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Abstract
In the canonical model of investments, the optimal fractions in

the risky assets do not depend on the time horizon. This is against
empirical evidence, and against the typical recommendations of port-
folio managers. We demonstrate that if the intertemporal coefficient
of relative risk aversion is allowed to depend on time, or the age of
the investor, the investment horizon problem can be resolved. Ac-
cordingly, the only standard assumption in applied economics/finance
that we relax in order to obtain our conclusion, is the state and time
separability of the intertemporal felicity index in the investor’s utility
function. We include life and pension insurance, and we also demon-
strate that preferences aggregate.

KEYWORDS: The investment horizon problem, complete markets, life
and pension insurance, dynamic programming, Kuhn-Tucker, directional deriva-
tives, time consistency, aggregation

I Introduction

One of the central issues in asset pricing is the allocation of capital be-
tween different asset classes and in particular the choice between equity and

∗
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bond investments. This asset allocation problem has received a great deal
of attention in the financial economics literature but no consensus regarding
its solution seems to have been reached. The modern formulation of the
problem stems from Mossin (1968), Samuelson (1969), and Merton (1969).
They found necessary conditions for the optimal portfolio choice of an in-
vestor to be constant over the life cycle, i.e., independent of both age and
wealth. Mossin called this myopia in portfolio choice. Both Mossin (1968),
in a discrete-time model, and Merton (1971), in the continuous-time ver-
sion, have shown that, under certain standard assumptions, the portfolio
choice decision can be made independently of the consumption versus sav-
ings decision. The assumptions are: 1) asset returns are i.i.d., 2) agents have
additively separable constant relative risk aversion (CRRA) utility, 3) agents
have no non-tradeable assets, and 4) markets are frictionless and complete.
If portfolio choice is going to depend on age and/or on wealth, then one or
more of these standard assumptions must be relaxed.

In this paper we investigate the effects of relaxing the assumption about
the state and time separability of the felicity index, by letting the coefficient
of relative risk aversion γ := γ(t) be a continuous function of time t. Still
the felicity index is of the standard form u(x, t), but can no longer be writ-
ten u(x, t) = u(x)h(t), say. We demonstrate that if investors maximize the
expected utility of consumption over their lifetimes, then, with this modifica-
tion, the length of an investor’s remaining horizon has a predictable effect on
the optimal proportion to invest in stocks. Mathematically we can still solve
the optimal consumption/investment problem with this assumption relaxed.

In order to briefly explain our results, recall that in the canonical model
with one risky and one risk-free asset, the optimal fraction ϕ of wealth in the
risky asset should be maintained constant according to ϕ = 1

γ
µ−r
σ2 at each

time t, where µ is the return rate on the risky asset, σ its volatility and r is
the risk-free rate of interest.

Under our assumption we demonstrate that ϕ(t) = 1
γ(t̃t)

µ−r
σ2 , where t̃t is

a random quantity that can be determined from the investor’s information
set at each time t. Moreover t̃t > t for each t, making the optimal portfolio
ratio ϕ(t) both time and state dependent. The consequences of this result
are several, and we shall return to the details later. Here we only point out
that if the risk aversion function γ(t) is increasing with time, then our re-
sult implies that individuals should invest more in the risky asset when they
have a longer horizon, i.e., when they are young, and gradually move into
bonds as they grow older. This is in agreement with advice from investment
professionals, and also with empirical studies of actual behavior, but contra-
dicts the results of the canonical model with a constant γ. It seems natural,
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with this assumption, that the investor should pick some average time in the
remaining horizon when deciding on today’s portfolio choice.

One of the reasons for the advice that younger people should hold a higher
fraction in equities is the tendency for stocks to outperform bonds or bills
over the long run, despite the higher stock market volatility. This should not
be mistaken as a ”time diversification” advice, which is a different but related
issue, typically arising after each down-turn in the stock market (e.g., Delong
(2008), Bodie (2009)). For example, following the 2008/09 market crash it is
evident that many people around the world have lost their pensions, partly
or entirely. For many old people it seems obvious that they have too short
remaining life times to regain what has been lost.

Paul A. Samuelson has explained, in many articles over the years, what
is wrong with time diversification, and our results are in agreement with
his main conclusions. In Samuelson (1989a) for example, he demonstrates
that under the standard assumptions 1) - 4) cited above, the optimal port-
folio strategy based on maximizing expected utility of consumption over the
investor’s lifetime, beats various buy-and-hold strategies by clear margins.

Under the assumption that the risk aversion increases as the consumer
grows older, our results imply that the ratios in the risky assets will decrease
with age, but not necessarily in a monotonic fashion. Furthermore, these
ratios will depend on the state of the economy, the wealth level of the agent
at any time during the investment period, his subjective impatience rate,
and mortality. Thus the portfolio choice decision can no longer be separated
from the consumption versus saving decision.

The terminology varies, however, and as an example, Eeckhoudt, Gollier
and Schlesinger (2005) calls the time horizon problem the ”time diversifica-
tion” argument.

Several papers have questioned the validity of the reasons investment
professionals give for their advice about cautiousness at old age. Jagannathan
and Kocherlakota (1996) claim that the advice is correct only for people who
have labor income that is relatively uncorrelated with stock returns. This
idea is explored thoroughly in Bodie, Merton, and Samuelson (1992). Labor
income can often be thought of as an implicit risk-free investment if present
value of human capital is not too risky. The present value of human capital
decreases over time and so if the investor wants a constant fraction of total
wealth in the risky asset, he must move out of equities as he ages. However,
the young also faces a longer consumption horizon, which must be taken into
account, since it is the difference that counts.

Empirically Ameriks and Zeldes (2004) find a hump-shaped age effect in
the fraction of all household financial assets invested in equity. The predicted
equity share starts below 10% in the mid 20s, peaks at 20% in the late 40s and
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50s and declines again to 10% in the late 70s. Conditional on participation,
this is 20% in the mid 20s, peaks at 50% around age 50 and declines to 30% in
late 70s. Storesletten, Telmer and Yaron (2007) construct a model in which
the share invested in the risky asset is hump-shaped over the investment
horizon. They also incorporate a production economy and calibrate their
model quite well to the U.S data in a modified version of the Constantinides
and Duffie (1996) model. A similar hump effect is obtained through different
means in Constantinides, Donaldson, and Mehra (2002), who construct an
OLG model where they distinguish between young, middle-aged and old
agents. In their model the young cannot borrow with human capital as
collateral because of moral hazard and adverse selection. Notice that a hump-
shaped age effect can be obtained in our model by simply assuming a hump-
shape for the function γ(t).

Samuelson (1989b) has explained the horizon effect by assuming that
the agent maximizes expected logarithmic utility of terminal wealth, and is
anxious not to fall below a ”subsistence” level. Mossin (1968) considers a
multiperiod model with no intermediate consumption, where the objective is
to maximize expected utility of wealth at the end of the horizon. For har-
monic absolute risk aversion (HARA) utility functions, where the absolute
risk tolerance is linear in wealth, he characterizes the horizon problem as fol-
lows: The horizon effect is positive, i.e., investors reduce their holdings of the
risky assets over time, or negative according to as the relative risk aversion
is increasing or decreasing in wealth. While there seems to be no definite
argument for or against decreasing relative risk aversion in wealth, it is a
common agreement that absolute risk aversion is decreasing in wealth. In
Macroeconomics however, according to Campbell and Viceira (2002) is power
utility’s property of wealth independent relative risk aversion attractive, and
is required to explain the stability of financial variables in the face of sec-
ular economic growth. As a consequence of Mossin’s results, the quadratic
utility function has a positive horizon effect, however this utility function ex-
hibits increasing absolute risk aversion. In a two-period model Gollier (1995)
extends Mossin’s result to convex absolute risk tolerance functions.

Our results can be seen to be consistent with the literature on counter-
cyclical risk aversion introduced in Campbell and Cohcrane (1999), related
to habit formation. When γ(t) is an increasing function larger than one,
we show that the investment ratios in the risky assets decrease when wealth
increases, and vice versa. This effect seems to be empirically documented.

Another strand of the literature has pursued the impact on predictabil-
ity of returns on portfolio choice. Examples include Poterba and Summers
(1988), Hakansson (1971), Kim and Omberg (1996) and Wachter (2002),
where they consider HARA utility functions. In short, a number of attempts
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have been made to explain asset allocation decisions over the life cycle.
An interesting question which is pursued in a two-period model in Gollier

and Zeckhauseer (2002) is whether we can say anything about age and port-
folio choice in the absence of predictability and background risks. That is,
can we say that people with certain utility functions unambiguously will shift
their investments from stocks to bonds or vice versa as they age? Qvigstad
Sørensen and Aase (2008) find that portfolio choice depends on the integral of
expectations of the absolute risk tolerance of the direct utility function over
the horizon. They also recover both Mossin’s results and those of Gollier
(1995) in a continuous-time model with intermediate consumption and mor-
tality included, allowing for pension insurance as well as access to a securities
market.

Related to these last two references there is the question weather one can
separate the relative risk tolerance of the individual’s indirect utility function
from the corresponding direct one. In the canonical model they are the same.
In our model, since the utility index is not time and state separable, the
above separation turns out to be true. Since the indirect utility function, the
optimal future utility, is the one that affects investments, this separation is
important in explaining the horizon effect.

In Section 4 we show the aggregation property with several agents, which
is important for equilibrium. This is another obvious weakness of the canon-
ical model.

The paper is organized as follows: In Section 2 the model is presented,
mortality is introduced and the consumption/investment problem is formu-
lated. Section 3 presents the solution to this problem. In Section 4 the main
theorem is formulated and discussed, and Section 5 concludes.

II The Model

II-A The financial primitives

We consider a consumer who has access to a securities market, and pension
insurance. The securities market can be described by a price vector X =
(X(0), X(1), · · · , X(N)) signifying the spot prices at each time t ≥ 0 of the
securities, here modeled as an Itô process with values in RN+1. For each
n = 1, 2, · · · , N we assume that

dX
(n)
t = µnX

(n)
t dt + X

(n)
t σ(n) dBt, X

(n)
0 > 0, t ∈ [0, T ], (1)

where σ(n) is the n-th row of a matrix σ in RN×d consisting of constants,
with linearly independent rows, and where µn is a constant. Here d is the
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dimension of the Brownian motion B. For simplicity we assume that d = N .
Underlying there is a probability space (Ω,F , P ) and an increasing informa-
tion filtration Ft generated by the d-dimensional Brownian motion in the
usual way. This implies, in particular, that each price process X

(n)
t is a ge-

ometric Brownian motion of the sort used in the Black and Scholes model
of option pricing. We suppose that σ(0) = 0, so that r = µ0 is the risk free
interest rate. T is the finite horizon of the economy.

The state price deflator is denoted by π and is given by

πt = ξte
−rt, (2)

where the density process ξ has the representation

ξt = exp(−η′ ·Bt −
t

2
η′ · η), (3)

and η′ means the transpose of the vector η. Here η is the market-price-of-risk
for the discounted price process Xte

−rt, defined by

η = σ−1ν, (4)

and ν is the vector with n-th component (µn − r), the excess rate of return
on security n, n = 1, 2, · · · , N .

The consumer/investor is represented by an endowment process e and a
utility function U : L+ → R, where the set L = {c : ct is Ft-adapted, and

E(
∫ T

0
c2
t dt) < ∞}, and L+, the positive cone of L, is the set of consumption

rate processes. The specific form of the function U is the following time
additive one given by

U(c) = E
{ ∫ Tx

0

u(ct, t) dt
}
, (5)

where Tx is the remaining lifetime of an x-year old consumer. We assume that
the probability distribution F x(t) = P (Tx ≤ t) does not depend upon the
probability distribution of the risky securities. In order to avoid unnecessary
technicalities, we assume the support of Tx is finite and given by the set
(0, τ) where the constant τ < T .1 Notice that the consumer has no bequest
motive, an issue we consider later.

The intertemporal utility index u(x, t) in (5) is usually assumed to be a
separable function in state and time, i.e., u(x, t) = g(x)h(t) where g and h
are two real functions. This assumption is made primarily for computational

1Formally the probability space is enlarged to accommodate this life distribution.
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convenience, in particular when dynamic programming is employed. For
example will this often allow one to use the separation method when solving
the partial differential equation associated to the Hamilton-Jacobi-Bellman
equation of dynamic programming. In applied economics and finance the
most common assumption is that of a constant coefficient of intertemporal
relative risk aversion γ, i.e., that u(x, t) = 1

1−γ
x(1−γ)e−ρt where ρ is the

subjective interest rate.
In this paper we make the assumption that the relative risk aversion

γ := γ(t) is a continuous function of time. This will allow us to choose
other properties for this function, i.e., inverted U-shape, or just an increasing
function. It should be emphasized that this does not imply that we are
assuming what we are going to show, namely that the optimal portfolio
weights in the risky securities, associated to the consumer’s optimal life-time
consumption problem, decrease with age. At this stage it is far from clear
that this will be the result, let alone that it is possible to solve the problem
with this assumption. The following assumption is made about the function
u(x, t):
Assumption 1

u(x, t) =

{
1

1−γ(t)
x(1−γ(t))e−ρt, if γ(t) 6= 1;

ln(x)e−ρt, if γ(t) = 1.
(6)

where γ : [0, τ) → R+ is a continuous and strictly positive function of time.
Suppose, for example, that γ(t) is increasing in time t. The implication

of Assumption 1 is that the agent understands that the time to recover in the
future from adverse effects in the risky securities is limited, and plans ahead
for this by deciding to act gradually more risk averse as time increases.

Assumption 1 could alternatively be descriptive, or purely normative.
Notice that (6) satisfies time consistency (Johnsen and Donaldson (1985)).

The elasticity of intertemporal substitution in consumption can be shown
to be approximately equal to 1

γ(t)
(without uncertainty and in discrete time),

but this is no longer an exact relationship between these two quantities. This
indicates on one hand that our assumption does not deviate too much from
the canonical model, but on the other our assumption loosens up this strict,
inverse relationship between these two key quantities, which is often sought
in modern representation of preferences.

Before we continue, we shall say a few words about mortality and the
random variable Tx.
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II-B Mortality

Yaari (1965), Hakansson (1969) and Fisher (1973) were of the first to intro-
duce an uncertain lifetime into the theory of the consumer. The remaining
lifetime of an x year old consumer/investor at time zero, Tx, has cumulative
probability distribution function F x(t) = P (Tx ≤ t), t ≥ 0, and the survival
function we denote by F̄ x(t) = P (Tx > t). By conditioning on what happens
at an intermediate time t we have that

P (Tx > t + s) = P (Tx > t + s|Tx > t)P (Tx > t)

+ P (Tx > t + s|Tx ≤ t)P (Tx ≤ t)

which is, since the second term is zero

F̄ x(t + s) = P (Tx > t + s|Tx > t)P (Tx > t). (7)

By ignoring adverse selection effects in the population buying pension insur-
ance2, it is reasonable to assume that

P (Tx > t + s|Tx > t) = P (Tx+t > s), (8)

in which case we obtain the function equation

F̄ x(t + s) = F̄ x(t)F̄ x+t(s). (9)

This equation is known to have a solution on the form

F̄ x(t) =
l(x + t)

l(x)
(10)

for some function l(·) of one variable only. The decrement function l(x) can
be interpreted as the expected number alive in age x from a population of
l(0) newborne.

The force of mortality or death intensity is defined as

µx(t) =
fx(t)

1− F x(t)
= − d

dt
ln F̄ x(t), F x(t) < 1 (11)

where fx(t) is the probability density function of Tx. Integrating yields the
survival function in terms of the force of mortality

F̄ x(t) =
l(x + t)

l(x)
= exp

{
−

∫ t

0

µx(u) du
}

. (12)

2In earlier times selection effects were sometimes modeled by actuaries at this stage,
but this is rarely done today.
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Suppose y ≥ 0 a.s. is a process in L. Then the formula

E
( ∫ Tx

0

ytdt
)

=

∫ τ

0

E(yt)
l(x + t)

l(x)
dt =

∫ τ

0

E(yt)e
−

R t
0 µx(u)dudt (13)

follows essentially from integration by parts, our independence assumption
regarding mortality and the Fubini Theorem. We also have the formulas

µx(t) = − l′(x + t)

l(x + t)
, and fx(t) = − l′(x + t)

l(x)
=

l(x + t)

l(x)
µx+t (14)

where l′(x+ t) is the derivative of l(x+ t) with respect to t. Notice from this
that that we may write µx(t) = µ(x + t) = µx+t, where the latter equality is
just notational.

We emphasize that it is assumption (6) that is the crucial one for our
results, not the assumption that the remaining lifetime of the consumer is
stochastic. This latter choice is made in order to give a natural formulation
of the consumption/investment problem.

II-C The Consumption/Investment Problem

In order to formulate this problem, first note that a trading strategy θ =
(θ(0), θ(1), · · · , θ(N)) is an adapted stochastic process for which the stochastic
integral

∫
θdX exists. For the moment consider the fixed, non-random time

horizon τ . Here we follow Duffie (2001), Ch 9. Given an initial wealth
w > 0, we then say that (c, θ) is budget-feasible, denoted (c, θ) ∈ Λ(w), if c
is a consumption choice in L+ and θ is a trading strategy satisfying

θt ·Xt = w +

∫ t

0

θs · dXs −
∫ t

0

πscsds ≥ 0, a.s. t ∈ [0, τ ], (15)

and
θτ ·Xτ ≥ 0 a.s. (16)

The first equation (15) says that the current market value θt·Xt of the trading
strategy is nonnegative and equal to its initial value w, plus gains/losses
from security trade, net of consumption purchases to date. The nonnegative
wealth restriction can be viewed as a credit constraint, also extending to the
terminal date τ in (16).

From our point of view, the main invention a pension insurance market
brings into this model is to remove the last wealth restriction. The terminal
restriction θτ ·Xτ ≥ 0 (almost surely) is replaced by an expectation, namely
1
πx

E(θTx · XTx πTx) = 0, which is, of course, less demanding. This new re-
striction assumes ”fair pricing” of pension insurance at market values. As
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a consequence, the individual’s lifetime consumption can be increased when
the individual is allowed to gamble on his/her own life length, via a market
for pension insurance or life annuities.

Conceptually this is equivalent to the following: Imagine that a popu-
lation of individuals in age x exchange their endowment processes for the
optimal consumption rate processes, where the insurer was informed about
their objectives and attitudes towards risk. From pooling over the individu-
als, the insurance company can then promise a consumption stream as long
as each individual is alive, and only then.

The consumer’s problem is, for each initial wealt w, to solve

sup
(c,θ)

U(c) (17)

subject to (15) and the expectation version of (16).
This problem can be reformulated in terms of the fractions ϕ′ = (ϕ(1), ϕ(2),

· · · , ϕ(N)) of total wealth held in the risky securities:

ϕ
(n)
t =

{
θ
(n)
t X

(n)
t

θt·Xt
, if θt ·Xt 6= 0;

0, if θt ·Xt = 0,
(18)

for n = 1, 2, · · · , N . The individual’s wealth process at time t, Wt = θt ·Xt,
satisfies the stochastic differential equation

dWt =
(
Wt(ϕ

′
t · ν + r)− πtct

)
dt + Wtϕ

′
t · σdBt, W0 = w. (19)

The first order condition for the problem (17) subject to (19) is given by the
Bellman equation, which in the present situation takes on the form (see e.g.
Aase and Qvigstad (2008))

sup
(c,ϕ)

{
D(c,ϕ)J(w, t)− µx(t)J(w, t) + u(c, t)

}
= 0, (20)

with boundary condition

EJ(w, Tx) = 0, w > 0, (21)

where J(w, t) is the indirect utility function of the consumer at time t when
the wealth Wt = w, and the differential operator D(c,ϕ) is given by

D(c,ϕ)J(w, t) = Jw(w, t)(wϕ · ν + rw − πc) + Jt(w, t) (22)

+
w2

2
ϕ′ · (σ · σ′) · ϕ Jww(w, t).
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This is a non-standard dynamic programing problem, a so called non au-
tonomous problem. If the function u(·, t) is strictly concave and twice con-
tinuously differentiable on (0,∞), we know that the optimal ratios ϕ(w, t) in
the risky assets are given at any time t by

ϕ(w, t) = − Jw(w, t)

wJww(w, t)
(σσ′)−1ν for all t, (23)

where the first factor is the relative risk tolerance of the investor’s indirect
utility function. The problem is to determine the function J(w, t) and its
first two partial derivatives with respect to wealth.

Instead of solving this problem directly, we solve an equivalent one. As is
well known (e.g., Cox and Huang (1989) or Pliska (1986)), in a complete mar-
ket the dynamic program (17) - (22) has the same solution as the following
simpler, yet more general problem

sup
c

U(c), (24)

subject to

E

{ ∫ Tx

0

πtct dt

}
≤ E

{ ∫ Tx

0

πtet dt

}
:= w (25)

where e is the endowment process of the individual. The pension insurance
element secures the consumer a consumption stream as long as needed, but
only if it is needed. This makes it possible to compound risk-free payments
at a higher rate of interest than r, namely at the rate (r + µx(t)) at time t.

The optimal wealth process Wt associated with a solution c∗ to the prob-
lem (24)-(25) can be implemented by some adapted and allowed trading
strategy θ∗ or ϕ∗, since the marketed subspace M is equal to L. Without
mortality this is well-known, and by introducing the new random variable
Tx it still holds. In principal mortality corresponds to a new state of the
economy, which should be priced, but the insurer can diversify this risk away
by pooling over the agents, all in age x, so its corresponding Arrow-Debreu
state price is equal to exp{−

∫ t

0
µx(u)du}, which contains no extra random

component in π. Accordingly, adding the pension insurance contract in an
otherwise complete model has no implications for the state price π other than
this, and thus the model is still complete.

III The Solution to the Problem

The constrained optimization problem (24)-(25) can be solved by Kuhn-
Tucker and a variational argument. To this end, we notice that the La-
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grangian of the problem is

L(c, λ) = E
{∫ Tx

0

(
u(ct, t)− λ(πt(ct − et))

)
dt

}
, (26)

where the felicity index u(x, t) is given by (6). By our assumptions the
optimal solution c∗ to the problem (24)-(25) satisfies c∗t > 0 a.s. for a.a
t ∈ [0, Tx), in which case the first order conditions involve the existence of a
Lagrange multiplyer, a specific value λ, such that c∗ maximizes L(c, λ) and
complementary slackness holds.

Denoting the directional derivative of L(c, λ) in the ”direction” h ∈ L by
5L(c, λ; h), the first order condition of this unconstrained problem becomes

5L(c∗, λ; h) = 0 for all h ∈ L, (27)

which is equivalent to

E

{ ∫ τ

0

((
c
−γ(t)
t e−ρt − λπt

)
h(t)

) l(x + t)

l(x)
dt

}
= 0, for all h ∈ L, (28)

where the survival probability P (Tx > t) = l(x+t
l(x)

. In the derivation of (28)

we have used the formula (13).
In order for (28) to hold true for all processes h ∈ L, it must be the case

that the optimal consumption process is given by

c∗t =
(
λeρtπt

)− 1
γ(t)

a.s., t ≥ 0. (29)

In this expression everything is known except the specific value of the La-
grange multiplyer λ, and, as usual, this quantity is determined by the budget
constraint. Since ∂

∂x
u(x, t) > 0, complementary slackness implies that the

budget constraint (25) holds with equality, so

E
{∫ Tx

0

c∗t πtdt
}

= w

or, by formula (13)∫ τ

0

(
λeρt

)− 1
γ(t) E

(
π

(1− 1
γ(t)

)

t

) l(x + t)

l(x)
dt = w, (30)

where we have used (29) for the optimal consumption process c∗. First we
want to establish that equation (30) determines the Lagrange multiplyer λ
uniquely for each value of initial wealth w > 0. In order to see this, first
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notice that from (2) and (3) and the moment generating function of the
multivariate normal distribution

E
(
π

(
1− 1

γ(t)

)
t

)
=

E
{

exp
[
− r

(
1− 1

γ(t)

)
t− t

2
η′ · η

(
1− 1

γ(t)

)
−

(
1− 1

γ(t)

)
η′ ·Bt

]}
=

exp
{
− r

(
1− 1

γ(t)

)
t− t

2
η′ · η

(
1− 1

γ(t)

) 1

γ(t)

}
.

Inserting this expression in equation (30) we obtain∫ τ

0

λ− 1
γ(t) exp

{
−

[
ρ

1

γ(t)
+ r(1− 1

γ(t)
)

+
1

2
η′ · η(1− 1

γ(t)
)(

1

γ(t)
)
]
t
} l(x + t

l(x)
dt = w (31)

Next we make use of the First Mean Value Theorem for Integrals, which says:

Proposition 1 Let f(x) and g(x) be two integrable functions, where f(x) is
continuous and g(x) does not change sign in the integration interval (a, b).
Then there exists a number d ∈ (a, b) such that∫ b

a

f(x)g(x)dx = f(d)

∫ b

a

g(x)dx. (32)

Notice that the equality in (32) is exact and not merely an approximation.
Using this theorem, equation (31) can be written

λ
− 1

γ(t′)

∫ τ

0

exp
{
−

[
ρ

1

γ(t)
+ r(1− 1

γ(t)
)

+
1

2
η′ · η(1− 1

γ(t)
)(

1

γ(t)
)
]
t
} l(x + t)

l(x)
dt = w (33)

for some t′ ∈ (0, τ). Since γ(t′) > 0, we see that the left-hand side of equation
(33) defines a continuous function of λ, say f(λ), that satisfies f(λ) → +∞
when λ → 0+, and f(λ) → 0 when λ → +∞. Moreover the function
f : R+ → R+ is invertible and on-to. Thus, for any w > 0 there exists one
(and only one) λ > 0 such that equation (33) holds true, which was to be
shown. We work with this value of λ from now on.

Having determined the optimal consumption rate c∗t , the last step in our
approach is to find the optimal wealth process Wt associated with c∗, and its
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corresponding Itô process representation. This we subsequently compare to
the representation given in (19), where the portfolio fractions ϕ correspond
to the solution of the problem (17)-(22). By the equivalence between the
two problem formulations in Section 2c, since an Itô process representation
is unique, this will give us the final equation from which to determine the
optimal portfolio fractions ϕ.

To this end, the optimal wealth process Wt associated to c∗ of (29) with
λ satisfying (30), or equivalently (33), is given by

Wt =
1

πt

Et

{∫ Tx

t

πsc
∗
sds

}
=

1

πt

Et

{∫ Tx

t

(
λeρs

)− 1
γ(s) π

(1− 1
γ(s)

)

s ds
}

=

1

πt

∫ τ

t

(
λeρs

)− 1
γ(s) Et

{
exp

[
− r

(
1− 1

γ(s)

)
s

− s

2
η′ · η

(
1− 1

γ(s)

)
−

(
1− 1

γ(s)

)
η′ ·Bs

]} l(x + s)

l(x + t)
ds. (34)

Here Et means conditional expectation given the information filtration Ft ∨
(Tx > t), i.e., given the financial information available at time t and the fact

that the individual is alive then. Also note that P (Tx+t > s− t) = l(x+s)
l(x+t)

for

s > t. The conditional expectation in (34) is found as follows, for any s > t:

Et

{
exp

[
− r

(
1− 1

γ(s)

)
s− s

2
η′ · η

(
1− 1

γ(s)

)
−

(
1− 1

γ(s)

)
η′ ·Bs

]}
=

exp
{
− r

(
1− 1

γ(s)

)
s− s

2
η′ · η

(
1− 1

γ(s)

)
−

(
1− 1

γ(s)

)
η′ ·Bt

}
·

Et

{
exp

(
−

(
1− 1

γ(s)

)
η′ ·

(
Bs −Bt

))}
=

exp
{
− r

(
1− 1

γ(s)

)
s− s

2
η′ · η

(
1− 1

γ(s)

)
−

(
1− 1

γ(s)

)
η′ ·Bt

}
·

exp
(1

2

(
1− 1

γ(s)

)2
η′ · η(s− t)

)
=

exp
{
− r

(
1− 1

γ(s)

)
t− t

2
η′ · η

(
1− 1

γ(s)

)
−

(
1− 1

γ(s)

)
η′ ·Bt

}
·

exp
{
−

(
r +

1

2
η′ · η − 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)}
=

π

(
1− 1

γ(s)

)
t · exp

{
−

(
r +

1

2
η′ · η − 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)}
.
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In the above we have used the independence of the Brownian increment
(Bs − Bt) from the information in Ft, the multinormal distribution of this
increment as well as the expression for the state price deflator πt given in (2)
and (3).

Going back to the expression for the optimal wealth in equation (34), we
now obtain

Wt =

∫ τ

t

(
λeρs

)− 1
γ(s) π

− 1
γ(s)

t exp
{
−

(
r +

1

2
η′ · η

− 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
ds. (35)

First notice by (2), (3) and Itô’s lemma that

dπt = −πt

(
rdt + η′dBt

)
, π0 = 1,

and hence, again using Itô’s formula, for any fixed s > t it follows that

dπ
− 1

γ(s)

t =
( r

γ(s)
+

1

2

1

γ(s)

( 1

γ(s)
+ 1

)
η′ · η

)
π
− 1

γ(s)

t dt + π
− 1

γ(s)

t

1

γ(s)
η′dBt. (36)

Let the function g(s, t) be defined by

g(s, t) :=
(
λeρs

)− 1
γ(s) π

− 1
γ(s)

t exp
{
−

(
r +

1

2
η′ · η

− 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
. (37)

Then we may write

Wt =

∫ τ

t

g(s, t) ds,

which means that

dWt = −g(t, t)dt +

∫ τ

t

dtg(s, t) ds.

Using the definition of g(s, t) in (37) and the result in (36), we obtain the
following stochastic differential equation for the wealth Wt

dWt = µW (t)dt +

( ∫ τ

t

(
λeρs

)− 1
γ(s)

1

γ(s)
π
− 1

γ(s)

t ·

exp
{
−

(
r +

1

2
η′ · η − 1

2
η′ · η

(
1− 1

γ(s)

))
·(

1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
ds

)
η′dBt, (38)
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where the drift term is given by

µW (t) = −
(
λeρt

)− 1
γ(t) π

− 1
γ(t)

t +

∫ τ

t

(
λeρs

)− 1
γ(s) π

− 1
γ(s)

t ·

exp
{
−

(
r +

1

2
η′ · η − 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)}
·( 1

γ(s)
(r + η′ · η) + µx(t)

) l(x + s)

l(x + t)
ds. (39)

In the above we have used (14) in the evaluation of the derivative of P (Tx+t >

s− t) = l(x+s)
l(x+t)

with respect to current time t, i.e.,

∂

∂t

( l(x + s)

l(x + t)

)
= − l(x + s)

l(x + t)2
l′(x + t) = µx(t)

l(x + s)

l(x + t)
,

which shows that this time effect on the survival probability positively in-
fluences the drift term of wealth. The reason is simply that the decrement
function l(x) is decreasing with age, which implies, among other things, that
the one-year death probability is strictly positive. As an example, the prob-
ability of surviving 10 years for a 45 year old consumer is smaller than the
corresponding probability of the same person, now one year older, to survive
another 9 years. This is because the 45 year old has a positive probability of
dying before reaching age 46.

Using (29) we see that the first term in (39) is equal to −c∗t , and reflects
the negative effect from current consumption on the remaining wealth of the
agent.

From the expression (35) for the wealth W (t) and from the diffusion
term for W (t) given in (38), it follows from the First Mean Value Theorem
for Integrals in Proposition 1 that

dW (t) = µW (t)dt + σW (t)dBt (40)

where

σW (t) = W (t)
1

γ(t̃t)
η′. (41)

The quantity t̃t > t for all t ∈ (0, τ), t̃t ∈ (t, τ) and t̃t is Ft ∨ (Tx > t)-
measurable. By Proposition 1, for each t > 0 this random quantity is deter-
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mined by the following equation

1

γ(t̃t)

∫ τ

t

(
λeρs

)− 1
γ(s) π

− 1
γ(s)

t exp
{
−

(
r +

1

2
η′ · η

− 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
ds =∫ τ

t

(
λeρs

)− 1
γ(s)

1

γ(s)
π
− 1

γ(s)

t exp
{
−

(
r +

1

2
η′ · η − 1

2
η′ · η

(
1− 1

γ(s)

))
·(

1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
ds. (42)

From this relationship we notice that in addition to depending on wealth
Wt and current time t, the random time t̃t depends upon the subjective rate
ρ, the state of the economy through the state price deflator πt, the market
price of risk η, as well as the other parameters of the problem including
mortality through the probability distribution of the remaining lifetime Tx+t

of the agent, whose age is (x + t) at time t.
Finally, by comparing the stochastic differential equation for the optimal

wealth W (t) in (38) with the analogous equation given in (19), where the
portfolio fractions ϕ correspond to the solution of the problem (17)-(22), by
complete markets it follows that

ϕ′
tσ =

1

γ(t̃t)
η′,

or by the use of the relation (4) for the market-price-of-risk η, we have that
the optimal portfolio ratios are given by

ϕ(t) =
1

γ(t̃t)
(σσ′)−1ν. (43)

This is the appropriate generalization of the standard result stating that

ϕ =
1

γ
(σσ′)−1ν

does not depend on current time t, nor of the wealth Wt of the agent, when
the relative risk aversion γ is a constant.

The solution in (43) can accommodate many of the observed empirical
facts and recommendations by portfolio managers. Assuming for example
that the function γ(t) is increasing in time t, then the investor will gradually
invest a smaller fraction of his/her wealth in the risky assets as time runs,
since the random time t̃t is always larger that current time t. However, this
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relationship may not be strictly monotonic, since t̃t is also state dependent,
as noted above. Moreover this stochastic time also depends on mortality.

It seems fairly intuitive that the investor, under Assumption 1, will choose
a time between now and τ in the investment strategy, given his/her choice
to act in a more risk averse manner in the future. This represents a clear
refinement of the canonical model, in a more realistic direction in this regard.
In the next section we state the main theorem of the paper.

We notice from the representation of the wealth in (35) - (41) that it is
a indeed a Markov process, so in principal one can solve the problem by the
use of dynamic programming. Technically this would amount to guessing the
solution, and then using The Verification Theorem.

IV The Main Result

We start by formulating the conclusions of the previous section. Define the
process Y (t) by the following expression

Y (t) =

∫ τ

t

(
λeρs

)− 1
γ(s)

1

γ(s)
π
− 1

γ(s)

t exp
{
−

(
r +

1

2
η′ · η

− 1

2
η′ · η

(
1− 1

γ(s)

))(
1− 1

γ(s)

)(
s− t

)} l(x + s)

l(x + t)
ds. (44)

Then we have the following:

Theorem 1 Suppose the relative risk aversion γ(t) of the agent is a con-
tinuous function of time t. Then the optimal portfolio fractions ϕ(t) in the
risky securities are time and wealth dependent, and given by

ϕ(t) =
1

γ(t̃t)
(σσ′)−1ν,

where the random time t̃t, always larger than current time t, and in the
information set Ft ∨ (Tx > t), is determined at each time t by the equation

γ(t̃t) =
W (t)

Y (t)
. (45)

Here the agent’s optimal wealth W (t) is given by equation (35), where the
Lagrange multiplyer λ is found from (33), and Y (t) is defined in (44).

Equation (45) is just a rewriting of (42) using (44).
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IV-A Discussion of the Theorem

IV-A.1 General Remarks

Equation (45) of Theorem 1 gives us the opportunity to study some proper-
ties of the optimal investment strategy. First notice that the portfolio choice
decision can not be separated from the consumption versus savings decision.
Here the portfolio weights ϕt depend on wealth, or on consumption, which
is not the case for the canonical model. So relaxing the time and state sepa-
rability in the utility function, gives us a resolution of the horizon problem,
at the cost of this ”Fisher” separation.

Second, observe that when the function γ(t) = γ for all t, then γ(t̃t) = γ
a.s. for all t ∈ (0, τ) and the cannonical solution results.

Third, notice that when the investment horizon, call it τ , is deterministic
as often is the case in standard financial models, then we still have a solution
to the horizon problem provided our assumption (6) is maintained, namely
that γ(t) is time varying. Still t̃t can be found from equation (42), merely by
setting the force of mortality µx(u) = 0 for all u ∈ [0, τ ]. This is accomplished
in this equation by setting the survival probability equal to one, or l(x+s) =
l(x + t) for all s ∈ (t, τ). Merely allowing the time horizon to be random is
not contributing to the solution of the horizon problem.

IV-A.2 Comparative Statics

We can also derive some comparative statics results, starting with equation
(42), or (45). First we make the assumption that γ(t) > 1 for all t ∈ (0, τ)
and γ(t) is an increasing function.

Except from t and Wt, perhaps the most interesting effect on the optimal
investment strategy results from a shock in the state price πt. Also the effect
from changing the survival probability is of interest. Both these quantities
are dynamic, so we will get a more correct picture when the dynamics of γt

is taken into account. This we do below.
First notice that an increase in wealth W (t) implies, ceteris paribus, that

γ(t̃t) increases in order for (45) to hold. Thus t̃t increases, implying that ϕ(t)
decrease. A positive shock to πt on the other hand, leads to an increase in
ϕt, and a decrease in the optimal consumption rate c∗t , all else equal.

This leads to a counter-cyclical investment behavior, consistent with the
effects from including habit formation in the preferences.

A similar wealth effect also materializes for general HARA utility func-
tions when the relative risk aversion is an increasing function of consumption
(see e.g., Aase and Quigstad Sørensen (2008)).

19



Turning to the subjective rate ρ, an increase in this quantity leads to,
ceteris paribus, an increase in the fractions held in the risky securities. The
more impatient the investor is, the higher ratios are held in the risky assets.

When time t increases, the decrement function l(x + t) decreases. Also
the mortality is not state dependent. Therefore we consider the effect on
ϕ(t) from a decrease in l(x + t), all else equal: It is negative, telling us that
the survival element causes the agent to move into less risky investments,
relatively speaking, as time goes.

When the function γ(t) is smaller than one, the above conclusions are
all reversed. In this regard the value of one for the relative risk aversion is
a border case, and explains why the agent is sometimes called risk tolerant
when γ < 1.

When the force of mortality depends on both age and wealth, Aase and
Qvigstad Sørensen (2008) obtain a condition under which the young should
invest a higher fraction in the risky asset (N = d = 1) than the old. The
condition is satisfied when the force of mortality is separable in time and
wealth.

Bodie and Crane (1997) find among individuals in a surevey, that the por-
tion of total assets held in equities declines with age and rises with wealth.
This would be consistent with our model for risk tolerant individuals and in-
creasing γ(·). Summers et al. (2006) find that individuals’ portfolios become
more risk-seeking with age, taking account of asset accumulation. This could
be consistent with our model with γ(·) decreasing with time, and larger than
one, illustrating the flexibility obtained by allowing risk aversion to depend
on time.

IV-A.3 The Relative Risk Tolerance

It follows from (23) and Theorem 1 that the relative risk tolerance of the
indirect utility function at time t is given by

− Jw(W (t), t)

W (t)Jww(W (t), t)
=

1

γ(t̃t)
,

while the relative risk tolerance of the direct utility function at time t is
1

γ(t)
. These are different, and under the assumption that the function γ(t)

is increasing, the former is smaller that the latter, and non-increasing with
time according to Theorem 1, explaining the positive time effect.

IV-A.4 The Pure Time Discount Rate

It can be seen from the expression for the wealth given in (35) that pure time
discounting at time t of future consumption at time s occurs according to
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the rate

− 1

γ(s)

(
ρ(s− t)− r(s− t)

)
−

(
r(s− t) +

∫ s−t

0

µx+t(u)du
)
.

When the consumer is impatient and ρ > r, the future time discounting
is higher than for a more patient agent. This effect decreases if γ(·) is an
increasing function. Notice how mortality acts as an addition to the risk-fee
rate.

IV-A.5 The Dynamics of the Optimal Consumption

It is instructive to take a look at the dynamics of the optimal consumption
rate c∗t . Assuming that γ(t) is differentiable, by Itô’s formula

dc∗t = c∗t

( 1

γ(t)
(r − ρ) +

γ′(t)

γ(t)2

(
ρt + ln(πt)

)
+

1

2

1

γ(t)

( 1

γ(t)
+ 1

)
η′ · η

)
dt

+ c∗t

( 1

γ(t)
η′

)
dB(t), (46)

where γ′(t) is the derivative of γ(t) with respect to time.
The first term in the drift is the familiar, ordinary differential equation

for c∗t when there is only a credit market available. Solved together with the
budget constraint, one can analyze various insurance contracts depending on
the nature of this constraint. It tells us that the time evolution of c∗t is strictly
increasing, or decreasing, depending on the sign of (r− ρ). Adding the third
term in the drift and the diffusion term, we get the analogous results when
a stock market is included, where c∗t becomes a geometric Brownian motion.

Finally, adding the second term in the drift gives us the current model
with time varying risk aversion. Because ln(πt) appears in the drift, the
optimal consumption rate is no longer a log-normal process.

Using (2) and (3) this second term can be written

γ′(t)

γ(t)2

(
ρt + ln(πt)

)
=

γ′(t)

γ(t)2

((
ρ− r

)
− t

2
η′ · η − η′B(t)

)
.

Because of the presence of the Brownian motion, the sign of this term is
ambiguous. However, when γ′(t) > 0, the presence of this term will dampen
the effect from the first term of the drift for low values of t.

IV-A.6 An Alternative Optimization Criterion

If instead of maximizing the expected utility of life time consumption, as
we do, the criterion is to maximize the expected utility of end of period
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consumption, with our assumption of a time varying relative risk aversion
and, for simplicity, a fixed time horizon τ , the optimal investment rule would
be

ϕ(t) =
1

γ(τ)
(σσ′)−1ν for all t ≤ τ .

Thus the end of period preference would dominate the investment rule at each
time t in the investment period. Also here there is a difference between the
indirect and the direct utility functions, still there is no ”running time” effect.
This shows that this distinction in the objective criterion matters under our
assumption; the criterion we have chosen is clearly the most relevant one in
our setting.

IV-A.7 Extensions to Life Insurance

In the model there is no bequest. Introducing demand for life insurance via a
bequest v for positive wealth at the time of death Tx, will not change matters
very much. Here we present a very brief sketch. Suppose the objective
criterion is

U(c, Z) = E
( ∫ Tx

0

u(ct, t)dt + v(ZTx , Tx)
)

where Z is a nonnegative random variable describing terminal lump-sum
consumption, which we interpret as the amount of life insurance payable
upon death of the individual. Standard life insurance contracts postulate Z
to be a known quantity, say 1, but we can actually solve the problem where
Z is a decision variable, so that the the amount paid to the heirs is both time
and state dependent. For simplicity of exposition, assume that v = u.

Proceeding as in Section 3, the first order condition for optimality in Z
turns out to be

v′(Zt, t) = λπt for t = Tx,

which means that the optimal amount of life insurance is given by

Zt =
(
λeρtπt

)− 1
γ(t) , for t = Tx.

Optimality in c is as before. The Lagrange multiplier λ is found from an
equation like (33), with the only change that the conditional survival prob-
ability P (Tx > t) is replaced by (P (Tx > t) + fx(t)), i.e., the term lx+t

lx
is

replaced by the sum lx+t

lx
(1 + µx+t).

Theorem 1 is still valid, except that in the corresponding expressions for
W (t) and Y (t), the conditional survival probability P (Tx > s|Tx > t) = lx+s

lx+t
,

for s > t, is replaced by the sum

(P (Tx > s|Tx > t) + P (Tx ∈ (s, s + ds)|Tx > t),
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where the conditional probability density

P (Tx ∈ (s, s + ds)|Tx > t) =
P (Tx ∈ (s, s + ds)

P (Tx > t)
=

lx+s

lx+t

µx+s.

In other words, the term lx+s

lx+t
is replaced by lx+s

lx+t
(1 + µx+s). There will nat-

urally be a change to the drift µW (t), but still Theorem 1 is valid with the
above changes. The economic effect is that the consumer’s lifetime consump-
tion will be reduced with an amount corresponding to the actuarial value of
this life insurance contract. The optimal investment policy is still of the
type given in Theorem 1. This life insurance contract with a state and time
dependent insured amount would constitute an innovation in the market for
life insurance contracts.

A standard life insurance contract with Z = 1 a.s. is of course simpler to
analyze. In this case there is no optimization in the Z-variable, and Theorem
1 will take on the following changes: In the equation for λ the initial wealth
w is replaced by (w − Āx), where Āx =

∫ τ

0
e−rt lx+t

lx
µx+tdt is the actuarial

value of the life insurance contract at time zero, when the consumer is in
age x. The equation for the consumer’s wealth W (t) at time t will get an
addition by the amount Āx+t, the remaining net value of the life insurance
contract when the consumer has reached age x+t, and by Thiele’s differential
equation of actuarial science, to the drift term µW (t) we will have to add the
term

Ā′
x+t = Āx+tr − µx+t(1− Āx+t)

where prime means differentiation with respect to time. Otherwise Theorem
1 is unchanged. We notice that the effect from this life insurance contract
on the consumer’s life time consumption is to lower the consumption with
exactly the actuarial value Āx of this contract.

IV-A.8 Aggregation

For the canonical model aggregation does not work unless all agents have the
same preferences. Below we demonstrate that the preferences of Assumption
1 aggregate.

Imagine there are I agents in the model indexed by i ∈ {1, 2, · · · , I},
endowed with outstanding shares, say θ̄i, with different risk aversion functions
γi(·) and subjective rates ρi. The present model is easier to reconcile with
an equilibrium than the canonical one. First, a positive shock to the state
price πt leads to a decrease in the optimal consumption for risk averse agents,
and an increase in consumption for risk tolerant ones. In contrast, for the
canonical model an increase in πt leads to a decrease in each individual’s
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wealth Wi(t), and accordingly a decrease in consumption for all the agents,
by the wealth effect. This monolithic behavior will also tend to carry over
to the stock market, meaning that all the investors should buy and sell at
about the same time. This can not be consistent with a general equilibrium
model that makes realistic assumptions about asset supplies.

As the comparative statics show, in the present model a positive shock
in the state price leads to an increased demand for the risky assets for risk
averse persons, and a decreased demand for risk tolerant ones.

Second, the investment behavior of the representative agent is related to
the relative risk tolerance of this agent’s indirect utility function. Recall that
in a Pareto optimum, the sum of the individual absolute risk tolerances is
equal to the absolute risk tolerance of the representative agent. This would
require an equality of the form

1

W (t)

I∑
i=1

Wi(t)

γi(t̃it)
=

1

γRA(t̃RA
t )

(47)

for some t̃t ∈ (t, τ) and some function γ(·). Here W (t) =
∑I

i=1 Wi(t) is the
aggregate wealth.

In (47) the function γRA(t̃RA
t )−1 is a convex combination of the individual

γi(t̃
i
t)
−1 with time dependent, continuous and Ft-measurable weights. All the

processes t̃it are Ft-measurable, and hence so is t̃RA
t . Furthermore the function

γRA(·) is continuous. Hence, the relative risk aversion of the representative
agent’s indirect utility function is of the same type as the individual in The-
orem 1. Notice that if one of the agents is close to risk neutral, this agent
may only dominate in the representation (47) if his or her relative wealth
is not too low, in which case the representative agent may be close to risk
neutral as well.

The corresponding representation for the canonical model is

1

W (t)

I∑
i=1

Wi(t)

γi

=
1

γ
, (48)

for some positive constant γ. We note that this equality can not hold for
(almost) all t ∈ (0, τ) almost surely unless γi = γ for all i, since otherwise
the left-hand side is both state and time varying, while the right-hand side
is a constant.

While asset prices and wealth change with time in a random manner, so
does the process t̃RA

t in (47). The question is if there exist a set of clearing
prices of the class prescribed by our model such that the representative agent
retains his portfolio θ̄ =

∑
i θ̄i unchanged as time goes.
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This is a problem with both models, but most severe for the canonical
one.

IV-B The dynamics of the relative risk aversion

When the function γ(·) is smooth and invertible (e.g., monotonic), and has a
smooth inverse, the random process t̃t is an Itô-process, since it can be writ-
ten as a smooth function of a ratio of two positive Itô-processes, in which
case its representation can be found from (42). From a study of this repre-
sentation one should be able to separate the effects of the random, exogenous
shocks from the pure time increment. More directly, we are interested in the
variations of the risk aversion γ(t̃t) itself, also an Itô-processes. In order to
see what is involved, we next present the dynamic representation of γ(t̃t).

We seek the Itô-processes representation

dγ(t̃t) = µγdt + σγdB(t)

of γ(t̃t) under the assumptions of the last section. Starting with (42)

γ(t̃t) =
W (t)

Y (t)
:=

∫ τ

t
h(s, t)π

− 1
γ(s)

t ds∫ τ

t
h(s, t) 1

γ(s)
π
− 1

γ(s)

t ds
,

where h(s, t) is the strictly positive, deterministic function depending on all

the parameters of the problem given by h(s, t)π
− 1

γ(s)

t = g(s, t), where g(s, t) is
defined in (37). We already know the Itô-representation of the wealth W (t)
given in (38)-(41). The corresponding representation for the process Y is

dY (t) = µY (t)dt + σY (t)dB(t),

or

dY (t) =
(
− h(t, t)

1

γ(t)
π
− 1

γ(t)

t +

∫ τ

t

1

γ(s)
π
− 1

γ(s)

t

(
h(s, t)·( r

γ(s)
+

1

2

1

γ(s)

( 1

γ(s)
+ 1

))
+ ht(s, t)

)
ds

)
dt

+
( ∫ τ

t

h(s, t)
( 1

γ(s)

)2
π
− 1

γ(s)

t ds
)
η′dBt, (49)

where ht(s, t) is the derivative of h(s, t) with respect to t. By Itô’s formula
we may write

dγ(t̃t) =
1

Y (t)
dW (t)− W (t)

Y (t)2
dY (t) +

W (t)

Y (t)3
(dY (t))2 − dW (t)dY (t)

Y (t)2
,
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or, in standard form

dγ(t̃t) =
( 1

Y (t)
µW (t)− W (t)

Y (t)2
µY (t) +

W (t)

Y (t)3
σY (t) · σY (t)

− σW (t) · σY (t)

Y (t)2

)
dt +

( 1

Y (t)
σW (t)− W (t)

Y (t)2
σY (t)

)
dB(t). (50)

From this representation we see that the dynamics of the risk aversion is
rather involved, and will of course depend on the shape of the function γ(·).
For example can the diffusion term be written

σγ(t) =
( 1

Y (t)
σW (t)− W (t)

Y (t)2
σY (t)

)
=

(
1− γ(t̃t)

γ(t∗t )

)
η′, (51)

where t∗t is determined by σY (t) = 1
γ(t∗t )

σW (t), using Proposition 1.

Assuming as above that γ(t) is increasing and larger than one, it can
be seen that γ(t∗t ) ≥ γ(t̃t) a.s. Since the vector of market-prices-of-risk η
has positive elements in this model, the diffusion term of γ(t̃t) is a.s. non-
negative. Recall that B is a vector of independent Brownian motions, so
the sign of a ”shock” in B(t) is rather ambiguous. Therefore, let us for the
moment assume that N = d = 1, so that there is only one risky asset, and
one source of exogenous shocks. Assuming the drift µγ(t) is positive, then a
positive increment dBt > 0 implies that dγt > 0, and consequently, from (43)
it is seen that the investor will reduce the fraction in the risky security. This
is consistent with the comparative statics result of the last section, since a
positive shock in B leads to a negative change in the state price π.

The drift term can be written

µγ(t) =
µW (t)

Y (t)

(
1− γ(t̃t)

γ(t∗∗t )

)
+

( γ(t̃t)

γ(t∗t )
2
− 1

γ(t∗t )

)
η′ · η,

where µY (t) = 1
γ(t∗∗t )

µW (t) follows by a slight extension of Proposition 1.

When dB(t) < 0, the increment dγt may be positive or negative depending
on the relative sizes of the terms involved. However, negative shocks in γ has
a limited global effect on the evolution of the random process t̃t, since the
restriction t̃t > t must be met according to Theorem 1, which means that the
drift term µγ(t) must, on the average, be positive. Since the last term in the
expression for his drift is negative, and since µW (t) becomes negative as the

agent grows older as can be seen from (39), eventually the term (1 − γ(t̃t)
γ(t∗∗t )

)

must become negative. The result is that when the consumer/investor grows
old enough, the current, optimal consumption c∗t dominates all the other
effects and risky investments decrease.

26



Notice that when γ is a constant, then both the drift and the diffusion
terms are readily seen to be identically equal to zero from the above repre-
sentation, as the case should be, and the canonical model results.

These questions may be further analyzed by e.g., numerical techniques
based on simulations, or analytic methods. The above dynamic representa-
tion for γ is well suited for this.

V Conclusions

The paper investigates the effect of horizon length on portfolio choice. We
have considered the problem of maximizing the utility of a consumption
stream over the life cycle of an individual, who can invest in a complete
market. In our model the income is generated by an endowment process.

In this setting we have demonstrated that if the intertemporal coefficient
of relative risk aversion is allowed to be time dependent, the investment
horizon problem can be resolved. When this coefficient is increasing with
time, for example, the individual will invest smaller fractions of his wealth
in the risky securities as he grows older.

At each time t the optimal portfolio ratios depend on the realization of an
Ft∨(Tx > t)-measurable random variable t̃t(ω), with probability distribution
depending on the joint distribution of the state price and the remaining
lifetime of the individual. This means that, in addition to current time
and wealth, the optimal portfolio ratios depend on the market-price-of-risk,
the risk-free rate, the subjective discount rate, and mortality. Thus the
portfolio choice decision can no longer be separated from the consumption
versus savings decision.

Comparative statics show the following: When the risk aversion is an
increasing function larger than one, an increase in wealth implies a decrease
in the ratios held in the risky assets, ceteris paribus, and a decrease in the
state price leads to an increase in the optimal consumption, and a decrease
in the risky exposure. An increase in the impatience rate leads the agent to
invest higher ratios in the risky securities. The time effect from mortality
can be obtained from a decrease in the decrement function. It leads the
agent to choose a less risky exposure as as he/she grows older, all else equal.
When the individuals are risk tolerant, i.e., when γ < 1, these comparative
statics conclusions are all reversed, which is promising for an extension to
equilibrium. We have demonstrated that the aggregation property holds for
this kind of utility.

The analysis also enables us to study the investment behavior in the pres-
ence of the exogenous shocks in the stock market. The results are only sug-
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gestive at this point, but indicate that a positive shock leads the investor to
reduce the fraction invested in a risky asset, and increase consumption, while
a negative shock will reduce these effects, possibly resulting in an increased
exposure in the risky asset in some states of the world. On the average, how-
ever, the risky exposure will decrease as the consumer gets older, provided
γ(t) is an increasing, continuous function.

References

[1] Aase, K. K, and L. Qvigstad Sørensen (2008). ”Horizon Length and
Portfolio Choice”. Working paper, Norwegian School of Economics and
Business Administration,

[2] Ameriks, J., and S. P. Zeldes (2004). ”How do Household Portfolio
Shares vary with Age?” Colombia Business School, Working Paper.

[3] Bodie, Zvi (2009). ”Are Stocks the Best Investment of the Long Run?”
The Economics’s Voice, February 2009.

[4] Bodie, Zvi (1997). ”Personal Investing: Advice, Theory, and Evidence”.
Financial Analysts Journal, November/December, 13-23.

[5] Bodie, Z., R. C. Merton, and W. F. Samuelson (1992). ”Labor Sup-
ply Flexibility and Portfolio Choice in a Life Cycle Model”. Journal of
Economic Dynamics and Control, 16, 3/4, 427-50.

[6] Campbell, J. Y., and J. H. Cochrane (1999).”By force of Habit: A
Consumption-Based Explanation of Aggregate Stock Market Behavior”.
Journal of Political Economy, 107, 205-251.

[7] Campbell, John Y. and Viceira, Luis M. (2002). Strategic Asset Allo-
cation: Portfolio Choice for Long-Term Investors. Oxford University
Press.

[8] Constantinides, G. M., and D. Duffie (1996). ”Asset Pricing with Het-
erogenous Consumers”. Journal of Political Economy, 104 (2), 219-240.

[9] Constantinides, G. M., J. B. Donaldson, and R. Mehra (2002). ”Junior
can’t Borrow: A new Perspective on The Equity Premium Puzzle”. The
Quarterly Journal of Economics, 117 (1), 269-296.

[10] Cox, J. C., and C. F. Huang (1989). ”Optimal Consumption and Port-
folio Rules when Asset Prices follow a Diffusion Proocess”. Journal of
Economic Theory, 49(1), 33-83

28



[11] Delong, J. Bradford (2008). ”Stocks for the Long Run”.
The Economics’s Voice, 5 (7): Art 2. Available at:
http://www.bepress.com/ev/vol5/iss7/art2.

[12] Duffie, D. (2001). Dynamic Asset Pricing Theory. 3. ed. Princeton Uni-
versity Press, Princeton and Oxford.

[13] Eeckhoudt, L., C. Gollier, and H. Schlesinger (2005). ”Economic and
Financial Decisions under Risk”. Princeton University Press, Princeton
and Oxford.

[14] Fisher, L. (1930) The Theory of Interest, New york, Mac Millan.

[15] Fisher, S. (1973). ”A Life Cycle Model of Life Insurance Purchasing”.
International Economic Review, 132-152.

[16] Gollier, C. (1995). ”Should Young People be Less Risk-Averse?” W.P.,
GREMAQ and IDEI, Université de Toulouse.
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