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Abstract   We demonstrate how to specify and estimate a time series model that can 
isolate the effects of changes in fishery policy and forecast the outcome of policy 
changes in the context of changing climate and economic factors. The approach is 
illustrated with data from the headboat fishery for red snapper in the Gulf of Mexico. 
The initial data analysis finds that effort and harvest are cointegrated series and 
that effort appears to respond somewhat to past changes in harvest. This suggested 
a structural vector error correction model specification. Model estimation results 
indicate that seasonal closures directly influence both harvest and effort, whereas 
bag and minimum size limits only affect harvest directly. Also, climate activity has a 
moderate influence on this fishery, mainly via changes in effort. Model forecasts are 
evaluated relative to a more naïve specification using out-of-sample data and the use 
of the model for policy analysis is demonstrated. 

Key words   Climate, Gulf of Mexico, red snapper, sportfishing demand, structural 
vector error correction, time series.
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Introduction

Choosing among competing fisheries rebuilding plans requires an understanding of 
fishery behavior under different management regimes. The extended time horizon of 
many rebuilding plans suggests that this understanding can be complicated by the time 
series characteristics of effort and harvest and the changing conditions outside the 
fishery (e.g., climate). Therefore, a time series modeling strategy that can measure and 
forecast the short and long-run outcomes of policy changes within the broader ecosys-
tem would be useful. 
 There is limited empirical research on the relationships among aggregate effort, 
harvest, and biomass, especially for sportfisheries. Stevens (1966) was the first to use 
regression techniques to analyze the effect of changes in biomass levels on sportfishing 
effort. He estimated a pooled-site aggregate trip demand model that included a mea-
sure of biomass among the explanatory variables. Andrews and Wilen (1988) outlined 
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a similar approach, but used seasonal proxies because actual biomass indices were not 
available. However, they added catch rates to examine the effects of changes in average 
catch on effort in Northern California’s for-hire recreational fishing industry. Raab and 
Steinnes (1980) also used catch rates and total catch proxies to estimate a daily time se-
ries model of angler response to changes in angling success. Loomis and Cooper (1990) 
expanded on this approach by adding economic variables, such as income and travel cost, 
along with catch (keep) rates in their model of aggregate fishing trip demand for sections 
of the Feather River in California. Others (e.g., Schuhmann 1998) have parameterized 
bioeconomic harvest and effort equations for sportfisheries.
 None of the aforementioned empirical sportfishery studies addresses the time series 
properties of fishery data in a systematic way, nor do they examine the long-run behavior 
within the broader ecosystem and policy setting. With regard to time series properties, 
failure to test and address series stationarity, for example, could lead to incorrect infer-
ence regarding policy effects and inaccurate forecasts. Ignoring the potential outside 
influences on fishery behavior could mistakenly attribute the affects of factors, such as 
changing economic and climate conditions, to simultaneously changing policy.
 This article formally explores the interrelationship between sportfishing effort and 
harvest within a managed fishery system, while recognizing the influence of variations 
in biomass, climate conditions, and key economic variables. We demonstrate how to use 
formal time series methods to: (i) explore the short and long-run relationships between ef-
fort and harvest, (ii) evaluate the effects of historical regulations in this context, and (iii) 
forecast the effects of policy changes. We also demonstrate the potential consequences of 
an estimation approach that ignores the time series characteristics of the data. 
 Our analysis follows similar work on commercial fisheries (Dalton 2001, Dalton and 
Ralston 2004, Rosenman 1987)1 in using structural vector autoregression (SVAR) meth-
ods to study aggregate effort and harvest in the headboat fishery for red snapper in the 
Gulf of Mexico (GOM) from 1986 to 2003. However, stationarity and cointegration tests 
indicate that the structural vector error correction (SVEC) form is a more appropriate 
representation of effort and harvest in the GOM case study. This exploratory analysis uses 
a simple angler demand and harvest production specification to further identify model 
parameters and isolate the effects of historic variations in red snapper regulations in the 
presence of fluctuations in red snapper biomass and climate conditions. Note, however, a 
primary goal of the GOM example is to demonstrate the application of SVEC modeling 
techniques to integrated fisheries data. Also, as we are interested in forecasting, the proxy 
variables for external fishery influences were selected, in large part, based on the avail-
ability of forecasts. The climate indices used are routinely forecasted and available as 
data series. Future analyses will consider alternative proxies for key model quantities. 
 An econometric fishery model is presented in the next section followed by a review 
of the relevant data and an initial analysis of time series properties. A SVEC model for 
recreational harvest and effort is then introduced, and the results of the estimation are 
summarized. The article closes with a policy example and discussion. 

Model of For-hire Sportfishing

The typical bioeconomic fishery system includes bi-directional feedback among effort 
and harvest and biomass and harvest. For simplicity, we assume that changes in effort and 
harvest do not feed back to affect biomass. That is, we assume biomass is exogenously 
determined outside of the system. This is a realistic assumption for sectors, such as the 

1 Dalton (2001) and Dalton and Ralston (2004) estimated vector autoregression and structural models of the in-
teractions between sea surface temperature, commercial effort, and commercial harvest. Rosenman (1987) used 
bottom water temperature in a structural time series model of commercial fishing.
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case study considered in this article, that make up a relatively small share of the total 
harvest in a fishery. The system we construct, therefore, consists of equations for the 
production of aggregate harvest by the for-hire sector and the demand for angler days 
(trips). The aggregate supply of angler days is assumed to be perfectly elastic. Similar 
assumptions are implicit in the work of Andrews and Wilen (1988), and our depiction 
of sportfishing effort and harvest can be considered a generalization and extension of 
their model.
 The aggregate harvest, Ht, by the for-hire sector in month t is assumed to be governed 
by the following Cobb-Douglas production function:

    (1)

where Dt is aggregate effort measured in terms of angler days, Ft is the stock of fish, φ12 
and g11 are response coefficients, and zt is the catchability coefficient.2 The catchability 
coefficient is assumed to vary in time based on climate patterns, regulations, and unob-
served factors:

 zt = exp(γ1kt + g14rt + g15wt + ε1,t), (2)

where kt is a vector of deterministics (constant, trend, etc.); rt is a vector with variables 
indicating harvest regulations; wt is a vector of variables measuring climatic conditions; 
γ1, g14, and g15 are parameter vectors; and ε1,t is an independent white noise error term. A 
similar parameterization of the catchability coefficient in a Cobb-Douglas harvest func-
tion is shown in Eide et al. (2003).
 The number of angler days is assumed to be generated according to a demand func-
tion for for-hire services:
 

 (3)

where ct is the cost per angler day, mt is income, E[Ht] is the expected harvest, g22 
and g23 are response coefficients, and vt is the intercept in the (log-linear) angler day 
demand equation. The cost and income variables, c and m, are normalized by a price 
index for a Hicksian composite of all other goods (Alston, Chalfant, and Piggott 2002). 
The demand intercept is specified as a function of climate patterns, regulations, and un-
observed factors:
 vt = exp (γ2kt + g24rt + g25wt + ε2,t), (4)

where γ2, g24, and g25 are parameters, and ε2,t is an independent white noise error term. 
Harvest expectations are assumed to be formed based on aggregate harvest in previous 

periods as                              The number of periods in this finite distributed lag process is 

determined empirically as described in the model specification section below. Note that 
this is the only “dynamic” portion of the model to this point. This naïve model will serve 
as the point of departure as we develop a more general time series formulation that allows 
for additional model dynamics with autoregressive lags in the harvest and effort equations. 
 In natural logarithms, the more general harvest production and angling demand equa-
tions form the following SVAR system:
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(5)

where:

γ = [γ1 γ2]

and                          εt = [ε1,t ε2,t],

with E(εt)=0, E(εtεt)=Σε, and E(εtεs)=0 for t ≠ s (Breitung, Gruggemann, and Lütkephol 
2004). Note that this specification imposes zero restrictions such that trip cost and income 
do not appear in the harvest equation and abundance does not appear in the angler day de-
mand equation. Also, a measure of expected red snapper harvest is explicit in the angler 
day equation as lagged harvest, but lagged angler day terms do not appear in the harvest 
equation. This assumption is examined in the initial data analysis using causality tests. 
The naïve model is restricted even further, whereby αi,11 – αi,21 = 0.
 Before leaving the model discussion, it is worth noting that the long-run relation-
ship between harvest and effort can usually be recovered with an assumption about 
the functional form of the biomass growth function (Clark 1990). Mkenda and Folmer 
(2001) show how this derivation suggests that (integrated) harvest and effort series will 
be cointegrated. We adopt this rational as an important reason for testing for series sta-
tionarity and cointegration. However, for the Cobb-Douglas harvest function specified in 
equation (1), a closed form for the sustainable harvest function does not exist for the typi-
cal (e.g., logistic) biomass growth functions (Bjorndal and Conrad 1987). Furthermore, as 
noted above, we are assuming that the take from the for-hire sportfishing sector modeled 
in the case study is not large enough to significantly affect biomass levels. In this case 
the existence of an equilibrium relationship between total for-hire effort and the harvest 
of one particular species is an empirical question. Our approach, therefore, is to let the 
data determine both the short and long-run relationship between harvest and effort. In the 
context of the formal cointegration analysis shown below, the reduced form long-run re-
lationship is summarized in the cointegrating parameter. 
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Data for Model Application

Fishery

Estimates of aggregate effort and harvest are from the National Marine Fisheries Service 
(NMFS) Headboat Survey in the GOM.3 Headboats are passenger vessels that charge per 
angler for partial or full day fishing trips. The Headboat Survey has been conducted in the 
GOM since 1986 (Dixon and Huntsman 1983). Although the survey was designed as a 
census, actual reporting has ranged from 70-99% of estimated total trips.
 Headboat operators in the GOM have reported that they spend the majority of their 
time targeting snappers, especially red snapper (Holland, Fedler, and Milon 1999; Sut-
ton et al. 1999). This targeting pattern has persisted since the late 1970s, suggesting that 
the GOM headboat industry is heavily reliant on snapper (Browder, Davis, and Sullivan 
1981; Ditton, Holland, and Gill 1992). Therefore, we expect significant co-movement 
of the aggregate headboat effort and red snapper harvest series. The headboat sector has 
historically accounted for a relatively small share of total red snapper harvest in the GOM 
(NMFS 2005). Thus, it is reasonable to assume that the other components of the GOM 
red snapper fishery are exogenous with respect to headboat activity.
 Weather and climate events have been consistently cited by the headboat industry as 
a significant problem (Holland, Fedler, and Milon 1999; Sutton et al. 1999). Note, how-
ever, that problematic weather and climate events could refer to unpredictability or rough 
conditions. The surveys of headboat operators have not attempted to separate these two 
definitions. Results from these surveys find that headboat operators in the GOM view in-
formation provided by the NOAA Weather Service as moderately to extremely important 
(Gill and Ditton 1993). This suggests that climate and weather patterns should influence 
aggregate headboat activity in the GOM. 
 The GOM red snapper recreational fishery has been actively managed by the GOM 
Fisheries Management Council since the mid 1980s. According to Ditton et al. (2001), 
“the prospect of zero catch has particularly hurt the business of party boat operators who 
target primarily snapper and grouper in the western GOM.” Table 1 summarizes the his-
torical changes in the recreational bag and minimum size limits and indicates the periods 
when the fishery was closed. There were a total of sixteen policy interventions over the 
period of record, including five minimum sizes, four bag limits, and four closed seasons. 
We interpolated each type of regulation to a monthly time series from 1986 to 2003 as 
follows: closed seasons appear as the percentage of the month closed; bag and size limits 
appear as the level active in each month; and months without a bag limit are indicated 
with 99. Bag and minimum size limits are weighted by percentage of the month that is 
closed to sportfishing so that the bag limit is zero in a closed month.   
 The top two panes of figure 1 show monthly measures of log effort and harvest in 
terms of headboat angler days (angday_log) and harvest of red snapper (rsland_log), re-
spectively, in the GOM from 1986 to 2003. There is a clear pattern of seasonality in this 
fishery, with peak activity in the summer months. Also, there is a noticeable break in red 
snapper harvest at the start of 1998. According to table 1, this period corresponds with 
the start of significant red snapper fishery closures and the lowering of the bag limit. The 
same structural break is not as evident in the headboat angler days because trips to harvest 
other species could still occur.
 The index used to proxy the stock of red snapper is based on the pounds of red snap-
per biomass estimated in the most recent stock assessment for the Gulf of Mexico (NMFS 
2005). Annual estimates of biomass for age classes two through fifteen were totaled, and 
monthly values were generated via linear interpolation. Ages two and above are thought 
to comprise the adult population harvested by the recreational sector. Also, prior to the in-

3 References for all data sources are listed at the bottom of table 2.
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creases in the minimum size limit in during the 1990s, more than 70% of the recreational 
catch was between one and four annually. Following the size limit increases, much less 
of the recreational harvest was at age one. Furthermore, the headboat sector generally 
harvests relatively larger, and presumably older, fish. The natural log of the final monthly 
biomass index is shown in the first graph (RS_abunda_log) of the bottom row in figure 1.

 

Economic Factors

The NMFS Headboat Survey does not collect information about the price of trips or the 
incomes of paying passengers. Therefore, we need proxies for these factors to estimate 
the angler day demand equation in expression (3). Note that, in the time series context, 
the primary goal of the income and price proxies is to help indentify the angler day de-
mand as distinct from harvest production. Good proxies in this case will influence the 
angler day demand, but not harvest production. It is also important to have proxies that 
are regularly forecasted for use in fishery forecasts using this model.
 The income variable selected is the monthly U.S.A. per capita disposable income se-
ries from the Bureau of Economic Analysis. An income measure for the entire U.S.A. was 
used because the headboat passengers could have come from anywhere in the country. 
Furthermore, potentially relevant regional income measures are highly correlated with the 
national index, but forecasts of the latter are more likely to be available.4
 There is no database of headboat fees for the vessels operating in the GOM. Fee in-
formation was collected in industry surveys during 1987 and 1997 (Ditton et al. 2001), 

Table 1
Changes in Recreational Red Snapper Regulations in the Gulf of Mexico

                                       Size Limit      Daily Bag Limit    Season Length        Allocation
Year                               (Inches TL)  (Number of Fish)           (days)             (Million Pounds)
 
1984  131 no bag limit2 365 
1990 13 7 365 2.97
1994 14 7 365 1.96
1995 15 5 365 1.96
1996 15 5 365 2.94
1997 15 5  3303 2.94
1998 15  44  2725 2.94
1999  156 4  2407 4.47
2000 16 4  1948 4.47
2001 16 4 194 4.47
2002 16 4 194 4.47
2003 16 4 194 4.47
1 For-hire boats exempted until 1987.
2 Allowed to keep five undersized fish per day.
3 Fishery closed on November 27, 1997.
4 Bag limit was five fish from January through April, 1998.
5 Fishery closed on September 30, 1998.
6 Size limit was 18 inches from June 4 through August 29, 1999.
7 Fishery closed on August 29, 1999.
8 Fishing season opens at 12:01 a.m. April 21 and closes at 12:00 midnight October 31.

4 Also, regional income measures are not available on a monthly time-step. The correlations with the U.S. 
level for the 1986.1 – 2003.4 Quarterly Personal Income (SQ1) measures from the BEA for states within the 
GOM are as follows (www.bea.gov/regional/REMDchart): AL=0.9968, FL=0.9995, LA=0.9952, MS0.9971, 
TX=0.9983, and Gulfwide= 0.9997. After removing the trend, the correlations are still high at AL=0.9997, 
FL=0.8619, LA=0.4995, MS=0.7530, TX=0.9642, and Gulfwide=0.9781.
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but this is not enough data to construct a monthly time series for our study period. Conse-
quently, to proxy the price of a headboat trip we used the consumer price index (CPI) for 
energy from the Bureau of Labor Statistics. We recognize that this proxy for trip price is 
not optimal because changes in the cost of energy could affect the demand for angler days 
in a number of ways. First, higher energy prices decrease the income available to spend 
on other goods and activities, such as recreation. Second, energy price increases raise 
the cost of travel to headboat ports. Finally, the costs of headboat operations increase 
with higher energy prices, and operators tend to pass some of these costs on to custom-
ers via fuel surcharges (Ditton, Holland, and Gill 1992). These potential effects suggest a 
negative relationship between energy prices and headboat angler day demand. In the end, 
however, the net affect of energy prices on the demand for headboat services is an em-
pirical question. This would also be the case for alternative headboat price proxies. The 
search for and examination of such alternatives is left for future research.
 The energy CPI and the per capita income series were divided by the CPI for all items 
(less energy) before estimation to preserve homogeneity in the angler day demand equation 
(Alston, Chalfant, and Piggott 2002). All monthly values in the economic series are relative 
to the 1982-84 base year. The logarithms of the normalized energy price (energy_rh_log) 
and disposable income (dpinc_rh_log) series are shown in the bottom row of figure 1. 

Climate Factors

Weather is defined and measured by variables such as temperature, cloudiness, precipita-
tion, and radiation, and climate is the weather averaged over a time period of at least one 
month. We focus on climate indicators rather than individual weather variables. This ap-
proach is appropriate given the broad geographic area considered in this study and because 
predictions of climate indicators are more likely to be available for use in forecasting.
 There are several connections between large-scale atmospheric-oceanic circulation 
and climate in the southeastern U.S.A. Among these are the El Niño-Southern Oscilla-
tion (ENSO), the Atlantic subtropical circulation or Bermuda High (BH_NO), the Pacific/
North American Pattern, and the North Atlantic Oscillation. However, evidence appears 
strongest for ENSO and the BH_NO as separate sources of variation in the Southeastern 
climate (Katz, Parlange, and Tebaldi 2003). We also consider the effects of storm and hur-
ricane activity with an index of cyclonic activity in the GOM. 
 ENSO is a variation between normal conditions and two extreme states associated 
with warm (El Niño) or cold (La Niña) sea surface temperatures in the eastern tropical 
Pacific (Trenberth 1997). In an El Niño winter, a strengthened jet stream moves farther 
south across the southern U.S.A., guiding winter storms into the GOM providing abun-
dant rainfall and cooler temperatures. In La Niña winters, fronts and storms do not make 
it down to the GOM as often, and the winters are warmer and dryer than normal (Kiladis 
and Diaz 1989; Ropelewski and Halpert 1986). Note that the ENSO also affects hurricane 
activity during the late summer via changes in the Atlantic atmospheric circulation. For 
example, during El Niño events, increased vertical shear acts to limit the number of tropi-
cal disturbances that become hurricanes in the Atlantic basin (Bove et al. 1998).
 We characterize ENSO in terms of the sea level air pressure differential between 
Tahiti and Darwin using the Southern Oscillation Index (SOI).  The SOI is shown in the 
second graph (SOI) in the third row of figure 1. Note that dips in the SOI correspond with 
El Niño events, whereas peaks correspond to La Niña events. For example, the lowest dip 
in the SOI occurred in January 1998 and corresponds to the El Niño event that by some 
measures was the strongest of the century.5 Therefore, relatively lower values of the SOI 

5 Warm events during the 1986-2003 study period occurred in 1986, 1987, 1991, 1997, and 2002; cold events 
occurred in 1988, 1998, 1999. These events refer to years defined on the ENSO cycle, October to September.
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indicate wetter and cooler winter weather and fewer hurricane landfalls in the Southeast.
 The BH_NO is a large-scale circulation system that has been associated with climate 
and weather in the southeastern U.S.A. Spring precipitation in the southeastern coastal 
states tends to be higher if the western edge of the BH_NO is east of its average position 
(Stahle and Cleveland 1992). Daily temperature levels and precipitation variability also tend 
to be higher when the BH_NO is east of its average position (Katz, Parlange, and Tebaldi 
2003). The BH_NO index is shown in the first graph in the third row of figure 1. Higher 
values of the BH_NO index indicate locations farther east than normal. Thus, peaks in the 
BH_NO series tend to be associated with warmer and wetter conditions in the Southeast. 
 The National Oceanic and Atmospheric Administration’s Accumulated Cyclone En-
ergy (ACE) index is an appropriate measure for categorizing hurricane activity (Bell et 
al. 2000). The ACE index is the sum of the squares of the six-hourly maximum sustained 
wind speeds from all tropical cyclones that have winds of at least tropical storm strength. 
This measures the cumulative wind energy from tropical storms, hurricanes, and intense 
hurricanes occurring in a given area for a period of time. The monthly ACE index for the 
GOM from 1986 to 2003 is shown in the second graph (ACE) in the second row of figure 
1. Highpoints in the ACE indicate increased hurricane and storm activity. For example, 
the peak during 1995 marks the most active hurricane season during the study period. 

Initial Analysis of Data

The summary statistics and sources for the full sample (1986.01 to 2003.12) of the data 
are shown in table 2. Our initial analysis consists of tests for causality, stationarity, and 
cointegration for the headboat angler days and red snapper harvest series.6 The results of 
the initial analysis will be used to specify a structural time series model.
 Causality can be examined using a reduced form vector autoregression (VAR) for the 
logarithms of headboat angler days and red snapper harvest. We abstract, for now, from 
the exogenous variables and estimate a two variable VAR including an intercept, monthly 
dummies, and a trend. Based on the minimum value of the Akaike Information Criterion, 
the appropriate lag length in this headboat fishery VAR is twelve. Using procedures out-
lined in Lütkephol (2005, Sect. 3.6.1), the hypothesis that red snapper harvest does not 
Granger-cause angler days is rejected (p-value=.0008), whereas the hypothesis that angler 
days do not Granger-cause red snapper harvest cannot be rejected (p-value=.2627). Note 
that Granger-causality is evident when the lagged values of one variable or a group of vari-
ables help to predict another variable in the system. These results suggest that effort may 
respond to past harvest, but that past effort may not be useful in predicting current harvest. 
The hypothesis of no instantaneous causality is also rejected (p-value=.0026). There is 
instantaneous causality if knowing the value of one variable in the forecast period helps to 
improve the forecasts of the other variable. Note, however, that this concept is symmetric 
and the direction of the causality cannot be determined (Lütkephol and Kratzig 2004). 
 Accurate inference and forecasting with the headboat system requires that the endog-
enous variables be stationary. Specifically, headboat angler days and red snapper harvest 
should have a fixed (or trending) mean and variance over time. Otherwise, parameter 
distributions will be non-standard, and forecasts from the model will be inaccurate as 
variables in the system can become arbitrarily large or small (Hamilton 1994). Stationar-
ity also has policy implications. Variables that are not stationary will tend to permanently 
absorb shocks and not return to a previous mean or trend. In fisheries analysis, the notion 
of stationarity could help determine whether policies will have permanent or transitory 
effects on the bioeconomic system. 

6 All testing and estimation is performed using JMulTi (Lütkephol and Kratzig 2004) and verified with SAS on a 
Windows XP machine with a 3.46GHz*2 Pentium® D processor and 4.5GB of RAM.
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 Examination of the headboat angler days and red snapper harvest series in figure 1 
suggests a level shift around 1998 when the red snapper season length changed substan-
tially. Standard Augmented Dickey-Fuller (ADF) tests for stationarity can have very low 
power if level shifts are ignored (Perron 1989). Therefore, following Lanne, Lütkephol, 
and Saikkonen (2002) we use a version of the ADF that allows for a level shift in the 
mean. Specifically, a shift dummy is subtracted from the logarithmic series for angler 
days and harvest before performing the ADF tests. The shift dummy equals one beginning 
in December of 1997 and zero in prior periods. 
 The results of the level shift unit root tests for the logged headboat angler day and 
red snapper harvest data series (and differenced series) are shown in table 3.7 Lag lengths 
for all univariate tests were selected by testing down to the highest significant lag in a se-
ries of ADF test regressions without the level shift (Ng and Perron 1995). A constant term 
and monthly dummies were also included in the test regressions to control for seasonality. 
In addition, the test regression for angler days includes a trend to address the slight down-
ward slope in the mean of this series. Comparing the test statistics with the 5% critical 

Table 2
Summary Statistics: 1986.M1 - 2003.M12

Data                   Model                      Description                          Mean       Min.      Max.  Std. Dev.

angday_log1 Ln(D)  Natural log of headboat angler days 9.90 8.63 10.72 0.43
rsland_log1 Ln(H)  Natural log of headboat red snapper 9.74 3.61 11.23 1.38
    harvest 
rs_abunda_log2 Ln(F)  Natural log of red snapper  14.79 14.10 15.38 0.29
    abundance index (in thousands) 
ACE3 w  Accumulated cyclonic energy index 0.77 0.00 20.25 2.52
    for the Gulf of Mexico 
BH_NO4 w  Bermuda high index (in thousands) –4.06 –6.32 –0.86 1.64
SOI5  w        S outhern oscillation index for  –0.33 –3.50 2.10 1.11
    the ENSO 
dpinc_rh_log6 Ln(m)  Natural log of normalized disposable  7.38 7.00 7.74 0.21
    personal income index 
energy_rh_log7 Ln(c)  Natural log of normalized energy –0.36 –0.58 –0.09 0.08
    price index 

1 Estimates of aggregate effort and harvest are from the NMFS Headboat Survey in the GOM.
2 Estimated biomass in the GOM red snapper stock assessment (NMFS 2005). 
3 The ACE index for the GOM was computed by Hugh Willoughby using the maximum sustained wind speed 
data from North Atlantic hurricane database at the U.S. National Hurricane Center (Neumann et al. 1999).
4 The position of the BH_NO is measured as the difference between the gridded monthly sea level pressure 
(SLP) near New Orleans (30° N, 90° W) and Bermuda (32.5° N, 65° W). The SLP data were accessed on 1 May 
2008 from www.cgd.ucar.edu/cas/catalog/nmc/rean/press/means.html   
5 The SOI was accessed on 1 May 2008 from www.cpc.ncep.noaa.gov/data/indices/soi
6 The monthly U.S. disposable income per capita series (A229RC0) was taken from Table 2.6. Personal Income 
and Its Disposition, Monthly in the National Economic Accounts accessed on 1 May 2008 from bea.gov/bea/dn/
nipaweb/SelectTable.asp. This series was normalized by the monthly All Urban Consumers U.S. city average 
Consumer Price Index (CPI) for all items less energy series (CUUR0000SA0LE) accessed on 1 May 2008 from 
www.bls.gov/cpi/home.htm
7 The monthly U.S. city average energy CPI for All Urban Consumers (CUUR0000SA0E) was accessed on 1 
May 2008 from www.bls.gov/cpi/home.htm. This series was normalized by the monthly All Urban Consumers 
U.S. city average Consumer Price Index for all items less energy series (CUUR0000SA0LE) was accessed on 1 
May 2008 from www.bls.gov/cpi/home.htm

7 Results for ADF tests that omit the level shift adjustment are available upon request. These tests provide even 
less support for the rejection of the unit root hypothesis.
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Table 3
Unit Root and Cointegration Tests

Data                           Deterministic             No. of Lagged                  Test Statistic     5% Critical
         Terms        Differences                              Value  

--Unit Root Tests--

angday_log constant, seasonal, shift,  11  –1.92 3.03
 and trend 

rsland_log constant, seasonal, and shift 12  –2.38 –2.88

Δangday_log constant, seasonal, and shift 10  –6.71 –2.88

Δrsland_log constant, seasonal, and shift 1  –3.16 –2.88

--Cointegration Tests--

angday_log and constant, seasonal, shift,  H0: r=0 23.61 15.76
rsland_log and trend 11
   H0: r=1 5.10 6.79
   
Sample period: 1986.M1-2003.M12. Critical values for the level shift (1997.12) unit root and cointegration tests 
are from Lane, Lütkephol, and Saikkonen (2002) and Johansen (1995), respectively. 

values indicates that unit root hypothesis of no stationarity cannot be rejected in the an-
gler day and red snapper harvest series. However, the hypothesis of unit roots is rejected 
in the differenced series, suggesting that headboat angler days and red snapper harvest are 
each integrated of order one.  
 As angler days and red snapper harvest series are each integrated series, shocks to 
these fishery variables can have permanent effects. It is possible, however, that a linear 
combination of effort and harvest is stationary. In this case, there is a long-run equilib-
rium relationship in the system indicating that effort and harvest are cointegrated (Engle 
and Granger 1987). Cointegration between headboat effort and red snapper harvest in the 
GOM is a plausible hypothesis given the heavy dependence of headboats on this species. 
 We use a rank order test proposed by Saikkonen and Lütkephol (2000) to evaluate 
cointegration between headboat angler days and red snapper harvest in the presence of 
a level shift. Briefly, standard Johansen (1994) rank order tests for cointegration are per-
formed on the angler day and red snapper harvest series after removing the deterministic 
terms, including the level shift. Test equations include a constant, seasonal dummies, and 
a trend that is restricted to the cointegration relationship. The lag length for the cointegra-
tion test is the length selected above for the VAR system (Lütkephol 2005). The results 
of the tests are shown in table 3, where the test statistics indicate a rejection of the rank 
order zero (r=0) and the inability to reject the order of one (r=1), both at the 95% level. 
These results suggest that the series are cointegrated of order one and can be modeled in 
vector error correction form.

   

           

Specification of the Structural Vector Error Correction Model
The initial analysis finds that the headboat effort and red snapper harvest are integrated 
series, suggesting that first differencing is necessary before estimation. However, this 
would result in a loss of information about the long-run relationship between these series. 
The additional finding that the harvest and effort series are actually cointegrated implies 
information about the long-run relationship that can be extracted if the sportfishing VAR 
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in equation (5) can be reformulated as the following SVEC model (Breitung, Grugge-
mann, and Lütkephol 2004): 

(6) 

where ∆ is the first difference operator, α[1 β] = –(I2 – A1 –∙∙∙– A12), Bi = –(Ai+1 +∙∙∙+ A12), 
Ln(mt) = dpinc_rh_log, Ln(ct) = energy_rh_log, and the vectors of exogenous regulations 
and climate variables in xt are specified as  rt = (rs_closer  rs_bagr  rs_msr) and wt = 
(ACE  BH_NO  SOI), respectively. Also, the SVEC formulation splits the deterministic 
vector, γ, from equation (5) into a constant, µ; monthly dummies, St; and a trend, tt-1, 
with the trend restricted to the cointegration relationship. The parameters β and α = (α1 
α2) specify the long-run portion of the model, with the former containing the cointegrat-
ing relations and the latter representing the loading coefficients. Essentially, β measures 
the long-run cointegrating relationship between harvest and angler days, and α measures 
how the system changes in response to deviations from the long-run equilibrium (Engle 
and Granger 1987). The red snapper harvest cointegrating parameter has been normalized 
to unity so that the effort parameter, β, in this vector measures how red snapper harvest 
changes when angler days change in equilibrium. 
 Several parameter restrictions are applied to the SVEC model based on the VAR 
model of for-hire sportfishing shown in equation (5) and the initial analysis of the data. 
First, the matrix of contemporaneous effects, Γ, is restricted to be upper triangular with 
ones on the diagonal. This formulation is consistent with our sportfishing model where 
the current value of angler days enters the red snapper harvest equation. Second, based 
on the Granger causality tests, we restrict the parameters, Bi, on the eleven lags of logged 
angler days (differences) in the red snapper harvest equation to zero. One level lag still 
appears in the cointegration relationship to measure changes in the system when logged 
red snapper harvest and angler days deviate from their long-run average relationship. 
These restrictions are also consistent with the for-hire sportfishing model, whereby 
expected harvest appears in the angler day demand equation. Finally, the for-hire sport-
fishing model suggests restricting the parameter to be zero for the red snapper biomass 
index in the angler day equation and the parameters equal zero on the energy price and 
income indices in the red snapper harvest equation. 
 A two-stage estimation procedure is used to obtain estimates of the system param-
eters (Lütkephol and Kratzig 2004). First, estimates of parameters in the cointegrating 
equation obtained via OLS using the red snapper harvest equation in (6). Note that in esti-
mating this version of the red snapper harvest equation, the cointegration terms α([1 β]yt-1 
+ μ +  δt-1) are entered in reduced form as π1+y1,t-1 + π2y2,t-1 +μ´ + δ´tt, and the current first 
difference of angler days is included to reflect the structural form. Normalized estimates 
of   ,    , and,    can then be recovered as:

                      and     

respectively.  In the second step,                                             

is used  in place of [1  β]yt-1 + μ + δtt-1, and the remaining parameters of system  are es-
timated by 3SLS.8  For comparison, we also present 3SLS estimates of the parameters of 

β̂ μ̂ δ̂

2 1ˆ ˆ ,π π 1ˆ ,μ π 1ˆ ,δ π

1 1
ˆ ˆˆ1 t- t-β +μ+δt 

 y

8 Estimating the system via full information maximum likelihood produced nearly identical results as did equation-
by-equation OLS. The latter result suggests that the system is recursive; i.e., angler day demand is determined first 
and then entered into the red snapper harvest equation (Green 2000). We present the 3SLS results because they ad-
dress the potential for contemporaneous correlation and do not rely on the multivariate normality of the errors.
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the naïve version of system (5) that includes seasonal dummy and trend variables, but 
leaves out the autoregressive terms (i.e., αi,11 = αi,21 = 0 ) and the one lag of angler days in 
the harvest equation implied by cointegration. Recall that the lags of red snapper harvest 
remain in the angler day equation of the naïve model to proxy harvest expectations as 
specified in system (5). The difference between the SVEC and the naïve models amounts 
to a total of 25 restrictions: 12 in the angler day demand equation and 13 in the red snap-
per harvest equation. Again, this comparison model is meant to represent an approach that 
does not formally consider the time series properties of the data.

Results

Model Diagnostics and Estimates

Analysis of the SVEC model residuals and diagnostics indicates a reasonably good fit 
to the data generating process.9 A Breusch-Godfrey test of no residual autocorrelation at 
five lags is rejected (χ2(20) = 52.99), but visual inspection of the residuals demonstrates 
little, if any, auto or cross correlation outside of the 95% confidence interval bounds for 
either series. Tests for joint nonnormality of the residual series cannot be rejected (χ2(4) 
= 231.85) (Doornik and Hansen 2008). The nonnormality can be attributed to excess kur-
tosis (leptokurtosis) in the red snapper harvest equation residuals. The joint hypothesis 
of no excess skewness is rejected (χ2(2) = 5.47), but the joint hypothesis of no excess 
kurtosis is not rejected (χ2(2) = 226.37). Furthermore, Jarque-Berra univariate tests reject 
normality in the red snapper harvest residuals (χ2 (2) = 228.57), but fail to reject normal-
ity in the angler day residuals (χ2 (2) = 1.37). The measured kurtosis of the red snapper 
harvest residuals is 8.13. However, density plots (not shown) of the residual series sug-
gest that this is not a severe problem and that the residuals are approximately normally 
distributed. A related issue is the inability to reject (χ2(45) = 88.94) the hypothesis of mul-
tivariate autoregressive conditional heteroskedasticity (ARCH) at five lags (Doornik and 
Hendry 2006).10 Again, this problem can be traced to ARCH in the red snapper harvest 
equations residuals. A univariate hypothesis test of no ARCH with 16 lags is not rejected 
for the angler day residuals (χ2 (16) = 22.62), but is rejected for the red snapper harvest 
residuals (χ2 (16) = 54.52). These results suggest that the SVEC model will, in general, 
forecast angler days better than red snapper harvest. Red snapper harvest estimates and 
forecasts could be improved with adjustments for ARCH. This is left for future research.
 Collectively, the 25 zero-restrictions implied by the naïve model can be rejected 
(p=0.001), indicating that the SVEC model fits the data better than the naïve specification. 
The source of the SVEC advantage is revealed upon examination of the zero-restrictions im-
plied by the naïve model in each equation. The zero-restrictions on the autocorrelation terms 
and the one lag of angler days implied by cointegration in the harvest equation are rejected 
(p=0.002), while the autocorrelation restrictions in the angler day equation are not rejected 
(p=0.566). These results emphasize the empirical importance of accounting for autocorrela-
tion and cointegration, at least in the red snapper harvest equation. 
 Parameter estimates for the key SVEC and naïve model variables are shown in table 
4.11 The parameters on the policy variables in the harvest equation (rsland_log) are very 
similar between the two specifications, but those on angler days (angday_log) and red 
snapper biomass (RS_abund_log) are noticeably different. The latter might be due to the 
failure of the naïve specification to address the cointegration between harvest and effort. 

9 The full set of model diagnostics, including all residual plots, is available on request.
10 The multivariate ARCH test employed runs out of degrees of freedom when testing over a large number of 
lags. Therefore, we chose to test at five lags even thought the model was estimated with twelve lags.
11 The parameter estimates for the lagged endogenous variables and the results for the tests of the individual pa-
rameter restrictions are available on request.
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The effect of the one significant policy variable (rs_closer) in the angler day model is less 
in the naïve specification as is the effect of the ENSO (SOI). This suggests that the naïve 
model will underestimate the effects of closed seasons and changes in climate patterns 
on effort. Finally, note that the standard errors of the parameters in the both equations are 
larger in the naïve specification. In what follows, we focus on the parameter estimates 
from the SVEC specification. We return to the comparison of the specifications in the dis-
cussion of forecasting capabilities.
  

Table 4
Parameter Estimates

Data Variable                  rsland_log                        angday_log

  SVECM            Naïve         SVECM            Naïve

rs_closer –4.616** –4.899** –0.761** –0.391
 (0.821) (1.525) (0.385) (0.439)
rs_blr 0.006** 0.006** 0.001 0.001
 (0.001) (0.002) (0.000) (0.001)
rs_msr  –0.148** –0.164* –0.034 –0.012
 (0.051) (0.093) (0.024) (0.028)
ACE –0.002 –0.002 0.000 0.000
 (0.002) (0.002) (0.001) (0.001)
BH_NO    0.000 0.000 0.000 0.000
 (0.000) (0.000) (0.000) (0.000)
SOI –0.036 –0.05 –0.023* –0.005
 (0.039) (0.049) (0.012) (0.013)
dpinc_rh_log   0.057 1.267
   (0.046) (0.97)
energy_rh_log   –0.139 0.043
   (0.246) (0.239)
angday_log 0.582** 1.826**  
 (0.246) (0.499)  
RS_abunda_log 0.297** 0.525**  
 (0.1) (0.236)  
α –0.517**  –0.054** 
  (0.057)   (0.021)  

Sample period: 1987.M1-2003.M12. 
Standard error shown in parentheses below the estimate. 
* Significant at the 0.10 level; ** Significant at the 0.05 level. 

 The first stage of the SVEC model estimation yielded the OLS estimates of                         
π �1 = –0.555, π �2=0.443, µ′=–0.474, and δ′=0.008 that were used to generate the follow-
ing normalized estimates of the cointegration parameters: β � =–0.799, µ � =0.854, and                                                                    
δ� = –0.015.  The standard error of the cointegrating parameters is not calculated because 
the superconsistency of this estimator ensures a small variance in relatively large samples 
(Stock 1987). The value of the cointegrating parameter (0.7990) indicates that in long-run 
equilibrium, red snapper harvest is inelastic with respect to changes in angler days. 
 Estimates on the logged exogenous variables can be interpreted as constant short-run 
elasticities for small changes. For the climate variables, the short-run percentage change 
in angler days or red snapper harvest due to a percent change is calculated as the value of 
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the exogenous variable times the corresponding parameter. Semi-elasticities can also be 
calculated for these variables by multiplying the relevant coefficient by 100. Elasticities 
for the regulatory variables are more complicated because the bag and size limit values 
are interacted with the closed season variable. For each equation, the closed season, bag 
limit, and size limit elasticities are calculated as ri1 (gi1 – gi2 ri2 - gi2 ri2), gi2 ri2 (1 – ri1), and 
gi3 ri3 (1 – ri1), respectively.
 The parameter on angler days (angday_log) shown in the red snapper harvest equa-
tion shown in table 4 is significant and positive, suggesting that a 1% increase in headboat 
angler days leads to 0.582% increase in harvest. Similarly, a 1% increase in red snapper 
abundance contributes to a 0.297% increase in red snapper harvest. These results suggest 
that red snapper harvest response to changes in angler days and abundance is inelastic in 
the short run. As noted above, red snapper harvest is slightly more responsive (0.799) to 
changes in angler days when the system is at the long-run equilibrium. According to the 
adjustment parameters (α), corrections for deviations from the long-run equilibrium oc-
cur via changes in red snapper harvest at a rate of -0.517 and changes in angler days at a 
rate of -0.054. The signs on the adjustment parameters are correct in that angler days, and 
therefore harvest, adjust downward when the harvest is above equilibrium. Furthermore, 
both of the adjustment parameters are statistically significant, lending support to the sys-
tem estimation approach.
 Regulations on the recreational harvest of red snapper have the expected effects in 
this fishery. With 50% of the month closed to red snapper fishing (rs_closer), closing an 
additional percent of the month contributes to a 1.36% and 0.145% reduction in red snap-
per harvest and angler days, respectively. Bag limit (rs_blr) changes have a positive effect 
on the system, whereby a 1% change in the bag limit (from four fish) during the open 
season contributes to a 0.024% change in red snapper harvest. Changes in the minimum 
size limit (rs_msr) have a negative effect on the system, such that a 1% change in the size 
limit (from sixteen inches) results in a -2.368% change in red snapper harvest. The direct 
effects of bag and size limit changes on angler days are not significantly different from 
zero. These policies may affect angler days indirectly as responses to changes induced in 
red snapper harvest. However, as noted above, the angler day response to changes in red 
snapper harvest is likely to be relatively small.
 The only significant climate phenomenon was the ENSO (SOI), and this factor ap-
pears to enter the system via the angler day demand equation. Specifically, a one unit 
increase in the SOI leads to a 2.3% decrease in angler days. This finding implies that 
cooler, wetter winter weather in the Southeast during El Niño periods increases headboat 
fishing effort and, subsequently, the harvest of red snapper. Perhaps headboat anglers, 
when blessed with nice winter weather, hunt or play golf instead of going fishing (Ditton 
and Sutton 2004). This finding could also reflect the decrease in intense landfalling hur-
ricanes associated with El Niño years. 
 Log relative personal disposable income (dpinc_rh_log) and energy prices (ener-
gy_rh_log) are not significant in either the SVEC or the naïve specification. This lack of 
significant influence could reflect actual conditions or be due to an inappropriate choice 
of index for income and the cost of headboat trips. Note, however, that the average values 
of the income and energy price parameters have the expected signs. 

Forecast Accuracy and Policy Example

As a simple test of the SVEC model’s forecasting ability, consider the forecasted and ob-
served values of the system variables for the two years following the estimation sample 
period. Conditional forecasts can be simulated using the SVAR representation of the 
system with the estimated parameters (Lütkephol 2005). Given historic (before time T) 
values of the endogenous variables and forecasted values (after time T) of the exogenous 
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variables and assuming εt is independent white noise, an h-step ahead forecast at time T is: 

(7)

where                       for j ≤ 0,                                and the estimated A matrices are related 
to the estimated B matrices as shown below equation (6). Forecasts using the naïve model 
can be calculated in a similar way.
 Three measures of the 2004-2005 forecast accuracy are shown in table 5 for the SVEC 
and naïve models. The first measure of forecast accuracy is the root mean square forecast 
error, and the second two measures are versions of the Theil’s U inequality coefficient 
(Green 2000). For Theil’s U coefficients, a value of one indicates a forecast that is no better 
than assuming that the next month will be like the current month. The version of Theil’s U 
in levels measures the accuracy of the forecast on average, whereas the version in differenc-
es measures the ability of the forecast to track turning points in the data. By all measures, 
the SVEC model forecasts angler days better than the naïve model. According to the Theil’s 
U in differences, the main advantage of the SVEC model over the naïve model is its ability 
to forecast changes in the angler day series. The forecast measures do not differ much, how-
ever, between the SVEC and naïve models in forecasting red snapper harvest.
 

Table 5
Forecast Accuracy Measures: 2004-2005

                                   angday_log              rsland_log
                 
Measure                                                                               SVEC      Naïve      SVEC      Naïve

Root Mean Square Error 0.16 0.28 1.61 1.63
Theil's U in Levels 0.02 0.03 0.19 0.19
Theil's U in Differences 0.43 0.73 0.78 0.79

Theil’s U in levels tracks the ability to forecast the mean, whereas Theil’s U in differences measures the ability 
of the forecast to track turning points in the data. 

 At first glance, the accuracy of the SVEC model forecasts, especially for the angler 
day equation, may seem surprising given the general lack of structural parameter signifi-
cance shown in table 4. Recalling the seasonality evident in the angler day series plot in 
figure 1, suggests that a substantial portion of this accuracy is afforded via the monthly 
dummy variables. Though not necessarily correct given the results of the unit root and 
cointegration tests, we can compare R2 measures from OLS regressions to get an idea of 
the relative contribution of the dummy variables in the angler day model. An OLS regres-
sion of the 11 monthly dummy variables and a constant on the levels of the log angler day 
series has an adjusted R2 of 0.70. Adding the remaining variables in the naïve specification 
raises the adjusted R2 to 0.83; however, adding the autoregressive terms to approximate 
the reduced form of the SVEC specification does not result in further improvement in the 
adjusted R2. The latter finding is consistent with the inability to reject the autocorrelation 
restrictions in the SVEC angler day equation reported in the previous section.
 Figure 2 shows the actual headboat angler days and red snapper harvest for 2004.1 to 
2005.12 and the corresponding SVEC model forecasts using the actual values for the ex-
ogenous variables and the angler days and red snapper harvest from 2003.01 to 2003.12 
as starting values. The logarithmic and level forecasts are shown in the upper and lower 
panels, respectively. The naïve model forecasts are not shown in the interest of space. 
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Note that the level forecasts are based on the exponential operator. Arino and Franses 
(2000) have shown that simply taking exponentials of forecasts for logged data can lead 
to biased level forecasts, especially for long time horizons. However, this bias does not 
appear severe in our relatively short SVEC model forecasts. The 95% confidence inter-
vals shown are calculated assuming normally distributed disturbances and the standard 
deviation of the forecast error (Lütkephol 2005). 
 The logarithmic and level angler day forecasts in figure 2 track the actual values 
extremely well, but the red snapper harvest forecasts overestimate the actual values dur-
ing the peak summer season. The inaccuracies in magnitude of the red snapper harvest 
forecasts were anticipated in the model diagnostics where we found evidence of ARCH 
and leptokurtosis in the residuals for this series. However, the SVEC model appears to 
forecast changes in the red snapper well and, if necessary, the model can be calibrated to 
adjust the overestimated level forecasts during the summer periods.
 The SVEC model of the headboat fishery can be used to forecast effort and harvest 
under different policy scenarios. For example, the SVEC model was recently used in an 
analysis of the rebuilding plan options for the red snapper fishery in the GOM.12 We sim-
ulated the counterfactual effect of each policy alternative as if it had been implemented 
at the start of 2004.13 The difference between the actual and forecasted levels for 2004 
shown in figure 2 was used to calibrate the policy forecasts. Each policy alternative is a 
combination of changes in the red snapper season, bag limit, and minimum size limit. All 
other model variables are assumed to be at the 2004 values. Note that impulse response 
analyses could be used to explore the effects of each type of policy in isolation. However, 
we prefer to emphasize the strength of the SVEC model in measuring the effects of com-
plex, real-world management schemes. 
 Figure 3 shows the potential outcomes of three policy alternatives. Note that the 
labels of the three policies (2, 8, and 9) correspond with the actual numbers of the GOM 
red snapper rebuilding plan options in the recent analysis. The first policy (2) maintains 
the four-fish bag limit and the sixteen-inch minimum size limit, but shortens the open 
season to run from May 15 to September 30, instead of April 21 to October 31. The ef-
fects of the shortened season are most noticeable as a rightward shift and compression of 
the red snapper harvest series. The angler day series is also shifted slightly by the policy. 
A second policy (8) lowers the bag limit from four to two fish, lowers the minimum size 
limit from sixteen to fifteen inches, and shortens the open season to run from May 15 to 
October 15. Note that the red snapper harvest series shifts due to the shorter season, but 
that harvest actually increases in the open season due to the lower minimum size limit. 
Angler days are also higher in the open season for this policy alternative. The third policy 
(9) also considers a two-fish bag limit, but the minimum size limit is lowered further to 
thirteen inches, and the season is shortened even more to go from May 15 to September 
15. This policy alternative results in a much more compressed distribution of red snapper 
harvest across the year, with an almost doubling of harvest in the peak open season. The 
level of angler days is also noticeably higher during the summer peak. 

Summary and Conclusions

Analyses of fisheries rebuilding plans require forecasts of harvest, effort, and changes 
in economic welfare. Forecasts require an understanding of the time series properties 
of fishery data and the ability to control for influences outside the fishery. There is little 
published research on the behavior of recreational fisheries over time and how this infor-

12 Information about the relevant environmental impact statement (EIS) is available at http://sero.nmfs.noaa.gov/
sf/RedSnapper/RedSnapperDocs.htm
13 The analysis for the EIS actually considered the effects on angler days and harvest in 2003. We use 2004 here 
to be comparable with the forecast simulations.
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mation can be used to evaluate fishing regulation changes. We developed and estimated 
an econometric model of for-hire sportfishing that can be used to forecast the effects of 
policy changes in the presence of climate and economic variations.
 The econometric model of for-hire sportfishing was initially developed as a structural 
VAR with equations for angler demand and harvest as a function of regulatory, climate, 
and economic variables. The model was specified based on monthly aggregate data from 
the GOM headboat fishery for red snapper. An initial analysis of the data indicated that 
effort and harvest are cointegrated series in this fishery and that past red snapper harvest 
predicts headboat effort, but not conversely. The former result suggests that unexpected 
events can have permanent effects on average effort and red snapper harvest without 
changing the long-run relationship between these variables. The latter result implies that 
headboat angler days appear to respond to past changes in red snapper harvest. These re-
sults were used to justify additional restrictions and a reformulation of the SVAR model 
as an SVEC model. 
 The final SVEC specification also included measures of red snapper biomass, regulations, 
climate activity, and economic factors. The index for adult red snapper biomass had a signifi-
cant influence on red snapper harvest, as did contemporaneous values of headboat angler days. 
Changes in the red snapper season length directly affect both red snapper harvest and angler 
days. However, bag and minimum size limits only directly affect red snapper harvest.
 National measures of disposable income and energy prices were used to proxy the 
anglers’ incomes and their cost for a headboat trip. The parameters on these factors had 

Figure 3.  Red Snapper Regulatory Amendment Case Study
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the expected sign in the angler days equation, but neither was statistically significant. The 
lack of a statistically meaningful influence could reflect actual conditions or be due to an 
inappropriate choice of indices. These coarse factors for income and headboat prices were 
used because finer proxies were not available for the study area, and projections of these 
aggregate series are typically available for use in longer-term forecasts.
 We considered climate indices for the effects of tropical cyclone activity, the Ber-
muda High, and the ENSO. However, only the index for the ENSO was a statistically 
significant influence on the fishery system. The ENSO was negatively correlated with 
angler days such that, for example, El Niño type events increase headboat effort. This re-
sult was unexpected, but it does not preclude ENSO forecasts for the southeastern U.S.A. 
from being used in predictive models of sportfishing effort and harvest. 
 The SVEC model forecasts well out of sample, especially for the headboat effort 
series. A comparative strength of the SVEC model, relative to a more naïve specification 
that omits autocorrelation and cointegration terms, is the ability to accurately forecast 
changes in headboat angler days. Additional forecast simulations were conducted to dem-
onstrate the use of the model in policy analysis.
 The results reported in this article demonstrate how to address the time series prop-
erties of effort and harvest and influences outside the fishery when forecasting policy 
outcomes. It turns out that the more sophisticated SVEC modeling results for our case 
study are not all that different from a more naïve structural specification that ignores au-
tocorrelation and cointegration. Further work is necessary to verify if these results and the 
relationships uncovered for the GOM red snapper headboat fishery hold for other fisheries 
and modes of fishing. Specifically, there is a need to test for effort and harvest stationar-
ity and cointegration in other areas and sportfishing modes. Future analyses should also 
attempt to incorporate additional influences on the recreational fishery system, including 
commercial fishing activity and harvest for related species. Consideration of other indices 
for economic factors would also be useful. The SVEC model developed in this article can 
be used to forecast the effects of fishery management. For example, skillful forecasts of 
ENSO appear six months in advance and could be used in fishery management forecasts. 
Whether such climate predictions would add to or subtract from the uncertainty surround-
ing the effects of management is another question for future research. 
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