive industry provide the highest incentive.

Finally, keeping the number of firms other than the innovator fixed, we

argue that significant innovations are more likely to occur from an incumbent

innovator. The comparison between outsider and incumbent innovators is con-

ceptually problematic, since the two innovators cannot be embedded in the

same model. One way of dealing with this problem is by providing an out-

sider innovator with the option of entering the industry. It is shown that in

the presence of a negligible but positive cost of entry, when the innovation is

sufficiently significant, an outsider innovator is better off entering the industry

7The table and figures are available from the first author upon request.
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and selling the license to every firm. Otherwise, the innovator remains outside.

In other words, the private value of an innovation is higher for an incumbent

innovator when the innovation is sufficiently significant.

The rest of the paper is organized as follows. In Section 2, we present the

model and the licensing schemes. In Section 3, we discuss about the optimal

licensing schemes. The relation between the market structure and incentives

to innovate is discussed in Section 4. In Section 5, we compare the incentives

for outsider and incumbent innovators by providing an outsider innovator with

the strategy of entry. All proofs have been relegated to the appendix.

2 The Model

Let us describe the model with an outsider innovator in detail. The model with

an incumbent innovator will be similar, except for some obvious modifications.

We consider a Cournot oligopoly with n firms producing the same product,

where N1 = {1, . . . , n} is the the set of firms. For i ∈ N1, let qi be the quantity

produced by firm i and let Q =
∑

i∈N1
qi. The inverse demand function of the

industry is linear and is given by Q = a − p, for p ≤ a and Q = 0, otherwise.

With the old technology, all n firms produce at the identical marginal cost

c, where 0 < c < a. An outsider innovator has granted a patent on a new

technology which reduces the marginal cost from c to c− ε, where 0 < ε < c.

The innovator decides to license the new technology to some or all firms of

the industry.8 Consider the following three-stage licensing game. In stage

1, the innovator announces a licensing policy. In stage 2, the firms in N1

simultaneously decide whether to accept the policy or not. The set of licensees

become commonly known at the end of stage 2. In stage 3, all n firms compete

in quantities, where the licensees have the new technology while other firms

8For this section, entering the industry is not a feasible strategy of the innovator. The

entry strategy is considered in Section 5.
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operate under the old technology. The licensees pay the innovator according

to the licensing policy.

For an incumbent innovator, the model is the same as in the last paragraph

except for that we now have n + 1 firms, where N2 = {0} ∪ N1 is the set of

firms and firm 0 is the innovator. The licensing game is also the same except

that in the final stage, apart from the licensees, the innovator also produces

with the new technology and competes with all other firms.

2.1 The FR Policy

A typical FR policy is given by 〈m, r, f〉, where m, 1 ≤ m ≤ n, is the number

of firms to whom the policy is offered, r ∈ < is the per-unit uniform royalty,

and f ∈ < is the upfront fee that each licensee has to pay. The three-stage

licensing game associated with the FR policy (denoted by GO
FR for an outsider

innovator and GI
FR for an incumbent one), can be described as follows. In the

first stage, the innovator announces a triplet 〈m, r, f〉, chooses m firms from

N1 and offers each one of them a license. The way these m firms are chosen

(randomly or not) does not affect our results. In the next stage, these m firms

decide simultaneously but independently whether to accept the offer or not.

The firms who accept the offer become licensees. The set of licensee firms

becomes commonly known at the end of the second stage. In the third stage,

all firms (including the innovator in case she is an incumbent firm) compete in

quantities. If a licensee firm produces q, it pays the innovator f + rq.

2.2 The AR Policy

A typical AR policy is given by 〈m, r〉, where m, 1 ≤ m ≤ n, is the number of

firms to whom the policy is offered and r ∈ < is the per-unit uniform royalty

that each licensee has to pay. The three-stage licensing game associated with
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the AR policy (denoted by GO
AR and GI

AR respectively), can be described as

follows. In first stage, the innovator announces a pair 〈m, r〉. In the second

stage, firms in N1 simultaneously decide whether to bid for the license, and,

how much to bid. If the number of bidders is less than or equal to m, all bidders

win the license with their respective bids. If the number is strictly more than

m, then m highest bidders win the license. Ties are resolved at random. The

set of licensees become commonly known at the end of the second stage. In

the third stage, all firms compete in quantities. If a firm wins the license with

bid b, and produces q, it pays the innovator b + rq.

2.3 The Games GO and GI

The licensing game with an outsider innovator, denoted by GO, is described

as follows. In the beginning (say stage 0), the innovator chooses either of the

following licensing policies: a specific FR policy, or, a specific AR policy. If the

innovator chooses an FR policy, the game GO
FR is played; otherwise, it is the

game GO
AR that is played. We define the game GI for an incumbent innovator

similarly, where GI
FR and GI

AR form the corresponding subgames.

Clearly, in equilibrium, if the innovator announces the AR policy 〈m, r〉,
then the royalty rate r will support m licensees, that is, more than m firms

will bid for the license.9 Similarly, if the FR policy 〈m, r, f〉 is offered, then,

in equilibrium, m is supported by r and f . Consequently, for the analysis of

the equilibrium of GO and GI , we can assume without any loss of generality

that when the innovator announces the FR policy 〈m, r, f〉, or, the AR policy

〈m, r〉, then there will be m licensees.

Consider the game GJ for J ∈ {O, I}. In every subgame-perfect equilibrium

9If the number of bidders is at most m, then every bidder is better off reducing his bid,

since the innovator is committed to sell m licenses.
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of GJ , in the last stage, all firms produce the Cournot quantities. Hence, we

can refer to GJ
FR and GJ

AR as games involving only two stages, where at the

end of the second stage, the firms choose their respective Cournot outputs.

For J ∈ {O, I}, when there are m licensees and the rate of royalty is r, any

licensee firm in N1 produces with marginal cost c− ε + r and any non-licensee

firm produces with marginal cost c. Let us denote by ΦJ
L(m, r) and ΦJ

N(m, r)

the Cournot profits of a licensee and a non-licensee respectively. Similarly, we

use the letters q and Π, with suitable subscripts and superscripts, to denote the

Cournot quantity and the total payoff respectively. Now consider the triplet

〈m, r, f〉 of the FR policy. Then, we have ΠJ
L(〈m, r, f〉) = ΦJ

L(m, r)− f and

ΠJ
N(〈m, r, f〉) = ΦJ

N(m, r).

 (1)

Next, consider the the AR policy 〈m, r〉 where the license has been won by m

firms with the common winning bid b. Then, the payoffs are given by ΠJ
L(〈m, r〉, b) = ΦJ

L(m, r)− b and

ΠJ
N(〈m, r〉, b) = ΦJ

N(m, r).

 (2)

Let us consider the payoff of the innovator. Note that for the game GI , the

incumbent innovator produces with marginal cost c−ε. Using similar notations

as in the last paragraph, with subscript I standing for the innovator, we have ΠO
I (〈m, r, f〉) = mrqO

L (m, r) + mf and

ΠI
I(〈m, r, f〉) = ΦI

I(m, r) + mrqI
L(m, r) + mf.

 (3)

 ΠO
I (〈m, r〉, b) = mrqO

L (m, r) + mb and

ΠI
I(〈m, r〉, b) = ΦI

I(m, r) + mrqI
L(m, r) + mb.

 (4)

For J ∈ {O, I}, consider a subgame-perfect equilibrium outcome of the

game GJ
FR. Then, by (1), for every m (1 ≤ m ≤ n), and r ∈ <, it follows that

the upfront fee that the innovator charges any licensee is given by

fJ(m, r) = ΦJ
L(m, r)− ΦJ

N(m− 1, r). (5)
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Consequently, an outsider innovator will choose m and r that maximize

ΠO
FR(m, r) ≡ ΠO

I (〈m, r, fO(m, r)〉) =

mrqO
L (m, r) + m[ΦO

L (m, r)− ΦO
N(m− 1, r)]. (6)

An incumbent innovator will choose m and r to maximize

ΠI
FR(m, r) ≡ ΠI

I(〈m, r, f I(m, r)〉) =

ΦI
I(m, r) + mrqI

L(m, r) + m[ΦI
L(m, r)− ΦI

N(m− 1, r)]. (7)

As for the AR policy, note that in equilibrium, the innovator never chooses

〈m, r〉 such that m = n. The innovator may choose 〈n, r〉 only with some

minimum bid, say b. In that case, no firm will bid above b. This modified AR

policy will be equivalent to the FR policy 〈n, r, b〉 but the latter is simpler to

implement. Hence, we only consider AR policies 〈m, r〉 with 1 ≤ m ≤ n − 1.

Consider a subgame-perfect equilibrium outcome of the game GJ
AR. Then, for

every m (1 ≤ m ≤ n−1), and r ∈ <, when the AR policy 〈m, r〉 is announced,

at least m + 1 firms will bid, and the highest m + 1 bids will be bJ(m, r) for

J ∈ {O, I}, where

bJ(m, r) = ΦJ
L(m, r)− ΦJ

N(m, r). (8)

In contrast to (5), here we subtract ΦJ
N(m, r) instead of ΦJ

N(m− 1, r), because

a potentially deviant licensee knows that irrespective of whether he is a licensee

or not, there will always be m licensees. Consequently, for the AR policy, an

outsider innovator will choose m and r that maximize

ΠO
AR(m, r) ≡ ΠO

I (〈m, r〉, bO(m, r)) =

mrqO
L (m, r) + m[ΦO

L (m, r)− ΦO
N(m, r)], (9)

while an incumbent innovator will choose m and r to maximize

ΠI
AR(m, r) ≡ ΠI

I(〈m, r〉, bI(m, r)) =

12



ΦI
I(m, r) + mrqI

L(m, r) + m[ΦI
L(m, r)− ΦI

N(m, r)]. (10)

In view of (6)-(7) and (9)-(10), the innovator has to optimally choose the

licensing policy, the number of licenses to be sold and the rate of royalty. The

following lemma states that when the innovator does not sell the license to all

firms (i.e., m ≤ n−1), then the AR policy always yields better payoff than the

FR policy. The underlying reason for this result is simple. From (5) and (8),

one can observe that the difference between the maximum willingness to pay

for each licensee for the FR and AR policies is the difference between the profits

of a non-licensee when there are m− 1 and m licensees respectively. Note that

when the rate of royalty does not exceed the magnitude of the innovation, then

a licensee firm is at least as efficient as a non-licensee firm. In that case, the

profit of a non-licensee decreases in the number of licensees. Thus, the only

non-trivial part of the proof is to show that the optimal choice of the rate of

royalty does not exceed ε.

Lemma 1. For 1 ≤ m ≤ n− 1 and J ∈ {O, I},

max
r∈<

ΠJ
FR(m, r) ≤ max

r∈<
ΠJ

AR(m, r)

where ΠJ
FR(m, r) and ΠJ

FR(m, r) are defined in (6)-(7) and (9)-(10).

3 Optimal Licensing Schemes

To begin with, we state the results that hold for both outsider and incumbent

innovators.

Proposition 1. Consider the licensing of a non-drastic cost-reducing

innovation. Then, both GO and GI have a unique subgame-perfect equilibrium

outcome. In both of these outcomes, the following hold.

[i] In an oligopoly with at least two firms, the innovator obtains at least (a−c)ε.
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[ii] The private value of the patent is increasing in ε.

[iii] The Cournot price and the payoff of any other firm fall below their respective

pre-innovation levels.

The term (a − c)ε is the total reduction due to the innovation in the pro-

duction cost of the pre-innovation competitive output. The private value of

the patent is the rent that the innovator can obtain from the licensees. This

is an increasing function in the magnitude of the innovation in case of both

outsider and incumbent innovators (see Figures 1.1 and 1.2 below).

−[Insert Figures 1.1 and 1.2]−

The respective Cournot prices for outsider and incumbent innovators, pO(ε)

and pI(ε), are given in figures 2.1 and 2.2. Note that both pO(ε) and pI(ε) are

less than the respective pre-innovation Cournot prices. It can be noted that

pO(ε) is discontinuous at ε = (a− c)/y(n) and ε = (a− c)/q(n), while pI(ε) is

discontinuous at ε = (a− c)/h(n). These discontinuities arise due to a change

in the licensing policy at these points. Observe that for any given policy, both

of these functions are decreasing in ε. The terms y(n), q(n) and h(n) appears

in Propositions 2 and 3, and their expressions appear in the appendix. At these

points, the innovator changes her licensing policy.

−[Insert Figures 2.1 and 2.2]−

Since the Cournot price falls below the pre-innovation level, the consumers are

better off for any ε > 0. Every firm, except for the innovator, is worse off

relative to the pre-innovation case.10 The post-innovation payoff of any firm

other than the innovator can be seen from Figures 3.1 and 3.2 below. Note

that there are similar discontinuities as in the case of price.

10This is consistent with Kamien and Tauman (1984) and Katz and Shapiro (1986), where

less general policies (upfront fee or auction without royalty) were considered.
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−[Insert Figures 3.1 and 3.2]−

3.1 An outsider innovator

In this subsection, we discuss the properties of the equilibrium of the game GO

that are specific to an outsider innovator.

Proposition 2. Consider the game GO involving an outsider innovator of a

non-drastic cost-reducing innovation and suppose there is a negligible but posi-

tive cost of contracting for every licensee. Then, the subgame-perfect equilibrium

of GO has the following properties.

[i] In case of a monopoly, the innovator earns the difference between the respec-

tive monopoly profits with the new and the old technology through an upfront

fee. This payoff is less than (a− c)ε.

[ii] For every n ≥ 2, there is a positive number q(n) ≤ 2 such that when

ε ≥ (a − c)/q(n), the innovator sells the license to only one firm and sets a

rate of royalty so that the monopoly price equals the pre-innovation competitive

price c. As a consequence, all non-licensee firms drop out of the market and

the innovator obtains (a − c)ε. When ε < (a − c)/q(n), the innovator sells

the license to at least n − 1 firms, the Cournot price is above c, and all firms

continue to operate. The innovator obtains more than (a− c)ε.

In case of a monopoly, an outsider innovator obtains (a−c+ε)2/4−(a−c)2/4,

which is smaller than (a−c)ε. The lack of competition and the resulting higher

bargaining power of the monopolist is the reason why the innovator obtains

less in a monopoly.

Let n ≥ 2 and suppose that the innovation is relatively significant, namely,

ε ≥ (a− c)/q(n). Auctioning off only one license is the unique optimal policy

only in the presence of a (negligible) positive cost of contracting for every
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licensee. In the absence of such contracting cost, the innovator has multiple

optimal policies. In fact, any AR policy 〈m, r(m)〉, where 1 ≤ m ≤ n − 1

and r(m) = ε − (a − c)/m is an optimal policy, the payoff of the innovator is

(a−c)ε in each of these policies and the Cournot price equals the pre-innovation

Cournot price in each of these cases.11

Next consider the other case when n ≥ 2 and the innovation is less sig-

nificant, that is, ε < (a − c)/q(n). In that case, there will be at least n − 1

licensees. The optimal licensing policy depends on the industry size and the

magnitude of the innovation.

3.2 An incumbent innovator

Let us consider the game GI involving an incumbent innovator.

Proposition 3. Consider an incumbent innovator of a non-drastic cost-

reducing innovation. The game GI has a unique subgame-perfect equilibrium

outcome. It has the following properties.

[i] In case of a duopoly, i.e., when N2 = {0, 1}, the innovator pays the other

firm to stay out of the market.

[ii] When there are at least two firms other than the innovator (n ≥ 2), there

is a number h(n) > n such that when ε ≥ (a− c)/h(n), the innovator sells the

license to all other firms using the FR policy. When ε < (a− c)/h(n), then the

innovator sells the license to all other firms, except one, using the AR policy.

In both cases, all firms, including the innovator, produce positive quantity.

In case of a duopoly, firm 1 (the firm other than the innovator) can always

ensure a payoff of (a− c− ε)2/9, which is the Cournot profit of a non-licensee

firm who competes with the innovator in a duopoly. Thus, the upper-bound

11This excludes the negligible cost of contracting.
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for the innovator’s payoff is (a− c + ε)2/4− (a− c− ε)2/9. The innovator can

achieve this upper-bound with the FR policy 〈1, r, f〉, where f = −(a−c−ε)2/9

and r is sufficiently large to ensure that firm 1 finds it optimal not to produce.

Thus, in case of a duopoly, firm 0, the innovator, acquires firm 1 and becomes

a monopolist.12 However, if the innovator is not allowed to charge negative

upfront fee, then the optimal licensing policy for the innovator is the royalty

policy with rate of royalty ε, which coincides with Wang (1998). The innovator

is worse off, while the other firm and consumers are better off compared to the

unrestricted case. Measuring the welfare as the sum of consumers’ surplus, the

innovator’s payoff and the other firms’ payoff, it is easy to verify that a non-

negative restriction on the upfront fee is welfare-improving. Hence, acquisition

of the other firm should not be allowed.

For n ≥ 2, when the innovation is sufficiently significant, namely, ε ≥
(a − c)/h(n), then the optimal licensing policy is the FR policy with rate of

royalty rF (n), and all firms become licensees. It can be shown that rF (2) = ε,

but 0 < rF (n) < ε for n ≥ 3 and rF (n) approaches ε as n increases indefinitely.

Further h(n) increases indefinitely with n. When ε ≤ (a − c)/h(n), then the

optimal policy for the innovator is the AR policy where all firms, except one,

become licensees.

4 The Incentives to Innovate

For both outsider and incumbent innovators, if the innovation is non-drastic,

the industry that provides the innovator with the highest incentive to innovate

is never the monopoly. For an outsider innovator, this follows directly from

part [i] of Proposition 2. The incremental payoff of an incumbent innovator

due to the innovation is the difference between the payoff from the optimal

12The payoff of the innovator is strictly increasing in r when r ≤ (a − c + ε)/2 and it is

constant thereafter.
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licensing policy and the pre-innovation Cournot profit. When the innovator is

a monopolist, this is given by

∆(1) =
(a− c + ε)2

4
− (a− c)2

4
.

When there is an additional firm, then the incremental payoff is

∆(2) =

[
(a− c + ε)2

4
− (a− c− ε)2

9

]
− (a− c)2

9
.

It is easy to verify that ∆(2) > ∆(1), and thus the monopoly does not provide

the innovator with the highest incentive to innovate. In general, the highest

incentive to innovate is induced by a market size that is increasing in the

magnitude of the innovation.

Proposition 4. The monopoly does not provide the innovator with the highest

incentive to innovate. It is the duopoly that does so for relatively insignificant

innovations and the industry size that provides the highest incentive is increas-

ing in the magnitude of the innovation.

5 Significant Innovations and Incumbent In-

novators

In this section, we make an attempt to find out who is in a better position to

innovate: an outsider innovator or an incumbent one? There is no definite way

to answer this question since we cannot consider the two types of innovators in

the same model. However, we can shed some light on this issue by assuming

that an outsider innovator could not enter the industry with the old technology

(e.g., due to a patent on the old technology), but equipped with the new

technology, she can enter the industry by incurring a negligible but positive

entry cost. Consider the four-stage game G, where in the first stage, the

innovator decides whether to enter the industry, or not. Her decision becomes
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commonly known at the end of the first stage. If the innovator decides to

enter the industry, from stage 2 onwards, the game GI is played. Otherwise,

the game GO is played. In other words, when the innovator decides to enter

the industry, we have the case of a Cournot oligopoly in n + 1 firms with an

incumbent innovator. Otherwise, it is the case of a Cournot oligopoly in n

firms with an outsider innovator. In either cases, the innovator is allowed to

license the new technology to some or all of the other firms.

First consider the case when n = 1, that is, when the outsider innovator

faces a monopolist. In that case, the payoff of the outsider innovator is given

by

A ≡ (a− c + ε)2

4
− (a− c)2

4
.

If the innovator decides to enter the industry, her payoff becomes

B ≡ (a− c + ε)2

4
− (a− c− ε)2

9
.

It can be easily verified that B > A. Hence, in this case, the innovator is best

off entering the industry.

Proposition 5. Consider the subgame-perfect equilibrium of the game G.

Then,

[i] Suppose n = 1. Then the innovator enters the industry whether or not the

acquisition of the incumbent monopolist is allowed..

[ii] When n ≥ 2, the innovator enters the industry when ε ≥ (a − c)/h(n)

and sells the license to all firms. Otherwise, the innovator does not enter the

industry.

[iii] If there is no entry fee, then entry is always the best action for the innovator.

Proposition 5 essentially asserts that the innovator will enter the indus-
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try when the innovation is sufficiently significant.13 Otherwise, she decides

to remain as an outsider. This suggests that the extent of rent provided by

significant innovations is higher for an incumbent innovator compared to an

outsider. Hence, significant innovations are perhaps more likely to be origi-

nated from incumbent firms. As for less significant innovations, the result is

not as sharp. If there is no cost of entry, then payoffs from both cases are

equal. However, in the presence of a positive entry cost, such innovations are

more likely to be generated from outsider innovators. The intuition behind this

result is as follows. Consider a Cournot oligopoly in n firms who are symmet-

ric in that they produce with an identical cost. Suppose there is another firm,

A, who is outside the industry and has a superior technology as compared to

the incumbent firms. Now consider the total industry profit in the n + 1-firm

oligopoly when firm A enters the industry. Comparing this profit with the to-

tal industry profit in the earlier n-firm oligopoly, one observes that the former

is higher if and only if the technology of firm A is sufficiently superior to the

others. When an incumbent innovator has a sufficiently significant innovation,

then she licenses it to all other firms, but by setting a high rate of royalty the

innovator still maintains a competitive edge over others. Hence, the total in-

dustry profit is increased, and moreover, the profit of every non-licensee (hence

the alternative profit of every licensee) is decreased. Since every licensee is left

with the profit of a sole non-licensee, and the innovator obtains the difference

between the total industry profit and the total payoff of all licensees, the inno-

vator is better off by entering the industry when the innovation is sufficiently

significant.

13When the innovation is drastic, the innovator will enter the industry, since in that case

she earns the monopoly profit with the new technology. Also observe that the conclusion

of Proposition 5 will continue to hold qualitatively in the presence of higher entry costs, as

long as entry is not prohibitively costly.
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Appendix

Notations. Recall that the superscripts O and I refer to ‘outsider’ and ‘in-

cumbent’ respectively and the subscripts L, N and I refer to ‘licensee’, ‘non-

licensee’ and ‘innovator’ respectively. We denote by q and Φ, with suitable

superscripts and subscripts, the Cournot output and the Cournot profit re-

spectively, e.g., qO
L (m, r) denotes the Cournot output of a licensee when there

are m licensees and the rate of royalty is r in case of an outsider innovator.

For J ∈ {O, I}, we denote

fJ(m, r) = ΦJ
L(m, r)− ΦJ

L(m− 1, r) and

bJ(m, r) = ΦJ
L(m, r)− ΦJ

L(m, r).

Throughout the appendix, we shall denote x ≡ (a− c)/ε.

Proof of Proposition 1. The proof of Proposition 1 in case of an outsider

innovator will be given at the end of the proof of Proposition 2, and the cor-

responding proof for an incumbent innovator will be given after the proof of

Proposition 3.

Proof of Proposition 2. We shall use the result of Lemma 1 to prove this

proposition. The proof of this lemma will be given at the end of the appendix.

Since in this proposition, we are only considering an outsider innovator, the

superscript O is suppressed. Part [i] has been shown in the main text, so

consider part [ii] and let n ≥ 2. The results of the following lemmas will

be used to prove the proposition. The proofs are straightforward, and hence

omitted.

Lemma A2.1. Let 0 < ε < min{a− c, c}. For m ∈ {1, . . . , n}, let

β1(m) =
mε− (a− c)

m
, β2(m) =

a− c + (n−m + 1)ε

n−m + 1
.

Then, for m ∈ {2, . . . , n}, β1(m− 1) < β1(m) < ε < β2(m− 1) < β2(m).
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Lemma A2.2. Suppose there are m licensees, 1 ≤ m ≤ n − 1. Then, the

following hold.

[1] If r ≤ β1(m), then

qL(m, r) =
a− c + ε− r

m + 1
, qN(m, r) = 0.

[2] If r ∈ [β1(m), β2(m)], then

qL(m, r) =
a− c + (n−m + 1)(ε− r)

n + 1
, qN(m, r) =

a− c−m(ε− r)

n + 1
.

[3] If r ≥ β2(m), then

qL(m, r) = 0, qN(m, r) =
a− c

n−m + 1
.

For all cases, ΦJ(m, r) = [qJ(m, r)]2 for J ∈ {L, N}.

Lemma A2.3. For m = n, qL(n, r) = (a − c + ε − r)/(n + 1) if r ≤ β2(n),

and qL(n, r) = 0 otherwise. Again, ΦL(m, r) = [qL(m, r)]2.

Lemma A2.4. Let 1 ≤ m ≤ n and r ≥ β2(m). Then, the innovator’s payoff

from any FR or AR policy when there are m licensees and the rate of royalty

is r, is at most zero.

We now proceed to prove the proposition. Recall that the respective payoffs

of the innovator from FR and AR polices are given as follows.

ΠFR(m, r) = mrqL(m, r) + m[ΦL(m, r)− ΦN(m− 1, r)]. (11)

ΠAR(m, r) = mrqL(m, r) + m[ΦL(m, r)− ΦN(m, r)]. (12)

We consider two possible cases.

Case I. All firms are licensees, that is, m = n. Due to Lemma 1, it is enough

to consider the FR policy for this case. Due to Lemma A2.4, we can restrict

r ≤ β2(n). It is easy to verify that when r ≤ β1(n− 1), then the payoff of the

innovator, which is a quadratic function in r, is maximized at r = β1(n − 1).
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On the other hand, when r ≥ β2(n−1) it is maximized at r = β2(n−1). Thus,

it is enough to consider r ∈ [β1(n − 1), β2(n − 1)]. In that case, from Lemma

A2.2 and (11), we have

ΠFR(n, r) = nr
[
a− c + ε− r

n + 1

]
+n

[
a− c + ε− r

n + 1

]2

−n

[
a− c− (n− 1)(ε− r)

n + 1

]2

.

The maximum is attained at r = r̄(n) ∈ (β1(n− 1), β2(n− 1)), where

r̄(n) ≡ (n− 1)[(2n− 1)ε− (a− c)]

2(n2 − n + 1)
. (13)

The maximized payoff of the innovator is given by

ΠFR(n, r̄(n)) =
n[(n− 1)2(a− c)2 + 2(n + 1)(2n2 − n + 1)(a− c)ε + (n + 1)2ε2]

4(n + 1)2(n2 − n + 1)
.

(14)

Conclusion O1. For m = n, the optimal licensing policy for the innovator is

the FR policy 〈n, r̄, f(n, r̄(n))〉, where r̄(n) is given by the (13). The payoff of

the innovator is given by (14).

Case II. Consider the case where there is at least one non-licensee, that is,

1 ≤ m ≤ n− 1. In view of Lemma 1, we only consider AR policy for this case.

When r ≤ β1(m), the maximum is attained at r = β1(m), while the payoff is

at most zero for r ≥ β2(m). So, we can restrict r ∈ [β1(m), β2(m)]. In that

case, from Lemma A2.2 and (12), we have

ΠAR(m, r) = mr

[
a− c + (n−m + 1)(ε− r)

n + 1

]

+m

[
a− c + (n−m + 1)(ε− r)

n + 1

]2

−m

[
a− c−m(ε− r)

n + 1

]2

. (15)

The unconstrained maximum is attained at r = r̃(m), where

r̃(m) ≡ −(n + 1− 3m)ε− (a− c)

2m
.

It is easy to verify that r̃(m) < ε < β2(m). Since

r̃(m)− β1(m) =
a− c− (n−m + 1)ε

2m
,
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we have

r̃(m) ≤ β1(m) ⇔ (a− c) ≤ (n−m + 1)ε. (16)

Noting that 2 ≤ n−m + 1 ≤ n, we consider the following three subcases.

Subcase (a). ε ≥ (a − c)/2. For this case, (a − c) ≤ (n − m + 1)ε for all

m such that 1 ≤ m ≤ n − 1. Hence, by (16), for every m, the maximum is

attained at β1(m). By replacing r = β1(m) in (15) we find that the maximized

payoff of the innovator is (a− c)ε.

Subcase (b). (a − c)/n < ε < (a − c)/2. Then, there is m̄, 2 ≤ m̄ ≤ n such

that (a−c) ≤ (n−m+1)ε for m when 1 ≤ m ≤ n−m̄ and (a−c) > (n−m+1)ε

for m when n− m̄+1 ≤ m ≤ n− 1. Thus, for all m such that 1 ≤ m ≤ n− m̄,

the optimal choice of r is β1(m), and the payoff of the innovator is given by

(a− c)ε. Now consider m such that n− m̄ + 1 ≤ m ≤ n− 1. For such an m,

the optimal choice of r is r̃(m). The payoff of the innovator for the AR policy

〈m, r̃(m)〉 is given by

ΠAR(m, r̃(m)) =
(a− c)2 + 2(n + m + 1)(a− c)ε + (n−m + 1)2ε2

4(n + 1)
. (17)

From (17), it is easy to verify that ΠAR(m, r̃(m)) is increasing in m when

a − c > (n − m + 1)ε, so that for n − m̄ + 1 ≤ m ≤ n − 1, the payoff is

maximized when m = n− 1. Noting that

r̃(n− 1) =
2(n− 2)ε− (a− c)

2(n− 1)
, (18)

the payoff of the innovator is given by

ΠAR(n− 1, r̃(n− 1)) =
(a− c)2 + 4n(a− c)ε + 4ε2

4(n + 1)
. (19)

Comparing this with (a− c)ε, we get

ΠAR(n− 1, r̃(n− 1))− (a− c)ε =
(a− c− 2ε)2

4(n + 1)
≥ 0,

which implies that the optimal payoff of the innovator in this case is given by

(19).
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Subcase (c). ε ≤ (a − c)/n. For this case, a − c ≥ (n − m + 1)ε for all

1 ≤ m ≤ n − 1. From similar argument as in the previous case, we conclude

that in this case also, the optimal payoff of the innovator is given by (19). We

have the following conclusion.

Conclusion O2. Consider AR policies 〈m, r〉 for 1 ≤ m ≤ n − 1. Then, the

following hold.

[i]If ε ≥ (a − c)/2, then the innovator’s payoff is maximized for any policy

〈m, β1(m)〉, where 1 ≤ m ≤ n− 1, and her payoff is (a− c)ε. However, in the

presence of a negligible but positive cost of contracting for every licensee, the

optimal policy of the innovator is 〈1, β1(1)〉, where the license is sold exclusively

to a firm.

[ii]If ε ≤ (a− c)/2, then 〈n− 1, r̃(n− 1)〉 is the optimal policy, and the corre-

sponding payoff of the innovator is given by

ΠAR(n− 1, r̃(n− 1)) =
(a− c)2 + 4n(a− c)ε + 4ε2

4(n + 1)
.

To complete the proof of Proposition 2, we need to compare the results of

Conclusions O1 and O2. We consider the following two cases.

Case 1. ε ≥ (a− c)/2. It can be easily verified that ΠFR(n, r̄(n)) ≥ (a− c)ε

iff g1(x, n) ≥ 0, where

g1(x, n) = n(n− 1)2x2 − 2(n + 1)(n2 − n + 2)x + n(n + 1)2,

and x ≡ (a − c)/ε. It is easy to verify that for 2 ≤ n ≤ 6, ΠFR(n, r̄(n))

is less than (a − c)ε, while for n ≥ 7, there exists 1 < q(n) < 2, such that

ΠFR(n, r̄(n)) ≤ (a − c)ε when ε ≥ (a − c)/q(n) and the converse holds when

(a− c)/2 ≤ ε < (a− c)/q(n). Defining q(n) = 2 for 2 ≤ n ≤ 6, it can be shown
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that

q(n) =


2 for 2 ≤ n ≤ 6

(n + 1)(n2 − n + 2 + 2
√

n2 − n + 1)

n(n− 1)2
for n ≥ 7

(20)

Hence, it follows that when ε ≥ (a− c)/q(n), the innovator sells the license to

only one firm.

Case 2. ε ≤ (a− c)/2. For this case, ΠFR(n, r̄(n)) ≥ ΠAR(n− 1, r̃(n− 1)) iff

g2(x, n) ≤ 0, where

g2(x, n) = (2n2 − n + 1)x2 − 2n(n− 1)(n + 1)x + (n + 1)(3n2 − 5n + 4). (21)

It can be shown that for all x, g2(x, n) > 0 for 2 ≤ n ≤ 5. For n = 6, there

are constants 2 < x(6) < y(6) such that g2(x, 6) < 0 for x ∈ (x(6), y(6)),

and g2(x, n) ≥ 0 otherwise. Finally, for n ≥ 7, there is y(n) > 2 such that

g2(x, n) ≤ 0 for x ∈ [2, y(n)], and it is positive for x > y(n), where

y(n) =
n(n− 1)(n + 1)−

√
(n + 1)(n2 − n + 1)(n3 − 6n2 + 5n− 4)

2n2 − n + 1
.

Conclusion O3. [i] Let 2 ≤ n ≤ 5. When ε ≥ (a−c)/2, the innovator sells the

license to only one firm using the AR policy and obtains (a − c)ε. Otherwise,

the license is sold to n − 1 firms using the AR policy and the payoff of the

innovator is given by (19).

[ii]Let n = 6. There are numbers y(6) > x(6) > 2 such that when ε ≥ (a− c)/2,

then the innovator sells the license to only one firm using the AR policy and

obtains (a− c)ε. When ε ∈ ((a− c)/y(6), (a− c)/x(6)), then the license is sold

to all firms through the FR policy and the payoff of the innovator is given by

(14). Otherwise, the license is sold to n− 1 firms using the AR policy, and the

payoff is given by (19).

[iii]Let n ≥ 7. There are numbers y(n) > 2 > q(n) such that the innovator sells

only one license using the AR policy and earns (a− c)ε when ε ≥ (a− c)/q(n).
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When ε ≤ (a− c)/y(n), the license is sold to n− 1 firms using the AR policy

and the payoff is given by (19). When (a − c)/y(n) ≤ ε ≤ (a − c)/q(n), the

license is sold to n firms through the FR policy and the payoff is given by (14).

Then, Proposition 2 follows from Conclusion O3.

Remark. The function q(n) is decreasing in n, and q(n) → 1 as n increases

indefinitely. For n ≥ 6, y(n) is strictly increasing in n and y(n) → ∞ as n

increases indefinitely.

Proof of Proposition 1 in case of an outsider innovator. Observe from

(14) and (19) that both ΠFR(n, r̄(n)) and ΠAR(n− 1, r̃(n− 1)) are increasing

in ε. Clearly, (a − c)ε is increasing in ε. Since the payoff of the innovator is

continuous in ε, we conclude that the payoff is increasing in ε, which proves

[i] of Proposition 1. Further note that for every ε, both ΠFR(n, r̄(n)) and

ΠAR(n− 1, r̃(n− 1)) are at least (a− c)ε, which proves [ii] of Proposition 1.

To prove [iii], first consider the payoff of any firm. For the FR policy

〈n, r̄(n), f(n, r̄(n))〉, the payoff of every firm is given by

Π̃FR =
[(n2 + 1)(a− c)− (n2 − 1)ε]2

4(n + 1)2(n2 − n + 1)2
,

while for the AR policy 〈n− 1, r̃(n− 1)〉, the payoff of every firm is given by

Π̃AR =
(a− c− 2ε)2

4(n + 1)2
.

When the license is sold to only firm, then we know that every firm earns zero

payoff. Note that the pre-innovation Cournot profit of any firm is given by

Π̃ = (a− c)2/(n + 1)2. It can be easily verified that Π̃ is more than both Π̃FR

and Π̃AR, implying that every firm is worse off due to the innovation.

To complete the proof of [iii] of Proposition 1, we need to show that the con-

sumers are better off due to the innovation. For the FR policy 〈n, r̄(n), f(n, r̄(n))〉,
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the total industry output is given by

qFR =
n[(2n2 − n + 1)(a− c) + (n + 1)ε]

2(n + 1)(n2 − n + 1)
,

so that the Cournot price is pFR = a−qFR. For the AR policy 〈n−1, r̃(n−1)〉,
the total industry output is given by

qAR =
(2n + 1)(a− c) + 2ε

2(n + 1)
,

and the Cournot price is pAR = a− qAR. When the license is sold to only one

firm, then we know that the Cournot price is c. The pre-innovation Cournot

price is given by p̃ = (a + nc)/(n + 1). It can be easily verified that pFR, pAR

and c are all less than p̃, which implies that the post-innovation Cournot price

is always less than the pre-innovation price, so that the consumers are better

off due to the innovation. This completes the proof of Proposition 1 in case of

an outsider innovator.

Remark. It can be seen that both Π̃FR and Π̃AR are decreasing in ε. However,

for n ≥ 6, ΠFR is more than ΠAR at ε = (a − c)/y(n) (the point where the

optimal policy changes from AR policy to FR policy), implying that there is

a jump at ε = (a − c)/y(n) (see Figure 2.1). Similarly, both pF and pA are

decreasing in ε. However, for n ≥ 6, at ε = (a − c)/y(n), pFR is more than

pAR, that is, the price function has an upward jump at this point (see Figure

3.1).

Proof of Proposition 3. Consider an incumbent innovator. For notational

simplicity, the superscript I, which stands for ‘incumbent’, is dropped. Note

that the subscript I which appears, stands for ‘innovator’. The following lem-

mas will be used to prove this proposition. The proofs are easy, and hence

omitted.

Lemma A3.1. Let 0 < ε < min{a− c, c}. For m ∈ {1, . . . , n}, let

θ0(m) =
c− a− (n−m + 1)ε

m
, θ1(m) =

c− a− ε

m
,
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θ2(m) =
c− a + (m + 1)ε

m
, θ3(m) =

a− c + (n−m + 1)ε

n−m + 2
.

Then, for m ∈ {2, . . . , n}, θ2(m− 1) < θ2(m), and

θ0(m− 1) < θ0(m) < θ1(m) < θ2(m) < θ3(m− 1) < θ3(m).

Further, for all m ∈ {1, . . . , n}, θ1(m) < 0 < θ3(m).

Lemma A3.2. Suppose there are m licensees, 1 ≤ m ≤ n − 1. Then, the

following hold.

[1] If r ≤ θ1(m), then

qI(m, r) = 0, qL(m, r) =
a− c + ε− r

m + 1
, qN(m, r) = 0.

[2] If r ∈ [θ1(m), θ2(m)], then

qI(m, r) =
a− c + ε + mr

m + 2
, qL(m, r) =

a− c + ε− 2r

m + 2
, qN(m, r) = 0.

[3] If r ∈ [θ2(m), θ3(m)], then

qI(m, r) =
a− c + (n−m + 1)ε + mr

n + 2
,

qL(m, r) =
a− c + (n−m + 1)ε− (n−m + 2)r

n + 2
,

qN(m, r) =
a− c− (m + 1)ε + mr

n + 2
.

[4] If r ≥ θ3(m), then

qI(m, r) =
a− c + (n−m + 1)ε

n−m + 2
, qL(m, r) = 0, qN(m, r) =

a− c− ε

n−m + 2
.

In all cases, ΦJ〈m, r〉 = [qJ〈m, r〉]2 for J ∈ {I, L, N},

Lemma A3.3. Suppose there are n licensees. Then the following hold.

[1] If r ≤ θ1(n), then

qI(n, r) = 0, qL(n, r) =
a− c + ε− r

n + 1
.
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[2] If r ∈ [θ1(n), θ3(n)], then

qI(n, r) =
a− c + ε + nr

n + 2
, qL(n, r) =

a− c + ε− 2r

n + 2
.

[3] If r ≥ θ3(n), then

qI(n, r) =
a− c + ε

2
, qL(n, r) = 0.

Again, ΦJ〈m, r〉 = [qJ〈m, r〉]2 for J ∈ {I, L, N},

Lemma A3.4. For 1 ≤ m ≤ n − 1, if r ≤ θ1(m), then the payoff of the

innovator for any FR or AR policy is at most zero.

Note that the payoffs of an incumbent innovator at FR and AR policies are

given as follows.

ΠFR(m, r) = ΦI(m, r) + mrqL(m, r) + m[ΦL(m, r)− ΦN(m− 1, r)]. (22)

ΠAR(m, r) = ΦI(m, r) + mrqL(m, r) + m[ΦL(m, r)− ΦN(m, r)]. (23)

Lemmas A3.1-A3.4, together with (22) and (23) allow us to derive ΠFR(m, r)

and ΠAR(m, r) for all m and r. Before proceeding further, consider the FR

policy 〈m, r, f〉 = 〈n, ε, 0〉. This is a policy based on royalty only, and, this

is the optimal one among all licensing policies that are based exclusively on

royalty. For the proof, and other details, we refer to Kamien and Tauman

(2002). The payoff of the innovator from this policy, ΠFR(n, ε), is given by

ΠFR(n, ε) =
(a− c)2 + (n2 + 4n + 2)(a− c)ε + ε2

(n + 2)2
. (24)

This policy will be used since it dominates some other relevant policies,14 as

we show in the following lemmas. The proofs are easy, and hence omitted.

14In particular, ΠFR(n, ε) is more than [a− c + (n + 1)ε]2/(n + 2)2, which is the payoff of

the incumbent innovator when she does not sell license. This implies that the innovator will

sell the new technology.
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Lemma A3.5. Suppose either r ≤ max{θ1(n), θ2(n − 1)}, or r ≥ θ3(n − 1).

Then, ΠFR(n, r) ≤ ΠFR(n, ε).

Lemma A3.6. For 1 ≤ m ≤ n − 1, suppose either r ≤ θ2(m), or r ≥ θ3(m).

Then, ΠAR(m, r) ≤ ΠFR(n, ε).

We proceed now to prove Proposition 3. We consider the following two

cases.

Case I. m = n. For this case, we consider r ∈ [max{θ1(n), θ2(n−1)}, θ3(n−1)],

and show that the maximum payoff in this interval is at least ΠFR(n, ε). Then,

by Lemma A3.5, it follows that this maximum is also the global maximum.

For this interval, from Lemma A3.3 and (22), we have

ΠFR(n, r) =
[
a− c + ε + nr

n + 2

]2

+ nr
[
a− c + ε− 2r

n + 2

]

+n
[
a− c + ε− 2r

n + 2

]2

− n

[
a− c− nε + (n− 1)r

n + 2

]2

.

It can be verified that the maximum of ΠFR(n, r) is attained at r = rF (n),

where rF (n) ∈ (max{θ1(n), θ2(n− 1)}, θ3(n− 1)), and it is given by

rF (n) =
n(2n− 1)ε− (n− 2)(a− c)

2(n2 − n + 1)
. (25)

The maximized payoff of the innovator is given by

ΠFR(n, rF (n)) =
(n3 + 4)(a− c + ε)2 + 4n2(n + 1)2(a− c)ε

4(n + 2)2(n2 − n + 1)
. (26)

Further, ε ∈ [max{θ1(n), θ2(n− 1)}, θ3(n− 1)], so that ΠFR(n, rF (n)) at least

as much as ΠFR(n, ε). Then from Lemma A3.5, the following is concluded.

Conclusion I1. Let m = n. Then, the payoff of the innovator is maximized

at the FR policy 〈n, rF (n), f(n, rF (n))〉 and the payoff is given by (26).

Case II. 1 ≤ m ≤ n − 1. For this case, in view of Lemma 1, it is enough

to consider AR policy. Further, due to Lemma A3.6, we can restrict
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r ∈ [θ2(m), θ3(m)]. For this case, from Lemma A3.2 and (23), we have

ΠAR(m, r) =

[
a− c + (n−m + 1)ε + mr

n + 2

]2

+mr

[
a− c + (n−m + 1)ε− (n−m + 2)r

n + 2

]

+m

[
a− c + (n−m + 1)ε− (n−m + 2)r

n + 2

]2

−m

[
a− c− (m + 1)ε + mr

n + 2

]2

.

The unrestricted maximum is attained at rA(m), where

rA(m) ≡ −[n(a− c) + (n2 + n− 4m− 3mn)ε]

2m(n + 1)
. (27)

Observe that rA(m) < θ3(m). Since

rA(m)− θ2(m) =
(n + 2)[a− c− (n−m + 1)ε]

2m(n + 1)
,

we have

rA(m) ≥ θ2(m) ⇔ a− c ≥ (n−m + 1)ε. (28)

Then, from (27) and (28) we conclude that when r ∈ [θ2(m), θ3(m)], ΠAR(m, r)

is maximized at r = rA(m) if (a−c) ≥ (n−m+1)ε. If (a−c) ≤ (n−m+1)ε, it

is maximized at r = θ2(m). We already know that ΠAR(m, θ2(m)) = (a− c)ε.

We have

ΠAR(m, rA(m)) =
(a− c)2 + 2(n + m + 1)(a− c)ε + (n−m + 1)2ε2

4(n + 1)
. (29)

Since 1 ≤ m ≤ n−1, we have 2 ≤ n−m+1 ≤ n. Considering the three similar

subcases as in the case of an outsider innovator [see the subcases (a)-(c), pp.

24-25 of the proof of Proposition 2], it can be shown that when ε ≥ (a−c)/2, for

any 1 ≤ m ≤ n− 1, ΠAR(m, r) is maximized at r = θ2(m) and, the maximized

value is given by (a − c)ε, which is less than ΠFR(n, ε). When ε < (a − c)/2,

then out of all AR policies, the maximum payoff of the innovator is attained

at the policy 〈n− 1, rA(n− 1)〉, and it is given by the following, which we find

by replacing m by (n− 1) at (29).

ΠAR(n− 1, rA(n− 1)) =
(a− c)2 + 4n(a− c)ε + 4ε2

4(n + 1)
. (30)
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Observe that

ΠAR(n− 1, rA(n− 1))− (a− c)ε =
(a− c− 2ε)2

4(n + 1)
≥ 0.

Summarizing our observations from Case (II), we have the following.

Conclusion I2. Let m ∈ {1, . . . , n−1}. If r ∈ [θ2(m), θ3(m)] and ε < (a−c)/2,

then the innovator’s payoff is maximized at the AR policy 〈n − 1, rA(n − 1)〉,
and it is given by (30). Otherwise, any FR or AR policy gives the innovator

less payoff than the FR policy 〈n, ε, 0〉.

From Conclusions I1 and I2, it follows that when ε ≥ (a − c)/2, then the

FR policy 〈n, rF (n), f(n, rF (n))〉 is the optimal one. To complete the proof of

Proposition 3, we need to consider the case where ε < (a− c)/2 and compare

ΠFR(n, rF (n)) and ΠAR(n−1, rA(n−1)). It can be shown that ΠFR(n, rF (n)) ≥
ΠAR(n− 1, rA(n− 1)) iff g(x, n) ≤ 0, where

g(x, n) = (2n3 + n2 − 4n)x2+

(2n3 + n2− 4n)x2− 2(n4 + 5n3 + 2n2− 4n + 4)x + 3n4 + 11n3 + 4n2− 4n + 12.

Note that we are considering x > 2. It can be shown that g(x, n) has only one

root above 2: h(n), given by

h(n) =
n4 + 5n3 + 2n2 − 4n + 4 + (n + 2)

√
(n + 1)(n2 − n + 1)(n3 + 4)

2n3 + n2 − 4n
.

(31)

Further, g(x, n) < 0 for 2 < x < h(n) and g(x, n) > 0 for x > h(n). Thus, the

optimal policy is the FR policy when ε ≥ (a− c)/h(n), and it is the AR policy

otherwise. This completes the proof of Proposition 3.

Remark. It can be shown that h(n) > n. Further, h(4) < h(2) < h(5),

h(n + 1) > h(n) for n ≥ 3 and limn→∞ h(n) = ∞.

Proof of Proposition 1 in case of an incumbent innovator. We have al-

ready shown while proving Proposition 3 that both ΠFR(n, rF (n)) and ΠAR(n−

33



1, rA(n− 1)) are at least (a− c)ε. From (26) and (30), it can be easily verified

that both ΠFR(n, rF (n)) and ΠAR(n− 1, rA(n− 1)) are increasing in ε. Since

the payoff of the innovator is continuous in ε, we conclude that the payoff is

increasing in ε. This proves parts [i] and [ii] of Proposition 1 in case of an

incumbent innovator.

To prove [iii] of Proposition 1, first consider the payoff of any firm other

than the innovator. For the FR policy, this is given by

Π̃FR =
n2(n + 1)2(a− c− ε)2

4(n + 2)2(n2 − n + 1)2
,

while for the AR policy, the payoff of any firm other than the innovator is given

by

Π̃AR =
(a− c− 2ε)2

4(n + 1)2
.

Note that the pre-innovation Cournot profit of any firm is given by

Π̃ = (a− c)2/(n+2)2. It can be easily verified that the both Π̃FR and Π̃AR are

less than Π̃, which proves that every firm other than the innovator is worse off

due to the innovation.

Finally, to show that the consumers are better off, note that for the FR

policy, the total industry output is given by

qFR =
(2n3 + n2 − 2n + 2)(a− c) + (n2 + 2)ε

2(n + 2)(n2 − n + 1)
,

so that the Cournot price is given by pFR = a − qFR. For the AR policy, the

total industry output is given by

qAR =
(2n + 1)(a− c) + 2ε

2(n + 1)

and the price is given by pAR = a − qAR. Noting that the pre-innovation

Cournot price is given by p̃ = [a + (n + 1)c]/(n + 2), it can be easily verified

that both pFR and pAR are less than p̃, which proves that the consumers are

better off due to the innovation. This completes the proof of Proposition 1 in

case of an incumbent innovator.
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Remark. It can be further verified that ΠFR(n, rF (n)) is decreasing in ε.

Also, when ε < (a − c)/h(n), that is, when the AR policy is optimal, then

ΠAR(n−1, rA(n−1)) is decreasing in ε. However, at ε = (a−c)/h(n), (the point

where the optimal policy changes from AR policy to FR policy), ΠFR > ΠAR.

Thus, when ε = (a − c)/h(n), there is an upward jump for the payoff of any

firm other than the innovator (see Figure 2.2). Regarding the post-innovation

Cournot price, it can be seen that the price is more than c. Further, both pFR

and pAR are decreasing in ε, and there is an upward jump at ε = (a− c)/h(n)

(see Figure 3.2).

Proof of Proposition 4. First, we prove Proposition 4 in case the innovator is

an outsider. Then, we prove this proposition in case of an incumbent innovator.

An outsider innovator. Let us denote by NO(ε) the industry size that gives

the outsider innovator the highest incentive to innovate when the magnitude

of innovation is ε. Denoting the payoff of the outsider innovator in an industry

of n firms by Π(n), NO(ε) is the industry size where Π(n) is maximum. We

have already shown that Π(1) < Π(2), so that it is enough to consider n ≥ 2.

To begin with, consider ε ≥ (a − c)/2. Denoting x ≡ (a − c)/ε, for this

case, we have x ∈ (1, 2]. Recall from the proof of Proposition 2 that when

ε ≥ (a− c)/2, the optimal payoff for the innovator is (a− c)ε for n ≤ 6. Since

the FR policy 〈n, r̄(n), f(n, r̄(n))〉 is not the optimal policy for that case, we

have ΠFR(n, r̄(n)) ≤ (a − c)ε for n ≤ 6. For n ≥ 7, by similar reasoning, it

follows that there is 1 < q(n) < 2 such that ΠFR(n, r̄(n)) ≤ (a − c)ε when

x ∈ [1, q(n)] and ΠFR(n, r̄(n)) > (a − c)ε when x ∈ (q(n), 2]. It can be easily

verified that

q(n + 1) < q(n) for all n ≥ 7 and lim
n→∞

q(n) = 1.

Hence for every x ∈ (1, 2], there exists N such that x ∈ (q(N + 1), q(N)]. This

implies that ΠFR(n, r̄(n)) ≤ (a − c)ε for n ≤ N and ΠFR(n, r̄(n)) > (a − c)ε
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for n ≥ N + 1. Hence NO(ε) ≥ N + 1. It can be easily verified that

ΠFR(n + 1, r̄(n + 1)) ≥ ΠFR(n, r̄(n)) iff γ(x, n) ≤ 0, where

γ(x, n) = n(n2 + n− 1)(n3 − 2n2 − 3n− 4)x2−

2(n + 2)(n + 1)(n4 + 4n2 + 3n + 2)x + (n2 + n− 1)(n + 2)2(n + 1)2. (32)

It can be verified that γ(x, n) has two real roots, x1(n) < 1 < x2(n) and

γ(x, n) < 0 for x ∈ (1, x2(n)) while γ(x, n) > 0 for x > x2(n). Further,

q(n) < x2(n) and x2(n + 1) < x2(n) for all n ≥ 7; lim
n→∞

x2(n) = 1. (33)

Thus, for x ∈ (q(N +1), q(N)], there exists N̄ > N +1 such that x2(n) ≥ x for

N + 1 ≤ n ≤ N̄ and x2(n) < x for n ≥ N̄ + 2. This implies that the maximum

of ΠFR(n, r̄(n)) for n ≥ N +1 is attained at n = N̄ +1, so that NO(ε) = N̄ +1

Since both q(n) and x2(n) are decreasing in n, and both converge to 1 as n

increases indefinitely, we conclude the following lemma.

Lemma A4.1. NO(ε) is increasing in ε when ε ≥ (a− c)/2 and NO(ε) →∞
as ε → a− c.

In view of Lemma A4.1, to complete the proof of Proposition 4 in case of

an outsider innovator, it remains to be shown that (i) there is an x0 such that

NO(ε) = 2 for ε ≤ (a− c)/x0, and (ii) NO(ε) is increasing when ε ≤ (a− c)/2.

Let ε < (a − c)/2. Recall from Proposition 2 that for n ≤ 5, the payoff

of the outsider innovator for this case is given by ΠAR(n − 1, r̃(n − 1)). For

n ≥ 6, it is ΠFR(n, r̄(n) if x ∈ [x(n), y(n)] and it is ΠAR(n − 1, r̃(n − 1))

otherwise. Recall that x(6) > 2, x(n) = 2 for n ≥ 7, y(n) is increasing for

n ≥ 6 and limn→∞ y(n) = ∞. For any given magnitude of innovation, let us

partition the set {2, 3, . . .} = NA ∪ NF , where NA is the set of all integers n

such that with industry size n, the AR policy is the optimal policy for the

incumbent innovator, and NF is the similar set for the FR policy. Hence, when
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x ∈ [y(N), y(N + 1)), then NA = {2, 3, . . . , N − 1} and NF = {N, N + 1, . . .}.
Next, note that

ΠAR(n, r̃(n))− ΠAR(n− 1, r̃(n− 1)) =
−(a− c− 2ε)2

4(n + 1)(n + 2)
,

so that ΠAR(n− 1, r̃(n− 1)) is decreasing in n, implying that over the set NA,

it is maximized at n = 2, i.e., at the policy 〈n− 1, r̃(n− 1)〉 = 〈1, r̃(1)〉. Note

that

ΠAR(1, r̃(1)) =
(a− c)2 + 8(a− c)ε + 4ε2

12
.

From (32) and the last two statements of (33), it follows that for sufficiently

large x, ΠFR(n, r̄(n)) is decreasing in n, so that the maximum over NF is

attained at n = N . Next, note that ΠAR(1, r̃(1)) ≥ ΠFR(n, r̄(n)) iff τ(x, n) ≥ 0,

where

τ(x, n) = (n4 − 2n3 − 2n + 1 + 6n2)x2

−2(n + 1)(2n3 − 3n2 + 3n− 4)x + (4n2 − 7n + 4)(n + 1)2. (34)

It can be verified that for sufficiently large n, τ(x, n) has two real

roots, τ1(n) < 2 < τ2(n), and τ(x, n) > 0 for all x > τ2(n). Further,

limn→∞ τ2(n) = 2. All these facts imply that there is a sufficiently large x0

such that ΠAR(1, r̃(1)) > ΠFR(n, r̄(n)) for all sufficiently large n. Since y(n) is

increasing in n and limn→∞ y(n) = ∞, one can choose x0 ∈ [y(N), y(N +1)) for

a sufficiently large N such that ΠAR(1, r̃(1)) > ΠFR(N, r̄(N)) for all x > x0.

This implies that NO(ε) = 2 for all x > x0.

Lemma A4.2. There is x0 > 2 such that NO(ε) = 2 when ε ≤ (a− c)/x0.

In view of Lemmas A4.1 and A4.2, it only remains to be shown that NO(ε)

is increasing in ε for ε ∈ ((a − c)/x0, (a − c)/2]. In this regard, we have the

following lemma, which follows from certain basic properties of the quadratic

functions g2(x, n) and γ(x, n), given by (21) and (32) respectively. The proof is

standard, but long and tedious as it proceeds through a series of observations.

This proof is omitted here. It is available from the authors by request.
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Lemma A4.3. There are numbers 2 < x3 < x2 < x1 < x0 such that

NO(ε) =



2 when ε ≤ (a− c)/x0

9 when ε ∈ [(a− c)/x0, (a− c)/x1]

10 when ε ∈ [(a− c)/x1, (a− c)/x2]

11 when ε ∈ [(a− c)/x2, (a− c)/x3]

12 when ε ∈ [(a− c)/x3, (a− c)/2]

(35)

Further, limε→(a−c)/2− NO(ε) < limε→(a−c)/2+ NO(ε).

Then, Proposition 4 for the case of an outsider innovator follows from Lem-

mas A4.1-A4.3.

An incumbent innovator. Let N I(ε) denote the industry size that provides

the highest incentive to innovate to an incumbent innovator when the magni-

tude of the innovation is ε. Further, let ∆(n+1) denote the incremental payoff

of the incumbent innovator in an industry of size n + 1, so that for a given

magnitude of innovation, the industry size that provides the incumbent inno-

vator the highest incentive to innovate is the one where ∆(n+1) is maximum.

We have already shown that ∆(2) > ∆(1). So, we can consider n ≥ 1. Recall

that

∆(2) =
(a− c + ε)2

4
− (a− c− ε)2

9
− (a− c)2

9
. (36)

Now consider an industry of size n+1 with n ≥ 2. Let us denote by ∆FR(n+1)

the incremental payoff of the innovator due to the innovation when the optimal

policy is the FR policy 〈n, rF (n), f(rF (n), n)〉, that is,

∆FR(n + 1) = ΠFR(n + 1)− Π̃(n + 1),

where Π̃(n + 1) is the pre-innovation Cournot profit of a firm in an industry

of n + 1 firms, given by Π̃(n + 1) = (a− c)2/(n + 2)2. Then, from the proof of

Proposition 3, it follows that

∆FR(n + 1) =
(n3 + 4)(a− c + ε)2 + 4n2(n + 1)2(a− c)ε

4(n + 2)2(n2 − n + 1)
− (a− c)2

(n + 2)2
. (37)
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Next, consider the case when the AR policy 〈rA(n − 1), n − 1〉 is the optimal

one. Using similar notation, again from the proof of Proposition 3, we conclude

that

∆AR(n + 1) =
(a− c)2 + 4n(a− c)ε + 4ε2

4(n + 1)
− (a− c)2

(n + 2)2
. (38)

Recall from Proposition 3 that the FR policy is the optimal policy for the

incumbent innovator if ε ≥ (a − c)/h(n), and, the AR policy is the optimal

one otherwise, where h(n) is given by (31). Thus, for fixed a > c > 0, and for

a given magnitude of ε, we can partition the set {2, 3, . . .} = NA ∪NF , where

NA is the set of all integers n such that with industry size n+1, the AR policy

〈n − 1, rA(n − 1)〉 is the optimal policy for the incumbent innovator, and NF

is the similar set for the FR policy 〈n, rF (n), f(rF (n), n)〉. Further, let

N̄A = {n ∈ NA|∆AR(n + 1) ≥ ∆AR(m + 1) for all m ∈ NA}

and define the set N̄F similarly for the FR policy. To determine N I(ε), we need

to compare ∆(2), ∆AR(nA+1) and ∆FR(nF +1) for nA ∈ N̄A and nF ∈ N̄F . To

begin with, we show that when ε is sufficiently large, then N I(ε) is increasing

in ε and N I(ε) →∞ as ε → a−c. Recall that h(3) < h(n) for all n 6= 3, so that

when ε ≥ (a− c)/h(3), then for all n ≥ 2, the FR policy 〈n, rF (n), f(rF (n), n)〉
is the optimal policy. Hence for this case, it is enough to compare ∆FR(n + 1)

with ∆(2). Denoting x ≡ (a− c)/ε, it can be verified that ∆(2) ≥ ∆FR(n + 1)

iff ζ(x, n) ≥ 0, where

ζ(x, n) = (n3 − 5n2 + 32n− 4)x2 − (5n3 + 11n2 + 16n + 16)(2x− 1). (39)

Noting that x > 1, we can consider x ∈ (1, h(3)]. It can be easily verified by

replacing n by 3 in (39) that ζ(x, 3) is negative for all x ∈ (1, h(3)], so that

∆(2) < ∆FR(4), implying that for this region, N I(ε) = nF +1 for nF ∈ N̄F . To

determine N̄F , we note that ∆FR(n + 2) ≥ ∆FR(n + 1) iff φ(x, n) ≤ 0, where

φ(x, n) = (n6 − 5n5 − 18n4 + 7n3 + 27n2 + 40n− 4)x2−

(n + 1)2(n4 + n3 − n2 + 16n + 16)(2x− 1). (40)

39



It is easy to check that φ(x, n) < 0 for all x > 1 when n ≤ 7, implying that

∆FR(n + 2) > ∆FR(n + 1) for n such that 2 ≤ n ≤ 7. Hence

max
n∈{2,...,7}

∆FR(n + 1) = ∆FR(9). (41)

For n ≥ 8, it can be verified that φ(x, n) has two real roots, φ1(n), and,

φ2(n), where φ1(n) < 1 < φ2(n). Further, φ2(n + 1) < φ2(n) for all n ≥ 8,

φ2(12) < h(3) < φ2(11), and

lim
n→∞

φ1(n) = lim
n→∞

φ2(n) = 1. (42)

Also note that φ(x, n) ≤ 0 for x ∈ [1, φ2(n)], and φ(x, n) > 0 for x > φ2(n).

All these facts imply that for every x ∈ [1, h(3)], there is an integer n(x) ≥ 12

such that φ(x, n) ≤ 0 for n ≤ n(x) and φ(x, n) > 0 for n ≥ n(x) + 1, so that

N I(ε) = n(x) + 2. Since φ2(n + 1) is decreasing in n, it is concluded that n(x)

is decreasing in x. Due to (42), we further conclude that n(x) →∞ as x → 1.

Then, we have the following lemma.

Lemma A4.4. N I(ε) is increasing in ε when ε ∈ [(a− c)/h(3), a− c] and

N I(ε) →∞ as ε → a− c.

To complete the proof of Proposition 4, it remains to be shown that (i)

there is a constant y0 > 1 such that when ε ≤ (a− c)/y0, then N I(ε) = 2 and

(ii) N I(ε) is increasing in ε for ε < (a − c)/h(3). To prove (i), we note that

∆(2) ≥ ∆AR(n + 1) iff ρ(x, n) ≥ 0, where

ρ(x, n) = (n3−4n2 +8n+4)x2−2(5n−13)(n+2)2x+(5n−31)(n+2)2. (43)

It can be verified that ρ(x, n) has two real roots ρ1(n) < 1 < ρ2(n), and

ρ(x, n) > 0 for all x > ρ2(n). Further, the sequence {ρ2(n)} is bounded, since

limn→∞ ρ2(n) = 5 + 2
√

5. All these facts imply that there is a positive number

y1 such that for every n ≥ 2, ρ(x, n) > 0 for all x > y1. This implies that

when x > y1, then ∆(2) ≥ ∆AR(n + 1) for all n ≥ 2. Next, recall from (39)
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that ∆(2) ≥ ∆FR(n + 1) iff ζ(x, n) ≥ 0. In view of (41), we can consider

n ≥ 8. It can be verified that ζ(x, n) has two real roots, ζ1(n) < 1 < ζ2(n) and

limn→∞ ζ2(n) = 5 + 2
√

5. Hence we conclude that there is a positive number

y1 such that when x > y1, then ∆(2) ≥ ∆FR(n + 1) for all n ≥ 2. Thus, there

is a sufficiently large positive number y0 such that when x > y0, then ∆(2) is

more than both ∆AR(n + 1) and ∆FR(n + 1) for all n ≥ 2, which implies the

following lemma.

Lemma A4.5. There is positive number y0 such that when ε < (a − c)/y0,

then N I(ε) = 2.

In view of Lemmas A4.4 and A4.5, it only remains to be shown that N I(ε)

is increasing in ε when ε[(a − c)/h(3), (a − c)/y0]. It can be verified that

∆AR(n + 2) ≥ ∆AR(n + 1) iff σ(x, n) ≤ 0, where

σ(x, n) = (n3 − 7n− 2)x2 − 4(n + 2)(n + 3)2(x− 1). (44)

From (39), (40), (43) and (44), it follows that the functions that determine the

sets N̄A and N̄F are all quadratic in x. The following lemma completes the

proof of Proposition 4. The proof of this lemma long and tedious, but standard

in that it relies on the basic properties of the quadratic functions encountered.

The proof is available from the authors by request.

Lemma A4.6. There are constants h(3) < y4 < y3 < y2 < y1 < y0 such that

N I(ε) =



2 when ε ≤ (a− c)/y0

7 when ε ∈ [(a− c)/y0, (a− c)/y1]

8 when ε ∈ [(a− c)/y1, (a− c)/y2]

10 when ε ∈ [(a− c)/y2, (a− c)/y3]

11 when ε ∈ [(a− c)/y3, (a− c)/y4]

12 when ε ∈ [(a− c)/y4, (a− c)/h(3)]

(45)

Further, limε→(a−c)/h(3)− N I(ε) < limε→(a−c)/h(3)+ N I(ε).
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Then, Proposition 4 in case of an incumbent innovator follows from Lemmas

A4.4-A4.6.

Proof of Proposition 5. To prove this proposition, we consider the following

two cases.

Case 1. ε ≥ (a− c)/2. Note from Conclusion O3 of the proof of Proposition

2 that when n ≤ 6, then an outsider innovator sells an exclusive license and

earns (a − c)ε. For n ≥ 7, there is q(n) > 2 such that the same is true if

ε ≥ (a− c)/q(n). When (a− c)/2 ≤ ε ≤ (a− c)/q(n), then the optimal policy

for an outsider innovator is the FR policy, and the payoff is given by

ΠO
FR(n, r̄(n)) =

n[(n− 1)2(a− c)2 + 2(n + 1)(2n2 − n + 1)(a− c)ε + (n + 1)2ε2]

4(n + 1)2(n2 − n + 1)
.

Since h(n) > 2, from Proposition 3 we conclude that in an oligopoly with n+1

firms, the payoff of an incumbent innovator is ΠI
FR(n, rF (n)) when ε ≥ (a−c)/2,

where

ΠI
FR(n, rF (n)) =

(n3 + 4)(a− c + ε)2 + 4n2(n + 1)2(a− c)ε

4(n + 2)2(n2 − n + 1)
. (46)

It can be easily verified that ΠI
FR(n, rF (n)) is more than both (a − c)ε and

ΠO
FR(n, r̄(n)). Hence, an outsider innovator earns more payoff if she enters the

industry instead of being an outsider. Thus, when ε ≥ (a − c)/2, then an

outsider innovator enters the industry and sells the license to all firms.

Case 2. ε ≤ (a− c)/2. Observe that the payoff of an outsider innovator from

the AR policy 〈n − 1, r̃(n − 1)〉 in an oligopoly of n firms is the same as the

payoff of an incumbent innovator from the AR policy 〈n− 1, rA(n− 1)〉 in an

oligopoly of n + 1 firms. Indeed,

ΠO
AR(n− 1, r̃(n− 1)) = ΠI

AR(n− 1, rA(n− 1)) =
(a− c)2 + 4n(a− c)ε + 4ε2

4(n + 1)
.

(47)

We consider the following two subcases.
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Subcase (a). n ≤ 5. Recall from Conclusion O3 of the proof of Proposition 2

that the payoff of the outsider innovator is given by ΠO
AR(n− 1, r̃(n− 1). From

Proposition 3, it follows that when (a− c)/h(n) < ε ≤ (a− c)/2, the payoff of

an incumbent innovator is ΠI
FR(n, rF (n)), given by (46) and ΠI

FR(n, rF (n)) >

ΠI
AR(n − 1, rA(n − 1)), implying that ΠI

FR(n, rF (n)) > ΠI
AR(n − 1, r̃(n − 1)).

Thus, for this case, an outsider innovator will enter the industry when

(a− c)/h(n) < ε ≤ (a− c)/2. For ε ≤ (a− c)/h(n), the payoff of an outsider

innovator is ΠO
AR(n − 1, r̃(n − 1)) while that of an incumbent innovator is

ΠI
AR(n−1, rA(n−1)). Then, from (47), we conclude that an outsider innovator

is indifferent between entering the industry or otherwise. However, taking the

negligible but positive cost of entry into account, she will not enter.

Subcase (b). n ≥ 6. For this case, the payoff of an outsider innovator is

ΠI
FR(n, r̄(n) when ε ∈ [(a− c)/x(n), (a− c)/y(n)], and it is ΠI

AR(n−1, r̃(n−1)

otherwise. It can be verified that h(n) > x(n) for all n ≥ 6. Thus, for

ε > (a − c)/h(n), depending on the interval where ε lies, the payoff of an

outsider innovator is either ΠI
FR(n, r̄(n), or ΠI

AR(n − 1, r̃(n − 1), and we have

already shown that both of these are less than ΠI
FR(n, rF (n)), so that for this

case, an outsider innovator will enter the industry. When ε ≥ (a − c)/h(n),

then from (47), it follows that the innovator is indifferent between entering or

otherwise, and taking the negligible but positive cost of entry into account,

we conclude that she will remain outside. This completes the proof of this

proposition.

Proof of Lemma 1. We prove Lemma 1 for the following two cases.

An outsider innovator. For this case, Lemma 1 is proved by showing that

for 1 ≤ m ≤ n − 1 and for every r, there exists an r′ such that ΠFR(m, r) ≤
ΠAR(m, r′). Note that

ΠFR(m, r)− ΠAR(m, r) = m[qN(m, r)]2 −m[qN(m− 1, r)]2,
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so that ΠFR(m, r) ≤ ΠAR(m, r) iff qN(m, r) ≤ qN(m− 1, r). When r ≤ β1(m),

from Lemma A2.2, it follows that qN(m, r) = 0 ≤ qN(m − 1, r), so that

ΠFR(m, r) ≤ ΠAR(m, r) for every r for this case. When r ≥ β2(m), then

from Lemma A2.4, it follows that the payoff at any FR policy is at most

zero. When r ∈ [β2(m − 1), β2(m)], then the maximum of ΠFR(m, r) is at-

tained at r = β2(m − 1). Thus, to prove the lemma, it is enough to consider

r ∈ [β1(m), β2(m− 1)]. In what follows, we show that for this case

max
r

ΠFR(m, r) = ΠFR(m, r∗) ≤ ΠAR(m, r∗). (48)

For this case, from Lemma A2.1, it can be seen that

qN(m− 1, r)− qN(m, r) =
ε− r

n + 1
≥ 0 ⇔ r ≤ ε.

To prove (48), thus, it is enough to show that r∗ ≤ ε. It can be easily verified

that ΠFR(m, r) is decreasing at r = ε. Noting that ΠFR(m, r) is quadratic in r

and ε > β1(m), it is concluded that when r ∈ [β1(m), β2(m−1)], the maximum

of ΠFR(m, r) is attained at some r∗ ≤ ε. This completes the proof of Lemma

1 in case of an outsider innovator.

An incumbent innovator. As in the previous case, the lemma is proved for

this case by showing that for every r, there is an r′ such that ΠFR(m, r) ≤
ΠAR(m, r′). For r ≤ θ1(m), from Lemma A3.4, it follows that the payoff of

the innovator from any FR policy is at most zero, so that one can consider

r ≥ θ1(m). Note that ΠFR(m, r) ≤ ΠAR(m, r) iff qN(m, r) ≤ qN(m − 1, r).

For r ∈ [θ1(m), θ2(m)], from Lemma A3.2, it follows that qN(m, r) = 0 ≤
qN(m − 1, r). For r ≥ θ3(m), ΠFR(m, r) is maximized at r = θ3(m), while

for r ∈ [θ3(m − 1), θ3(m)], it is maximized at r = θ3(m − 1). Thus, to prove

Lemma 1, it is enough to consider r ∈ [θ2(m), θ3(m − 1)]. For this case, we

show that

max
r

ΠFR(m, r) = ΠFR(m, r∗) ≤ ΠAR(m, r∗). (49)
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It can be verified from Lemma A3.2 that

qN(m− 1, r)− qN(m, r) =
ε− r

n + 2
≥ 0 ⇔ r ≤ ε.

To prove (49), thus, it is enough to show that r∗ ≤ ε. It can be verified that

ΠFR(m, r) is strictly decreasing at r = ε. Noting that ΠFR(m, r) is quadratic

in r, and ε > θ2(m), we conclude that for r ∈ [θ2(m), θ3(m−1)], the maximum

of ΠFR(m, r) is attained at some r∗ < ε. This completes the proof of Lemma

1 in case of an incumbent innovator.
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