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ABSTRACT

We derive an empirical test for third-order stochastic dominance that allows for
diversification between choice alternatives. The test can be computed using
straightforward linear programming. Bootstrapping techniques and asymptotic
distribution theory can approximate the sampling properties of the test results and allow
for statistical inference. Our approach is illustrated using real-life US stock market data.

The theory of stochastic dominance (SD; see e.g. Levy, 1998) gives a systematic
framework for analyzing economic behavior under uncertainty. The theoretical
attractiveness of SD lies in its nonparametric orientation. SD criteria do not require a
full parametric specification of the preferences of the decision-maker and the
statistical distribution of the choice alternatives, but rather they rely on a set of
general assumptions. One possible application area is the problem of selecting and
evaluating investment portfolios. This problem is of interest both for empirical tests of
theoretical asset pricing models and for practical portfolio management applications.
The focus of the research in this area has predominantly been on mean-variance
analysis (MVA; e.g. Kandel and Stambaugh, 1987, 1989, and Gibbons et al., 1989).
Unfortunately, MVA is not always economically meaningful. Roughly speaking,
MVA is consistent with expected utility theory only if investor utility is quadratic or if
asset returns obey a normal distribution (see e.g. Bigelow, 1993, for exact conditions).
An important reason why SD has not seen the proliferation that one might expect is
the inability of traditional empirical tests to properly account for the possibility to
diversify between the choice alternatives. Post (2001) developed a tractable linear
programming (LP) test for second-order SD (SSD) efficiency of a given portfolio
relative to all possible portfolios created from a set of assets. This test could provide a
stimulus towards the further proliferation of SD for portfolio selection and evaluation
(as well as other choice problems under uncertainty that involve diversification
possibilities).

The SSD criterion relies on the assumptions of non-satiation and risk-aversion
solely. By imposing minimal assumptions, the criterion can involve low discriminating
power; i.e. the efficient set can be large. Imposing additional preference assumptions
could help to remedy this problem. Third-order SD (TSD; Whitmore, 1970)
complements the SSD assumptions with the additional assumption that investors
prefer positively skewed return distributions. Interestingly, empirical evidence suggests
that investors indeed display this kind of skewness preference (e.g. Arditti, 1967,
Kraus and Litzenberger, 1976, Cooley, 1977, Friend and Westerfield, 1980, and
Harvey and Siddique, 2000). This paper extends Post's SSD analysis towards TSD so
as to develop a test with more discriminating power. Section I recaptures the
definition of TSD. Section II gives a LP test for TSD efficiency. The test relies on
constructing piecewise-quadratic utility functions and on testing if the evaluated
portfolio is optimal relative to those utility functions. Apart from the computational
problems associated with portfolio diversification, another problem in practical
applications of SD is the sensitivity of the results to sampling error. Section III
discusses how bootstrapping techniques and asymptotic distribution theory can
approximate the sampling distribution of the test results and allow for statistical
inference. Section IV applies our approach to test if the Fama and French market
portfolio is efficient relative to the Fama and French benchmark indexes. Finally,
Section V gives conclusions and suggests directions for future research. The
Appendix gives the formal proofs of our theorems.
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I. THIRD-ORDER STOCHASTIC DOMINANCE

Consider an investment universe consisting of N assets, associated with returns
Nℜ∈x .1 Throughout the text, we will use the index set { }1, , NΙ ≡ L  to denote the

different assets. In addition, we will treat the returns as serially independent and
identically distributed (IID) random variables with a continuous joint cumulative
distribution function (CDF) : [0,1]NG ℜ → . Investors may diversify between the
assets, and we will use Nℜ∈?  for a vector of portfolio weights. For simplicity, we
will consider the case where short selling is not allowed, and the portfolio weights
belong to the portfolio possibilities set { }1: =ℜ∈≡Λ + e?? TN , with e for a unity
vector with dimensions conforming to the rules of matrix algebra.2

We consider the problem of establishing whether a particular portfolio, say
Λ∈t , is optimal, i.e. whether it maximizes the expected value of the investor’s utility

function Pu →ℜ: , u U∈ , with U for the class of von Neuman-Morgenstern utility
functions, and P  for a nonempty, closed and convex subset of ℜ . The portfolio t  is
optimal if and only if:

(1) )()(max)()( xx?xxt
?

GuGu ∂=∂ ∫∫ Λ∈
.

In practical applications, full information about the utility function typically is not
available, and this condition cannot be verified directly. This provides the rationale
for using SD criteria that rely on a set of general assumptions rather than a full
specification of the utility function. The TSD criterion restricts attention to the class of
non-satiable and risk-averse investors that prefer positively skewed distributions (more
probability in the right tail). 3 The TSD investors can be represented by the class of von
Neuman-Morgenstern utility functions with a strictly positive, decreasing and convex
marginal utility function, or 3U U⊆ . For analytical simplicity, we assume that the
utility function is once continuously differentiable, and we will use )(xu′ for the
gradient or 'marginal utility function’ at x , and ))()(()( txtxt T1 uuu ′′≡′ L  for a
gradient vector. Note that we do not assume that the marginal utility function is
continuously differentiable. However, marginal utility is convex and hence
everywhere continuous and subdifferentiable. Throughout the text, we will denote

                                                                
1 Throughout the text, we will use 

mℜ  for an m-dimensional Euclidean space, and m
+ℜ denotes the

positive orthant. Further, to distinguish between vectors and scalars, we use a bold font for vectors and a
regular font for scalars.
2 It is possible to generalize the analysis towards cases where short selling is allowed and cases where additional
restrictions are imposed on the portfolio weights. Our analysis is based on the optimality conditions from
subdifferential calculus for optimizing a concave utility function over a convex portfolio possibilities set (see the
proof to Theorem 1). These conditions apply for any non-empty, closed and convex portfolio set, and we may
therefore generalize our analysis towards a more general polyhedral portfolio possibilities set.
3 This kind of skewness preference is strongly related to the concept of decreasing absolute risk aversion
(DARA; Pratt, 1964), which underlies DARA SD (DSD; Vickson, 1975).  Roughly speaking, DARA
means that the dislike for absolute uncertainties decreases as the levels of the outcomes increase.
Theoretically, TSD is a sufficient but not necessary condition for DARA, and TSD therefore is less
powerful than DSD. However, DSD is difficult to fit to empirical data, and in addition the
improvement in power is minimal. For these reasons, Vickson and Altman (1977) conclude that TSD is
likely to be a suitable approximation for DSD for practical purposes.
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subgradient vectors of the marginal utility function by
))()(()( txtxt T1 uuu ′∂′∂≡′∂ L .

Apart from the utility function, also the CDF generally is not known in
practical applications. Rather, information typically is limited to a discrete set of time
series observations, say ( )T

Txx L1≡Χ  with ( ) N
Ntt ℜ∈≡ xxx t L1 . For convenience,

we assume that the data are ranked in ascending order by the return of the evaluated
portfolio, i.e. txtxtx T21 <<< L . 4 Using the observations, we can construct the
empirical distribution function (EDF) { } TtF t /:card)( xxx ≤Θ∈≡  with

{ }1, ,TΘ ≡ L . In this paper, we will analyze SD for the EDF rather than the CDF, so
as to focus on the computational problems encountered in practical applications.
Under the maintained assumption that the return observations are serially IID random
variables, the EDF gives a statistically consistent estimator for the CDF.5 Section III
discusses the role of sampling error.

Using the above notation and assumptions, TSD can be defined as follows:

DEFINITION 1 Portfolio Λ∈t  is TSD inefficient if and only if, for all utility functions
3u U∈ , the maximum expected utility is greater than the expected utility of t , i.e.

(2) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

3

xxtxx?
?

FuFu
Uu

( ) 0/)()(maxmin
3

>
















−∑
Θ∈

Λ∈∈
t

ttUu
Tuu tx?x

?
.

Alternatively, portfolio Λ∈t  is TSD efficient if and only if it is optimal relative to
some utility functions 3u U∈ , i.e.

(3) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

3

xxtxx?
?

FuFu
Uu

( ) 0/)()(maxmin
3

=
















−∑
Θ∈

Λ∈∈
t

ttUu
Tuu tx?x

?
.6

                                                                
4 Since we assume a continuous return distribution, ties do not occur. Still, the analysis can be extended
in a straightforward way to cases where ties do occur e.g. due to a discrete return distribution or due to
measurement problems or rounding, or if a riskless asset is evaluated (see Post, 2001).
5 There is substantial evidence that the distribution of assets returns (e.g. interest rates, risk premia,
volatilities and correlation coefficients) varies through time. This problem is especially relevant for
applications that use data for long time periods. In such cases, the observations generally are not
serially IID random variables and the EDF is not a statistically consistent estimate for the CDF. One
possible approach to account for time variation is to use econometric time series estimation techniques
to estimate a conditional CDF. Our empirical tests can then be applied to random samples from the
estimated CDF rather than the EDF.
6 Note that this definition of TSD uses strict inequalities for all 3u U∈ . By contrast, the traditional

definition uses weak inequalities with a strict inequality for at least one 3u U∈ . This difference is

important from a theoretical perspective, and one can think of examples where the two definitions give
different efficiency classifications. However, from an empirical perspective, the definitions are
indistinguishable, because arbitrary small data perturbations to the evaluated portfolio can make the
classifications consistent. Related to this, data sets where this theoretical issue has a decisive impact are
extremely unlikely for return distributions that are continuous by approximation.
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II. LINEAR PROGRAMMING FORMULATION

Post's SSD test relies on constructing piecewise-linear utility functions that
'rationalize' the evaluated portfolio, i.e. for which the evaluated portfolio is optimal.
Interestingly, we may extend this approach towards TSD efficiency by asking if we
can construct piecewise-quadratic utility functions 3Up ∈  that 'rationalize' the
evaluated portfolio. A continuous piecewise-quadratic utility function may be
constructed from intercept coefficients )( 1 Taaa L≡ , slope coefficients

)( 1 Tßßß L≡  and curvature coefficients )( 1 T??? L≡  as

(4) )5.0(min),( 2xx,xp tttt
?ßa?ßa ++≡

Θ∈
.

Imposing appropriate restrictions on the slope and curvature coefficients can
guarantee that the piecewise-quadratic utility function exhibits monotonicity,
concavity, and skewness preference. Specifically, for p  to belong to 3U , ß and ?
need to be elements of the following set:

(5) { ;tttttt
TT tx?ßtx?ß?ß 111:),( +++− +≥+ℜ×ℜ∈≡Ω

;; tttttttttttt tx?ßtx?ßtx?ßtx?ß
111111 ++++++ +≥++≤+

}1max1 =+Θ∈∀≤
Θ∈
Ι∈

+ it

t
i

TTtt \T;t x?ß?? .

The constraints tx?ßtx?ß 111 +++ +≥+ tttttt  for all \Tt Θ∈  and the normalizing

constraint 1max =+
Θ∈
Ι∈

it

t
i

TT x?ß  restrict p  to be strictly increasing. Further,

tx?ßtx?ß 1111 ++++ +≤+ tttttt  and tx?ßtx?ß tttttt 11 ++ +≥+  for all \Tt Θ∈
guarantees concavity. Finally, 1+≤ tt ??  for all \Tt Θ∈  guarantees skewness
preference.

THEOREM 1 Portfolio Λ∈t  is TSD efficient if and only if t  is optimal relative to a
piecewise-quadratic utility function 3Up ∈ . We may test this condition using the test
statistic

(6)








Ι∈∀≥+−+≡ ∑
Θ∈

Ω∈
iTit

t
tttt 0/))((:min)(

,),(
θθζ

θ
xtxtx?ßt

?ß
.

Specifically, portfolio Λ∈t  is TSD efficient if and only if 0)( =tζ . Alternatively,
portfolio Λ∈t  is TSD inefficient if and only if 0)( >tζ .

The test statistic )(tζ  involves a linear objective function and linear constraints, and
it can be solved using straightforward linear programming. The following is a full LP
formulation for )(tζ :

 ( P ) θ
γθ ,,

min
ß



6

NiTit
t

tttt ,,10/))((s.t. L=≥+−+∑
Θ∈

θxtxtx?ß

free

,1,0
,1,free

1max

,,1
1-,1,

1-,1,

1-,1,

1

11

1111

111

θ

γ Tt
Tt

Tt
Tt

Tt

Tt

t

t

it

t
iTT

tt

tttttt

tttttt

tttttt

L
L

L
L

L

L

=≥
=

=+

=≤
=+≥+

=+≤+

=+≥+

Θ∈
Ι∈

+

++

++++

+++

ß

x?ß

??
tx?ßtx?ß

tx?ßtx?ß

tx?ßtx?ß

The problem involves only 2T+1 variables and N+4T-2 constraints. Further, the
model always has a feasible solution, as e.g. 1=tß  and 0=t?  for all t ∈Θ , and

T
t

tit
i

/)(max ∑
Θ∈

Ι∈
−= txxθ , necessarily satisfies all constraints. (This solution

effectively represents risk neutral investors; risk neutral investors have linear utility
functions and compare portfolios solely in terms of the expected return.) For small
data sets up to hundreds of observations and/or assets, the problem can be solved with
minimal computational burden, even with desktop PCs and standard solver software
(like LP solvers included in spreadsheets). Still, the computational complexity, as
measured by the required number of arithmetic operations, and hence the run time and
memory space requirement, increases progressively with the number of variables and
restrictions. Therefore, specialized hardware and solver software is recommended for
large-scale problems involving thousands of observations and/or assets.7

Two disclaimers apply for interpreting the test results. First, the test statistic can
separate efficient portfolios from inefficient ones. However, we stress that the test
statistic does not represent a meaningful performance measure that can be used for
ranking portfolios based on the ‘degree of efficiency’. For selecting the optimal
portfolio from the efficient set, and for measuring the deviation from the optimum, we
typically need more information on investor preferences than is assumed in SD.
Second, we may recover a complete utility function from the optimal slope and
curvature coefficients (see the proof to Theorem 1). However, we stress that the
piecewise-quadratic utility functions are mere instruments for our analysis, and we
cannot derive strong results for these instruments. For example, there typically exist
multiple optimal solutions for the slope and curvature coefficients if the evaluated
portfolio is TSD inefficient, and in addition the interpretation of the utility function is
not clear if the evaluated portfolio is TSD inefficient. Another complication stems
from sampling error. While it is possible to perform powerful and accurate inference
about the test statistic (at least in large samples; see Section III), this is much more
complicated for recovering an entire utility function.

                                                                
7 For an elaborate introduction in LP, we refer to Chvatal (1983). In practice, very large LPs can be
solved efficiently by both the simplex method and interior-point methods. An elaborate guide to LP
solver software can be found at the homepage of the Institute for Operations Research and
Management Science (INFORMS); http://www.informs.org/.
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III. STATISTICAL INFERENCE

We have thus far discussed SD relative to the EDF rather than the CDF. Generally,
the EDF is very sensitive to sampling variation and the test results are likely to be
affected by sampling error in a non-trivial way. The applied researcher must therefore
have knowledge of the sampling distribution in order to make inferences about the
true efficiency classification. In the SD literature, two approaches have been
developed to approximate the sampling distribution: bootstrapping and analytical
asymptotic analysis. As discussed in Post (2001), the tractable LP structure suggests
that bootstrapping can substitute brute computational force to overcome analytical
intractability for the SSD test statistic. This conclusion applies with equal strength to
our TSD test. The alternative approach is to derive an analytical characterization of
the asymptotic sampling distribution. In this spirit, Post (2001) derived an asymptotic
distribution for the SSD test statistic. The distribution is based on the conservative
null hypothesis that all assets Ι∈i  are contemporaneously IID, and hence

∏
∈

=
Ii

iHG )()( xx  with ]1,0[: →ℜH  for a univariate CDF with variance ∞<2σ .8

In addition, the analysis is based on the least favorable distribution, i.e. the
distribution that maximizes the size or relative frequency of Type I error (rejecting the
null when it is true). Interestingly, the asymptotic least favorable distribution of the
SSD test statistic also applies for our TSD test statistic:

THEOREM 2 For the asymptotic least favorable distribution of )(tζ , the p-value

))(( 0HyP ≥tζ , 0≥y , equals the integral ( )∫
≤

Φ∂−
ex

x
y

1  with ( )xΦ  for the N-

dimensional multivariate normal distribution function with zero means, variance
terms

(7) Ti
k

ki /)12( 222 σσ +−≡ ∑
Ι∈

tt , Ι∈i ,

and covariance terms

(8) Tji
k

kij /)( 22 σσ ttt −−≡ ∑
Ι∈

, jiji ≠Ι∈ :, .

We may use this theorem by comparing the p-value for the observed value of )(tζ
with a predefined level of significance; we may reject efficiency if the p-value is
smaller than or equal to the significance level. Computing the p-value requires the
unknown population variance 2σ . We may estimate this parameter in a distribution-
free and consistent manner using the sample equivalent:

(9) ∑ ∑
Θ∈
Ι∈

Θ∈
Ι∈

−≡

t
i

t
i

itit NTNT /)/(ˆ 22 xxσ .

                                                                
8 This null is conservative, because it gives a sufficient but not necessary condition for efficiency. In
fact, under the null, all portfolios Λ∈?  are efficient, and minimal sampling variation suffices to
classify an efficient portfolio as inefficient.
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The use of the most favorable distribution implies that we accept a high frequency of
Type II error (accepting the null when it is not true) or a low power (1- the relative
frequency of Type II error) in small samples. Fortunately, large data sets are available
for many applications in financial economics. Further, we could apply econometric
time series techniques to obtain an estimate for the CDF that is more efficient than the
EDF. We could then apply our test to a large random sample from the estimated CDF
rather than the raw data. This approach effectively uses prior distribution information
to generate artificial return observations. Still, future research could focus on tests that
minimize Type II error.

IV. EMPIRICAL APPLICATION

To illustrate our approach to TSD with diversification, we perform an empirical
application to real-life US stock market data. Specifically, we evaluate whether the
Fama and French market index is SSD efficient relative to all possible portfolios of
the 25 Fama and French benchmark portfolios. The market index is the value-
weighted average of all NYSE, AMEX, and NASDAQ stocks. The benchmark
portfolios are the intersections of 5 portfolios formed on size (market equity) and 5
portfolios formed on the ratio of book equity to market equity (BE/ME). We use data
on monthly returns (month-end to month-end) from July 1926 to December 2000 (894
observations) obtained from the data library on the homepage of Kenneth French. 9

Table 1 gives some descriptive statistics for the data.

[INSERT TABLE 1 ABOUT HERE]

We perform four different tests. First, we use the Post (2001) test for SSD efficiency.
Post (2001) used the S&P 500 index to proxy the market index, and found the index
to be inefficient to a statistically significant degree. Since the S&P 500 index is based
on a much smaller set of stocks than the Fama and French market index (until 1979,
the S&P 500 index was even limited to NYSE stocks only), our results may differ
from those in Post (2001). Second, we apply our test for TSD efficiency. Again, the
TSD test involves more discriminating power, because it adds the assumption that
investors prefer positive skewness. More discriminating power can be obtained by
adding a riskless asset to the 25 benchmark portfolios. The third and fourth tests test
for SSD and TSD with a riskless asset (SSDR and TSDR). We use the one-month US
Treasury bill as the riskless asset.

Our data set involves observations for a 75-year period and it is not realistic to
assume that the observations are serially IID over the sample period. To account for
time variation of the return distribution, we correct the raw return observations for
changes in the riskless rate. In addition, we split the sample into two non-overlapping
subsamples of equal size (447 observations) and analyze the robustness of our results
by applying the tests both subsamples. The first subsample contains the observations
from July 1926 to September 1963). The second subsample contains the remaining
observations (October 1963 to December 2000).

Table 2 displays our results. Overall, there is strong evidence that the market
portfolio is inefficient. For the least powerful SSD test, the p-value is 0.015.
Introducing a riskless asset and skewness preference increases the discriminating
power and lowers the p-values. Most notably, introducing skewness preference has a
substantial impact; the p-values for TSD and TSDR are less than 0.001. TSD and
                                                                
9 The data library is found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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TSDR penalize negative skewness and the market index involves less positive
skewness than most of the benchmark indexes do (see Table 1). The results are
remarkably robust across the two subsamples. Still, the subsamples are relatively
small, and the p-values increase substantially. In the second subsample, the market
index can not be demonstrated to be SSD or SSDR inefficient at conventional levels
of significance. However, the market index remains TSD and TSDR inefficient with
90 percent confidence.

[INSERT TABLE 2 ABOUT HERE]

V. CONCLUDING REMARKS AND SUGGESTIONS

We have derived necessary and sufficient empirical tests for TSD efficiency in case
diversification between choice alternatives is allowed. Our approach relies on
building nonparametric piecewise-quadratic utility functions, and on checking
whether the evaluated portfolio is optimal relative to these utility functions. Further,
we have discussed how bootstrapping techniques and asymptotic distribution theory
can approximate the sampling properties of the test results and allow for statistical
inference.

APPENDIX

Proof of Theorem 1: The necessary condition follows from the well-known
Kuhn-Tucker conditions for optimizing a concave function over a convex set.
Specifically, t  is an optimal portfolio i.e. ∑

Θ∈Λ∈
=

t

Tu /)(maxarg ?xt t
?

 for 3u U∈  if and

only if all portfolios Λ∈? are enveloped by the tangent hyperplane, i.e.
(10)  Λ∈∀≥−′∑

Θ∈

??xtxtx 0/))((
t

ttt Tu .

If t  is optimal relative to some 3u U∈ , then it is also optimal relative to the
standardized utility function 3))max(/( Uuuv it

t
i

∈′=
Θ∈
Ι∈

x . By definition, ))(),(( tt vv ′∂′ ,

with ))()(()( txtxt T1 vvv ′∂′∂≡′∂ L  for a subgradient of )(tv′ , is a feasible solution,
i.e. Ω∈′∂′ ))(),(( tt vv . The inequality (10) implies that this solution is associated with
a solution value of zero. Hence, we find the necessary condition;  t  is TSD efficient
only if 0)( =tζ .

To establish the sufficient condition, use Ω∈),( ** ?ß  for the optimal solution.
From this optimal solution, we can construct the following continuous piecewise-
linear marginal utility function

(11) 














≥+
≤≤+

≤≤+
≤+

=+≡′

−

−−−−

Θ∈

1
**

12
*

1
*

1

21
*
2

*
2

1
*
1

*
1

**** )(min),(

TTT

TTTT

ttt

zxx
zxzx

zxzx
zxx

xxp

?ß
?ß

?ß
?ß

?ß?ß M
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with 







=+

≤
−
−

≡

++

+
+

+

*
t

*
ttt

*
t

*
t*

t
*
t

*
t

*
t

tz

11

1
1

1

)(5.0
)(
)(

??xx

??
??
ßß

, Tt \Θ∈ , for the nodes that connect the line

segments. By construction, ),( ** ?ßxp′  is strictly positive over the observed return

range, decreasing and convex. Integrating x*
t

*
t ?ß + , Θ∈t , gives 25.0 xx *

t
*
tt ?ßa ++ ,

where ta  is free. The integrated functions can be combined to yield the continuous
piecewise-quadratic utility function:
(12) )5.0(min),( 2xx,xp *

t
*
t

*
tt

*** ?ßa?ßa ++≡
Θ∈














≥++
≤≤++

≤≤++
≤++

=

−

−−−−−

1
2**

12
2*

1
*

11

21
2*

2
*
22

1
2*

1
*
11

TTT
*
T

TTTT
*
T

*

*

zxxx
zxzxx

zxzxx
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),( *** ,xp ?ßa  is strictly increasing, concave, and it exhibits a preference for positive

skewness. Concavity implies for all Λ∈? :
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t
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*
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*
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*
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t

*
t

*
t )()( . Combining this finding

with (13), we find that τ  is optimal relative to ),( *** ,xp ?ßa  i.e.

(14) )(max)( **** *
t

t

*
t

t

,,p,,p ?ßa?x?ßatx
?

∑∑
Θ∈

Λ∈
Θ∈

= .

Hence, we find the sufficient condition; portfolio Λ∈t  is TSD efficient if 0)( =tζ .
Q.E.D.

Proof of Theorem 2: As discussed in Post (2001),









−≡ ∑
Θ∈Ι∈

T
t

tit
i

/)(max)( txxtω  asymptotically behaves as the largest order statistic of

N random variables with a multivariate normal distribution, and ))(( 0HyP >tω =

)/)((1 IiyTP
t

itt ∈∀≤−− ∑
Θ∈

xtx  asymptotically equals the multivariate normal

integral ( )∫
≤

Φ∂−
ex

x
y

1 . One possible solution to (P) is to set 1=tß  and 0=t?  for all

t ∈Θ  and )(tωθ = . Therefore, ≤)(tζ )(tω  and ))(( 0HyP >tζ  is bounded from

above by ))(( 0HyP >tω  for all return distributions )(xH . Moreover, there exist
)(xH  for which )(tω  approximates )(tζ , and therefore the asymptotic distribution

of )(tω  also represents the asymptotic least favorable distribution for )(tζ . Q.E.D.
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Table 1: Descriptive Statistics

Monthly returns (month-end to month-end) from July 1926 to December 2000 for the Fama and French
market index and benchmark portfolios. The data are obtained from the data library on Kenneth
French’s  homepage http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

Portfolio Mean Standard
Deviation

Skewness Kurtosis

Fama and French market index 0.0099 0.0550 0.192 7.908
No. BE/ME Size
1 Low Small 0.0077 0.1266 2.812 27.919
2 2 Small 0.0103 0.1091 3.949 48.609
3 3 Small 0.0133 0.0951 2.001 16.856
4 4 Small 0.0153 0.0887 2.762 29.395
5 High Small 0.0168 0.0983 3.225 30.477
6 Low 2 0.0086 0.0805 0.424 5.149
7 2 2 0.0127 0.0789 1.829 19.792
8 3 2 0.0136 0.0754 2.316 24.315
9 4 2 0.0140 0.0768 1.803 18.647
10 High 2 0.0151 0.0877 1.695 15.950
11 Low 3 0.0100 0.0770 1.010 9.936
12 2 3 0.0122 0.0673 0.312 7.088
13 3 3 0.0129 0.0685 0.997 13.065
14 4 3 0.0133 0.0691 1.261 13.855
15 High 3 0.0142 0.0870 1.931 19.238
16 Low 4 0.0103 0.0628 -0.161 3.769
17 2 4 0.0108 0.0639 1.060 13.649
18 3 4 0.0121 0.0641 1.073 14.948
19 4 4 0.0131 0.0715 1.971 21.599
20 High 4 0.0144 0.0927 2.136 21.907
21 Low Big 0.0099 0.0557 -0.027 5.512
22 2 Big 0.0095 0.0536 -0.070 5.275
23 3 Big 0.0102 0.0581 0.788 13.668
24 4 Big 0.0110 0.0702 1.828 21.374

Fa
m

a 
an

d 
Fr

en
ch

 b
en

ch
m

ar
k 

po
rt

fo
lio

s

25 High Big 0.0009 0.1441 -3.964 32.321
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Table 2: Test Results

The table gives the observed value for the test statistics, as well as the asymptotic least favorable p-
values. Panel A gives the results for the full sample (July 1926 to December 2000). Panel B gives the
results for the first subsample (July 1926 to September 1963). Panel C gives the results for the second
subsample (October 1963 to December 2000).

Panel A: July 1926 to December 2000
Statistic p-value

SSD 0.0075 0.008
SSDR 0.0081 0.003
TSD 0.0092 0.000
TSDR 0.0095 0.000

Panel B: July 1926 to September 1963
Statistic p-value

SSD 0.0088 0.058
SSDR 0.0095 0.029
TSD 0.0109 0.006
TSDR 0.0109 0.006

Panel C: October 1963  to December 2000
Statistic p-value

SSD 0.0070 0.272
SSDR 0.0070 0.272
TSD 0.0084 0.085
TSDR 0.0084 0.085
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