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WORKING PAPER No. 15/2009

Bayesian Extreme Value Mixture Modelling for

Estimating VaR

1. Introduction

Extreme value models have been widely used to assess financial risk such as risk

due to adverse market movements, see for example Embrechts et al. (2003). The

current financial crisis, as with those of 1990’s, has further stimulated interest in

describing the probability of such extreme events (Gençay et al. 2003). Extreme

value models describe the stochastic dynamics of a process for states with small

chances of realization, and typically beyond the range of observed data (Beirlant

et al. 2004). They are therefore suitable for capturing tail related quantities for risk

measurement and control. Value-at-Risk (VaR) is one such risk measure, which

quantifies the largest possible profit-and-gain of a portfolio over a fixed holding

period for a given low probability (see Duffie and Pan 1997 and Jorion 2000 for

a variety of definitions and expansions of VaR). In statistical terms, the VaR is

estimated as the extreme quantiles of returns due to unexpected market shortfalls.

Three common statistical approaches to estimate VaR (McNeil and Frey 2000 and

Gençay et al. 2003) are non-parametric historical simulation methods, parametric

methods based on econometric models with volatility dynamics and extreme value

based models.

This paper develops a new extreme value theory (EVT) based model to estimate

the VaR, using extreme quantiles of the return series after accounting for the

dependence structure induce by the volatility clustering typically observed in fi-

nancial returns. In particular, a three component mixture is used to capture the

entire innovation distribution. A general distribution (normal used in this paper,
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but others possibilities are discussed below) is used to describe the main mode

of the innovation distribution. However, the flexible generalized Pareto distribu-

tion (GPD) is used to simultaneously extrapolate the gain and losses beyond some

thresholds, which define the upper and lower tails of the innovation distribution.

1.1. Background

Non-parametric methods for estimating VaR are challenging due to the inher-

ent lack of sample information in the tails of the distribution (Embrechts et al.

2003). Parametric methods such as the autoregressive conditional heteroscedas-

ticity (ARCH) and generalized ARCH (GARCH) model, and their many variants,

typically make the assumption of conditional normality for the residuals which is

typically unrealistic as it is commonly observed that financial series display heavier

tails. Extreme value theory (EVT) based models are based upon an asymptotic

approximation for the tail distributions, which are very flexible in terms of the

allowable tail shape behaviour. The attraction of the EVT based methods is that

they can provide mathematically and statistically justifiable parametric model for

the tails of distribution which can give reliable extrapolations beyond the range of

the observed data.

There are two issues in applying the classical GPD model for estimating the VaR:

the dependence of extremes (financial returns typically show clusters of observa-

tions in the tails) and the threshold choice of GPD (i.e. at which level of extremity

into the tails of the data is the GPD a good model). The classical extreme value

theory used to justify the GPD for capturing the tail of a distribution assumes

the observations are independent and identically distributed. Under quite general

conditions processes with short range dependence can also lead to the GPD being

an appropriate model for the tail of the distribution (Beirlant et al. 2004). How-

ever, the latter result does not necessarily describe the impact of the dependence

on inferences (e.g. uncertainty estimation) for tail measures like the VaR.
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There are three common approaches in accounting for the impact of the dependence

on our inferences. One of these approaches is to explicitly model the dependence

structure using time series or covariate models for the model parameters, e.g.

non-stationary covariate models (e.g. Smith 1989; Davison and Ramesh 2000

and Pauli and Coles 2001) or heteroscedastic time series models, (e.g. Bali and

Weinbaum 2007, Zhao et al. 2009 and Zhao et al. 2010). However, there are

significant challenges with these approaches associated the threshold choice and

model specification. The other common approach is to decluster the dependent

extremes and then apply standard extreme models to the non-dependent sequence

using statistical declustering algorithms (e.g. Ferro and Segers 2003).

A commonly used two stage approach in the finance literature (due to McNeil and

Frey 2000) is to capture the dependence in the returns induced by the volatility

clustering using a GARCH type model, followed by extreme value modeling of the

independent residuals. We will use this two stage methodology as a basis for the

approach taken in this paper. Chan et al. (2007) consider an extension of this

approach by applying non-parametric heavy tails to the GARCH innovations.

Threshold selection for the GPD can also be problematic. The threshold selection

is a balance between reliability of the asymptotic approximation versus the sam-

ple variance of estimators. The threshold must be sufficiently high to ensure the

threshold excesses have a corresponding approximate distribution within the do-

main of attraction of the generalized Pareto family. However, the threshold cannot

be too high as this will reduce the sample information for inferences. Tradition-

ally, the threshold was chosen (fixed) using various graphically diagnostics, see

Coles (2001), which assess features of the model fit for a range of potential thresh-

olds. Once a suitable value has been determined, the threshold is then treated as a

known fixed constant in latter inferences. This approach suffers from concerns over

subjectivity about the threshold choice and not accounting for threshold uncer-

tainty in inferences. A recently developed approach due to Dupuis (1998) aimed
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at reducing the subjectivity and ensure robustness. However, this method still

requires some subjective assessment. For some applications, the threshold selec-

tion can be critical for the extrapolated tail behaviour, so the extra uncertainty

associated with the threshold choice needs to be account for. In estimating VaR

uncertainty estimation is also important for risk control.

There has been much recent research in the development of mixture type models,

which typically treat the threshold as a model parameter to be estimated, and

so also automatically accounts for the uncertainty associated with the threshold

selection. Behrens et al. (2004) use a truncated Gamma distribution for the bulk

of the distribution, and the GPD above the threshold. Tancredi et al. (2006)

propose a less restrictive approach to overcome the lack of a natural model below

the threshold, by trying to model all the observations above a threshold which is

definitely too low, by an unknown number of uniform distributions up to some

more suitable threshold and a GPD above that threshold. Frigessi et al. (2002)

take a slightly different approach, using a dynamically weighted mixture model

of a single GPD and a light-tailed distribution for the bulk of the distribution,

with a smooth weight function to transition between the two distributions. This

approach avoids the threshold choice, but replaces this problem with choice of

transition function parameters.

We will extend these one sided GPD mixture models to a two tailed GPD to

capture both the gains (upper) and losses (lower) tails simultaneously (jointly

accounting for uncertainties from both tails), potentially permitting both tails

to be heavy (and even asymmetric) which is a well documented feature in fi-

nance/economics applications. In this paper, we use a two stage GARCH-GPD

mixture model following the two stage approach of McNeil and Frey (2000), but

with a two tailed GPD mixture model used in the second stage to overcome the

difficulty of threshold choice and to fully account for the uncertainty due to the

threshold selection.
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The distribution selected for the non-extreme data (main mode of the distribution)

can affect estimation of the tail quantities (like VaR) and therefore it is necessary

to choose it according to the application. The normal distribution is suggested

for the financial applications in this paper, due to their inherent unimodal nature,

approximate symmetry and quadratic shape around the mode. In applications

where significant asymmetry in the mode is expected, then the Weibull or Gamma

may be suitably flexible alternatives.

Bayesian inference is used for fitting the mixture model as it can take advantage

of any expert prior information, which can be important in tail estimation due to

the inherent sparsity of extremal data. The estimation method for the proposed

mixture model is firstly evaluated by a simulation study, followed by application of

the two stage GARCH-GPD mixture model to forecasting VaR for a stock market

index during the current financial crisis.

The paper is organized as follows: Section 2 defines the model; Section 3 describes

the estimation method; Section 4 summarises the results from the simulation stud-

ies assessing the model and estimation method performance; Section 5 presents the

empirical results for estimating VaR, followed by conclusions in Section 6.

2. The GARCH-GPD mixture Model

In the two stage approach of McNeil and Frey (2000), the dependence in return

sequence is captured using a generalised autoregressive conditional heteroscedas-

tic (GARCH) process. The residuals from the GARCH approach are treated as

independent and their conditional distribution is then modeled using the two tail

GPD mixture model.
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2.1. Single GPD Tail Model

The generalized Pareto distribution (GPD) is a model with asymptotic justification

when applied to excesses which occur over a sufficiently high threshold. The GPD

can equivalently be defined for excesses below a suitably low threshold for capturing

the lower tail of a distribution. Let X be an IID random variable with X ≥ u

following a GPD(σ,ξ) with scale parameter σ (dependent on threshold u) and

shape parameter ξ, which has a distribution function given by:

G(x|ξ, σ, u) = P (X < x|X > u) =







1 −
[

1 + ξ
(

x−u
σ

)]

−1/ξ

+
ξ 6= 0

1 − exp
[

−
(

x−u
σ

)]

ξ = 0
, (1)

where x ≥ u, σ > 0 and y+ = max(y, 0). There are three types of tail behaviour

determined by the shape parameter: ξ = 0 gives an exponential tail, ξ < 0 gives

a short tail with an upper bound given by u − σ/ξ and a heavier tail than an

exponential is indicated if ξ > 0.

2.2. Two Tail GPD Mixture Model

The two tail GPD mixture model has separate GPD’s for the upper and lower tails

beyond each threshold, with a suitable distribution between the two thresholds.

The thresholds are explicitly specified by model parameters to be estimated. The

focus of this paper is on applications in finance and economics, hence a sensible

choice for the non-extreme data is the normal distribution as in these fields the

time series are generally unimodal, approximately symmetric and quadratic in

shape around the mode.

We will denote the two tail GPD mixture model as the GNG model (GPD-Normal-

GPD). Let X be an IID random variable from the GNG distribution. The distri-

bution function of the mixture model, P (X ≤ x) = F (x) where:

F (x|θ) = {Φ(ul|m, s)[1 − G(−x|ξl, σl,−ul)]} I(−∞,ul](x) (2)
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+Φ(x|m, s)I(ul,ur)(x) +

{Φ(ur|m, s) + [1 − Φ(ur|m, s)]G(x|ξr , σr, ur)} I[ur,∞),

and Φ(x) is the normal cumulative distribution function with mean m and vari-

ance s2 and G(x|ξ, σ, u) is the distribution function of GPD defined by equa-

tion 1. The subscript on the GPD parameters l denotes the lower (left) tail

and r denotes the upper (right) tail. The parameter vector of the model is

θ = (m, s, ur, ξr, σr, ul, ξl, σl).
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Figure 1: Example of the density for the two tailed GNG (GPD-Normal-GPD) model. The

two vertical dash line represent the threshold cut off points for the two GPD distributions.

Figure 1 provides an example of a GNG distribution. The density is deliberately

chosen to be smooth at the thresholds, to ensure it is realistic. However, it is worth

noting that the density of the mixture distribution may have a discontinuity at the

threshold(s). The cumulative distribution function will be continuous. However,

we have found in most applications that the estimated density is close to continuous

and any lack of continuity is typically of little concern if interest lies in sufficiently

high (or low) quantiles away from the thresholds.

The are distinct benefits and potential drawbacks of the mixture modeling ap-

proach when compared to the classical fixed threshold method. The principal

8



benefits are that the threshold is estimated (avoiding the often subjective choice

in the classical approach) and the uncertainty associated with the estimation is ac-

counted for in inference, which is rather challenging for the fixed threshold method.

The automated threshold estimation is a major benefit when trying to automate

fitting the GPD to multiple datasets. The principal drawbacks are the added

complexity of estimating the additional parameters and the fit in the bulk of the

distribution (or the alternate tail) may have an influence on the tail fit. It is

clear that different parameters sets could give similar model fits. However, the

Bayesian inference approach taken in this paper is shown in the simulation study

in Section 4 to provide reliable parameter estimates (including the threshold).

The GNG model is also able to extrapolate two sided tail distributions simulta-

neously, which is highly relevant in many finance/economics applications. The

proposed mixture model has the flexibility in dealing with a variety of distribu-

tions, with or without the symmetry, by allowing both tails to follow separate

GPD distributions.

2.3. Two Stage Approach

Let {Rt} be a strictly stationary daily log return series on a financial asset at time

t. The two stage approach to estimate the VaR is as follows:

1. Fit a GARCH volatility model to {Rt} and obtain the standardized innova-

tion term xt as Rt = E(Rt) + vtxt. Here, the E(Rt) is the expected return

at time t and vt is the volatility estimator from a GARCH model. The form

of GARCH can be selected according to the particular application.

2. Fit the proposed GNG mixture model to {xt} (the standardized innovation

sequence) as described above. The upper tail of the mixture model represent

gains and the lower tail represents the losses.
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The first stage GARCH model is fitted using a standard maximum likelihood

method, as this stage is less critical for estimating the VaR. However, the GNG

mixture model is estimated using Bayesian inference, as the complexity of the

likelihood for this model means it would be challenging to maximise directly and

Bayesian inference also permits use of prior information which can substantially

aid estimation of tail quantities (like VaR) due to the inherent paucity of sample

information.

2.4. Estimating the VaR (Extreme Return Quantile)

The GPD cumulative distribution function defined above is defined conditional on

being above (or below) the upper (or lower) threshold, i.e. P (X < x|X > ur) for

upper tail. Therefore, if we are interested in estimating the 1−p quantile (where p

is small so an upper tail quantile) of the entire population distribution (otherwise

known as the return level associated with a return period of 1/p), then we need to

scale the conditional GPD distribution function by the probability of being above

the threshold p∗ = P (X > ur) giving:

p(X < x) = P (X < x|X > ur)P (X > ur) = G(x|ξr, σr, ur)p
∗.

We can then invert this relation to get the corresponding return level qp giving:

qp =







u − σ
ξ (1 − (p/p∗)−ξ) for ξ 6= 0

u − σ log(p/p∗) for ξ = 0.
(3)

In the traditional fixed threshold approach, p∗ = P (X > ur) is estimated using the

sample proportion above/below the threshold. Since the proposed GNG model de-

scribes the entire sample distribution we use the quantile at each threshold giving,

for example, p∗ = 1−Φ(ur|m, s) for the upper tail. An equivalent formulation can

also be determined for the lower GPD tail quantiles, but is not shown for brevity.

For the fixed threshold GPD, the expected return quantile with a return period

of 1/p at time t is the sum of the expected return and the expected rise or fall of
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returns given by:

E(Rp,t) = E(Rt) + vtqp(x).

When forecasting, the 1-step ahead prediction of the conditional quantile qp for

the upper tail is defined as:

Rqp,t(1) = inf{F (Rt) ≥ qp|ϕt−1}

where ϕt−1 is the information up to day t − 1. A similar result is obtainable for

the lower tail quantile 1-step ahead forecasts.

3. Bayesian Inference for Mixture Model

Bayesian inference is used to estimate the parameters of the mixture model in

order to potentially combine expert prior information along with the sample data.

Markov Chain Monte Carlo (MCMC) has been used to obtain the posterior dis-

tribution. In this section, we main describe the Bayesian inference.

3.1. Prior Distributions

The parameter vector θ = (m, s, ur, ξr, σr, ul, ξl, σl) can be decomposed into three

components θ1 = (m, s), θ3 = (ξr, σr, ξl, σl), and θ2 = (ur, ul), associated with the

normal, GPD parameters, and the thresholds respectively. In this study we explic-

itly specify priors with little information, to allow the data to speak for themselves

and expose any issues in the estimation method. In specific applications, however,

expert information could be included to give more informative priors which could

reduce the uncertainty associated with parameter estimates.

11



3.1.1. Prior for normal parameters

A normal prior is used for the location m and a gamma prior for the scale parameter

s of the normal component of the GNG model, under the assumption that m and

s are independent such that:

π(m|mm, sm) ∝ exp

[

−
1

2

(

m − mm

sm

)2
]

π(s|α, β) ∝ sα−1e
−s
β

with hyperparameters (mm, sm) and (α, β) respectively.

3.1.2. Prior for the GPD parameters

Following Coles and Tawn (1996) the GPD priors are specified on the quantile

differences since expert prior beliefs are generally easier to elicit on the quantiles

themselves, rather than more directly on the parameters. The formulation of the

prior elicited on the quantile differences also permits consideration of the known

negative dependence between the shape ξ and scale σ parameters of the GPD. A

gamma prior distribution is used to describe the quantile differences.

We assume the quantile differences follow a gamma distribution, so that dqi ∼

Ga(ai, bi) and qp0
= 0 for the excesses above (or below if lower tail) the threshold,

the prior for upper tail is defined as:

π(ξ, σ) ∝ J × qa1−1
p1

e−b1qp1 (qp2
− qp1

)a2−1e−b2(qp2
−qp1

)

where J is the Jacobian transformation followed by the joint distribution of the

quantile differences. The prior for the upper tail GPD parameters ξ and σ is then:

π(σ, ξ) ∝ exp

{

−b1

[

u +
σ

ξ
(p−ξ

1 − 1)

]}[

u +
σ

ξ
(p−ξ

1 − 1)

]a1−1

× exp

{

−b2

[

σ

ξ
(p−ξ

2 − p−ξ
1 )

]}[

σ

ξ
(p−ξ

2 − p−ξ
1 )

]a2−1

×

∣

∣

∣

∣

σ

ξ2

[

(p1p2)
−ξ(log p1 − log p2) + p−ξ

2 log p2 − p−ξ
1 log p1

]

∣

∣

∣

∣
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The prior for the lower tail GPD parameters is similarly defined. In this paper

we have used the quantile differences for the conditional tail probabilities p1 = 0.1

and p2 = 0.01 (equivalent to tail probability p/p∗ in equation 3 above) following

Coles and Tawn (1994). The tail probabilities considered for p1 and p2 can be

altered according to the application and the available expert information.

3.1.3. Prior for the thresholds

A truncated normal distribution is used as the prior distribution for the thresholds

of both tails, which are truncated at the minimum and maximum of the sample

data respectively (and thresholds), due to Behrens et al. (2004):

π(u|mu, su, lu) ∝ exp

[

−
1

2

(

u − mu

su

)2
]

for the lower threshold u = ul and upper threshold u = ur.

3.2. Posterior Distribution

The priors for the normal and GPD components are assumed independent giving

the logarithm of the posterior p(θ|x) ∝ π(θ)l(x|θ) for ξ 6= 0:

log p(θ|x) = K +

n
∑

i=1

I(ul,ur)(xi)

[

− log s −
1

2

(

xi − m

s

)2
]

+

n
∑

i=1

I[ur,∞)(xi) log [1 − Φ(ur|m, s)]

+
n

∑

i=1

I[ur,∞)(xi)

{

− log σr −
1 + ξr

ξr
log

[

1 + ξr

(

xi − ur

σr

)]}

+

+
n

∑

i=1

I(−∞,ul](xi) log [Φ(ul|m, s)]

+

n
∑

i=1

I(−∞,ul](xi)

{

− log σl −
1 + ξl

ξl
+ log

[

1 + ξl

(

ul − xi

σl

)]}

−

[

1

2

(

m − mm

sm

)2
]
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+(α − 1) log(s) −
s

β
−

1

2

(

ur − mur

sur

)2

−
1

2

(

ul − mul

sul

)2

−b1r

[

ur +
σr

ξr
(p−ξr

1r
− 1)

]

+ (a1r − 1) log

[

ur +
σr

ξr
(p−ξr

1r
− 1)

]

−b2r

[

σr

ξr
(p−ξr

2r
− p−ξr

1r
)

]

+ (a2r − 1) log

[

σr

ξr
(p−ξr

2r
− p−ξr

1r
)

]

+ log

∣

∣

∣

∣

σr

ξ2
r

[

(p1rp2r)
−ξr(log p1r − log p2r) + p−ξr

2r
log p2r − p−ξr

1r
log p1r

]

∣

∣

∣

∣

−b1l

[

ul +
σl

ξl
(p−ξl

1l
− 1)

]

+ (a1l
− 1) log

[

ul +
σl

ξl
(p−ξl

1l
− 1)

]

−b2l

[

σl

ξl
(p−ξl

2l
− p−ξl

1l
)

]

+ (a2l
− 1) log

[

σl

ξl
(p−ξl

2l
− p−ξl

1l
)

]

+ log

∣

∣

∣

∣

σl

ξ2
l

[

(p1l
p2l

)−ξl(log p1l
− log p2l

) + p−ξl
2l

log p2l
− p−ξl

1l
log p1l

]

∣

∣

∣

∣

where K is from the normalizing constant. In the case where ξ = 0, the posterior

can be obtained by replacing within the above function the likelihood and prior of

ξ = 0 from above, which is not shown for brevity.

The posterior is sampled using Markov Chain Monte Carlo (MCMC) with a ran-

dom walk Metropolis-Hastings (M-H) algorithm, which is a common approach with

the advantage of being free of functional form when the posterior distribution func-

tion is not a proper probability function. In the algorithm implementation, each

subset of parameters is updated at each iteration step in terms of the importance

order of the parameters as (ξr, σr, ur), (ξl, σl, ul) and finally (m, s).

The convergence of the chain of MCMC is checked by monitoring multiple posterior

simulation sequences with over dispersed starting values suggested by Gelman et al.

(2004). We can estimate the marginal posterior variance by a weighted average

of the between and within sequence variances for each of parameter estimator.

We then assess the convergence by monitoring whether the scale of the current

posterior distribution for θ might be reduced if the simulation continues in the

limit n → ∞. The potential scale reduction is defined as the ratio of the marginal
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posterior variance and within variance, which should decline to one as the chain

length goes to infinity. Only once the chain has converged is it regarded as an

approximate sample from the posterior distribution. The second half of the chain

is used as the posterior distribution and the estimated parameter is calculated as

the mean of the posterior parameters within the highest posterior density (HPD)

interval. The full details of the MCMC algorithm are given by Zhao (2009) and

are available upon request.

4. Simulation Studies

Various simulation studies were undertaken to assess the performance of the GNG

model and estimation method for various applications. The first simulation study

was designed to assess the performance of the Bayesian inference approach, via

an application to data simulated directly from the model with known parameter

values. Some of the key results are discussed in Section 4.1.

Section 4.2 compares the threshold estimate of the proposed GNG model with the

threshold choice via the robust estimation approach of Dupuis (1998). The second

major simulation study in Section 4.3 was designed to assess the ability of the

model to reliably estimate quantiles from various population distributions.

4.1. Simulations from GNG Mixture Model

A single simulated dataset from the GNG model is presented as Figure 2. We will

consider the results from fitting the model to this single sample, before considering

the full simulation study. The sample is from the GNG model using the parameter

value θ = (µm = 0, sm = 4.2, ur = 6, ξr = 0.3, σr = 2.2, ul = −5, ξl = 0.2, σl =

2.5) with a sample size 3000, with approximately 35 observations in the lower

tail below ul and 230 in the upper tail above ur. The parameters are chosen to
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give two reasonably heavy tails, and a near continuous density function at the

thresholds. Figure 2 shows the posterior predictive density and corresponding

cumulative distribution function (CDF).

Figure 2.1 Fitted Density
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Figure 2.2 CDF and Tail Return Levels
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Figure 2: Example dataset from the GNG model with parameter set θ = (µm = 0, sm =

4.2, ur = 6, ξr = 0.3, σr = 2.2, ul = −5, ξl = 0.2, σl = 2.5). (1) is the density with

fitted model and (2) gives the fitted CDF with excerpts showing the fit in the tails in

more detail. In (1) the estimated thresholds are shown by vertical dashed lines and the

posterior predictive density estimate is shown by the solid line. The true CDF and return

level are denoted by solid line, sample values are presented by dots, and posterior predictive

estimates are shown by dashed lines in (2).

It is clear from Figure 2 and Table 1 that the Bayesian inferences are reliable,

with the fitted model providing a very good fit. Notice that point estimates

of the parameters are close to the true values which are well within the 95%

credible intervals.

Figure 3 shows the estimated relationship of the GPD parameters for both

tails as contours from their joint posterior distribution. As expected, the

ξ and σ are negatively correlated, and the shape parameter also appears

independent of the threshold which is as expected. The scale parameters

are also linearly related to the threshold as we would expect. The shape
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Table 1: Results from Bayesian inference for single simulated dataset with sample size

n=3000 from from the GNG model. The true parameter values (True) and estimated

parameters (Estimated) using the mean of the MCMC samples within the 95% highest

posterior credible interval are shown.

Parameters m s ur ξr σr ul ξl σl

True 0 4.2 6 0.3 2.2 -5 0.2 2.5

Estimated -0.0011 4.1960 6.0986 0.3015 2.4318 -5.2267 0.1532 2.5251

Lower CI -0.1179 4.1022 5.6346 0.2038 2.0456 -5.7949 0.0583 2.1555

Upper CI 0.1108 4.2827 6.6472 0.4055 2.8273 -4.6149 0.2572 2.9343

parameter posterior density is positively skewed and the scale parameter

is slightly positively skewed as we would expect. The threshold posterior

densities also appears to be approximately normally distributed.

Posterior predictive checks are important diagnostics for MCMC methods to

assess their performance. The basic idea is to compare a specified test quan-

tity and an appropriate predictive distribution from posterior replications. A

large discrepancy between them would indicate that the model is not a good

fit to the data. The obvious quantities for diagnostics are the quantiles of the

simulated sample. The posterior predictive quantile distributions are shown

in Figure 4, along with the true quantiles and direct sample estimates of the

quantiles. The sample and true quantiles are well within the 95% credible

intervals and are located near the mode of the posterior predictive quantile

distributions. You will notice that as the tail quantiles get more extreme

the posterior predictive distribution becomes more skewed, representing the

asymmetry in the information available for estimation.

Multiple samples from the model were then simulated, under different pa-

rameters sets and sample sizes, to verify the performance of the Bayesian
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Figure 3.1 Upper Tail Figure 3.2 Lower Tail

Figure 3: Pairwise contours of the posterior density of the GPD related parameters for the

lower tail (ul, σl, ξl) and upper tail (ur, σr, ξr). the histogram of each posterior distribution

is also shown.

inference estimation method. The parameters were chose to represent differ-

ent combinations of tail behaviors (and all providing asymmetric population

distributions, which are more challenging). Tables 2 and 3 lists the six pa-
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Figure 4: Histogram of the posterior predictive quantiles for unconditional tail probabilities

0.01%, 0.1%, 1% and 10%. The sample quantile is shown by the dotted line and the true

quantile by the interior dashed line. The posterior predictive quantile (PPQ) shown by the

solid line is the mean of posterior predictive quantiles within the 95% credible intervals,

shown by the exterior solid lines.

rameter sets. The parameter set 1 has both Type I (exponential) tails with

ξ = 0. The parameter set 2 has both Type II tails (heavier tails than expo-

nential) with ξ > 0. The third parameter set has both Type III tails (short

bounded tails) with ξ < 0. The remaining parameter sets 4 to 6 represent

the different combinations of the three tail types. For each of the parameter

sets and sample sizes, 100 simulation samples were simulated from the GNG

distribution. The final parameter values were chosen to ensure the density

was near continuous at the upper and lower thresholds, as this is most likely

in real world applications.

19



The MCMC chain was run for a sample of length 10,000, from which the first

half were discarded. The estimated parameters are calculated as the mean of

the sample posterior values in the 95% highest posterior density (HPD), and

the credible interval (CI) of the estimators are the boundary of the associated

HPD interval.

All the HPD means of the estimators for these simulated data are close to

the real parameters, indicating low bias across the samples. Table 2 also

reports the root mean square error (RMSE) of the estimated parameters

(a frequentist property useful for summarising variation across simulated

datasets). It is clear that the RMSE (and bias) decreases with sample size

(approximately in proportion to the sample size) for all the parameters, as

is expected. Generally, the RMSE for the threshold is much more uncertain

than all the other parameters, indicative of the fact that various thresholds

can still give a similar model fit.

The simulation shows the reliability in the model estimation and classifica-

tion. Even for the smallest sample size 1000, the model can still estimate

values close to the true parameters and describe both tails accurately. The

simulation also shows the flexibility of the model for various tail behaviors.

4.2. Threshold estimation

As previously discussed, there are many techniques which can be used to

estimate the threshold (see for example Coles 2001 and Beirlant et al. 2004).

Typically these techniques have been difficult to automate, often requiring

manual intervention requiring subjective judgement. Dupuis (1998) suggests

a robust threshold selection method which examines the weights applied to

the extremes to assess the validity of the GPD under a range of proposed
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Table 2: Summary of properties of the Bayesian estimates of the GNG model parameters,

for a range of different parameters sets (tail behaviours). There are 100 simulated datasets

for parameter set. The true parameters along with the mean and root mean square error

(RMSE) of the point estimates across the 100 sample estimations. The point estimates

for each sample are the mean of the posterior within the 95% highest posterior density.

1. I-N-I True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 0.0081 0.0416 0.0019 0.0228 -0.0004 0.0182

s 2.00 2.0087 0.0334 2.0055 0.0181 2.0042 0.0132

ur 2.30 2.2524 0.1839 2.2774 0.1940 2.3084 0.1689

ξr 0.00 -0.0339 0.0981 -0.0156 0.0538 -0.0064 0.0426

σr 1.20 1.2401 0.1552 1.2189 0.0844 1.2170 0.0799

ul -2.50 -2.2895 0.2706 -2.3570 0.2568 -2.3442 0.2564

ξl 0.00 -0.0299 0.0877 -0.0065 0.0562 -0.0130 0.0444

σl 1.15 1.1915 0.1699 1.1577 0.0948 1.1776 0.0817

2. II-N-II True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 0.0045 0.0342 -0.0005 0.0201 0.0000 0.0150

s 2.00 2.0139 0.0304 2.0055 0.0158 2.0070 0.0138

ur 2.00 2.0953 0.2418 2.1138 0.2236 2.0577 0.2150

ξr 0.20 0.1575 0.0857 0.1868 0.0614 0.1851 0.0518

σr 1.30 1.3334 0.1586 1.3354 0.1205 1.3294 0.0913

ul -1.80 -1.9485 0.2438 -1.8757 0.1796 -1.8498 0.1635

ξl 0.30 0.2715 0.0861 0.2793 0.0605 0.2924 0.0438

σl 1.40 1.4496 0.1950 1.4446 0.1211 1.4249 0.0902

3. III-N-III True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 0.0031 0.0493 -0.0004 0.0200 -0.0023 0.0194

s 2.00 2.0046 0.0334 2.0014 0.0186 2.0025 0.0146

ur 2.30 2.3811 0.2951 2.3721 0.2860 2.3660 0.3185

ξr -0.30 -0.2865 0.0898 -0.2947 0.0592 -0.2971 0.0469

σr 1.20 1.1721 0.1951 1.1704 0.1145 1.1770 0.0839

ul -2.50 -2.4820 0.3477 -2.4782 0.3267 -2.4580 0.3075

ξl -0.20 -0.1722 0.0827 -0.2078 0.0614 -0.1941 0.0451

σl 1.20 1.1671 0.1452 1.2259 0.1277 1.2097 0.1057
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Table 3: Summary of properties of the Bayesian estimates of the GNG model parameters,

for a range of different parameters sets (tail behaviours). There are 100 simulated datasets

for parameter set. The true parameters along with the mean and root mean square error

(RMSE) of the point estimates across the 100 sample estimations. The point estimates

for each sample are the mean of the posterior within the 95% highest posterior density.

4. III-N-II True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 0.0108 0.0405 0.0004 0.0251 -0.0005 0.0192

s 2.00 2.0088 0.0305 2.0038 0.0167 2.0023 0.0139

ur 2.50 2.3155 0.1886 2.3534 0.2267 2.4185 0.1978

ξr 0.20 0.1747 0.0865 0.1909 0.0457 0.1895 0.0357

σr 1.15 1.1291 0.1536 1.1404 0.1204 1.1482 0.0948

ul -2.60 -2.4365 0.1637 -2.5101 0.2035 -2.5190 0.2162

ξl -0.15 -0.1476 0.0934 -0.1439 0.0561 -0.1413 0.0390

σl 1.10 1.1226 0.1714 1.1146 0.1100 1.1093 0.0841

5. III-N-I True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 -0.0123 0.0418 -0.0035 0.0214 -0.0031 0.0190

s 2.00 2.0112 0.0312 2.0022 0.0204 2.0035 0.0132

ur 2.70 2.4599 0.2791 2.4837 0.2421 2.4483 0.2117

ξr 0.00 -0.0181 0.1111 -0.0114 0.0632 0.0005 0.0500

σr 1.30 1.2949 0.2716 1.3013 0.0941 1.2777 0.0744

ul -2.80 -2.4900 0.2225 -2.5516 0.2125 -2.5718 0.2522

ξl -0.10 -0.1078 0.0796 -0.1132 0.0547 -0.1077 0.0455

σl 1.00 1.0514 0.1639 1.0638 0.1079 1.0562 0.1041

6. II-N-I True size=1000 size=3000 size=5000

Param Value Mean RMSE Mean RMSE Mean RMSE

m 0.00 0.0073 0.0468 0.0060 0.0241 0.0026 0.0172

s 2.00 2.0121 0.0342 2.0070 0.0190 2.0086 0.0166

ur 2.30 2.2478 0.2066 2.2670 0.1923 2.2755 0.1616

ξr 0.15 0.1387 0.1029 0.1447 0.0576 0.1500 0.0440

σr 1.20 1.1854 0.1781 1.1955 0.1034 1.1971 0.0703

ul -2.50 -2.3282 0.2853 -2.3551 0.2367 -2.3419 0.2391

ξl 0.00 -0.0219 0.1001 -0.0083 0.0512 -0.0069 0.0403

σl 1.20 1.2357 0.1961 1.2154 0.0980 1.1997 0.0727
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thresholds. We implement this robust threshold estimation method to check

our threshold estimation method and the resultant tail fits from the proposed

mixture model.

We applied the robust GPD estimation method on various simulated data

with the results consistent from those from the proposed GNG mixture

model. We do not report the full results for brevity, however, Table 4 gives

an example to show their consistency. The advantage of our method is that

it can capture the uncertainty associated with the threshold choice and it

is convenient in forecasting and inference since it does not require a manual

intervention unlike the robust method.

Table 4: Comparison of the estimated threshold and GPD parameters using the GNG

mixture model and Robust estimation procedure of Dupuis (1998).

Upper Tail Lower Tail

ur ξr σr ul ξl σl

True Parameters 2.00 0.20 1.30 -1.80 0.30 1.40

Mixture Estimator 1.64 0.17 1.39 -1.77 0.29 1.30

Robust Estimator 1.60 0.17 1.40 -1.80 0.26 1.31

4.3. Performance For General Distributions

The previous simulation results show the performance of the estimation

method for the GNG mixture model. However, in real applications of this ap-

proach the population will be approximated by the GNG model. Therefore in

this section, a sensitivity analysis is conducted by applying the GNG model

to various population distributions, including both symmetric and asymmet-

ric distributions, to show how the model performs as an approximation in

this case.
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The distributions chosen for sensitivity analysis are symmetric distributions:

Normal (type I tails), t (type II tails) and symmetric Beta (type III tails);

and asymmetric distributions: Gumbel (type III and type I tails), inverse

gamma (type III and type II tails) and Weibull (type III and type III tails).

For each distribution, we simulated 100 datasets with sample sizes 1000, 3000

and 5000 as before. The full simulation results are reported in Zhao (2009)

and available upon request. Table 5 shows the performance of the GNG

model to approximate various quantiles of the population distributions. The

true and GNG estimated quantiles are shown in the upper part of the table.

It is clear that all the GNG quantile estimates for all six distributions are

close to the true values.

The RMSE of the posterior quantile estimates for the six distributions are

reported as the lower part of Table 5. For comparison purposes, the RMSE

of the quantile estimators using maximum likelihood (ML) estimation when

using the correct population distributions in the model. The RMSE for the

correct model using ML estimation is considered a gold standard, to compare

the performance of the approximate GNG model. Although the ML confi-

dence intervals and Bayesian credible intervals are not formally comparable,

as very diffuse priors have been used when finding the posterior for the GNG

model the two sets of intervals are practically comparable. The ML quantiles

are estimated under the correct model and therefore have a smaller RMSE.

However, you will notice that ML estimation under the correct model is at

most twice as efficient for estimating the various quantiles compared to the

GNG model. Overall the GNG approximation is only slightly less efficient

for most population quantiles, compared to using the correct population dis-

tribution model.
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The uncertainty of the quantiles is higher for the heavy tails (t and upper

tail of inverse gamma) compared to the short tails (e.g. beta and lower

tail of Gumbel). The normal distribution has a slightly higher RMSE than

the others due to known slow convergence of the normal tail to the GPD

limit (see Beirlant et al, 2004). As expected the RMSE increases as the

quantile is located further out into the tail of the distribution. The differences

between posterior predictive quantiles and the ML quantile estimates are

smaller for the heavy tails compare to the short or exponential tails. This

result indicates that the GNG model is preferred when describing the tail

behavior for the heavy tail applications, which is the typical case found in

finance and economic applications.

It is clear from Table 5 that population distributions with highly asymmetric

modes result in higher uncertainty, since the normal distribution is used for

the bulk of distribution in the GNG model. However, the mixture model can

still return reasonable extreme quantile estimates. This results shows that

the GNG model is generally applicable as an approximation to a wide range

of population distributions.

5. Application to VaR During the Financial Crisis

We use the proposed two stage method to produce the 1-step ahead forecasts

of daily return quantiles for the S&P100 index for the period of 07/02/2008

to 19/11/2008, which captures the starting period of the current worldwide

financial crisis. Suppose the return sequence is R1, ..., Rt, ...RT , where t ≤ T .

In providing the forecast we only use historical information from n = 1000

daily returns, i.e. approximately 4 years. The forecasted return quantiles

are then dependent on all the information up to t-1. At time t, we apply
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Table 5: Comparison of quantiles estimates for GNG model applied to various

general population distributions (fitted using Bayesian inference) and true model

distribution (fitted using maximum likelihood estimation). The mean of the pos-

terior predictive quantiles (PPQ) within the 95% highest posterior density have

been used as point estimates for each sample. The mean and RMSE of the point

estimates are obtained from 100 simulated datasets.

Posterior Predictive Quantiles

Distributions Sample 1% 2% 5% 95% 98% 99%

Size TRUE PPQ TRUE PPQ TRUE PPQ TRUE PPQ TRUE PPQ TRUE PPQ

1000 -4.653 -4.709 -4.107 -4.130 -3.290 -3.290 3.290 3.301 4.107 4.132 4.653 4.704

Normal 3000 -4.653 -4.648 -4.107 -4.098 -3.290 -3.278 3.290 3.293 4.107 4.118 4.653 4.672

(µ = 0, σ = 2) 5000 -4.653 -4.663 -4.107 -4.112 -3.290 -3.287 3.290 3.294 4.107 4.118 4.653 4.667

1000 -4.541 -4.518 -3.482 -3.495 -2.353 -2.351 2.353 2.370 3.482 3.497 4.541 4.485

t 3000 -4.541 -4.625 -3.482 -3.559 -2.353 -2.375 2.353 2.363 3.482 3.525 4.541 4.563

(v = 3) 5000 -4.541 -4.576 -3.482 -3.550 -2.353 -2.387 2.353 2.381 3.482 3.543 4.541 4.569

1000 0.229 0.225 0.256 0.254 0.300 0.299 0.700 0.702 0.744 0.747 0.771 0.776

Beta 3000 0.229 0.227 0.256 0.255 0.300 0.299 0.700 0.700 0.744 0.745 0.771 0.773

(α = 8, β = 8) 5000 0.229 0.227 0.256 0.255 0.300 0.300 0.700 0.700 0.744 0.745 0.771 0.773

1000 -1.527 -1.562 -1.364 -1.393 -1.097 -1.109 2.970 2.959 3.902 3.891 4.600 4.568

Gumbel 3000 -1.527 -1.568 -1.364 -1.395 -1.097 -1.107 2.970 3.015 3.902 3.949 4.600 4.619

(σ = 1) 5000 -1.527 -1.567 -1.364 -1.394 -1.097 -1.106 2.970 3.018 3.902 3.958 4.600 4.631

Inverse 1000 0.431 0.410 0.473 0.453 0.546 0.536 2.538 2.451 3.269 3.148 3.909 3.740

Gamma 3000 0.431 0.414 0.473 0.458 0.546 0.540 2.538 2.542 3.269 3.281 3.909 3.913

(α = 5, β = 5) 5000 0.431 0.413 0.473 0.458 0.546 0.542 2.538 2.557 3.269 3.287 3.909 3.903

1000 -8.250 -8.577 -7.307 -7.550 -5.798 -6.007 12.849 12.175 16.154 15.588 18.436 17.953

Weibull 3000 -8.250 -8.473 -7.307 -7.490 -5.798 -5.932 12.849 12.324 16.154 15.738 18.436 18.090

(λ = 5, k = 0.1) 5000 -8.250 -8.483 -7.307 -7.492 -5.798 -5.903 12.849 12.440 16.154 15.846 18.436 18.179

RMSE of Quantile Estimates

Distributions Sample 1% 2% 5% 95% 98% 99%

Size ML PPQ ML PPQ ML PPQ ML PPQ ML PPQ ML PPQ

1000 0.130 0.216 0.119 0.168 0.103 0.120 0.107 0.115 0.123 0.156 0.135 0.210

Normal 3000 0.068 0.114 0.063 0.083 0.055 0.061 0.052 0.060 0.059 0.084 0.064 0.104

(µ = 0, σ = 2) 5000 0.056 0.076 0.051 0.062 0.045 0.053 0.044 0.049 0.051 0.069 0.056 0.083

1000 0.372 0.390 0.221 0.236 0.098 0.123 0.098 0.132 0.221 0.241 0.372 0.383

t 3000 0.208 0.263 0.123 0.168 0.055 0.082 0.055 0.075 0.123 0.136 0.208 0.209

(v = 3) 5000 0.162 0.184 0.097 0.131 0.043 0.074 0.043 0.076 0.097 0.138 0.162 0.199

1000 0.006 0.009 0.006 0.008 0.005 0.006 0.005 0.006 0.006 0.008 0.006 0.010

Beta 3000 0.004 0.006 0.004 0.005 0.003 0.004 0.003 0.003 0.003 0.005 0.003 0.006

(α = 8, β = 8) 5000 0.003 0.004 0.003 0.004 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.004

1000 0.053 0.071 0.048 0.060 0.041 0.044 0.105 0.125 0.161 0.167 0.216 0.219

Gumbel 3000 0.028 0.055 0.025 0.044 0.021 0.025 0.049 0.074 0.081 0.098 0.113 0.126

(σ = 1) 5000 0.023 0.050 0.021 0.040 0.018 0.024 0.046 0.072 0.073 0.094 0.099 0.107

Inverse 1000 0.010 0.027 0.010 0.024 0.010 0.016 0.080 0.131 0.128 0.198 0.176 0.275

Gamma 3000 0.005 0.020 0.005 0.017 0.005 0.010 0.044 0.048 0.069 0.088 0.094 0.145

(α = 5, β = 5) 5000 0.004 0.019 0.004 0.016 0.005 0.007 0.031 0.040 0.050 0.070 0.069 0.111

1000 0.269 0.450 0.241 0.355 0.206 0.304 0.359 0.799 0.491 0.796 0.619 0.805

Weibull 3000 0.149 0.284 0.133 0.231 0.113 0.181 0.236 0.588 0.345 0.551 0.447 0.564

(λ = 5, k = 0.1) 5000 0.132 0.285 0.117 0.227 0.098 0.150 0.164 0.467 0.233 0.426 0.300 0.427
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a GARCH(1,1) model on Rt−n−1, ..., Rt−1 to obtain the standardized inno-

vation sequence xt−n−1, ..., xt−1. Then, the 1-step ahead forecasting of the

expected return E(x̂t) and the volatility v̂t are based on the estimates from

the first stage. We then fit the GNG model to the standardized innovation

sequence xt−n−1, ..., xt−1 and forecast the x̂
q
t based on the predictive posterior

quantile distributions. The forecasted return quantile of q can then be cal-

culated as R̂
q
t = E(x̂t) + v̂tx̂

q
t . These forecasted return quantiles are termed

“conditional” as they are conditional on the variance being assumed known,

using the estimates from the GARCH.

Figure 5: Application of the GNG model and fixed threshold approach to forecasting the

1-step ahead VaR for various quantiles to S&P100 during the 2008 financial crisis.

Figure 5 shows the conditional quantile forecasting results of the S&P100

for the return quantiles at 0.5% and 99.5% using the both the GNG mixture

mode and fixed threshold approach with corresponding 95% confidence/credible

intervals. The proportion above/below the threshold for the fixed each
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threshold approach was fixed at 10%. The extreme quantiles for both tails

based on the GNG are slightly larger than the fixed GPD based method,

with a wider confidence interval as we expect due to accounting for the addi-

tional uncertainty about the threshold which is ignored in the fixed threshold

approach.

The similarity of the estimates and the only slightly larger credible intervals

is extremely pleasing, as the proposed methodology has not required a-priori

specification of the threshold which is a major advantage over the traditional

fixed threshold approach. An interesting feature of the credible intervals

for the mixture model approach is that they tend to be somewhat wider

for heavier tails, as shown in Figure 5 by the larger credible intervals for

the losses compared to the gains. The shape parameter estimated for the

losses (not shown for brevity) is generally larger than for the gains. This

result implies that the uncertainty of threshold selection is likely to be more

important for the heavy tail distributions relative to the light or short tails,

which is commonly the case for financial data (particular for financial crises).

Notice from Figure 5 that the larger credible intervals for the GNG model

based quantile estimates, have better coverage of the actual returns than for

the fixed threshold approach. The lower bound of the lower tail credible

interval is apprximately the same for both models. However, the upper

bound of the lower tail credible interval is closer to the mode. For heavier

tails (as in the losses in this example), the threshold related uncertainty

appears as more uncertainty nearer the mode of the distribution, rather than

further out into the lower tail. In contrast the gains credible interval for the

GNG model extends further out into the upper tail than the corresponding

interval for the fixed threshold model, whereas the lower bounds are very
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similar. The gains have a short tail (generally a negative shape parameter),

hence the uncertainty associated with estimating the threshold leads to more

uncertainty about the upper tail.

6. Conclusion

Extreme value theory based models have been widely used in financial appli-

cations when assessing financial risk as they supply a statistically justifiable

and flexible method for extrapolating tail distributions. In this paper, we

propose an approach for forecasting the VaR combining a classical condi-

tional variance model (GARCH) and a new GPD based mixture model, to

overcome the difficulty of describing the dependence of the extreme returns

(from volatility clustering) and the challenge of threshold selection in tradi-

tional GPD applications. The proposed mixture model is able to account for

the uncertainty associated with the threshold choice in estimating the VaR,

as the threshold is an explicit parameter of the model to be estimated. As

the threshold is estimated as part of the inference process, the model fitting

(including threshold choice) is easily automated for large scale application

to multiple financial time series which is very challenging for the traditional

approaches to GPD threshold choice.

The proposed mixture model is very flexible, permitting both symmetric

and asymmetric tail behaviours in the gains/losses. A simulation study has

shown the performance of a Bayesian inference approach for fitting the new

GPD mixture model. The mixture model was also applied to various dif-

ferent population distributions (symmetric and asymmetric) and was shown

to provide good approximations to various high quantiles, and in particular

being only slightly less efficient compared to using the correct model for es-
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timating these quantiles. This latter simulation study has shown the general

applicability of the proposed modelling approach.

The choice of the distribution used to capture the main mode of the distri-

bution in the mixture model (normal considered in this paper) was shown

in the simulation study to affect the performance of the model in capturing

the quantiles. The normal distribution is suggested for the financial applica-

tions in this paper, due to their inherent unimodal, approximately symmetric

and quadratic shape around the mode. However, for applications where an

asymmetric mode is expected alternative distributions for the bulk should be

considered, e.g. a Weibull or gamma distribution. Alternatively, a natural

extension for the bulk distribution would be a mixture of uniform distribu-

tions extending the approach of Tancredi et al. (2006).

The model was then applied to forecast the VaR for the stock market index

S&P100 for the recent financial crisis period (2008) and showed distinct ad-

vantages in estimating the extreme quantiles whilst automatically accounting

for the uncertainty due to the threshold choice.
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