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ABSTRACT

We develop a Stochastic Dominance methodology to analyze if new assets expand the
investment possibilities for rational nonsatiable and risk-averse investors. This methodology
avoids the simplifying assumptions underlying the traditional mean-variance approach to
spanning. The methodology is applied to analyze the stock market behavior of small firms in the
month of January. Our findings suggest that the previously observed January effect is
remarkably robust with respect to simplifying assumptions regarding the return distribution.

SPANNING occurs if no investor in a particular class of investors benefits from a
particular expansion of the investment possibilities. This concept is useful for
numerous problems in financial economics. For example, it is useful for analyzing
the impact of the introduction of new assets (e.g. via IPOs) or the relaxation of
investment restrictions for existing assets (e.g. liberalization in emerging markets).

Thus far, the literature on spanning predominately focused on mean-variance
analysis (MVA); see e.g. Huberman and Kandel (1987). Unfortunately, MVA in
many cases is not 'economically meaningful'. For example, it is well known that
MVA is consistent with Expected Utility Theory only for restrictive classes of return
distributions and investor utility functions. Roughly speaking, the return distribution
should be normal or investor utility should be quadratic (see e.g. Bigelow, 1993). A
wealth of evidence suggests that both assumptions are highly unrealistic. For
example, asset returns exhibit systematic skewness and investors exhibit a preference
for positive skewness (see e.g. Friend and Westerfield (1980) and Harvey and
Siddique (2001)). One approach to circumvent this limitation is to extend MVA
towards a more general framework that also includes higher moments of the return
distribution. Unfortunately, economic theory does not forward strong predictions on
investor preferences or asset return distributions, and it gives minimal guidance for
selecting the appropriate moments.

This paper uses an alternative approach to spanning, using Stochastic
Dominance (SD; see e.g. Levy (1998)). SD criteria rely on a minimal set of
preference and distribution assumptions, and they effectively consider the entire
return distribution rather than a finite set of moments. This approach is useful if there
is no prior reason to restrict preferences or distributions, as is generally true for
investor behavior and asset returns. Despite its theoretical attractiveness, SD thus far
has not seen a strong proliferation in financial economics. (Noteworthy exceptions
are Falk and Levy's (1989) study of market reactions to quarterly earnings'
announcements and the studies of the January effect by Seyhun (1993) and Larsen
and Resnick (1996).) This is presumably caused by several practical problems
traditionally associated with SD: (1) a lack of power (=ability to detect inefficient
portfolios) in small samples, (2) the absence of tools for statistical inference, and (3)
the computational burden for the important case where it is possible to diversify
between the choice alternatives. A number of recent developments deals with these
problems and provides a strong stimulus towards the further proliferation of SD.
First, various approaches have been developed to approximate the sampling
distribution of SD results, including bootstrapping (e.g. Nelson and Pope (1990)) and
asymptotic distribution theory (see e.g. Davidson and Duclos (2000)). These
approaches allow for constructing confidence intervals and for testing hypothesis.
Second, Post (2001) presents tractable linear programming (LP) tests for SD
efficiency in the case with diversification possibilities. These tests improve
computational tractability and power (all diversified portfolios are included in the
analysis, which improves the likelihood of detecting inefficient portfolios).
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This paper develops a SD methodology to test if new assets are spanned. For
simplicity, we focus on the criterion of second-order SD in the presence of a riskless
asset (SSDR; e.g. Levy (1998), Section 4.3). The assumptions associated with this
criterion (monotonicity and concavity of utility functions) have a good economic
interpretation (nonsatiation and risk-aversion). Section I develops empirical test
statistics that can be computed using straightforward linear programming (LP). These
test statistics are related in a subtle manner to the efficiency test statistics by Post
(2001). The latter test statistics ask if a given portfolio is SD efficient (=not
dominated). The test statistics in this paper ask if a given asset enters into some
portfolio that is SD efficient or if there exist rational investors that invest part of their
wealth in the asset. The test statistics are based on the empirical distribution function
rather than the true (unknown) distribution function. To account for sampling error,
Section II develops a statistical test procedure based on the asymptotic least favorable
distribution of the test statistics. Section III presents a simulation experiment that
gauges the statistical goodness of this test procedure in small samples. Section IV
presents an application for the stock market behavior of small firms in the month of
January. Finally, Section V gives concluding remarks and suggestions for further
research. The appendix presents formal proofs for our theorems.

I. SSDR SPANNING

We consider a competitive capital market with K investors and three financial assets:
a riskless benchmark asset (F) and a risky benchmark asset (M), and a new risky asset
(A). (The extensions towards multiple risky benchmark assets and multiple new assets
are discussed in Section V.) Throughout the text, we will use the index sets

},,1{ KJ L≡  and },,{ AMFI ≡  to denote the different investors and assets
respectively. Investors may construct portfolios as convex combinations of the three
assets. Throughout the text, we will denote the portfolio weights by the vector 3ℜ∈λ

and the portfolio possibilities by the set { }1:3 =ℜ∈≡Λ + eTλλ .1,2 The investors are
nonsatiable and risk averse, and strictly increasing and concave von Neuman-
Morgenstern utility functions ju , Jj ∈ , represent their preferences. In addition, the

returns ( )AMF xxxx ≡  are random variables with a continuous joint cumulative
distribution function (CDF), )(xG . Each investor Jj ∈  takes the return distribution
as given and chooses a portfolio to maximize his expected utility, i.e. the optimal
solution to ∫ ∂

Λ∈
)()(max xx Gu j λ

λ
.

This model imposes minimal structure on investor preferences and return
distributions. Unfortunately, we cannot fully characterize the market equilibrium (the

                                                                
1 Throughout the text, we will use 

mℜ  for an m-dimensional Euclidean space, and m
+ℜ denotes the

positive orthant. Further, to distinguish between vectors and scalars, we use a bold font for vectors and a
regular font for scalars. Finally, we use e for a unity vector with dimensions conforming to the rules of
matrix algebra.
2 The set Λ  assumes that short sales are not allowed and that no additional restrictions are imposed on
the portfolio weights. Our analysis is based on the optimality conditions for optimizing a concave
utility function over a convex set (see the proof to Theorem 1). In principle, the analysis can be
extended towards a general polyhedral portfolio possibilities set, and hence it is possible to introduce
(bounded) short selling and to impose additional investment restrictions. We basically have to check if
all hyperplanes that support the extreme points of the original portfolio possibilities set also support the
extreme points of the extended possibilities set.



4

prices of the different assets and the amounts invested by the different investors)
without imposing further structure. Still, we do know that we can rationalize
investment in A only if at least one investor invests at least part of his wealth in A.
This naturally introduces the concept of spanning:

DEFINITION 1 Asset A is spanned if and only if no investor Jj ∈  is better off by
investing part of his wealth in A, i.e.:

(1) JjGuGu jj ∈∀∂=∂ ∫∫ Λ∈Λ∈
)()(max)()(max

*
xxxx λλ

λλ
,

with { }0:* =Λ∈≡Λ Aλλ  for the investment possibilities excluding A.

In practical applications, full information about investor preferences typically is not
available, and one generally cannot directly test spanning. This provides the rationale
for using the SSDR criterion, which considers the entire set of strictly increasing and
concave utility functions, say U. Since the utility functions of the investors are
elements of this set, i.e. Uu j ∈  for all Jj ∈ , we can obtain a weaker spanning
condition:

DEFINITION 2 Asset A is SSDR spanned if and only if no rational nonsatiable, risk-
averse investor is better off by investing part of his wealth in A, i.e.:

(2) UuGuGu ∈∀∂=∂ ∫∫ Λ∈Λ∈
)()(max)()(max

*
xxxx λλ

λλ
.

SSDR spanning is related in a subtle way to the usual concepts of efficiency and
dominance. A portfolio is SSDR inefficient or dominated if all rational nonsatiable
and risk averse investors prefer a second portfolio to the former portfolio.
Unfortunately, this concept is relevant only if all investors hold the same portfolio and
if the composition of the portfolio is known. For example, testing whether asset A is
SSDR efficient is relevant only if all investors invest in A exclusively. By contrast,
SSDR spanning occurs if all portfolios including A are SSDR inefficient. This
concept is also relevant if different portfolios hold different portfolios and if the
composition of those portfolios is unknown.

Throughout the text, our null hypothesis will be that spanning does not occur,
i.e. some rational investors would invest at least part of their wealth in A. Rejection of
this null gives strong evidence in favor of an imbalance, because the concept of SSDR
spanning is based on minimal prior assumptions.

Apart from investor preferences, the CDF generally is not known, and hence
we cannot directly test SSDR spanning. Rather, information typically is limited to a
discrete set of time series observations, say ( )T

Txx L1≡Χ  with ( )AtMtFt xxxx ≡ .
For simplicity, we assume that the observations are serially independent and
identically distributed (IID) random drawings from the CDF. Under this assumption,
the empirical distribution function (EDF) { } TtF t /:card)( xxx ≤Θ∈≡ , with
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{ }1, ,TΘ ≡ L , gives a statistically consistent estimator for the CDF.3 By focusing on
the EDF rather than the CDF, we can obtain an empirical spanning condition:

DEFINITION 3 Asset A is empirically SSDR spanned if and only if:

(3) ⇔∈∀∂=∂ ∫∫ Λ∈Λ∈
UuFuFu )()(max)()(max

*
xxxx λλ

λλ

UuTuTu
t

t
t

t ∈∀= ∑∑
Θ∈Λ∈Θ∈

Λ∈
/)(max/)(max

*
λλ

λλ
xx .

A straightforward approach to testing empirical SSDR spanning is to check if every
portfolio that includes A is empirically SSDR inefficient. Unfortunately,
computational burden prohibits this approach, as there are infinitely many portfolios
that include A. However, we can extend the analysis by Post (2001) to develop a more
tractable approach. To simplify notation, we assume that the data are ranked in
ascending order by the return of M, i.e. MTMM xxx <<< L21 .4 Further, we assume
that the risk free return exceeds the minimum return for the risky assets, and that it
falls below the average return for the risky assets, i.e. ∑

Θ∈
Θ∈

<<
t

itFit
t

T/min xxx  for

},{ AMi ∈ . Under this assumption, some investors will invest part of their wealth in
the riskless asset, but no investor will invest all of his wealth in the riskless asset,
reflecting Arrow's theorem - 'A risk averter takes no part of an unfavorable or barely
fair game; on the other hand, he always takes some part of a favorable gamble'
(Arrow, 1971, p. 100). Using these simplifications, we can obtain the following result:

THEOREM 1 Empirical SSDR spanning can be tested using the primal test statistic

(4)








≥−−≡ ∑∑
Θ∈Θ∈

∈
0/)(:/)(inf TT F

t
MttAt

t
MttBP xxßxxß

ß
ψ ,

with { }1: 21 =≥≥≥ℜ∈≡ + T
TB ßßßß L , or alternatively using the dual test statistic

(5) { }TttTD \)(:)(sup Θ∈∀≡ θξθξψ
θ

,

with TFAsMs

t

s
t /))1(()(

1

xxx θθθξ +−−≡ ∑
=

. Specifically, asset A is empirically SSDR

spanned if and only if .0≥= DP ψψ

The test statistics Pψ  and Dψ  can be computed by straightforward linear
programming (LP); full LP formulations are included as (P) and (D) in the proof in
                                                                
3 However, there is substantial evidence that the distribution of assets returns (e.g. interest rates, risk
premia, volatilities and correlation coefficients) varies through time. This problem is especially
relevant for applications that use data of long time periods. One possible approach to account for time
variation is to use econometric time series estimation techniques to estimate a conditional CDF. The
empirical test developed below could then be applied to random samples from the estimated CDF.
4 Since we assume a continuous return distribution, ties do not occur and the ranking is unique. Still,
the analysis can be extended in a straightforward way to cases where ties do occur e.g. due to a discrete
return distribution or due to measurement problems or rounding (see Post, 2001).
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Appendix A. The problem involves only T variables and T+1 constraints. For small
data sets up to hundreds of observations, this problem can be solved with minimal
computational burden, even with desktop PCs and standard solver software (like LP
solvers included in spreadsheets). Still, the computational complexity, as measured by
the required number of arithmetic operations, and hence the run time and memory
space requirement, increases progressively with the number of model variables.
Therefore, specialized LP solver software is recommended for large-scale problems
involving thousands of observations.5 Note that the primal problem may be
unbounded (and the dual infeasible) if A is not empirically SSDR spanned. For
example, this occurs if ∑∑

Θ∈Θ∈

>
t

Mt
t

At TT // xx . In these cases, the test statistics take

the value minus infinity and spanning does not occur. (The application in Section IV
includes such cases; see Table 2.)

II. SAMPLING ERROR

The test statistics Pψ  and Dψ  are based on the EDF rather than the CDF, and the test
results are likely to be affected by sampling error. The applied researcher must have
knowledge of the sampling distribution in order to make inferences about the true
classification (SSDR spanned or not spanned). Post (2001) derived an analytical
characterization of the asymptotic sampling distribution of his efficiency tests. This
section extends the Post results towards the SSDR test statistic Pψ . (Duality implies
that the results apply with equal strength to Dψ .)

There are various hypotheses that could serve as the null hypothesis in a test
procedure. In SD analysis, a typical null hypothesis is that the risky choice
alternatives are independent random variables with the same population distribution,
or alternatively the choice alternatives are contemporaneously IID. We adopt this null
for our spanning tests and we assume that Ax  and Mx  are contemporaneously IID

random variables with univariate CDF ]1,0[: →ℜH  with variance ∞<2σ . The
shape of the distribution of Pψ  under the null generally depends on the shape of

)(xH . Our approach will be to focus on the least favorable distribution, i.e. the
distribution that maximizes the size or relative frequency of Type I error (rejecting the
null when it is true). This approach stems from the desire to be protected against Type
I error. For each )(xH , the size is always smaller than the size for the least favorable
distribution. Interestingly, the least favorable distribution is relatively simple and
known results can derive the asymptotic probability of exceedance or p-value for Pψ .
The use of the most favorable distribution implies that we accept a high frequency of
Type II error (accepting the null when it is not true) or a low power (1- the relative
frequency of Type II error). Future research could focus on tests that minimize Type
II error.

THEOREM 2 For the he asymptotic least favorable distribution, Pψ  behaves as a
normal random variable with mean zero and variance T/2 2σ .

                                                                
5 For an elaborate introduction in LP, we refer to Chvatal (1983). In practice, very large LPs can be
solved efficiently by both the simplex method and interior-point methods. An elaborate guide to LP
solver software can be found at the homepage of the Institute for Operations Research and
Management Science (INFORMS); http://www.informs.org/.
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The theorem implies that p-values )( 0HyP P ≥ψ  may be found as 








 −
Φ

σT
y

2
, with

( )⋅Φ  for the cumulative standard normal distribution function. These p-values
converge to zero as the length of the time series (T) grows. This makes intuitive sense,
because the EDF is a statistically consistent estimator for the CDF under our
maintained assumptions (see Section I). Still, for small time series, the p-values can
be very large and a naïve approach to the test statistic (reject efficiency if 0>Pψ ) is
unlikely to yield anything but noise. A more sound approach is to compare the p-
value for the observed value of Pψ  with a predefined level of significance a; we may
reject the null if the p-value is smaller than or equal to the significance level.
Alternatively, we may reject the null if the test statistic 

Pψ  exceeds the critical value

σα T2)1(1 −Φ− . Computing p-values or critical values requires the unknown

population variance 2σ . We may estimate this parameter in a distribution-free and
consistent manner using the sample equivalent:

(6) ∑ ∑ ∑
∈ Θ∈ Θ∈

−≡
},{

22 2/)/(ˆ
AMi t t

itit TTxxσ .6

III. SIMULATION EXPERIMENT

To assess the goodness of the test procedure outlined in Section II, we extend the
simulation experiment used by Kroll and Levy (1980) and Nelson and Pope (1991).
Assume Fx  equals 0.06, and Mx  and Ax  obey a bivariate normal distribution with
means =Mµ 0.20 and =Aµ 0.15, standard deviations == AM σσ 0.20, and correlation
coefficient ρ .7 Asset A is SSDR dominated by M, because M achieves a higher mean
and a lower standard deviation than A. However, rational investors may still invest in
A in the context of a diversified portfolio. The diversification benefits from A depend
on ρ . It is easy to verify that M and F SSDR span A if and only if 50.0≥ρ .
However, sampling errors complicate the empirical determination of the known
classification. The results based on a sample from the population may give one of the
outcomes listed below.

No spanning
In population
 ( 50.0<ρ )

Spanning
in population
( 50.0≥ρ )

No spanning in sample
( σαψ ˆ2)1(1 TP −Φ< − ) No Error Type II error

                                                                
6 This is simply the equally weighed average of the sample variance of Ax  and Mx ; under the null,
both choice alternatives have the same variance.
7 Our experiment differs from the original Kroll-Levy experiment in three respects. First, Kroll and
Levy focus on efficiency, while we analyse spanning. Second, Kroll and Levy use data sets of 100
observations and set the correlation coefficient at zero. By contrast, we consider various different
sample sizes and correlation coefficients. Finally, the original experiment did not include a riskless
asset, while we use the SSDR criterion that does use a riskless asset.
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Spanning    in sample
( σαψ ˆ2)1(1 TP −Φ≥ − ) Type I error No Error

We draw through Monte-Carlo simulation 1000 random samples of N observations
from the bivariate normal distribution, and apply our test procedure to each sample.
We follow this procedure for correlation coefficients of { }1,,05.0,0 L∈ρ  and for
samples of size }2000,500,100{∈N . The nominal level of significance a (or the size
for the asymptotic least favorable distribution) is set at 5 percent.

[INSERT FIGURE 1 ABOUT HERE]

For all sample sizes and correlation coefficients, the size of the test procedure
approximates zero, which reflects the conservative nature of our test. The size of the
test comes at the cost of a low power in small samples. The test procedure is powerful
only if the sample is large or if spanning is ‘strong’ i.e. ρ  is well above 0.5. The lack
of power in small samples makes intuitive sense for two reasons. First, the CDF needs
to satisfy a series of conditions in order to establish spanning. If the EDF violates a
single condition, then spanning will not be detected. Second, the procedure to account
for sampling error builds on the least favorable distribution that minimizes Type I
error at the cost of Type II error.

Fortunately, large data sets are available for many applications in financial
economics. Further, we could apply econometric time series techniques to obtain an
estimate for the CDF that is more efficient than the EDF. We could then apply our test
to a large random sample from the estimated CDF rather than the raw data. This
approach effectively uses prior distribution information to generate artificial return
observations. Still, it is desirable to develop a more powerful test, e.g. a test that
explicitly minimizes the probability of Type II error rather than Type I error, or a test
that is based on a particular class of return distributions.

IV. THE JANUARY EFFECT

A wealth of empirical evidence suggests that the stock market returns of small firms
systematically outperform the returns of large firms during the month of January (see
e.g. Keim (1983)). Several explanations have been forwarded for this phenomenon,
including 'window dressing' by institutional investors (see e.g. Haugen and
Lakonishok (1988)) and 'tax-loss selling' by individual investors (see e.g. Reinganum
(1983). Another explantion is the mismeasurement of risk. The returns of small firms
may be more risky than than the returns of  large firms, and a higher average return
may serve as a compensation for the additional risk.

The potential of using SD to account for risk was recognized by Seyhun
(1993). He studied the January effect by examining whether different decile portfolios
are SD efficient in January. The results suggest that the January effect can not be
explained by mismeasurement of risk; all portfolios except the smallest decile
portfolios are inefficient in January. Larsen and Resnick (1996) extended this study
by means of bootstrapping, so as to assess the sensitivity of the results to sampling
variation. Their results confirm the Seyhun results, although the pattern is somewhat
different; only the six largest decile portfolios are inefficient to a statistically
significant degree.
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The Seyhun (1993) and Larsen and Resnick (1996) approach implicitly
assumes that investors have to choose one of the decile portfolios. Hence, this
approach ignores the possibility to diversify between the decile portfolios and to
invest in a riskless asset. To test whether the January effect is robust with respect to
the inclusion of diversification possibilities and a riskless asset, we apply our SSDR
spanning test. We analyze ten value-weighted decile portfolios of NYSE, AMEX, and
NASDAQ stocks, and the one-month US Treasury bill (the riskless asset). We use
data on monthly dividend-adjusted returns from July 1926 to December 2000 (894
observations) obtained from the data library on the homepage of Kenneth French
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). Table 1 gives some
descriptive statistics for the data set.8

[INSERT TABLE 2 ABOUT HERE]

We test whether the smallest decile portfolio and the Treasury bill span the larger
decile portfolios. Specifically, for every decile portfolio, we compute the value of the
primal test statistic 

Pψ , using the smallest decile portfolio and the Treasury bills as
benchmark assets. Next, we compute the asymptotic least favorable p-value, with the
sample variance 2σ̂  to proxy the unknown population variance. If this p-value is
smaller than or equal to the significance level, then we may conclude that SSDR
spanning occurs. Table 2 gives the results. For the full sample, spanning occurs for
none of the 9 higher decile portfolios. Hence, there exist rational, risk-averse investors
that invest at least part of their wealth in the higher decile portfolios, and we cannot
conclude that the lowest decile portfolio exhibits abnormal performance. The results
change remarkably if we consider the January returns only. The smallest decile
portfolio and the T-bill span all of the 9 higher decile portfolios. For the 8 highest
decile portfolios, the classification is statistically significant at a level of confidence
of about 95 percent. These results support the results by Seyhun and Larsen and
Resnick; the January effect is not explained away by the mismeasurement of risk. The
robustness of the January effect is remarkable, especially because our test is based on
the asymptotic least favorable distribution and it typically involves low power for
samples as small as 74 observations (see Figure 1).

[INSERT TABLE 3 ABOUT HERE]

V. CONCLUDING REMARKS

1. We stress that the SD tests are not intended to replace the MVA tests. SD uses
minimal prior preference and distribution assumptions and it therefore involves
less Type I error (wrongly classifying an efficient portfolio as inefficient) than
MVA does. However, by imposing prior structure on the data MVA involves more
power (or less Type II error; wrongly classifying an inefficient portfolio as
efficient) than SD does. Therefore, the SD tests are natural complements rather
than substitutes for the existing MVA tests.

2. Our spanning tests effectively test if the risky asset A improves the investment
possibilities available from two benchmark assets: the riskless asset F and the
risky asset M. This approach is useful if we can aggregate in a meaningful way all

                                                                
8 To account for the variation over time of the return distribution, the raw returns in month t are
corrected for the difference between the riskless rate at time t and the riskless rate for December 2000.
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benchmark assets and all new assets. Still, it would be interesting to extend our
analysis to the case with multiple risky benchmark assets and multiple new assets.
Our test is based on checking whether all hyperplanes that support F and M also
support A (see the Proof to Theorem 1). Introducing multiple new assets is
relatively simple: we can simply check if the hyperplanes support all new assets.
This boils down to simply applying our test for all new assets. (Section IV
effectively uses this approach to analyze if the smallest decile portfolio and the T-
bills span the 9 higher decile portfolios.) By contrast, introducing multiple risky
benchmark assets substantially increases computational complexity. In our model,
all portfolios of M and F involve the same ranking for the returns (recall that the
test statistics Pψ and Dψ  use ordered return observations). In case of multiple
risky benchmark assets, many different rankings generally occur. Determining all
different rankings is not easy and enumerating all possible rankings involves
substantial computational burden. Finding a more tractable approach is an
interesting route for further research.

3. We have focused on obtaining an analytical characterization of the sampling
distribution of our test statistics. Bootstrapping is another approach to sampling
error. The bootstrap, first introduced by Efron (1979) and Efron and Gong (1983),
is a well-established statistical tool to analyze the sensitivity of empirical
estimators to sampling variation in situations where the sampling distribution is
difficult or impossible to obtain analytically. Nelson and Pope (1991)
demonstrated in a convincing way that this approach can quantify the sensitivity of
the EDF to sampling variation, and that SD analysis based on the bootstrapped
EDF is more powerful than comparison based on the original EDF. The tractable
LP structure of our tests suggests that it is possible also for SSDR spanning to
substitute brute computational force to overcome the analytical intractability of
SD.

APPENDIX A

Proof to Theorem 1 We first consider the sufficient condition. If spanning does not
occur, then
(i) ∑∑

Θ∈Θ∈

Λ>Λ∈∃
t

t
t

t TuuTuuUu /)),((/)),((: *ττ xx ,

and
(ii) 0),( >ΛuAτ ,
with Tuu

t
t /)(maxarg),( ∑

Θ∈Λ∈
≡Λ λτ

λ
x . If we optimize Tu

t
t /)(∑

Θ∈

λx , Uu ∈ , over *Λ ,

then the optimality conditions for convex problems (see e.g. Hiriart-Urruty and
Lemaréchal (1993), Thm. VII:1.1.1 and Cond. VII: 1.1.3) require that there exists an
increasing hyperplane that is tangent at ),( *ΛΧ uτ  and that supports Mx  and Fx  from
above. (This optimality condition generalizes the well-known Kuhn-Tucker
conditions for continuously differentiable utility functions towards superdifferentiable
utility functions, including the piecewise-linear utility functions used below). Arrow's
(1971) theorem (see Section I) implies that M is always included in the optimal
portfolio relative to *Λ , i.e. 0),( * >ΛuMτ , and the optimality condition therefore
implies:
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(iii) ∑∑∑
Θ∈Θ∈Θ∈

Λ∂≥Λ∂=Λ
t

FtMt
t

t
t

t TuuTuuTuu /)),((/)),((/)),(( *** xxxxx τττ ,

with ( ))),(()),(()),(( **
1

* Λ∂Λ∂≡Λ∂ uuuuuu Tτττ xx L  for a supergradient at
),( *ΛΧ uτ . Concavity of u implies

(iv)  TuuTuuuTuu it
t

tuit
t

t
t

t
i

/)),((max/),()),((/)),((
0),(:

* xxxxx ∑∑∑
Θ∈

>ΛΙ∈
Θ∈Θ∈

Λ∂≤ΛΛ∂≤Λ ττττ
τ

.

Combining (i) to (iv), we find that spanning does not occur only if
(v)  TuuTuuTuuUu

t
FtMt

t
tAt

t
t /)),((/)),((/)),((: *∑∑∑

Θ∈Θ∈Θ∈

Λ∂≥Λ∂>Λ∂∈∃ xxxxxx τττ .

If these inequalities apply for Uu ∈ , then they also apply for the standardized utility
function Uuuuv T ∈Λ∂≡ )),((/ *τx . By construction, )),(( *Λ∂ uv τ  is a feasible
solution, i.e. Β∈Λ∂ )),(( *uv τ  (recall that all portfolios of M and F have the same
ranking as M). The inequalities (iv) imply that this solution is associated with a
strictly negative solution value. Hence, spanning does not occur only if 0<Pψ , or
alternatively spanning occurs if 0≥Pψ .

We next consider the necessary condition. If 0<Pψ , then
(vi) ∑ ∑

Θ∈ Θ∈

≥−<−
t t

FMttAtMtt TT 0/)(;0/)( ** xxxx ββ ,

with B∈*β  for the optimal solution. We can then always find 0: >Λ∈ Aκκ  such
that the ranking of Mx  is preserved, i.e. κκκ Txxx <<< L21 , and
(vii) ∑ ∑

Θ∈ Θ∈

≥−<−
t t

FMtttMtt TT 0/)(;0/)( ** xxxx βκβ .

Now consider the piecewise linear utility function )(min)( *xxp ttt
β+≡

Θ∈
α , with

∑
−

=
++ +−≡

1

1
**

1 ))((5.0
T

ts
ttsst κκββ xxα . By construction, this function is monotone

increasing and concave and hence Uxp ∈)( . It is easy to verify that

TTp tt
t

tt
t

/)(/)( * κβκ xx += ∑∑
Θ∈Θ∈

α  and ≤Λ∑
Θ∈

Tpp t
t

/)),(( *τx

Tpttt
t

/)),(( ** Λ+∑
Θ∈

τβ xα . Combining this with (vii), we find that 0<Pψ  implies

that
(viii) TppTp tt

t

/)),((/)( *Λ>∑
Θ∈

τκ xx .

Hence, if 0<Pψ , then (i) is satisfied and spanning does not occur. Alternatively,
spanning occurs only if 0≥Pψ .

The alternative formulation Dψ  is obtained by applying linear duality theory
to Pψ . Specifically, the following is a full LP formulation for Pψ :

(P) T
T

t
AtMtt /)(inf

1
∑

=

− xxβ

0/)(s.t.
1

≥−∑
=

T

t
FMtt Txxβ

Tt

Tt

t

T

tt

,,1free 
1

1,,101

L

L

=
=

−=≥− +

β
β

ββ
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The LP dual of (P) is:

(D) Tssup

TsT AMFM /)(/)(s.t. 1111 xxxx −=+−θ

TtTss
t

s
AsMstt

t

s
FMs ,,2/)()(s.t.

1
1

1

L=−=−+− ∑∑
=

−
=

xxxxθ

free  

,,10

θ

Ttst L=≥

The equality restrictions can be satisfied only by setting )(θξ tts = . Substituting

)(θξ t  for ts  in (D) gives Dψ . If spanning does not occur, then (P) is unbounded and
(D) is infeasible. However, if spanning does occur, then The Duality Theorem for
Linear Programming implies that (P) and (D) have the same solution value and hence

0≤= DP ψψ . Q.E.D.

Proof of Theorem 2: Known results can derive the exact asymptotic sampling
distribution of T

t
AtMt /)(∑

Θ∈

− xx . Under the null, itx , },{ AMi ∈ , Θ∈t , are serially

and contemporaneously IID random variables with variance ∞<2σ . Hence, the

central limit theorem implies that T
t

it /∑
Θ∈

x , },{ AMi ∈ , obey an asymptotically IID

normal distribution with variance T/2σ , and T
t

AtMt /)(∑
Θ∈

− xx , obeys an

asymptotically normal distribution with zero mean and variance T/2 2σ . Since the
unity vector is a feasible solution to the primal problem, i.e. Β∈e , we know that

≤Pψ T
t

AtMt /)(∑
Θ∈

− xx  for all return distributions )(xH . Moreover, there exist )(xH

for which T
t

AtMt /)(∑
Θ∈

− xx  approximates Pψ  (see e.g. Post, 2001, Theorem 3), and

therefore the asymptotic distribution of T
t

AtMt /)(∑
Θ∈

− xx  also represents the

asymptotic least favorable distribution for Pψ . Q.E.D.
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Figure 1: Rejection Rates for the Extended Kroll-Levy Experiment.

The figure gives the rejection rates for the null hypothesis (no spanning) based on 1000 random
samples of }2000,500,100{∈N  observations, from a bivariate normal distribution with means

=Mµ 0.20, =Aµ 0.15, standard deviations == AM σσ 0.20, and correlation coefficient

{ }1,,05.0,0 L∈ρ . For each sample, the null hypothesis of no spanning is rejected if and only if

σαψ ˆ2)1(1 TP −Φ≥ − , using a significance level a  =0.05.
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Table 1: Descriptive Statistics

Monthly dividend-adjusted returns from 1927 to 2000 for the ten value-weighted decile portfolios of
NYSE, AMEX, and NASDAQ stocks. Panel A gives the descriptives for the full sample (894
observations). Panel B focuses on the observations for the month of January returns (74 observations).
Source: Kenneth French data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

Panel A: Full sample
Mean Std. Dev. Skewness Kurtosis Minimum Maximum

1st decile 0.014 0.105 3.396 30.703 -0.346 1.157
2nd decile 0.013 0.091 2.373 22.718 -0.329 0.946
3rd decile 0.013 0.082 1.785 17.704 -0.328 0.755
4th  decile 0.012 0.076 1.554 15.321 -0.317 0.658
5th decile 0.012 0.074 1.313 14.294 -0.309 0.629
6th decile 0.012 0.070 1.015 11.834 -0.314 0.547
7th decile 0.012 0.067 0.938 11.972 -0.295 0.545
8th decile 0.011 0.063 0.787 10.957 -0.308 0.516
9th decile 0.011 0.060 0.697 11.237 -0.324 0.485
10th decile 0.010 0.052 0.072 6.725 -0.272 0.335

Panel B: January observations
Mean Std. Dev. Skewness Kurtosis Minimum Maximum

1st decile 0.085 0.101 1.692 3.531 -0.066 0.431
2nd decile 0.060 0.085 1.642 5.619 -0.094 0.455
3rd decile 0.049 0.073 1.057 2.306 -0.105 0.318
4th  decile 0.041 0.073 1.412 4.132 -0.092 0.354
5th decile 0.036 0.065 0.759 1.679 -0.096 0.248
6th decile 0.031 0.064 1.071 2.786 -0.089 0.286
7th decile 0.025 0.059 1.069 2.285 -0.081 0.227
8th decile 0.021 0.053 0.502 0.759 -0.083 0.187
9th decile 0.020 0.050 0.306 0.114 -0.084 0.157
10th decile 0.012 0.046 0.213 -0.209 -0.079 0.134
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Table 2: Test Results

The table gives the observed value for the primal test statistic 
Pψ , as well as the asymptotic least

favorable p-value 









Φ−

σ
ψ

ˆ2
1

T
P . Panel A gives results for the full sample (894 observations);

Panel B gives the results for the month of January returns (74 observations). If the test statistic takes
the value ∞− , then the primal problem (P) is unbounded and the dual (D) infeasible, and spanning
does not occurs (see Section I).

Panel A: Full sample
Statistic p-value

1st decile 0.000 0.500
2nd decile 0.001 0.429
3rd decile ∞− 1.000
4th  decile ∞− 1.000
5th decile ∞− 1.000
6th decile ∞− 1.000
7th decile ∞− 1.000
8th decile ∞− 1.000
9th decile ∞− 1.000
10th decile ∞− 1.000

Panel B: January observations
Statistic p-value

1st decile 0.000 0.500
2nd decile 0.004 0.413
3rd decile 0.035 0.016
4th  decile 0.030 0.033
5th decile 0.049 0.002
6th decile 0.025 0.062
7th decile 0.060 0.000
8th decile 0.049 0.001
9th decile 0.059 0.000
10th decile 0.048 0.002
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