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Abstract

Hedonic regressions are prone to omitted variable bias because many of the price de-

termining characteristics are typically unobserved. The estimation of price relatives for

new and disappearing goods using hedonic imputation methods involves taking ratios

of two hedonic models corresponding to two consecutive periods. This may lead to a

situation where the omitted variable bias in one of the hedonic regressions offsets the

other. This study finds that the single imputation hedonic method estimates inconsis-

tent price relatives, while the double imputation method may produce consistent price

relatives depending on the behavior of unobserved characteristics in the comparison

periods. The study outlines a methodology to estimate the magnitude of bias in single

and double imputation price relatives. The results of this study have implications with

regard to the construction of quality adjusted indexes.

JEL Classification Numbers: C43; C52; E31

Keywords: Hedonic imputation method; Model selection; New and disappearing goods;

Omitted variable bias; Quality adjusted price indexes.



1. Introduction

An hedonic regression model specifies the price of a variety v at time t, Pv,t, as a

function of its determining characteristics and a random error term. The most common

use of hedonic regressions has been to disentangle the quality component of price change

from the observed price change to achieve better measures of ‘pure’ inflation. Hedonic

regressions have been used for quality adjustment in price changes since Waugh (1928)

and Court (1939), with Griliches (1961) reviving interest in the methodology. Boskin

et al. (1996) consider the hedonic regression to be the most promising approach to

control for quality changes, whereas Schultze and Mackie (2002) recommend following

a cautionary approach and emphasize the need for further research. Moulton (2001)

reports that approximately 18% of the US GDP final expenditures are deflated using

price indexes that use hedonic methods and this share is expected to rise.

Price comparison of ‘like with like’ is an essential requirement in the construction

of price indexes. This requirement raises problems in many markets, including super-

market product, electronic and housing markets. For example, electronic products, such

as computers, are subject to rapid technological innovation, leading to quick product

turnovers and short life cycles. Pv,t is observed if the model v was sold in period t,

but Pv,t+1 is unobserved if the model exited out of the market before the beginning

of period t + 1. In this case, the price relative Pv,t+1/Pv,t is unobserved. In housing

markets, every house is somewhat different and the same house is unlikely to be sold

in two adjacent periods. This implies that if v refers to a particular house, either Pv,t

or Pv,t+1 is unobserved. Hedonic regressions impute these unobserved prices, and let us

estimate the price relatives of unmatched, i.e. new and disappearing, items.

Price indexes calculated from only the matched varieties, i.e. the varieties that are

sold in both t and t+ 1, and leaving out the new and disappearing varieties, suffer from

sample selection bias (Boskin et al., 1996; Pakes, 2003; Benkard and Bajari, 2005; Silver

and Heravi, 2005). For example, Silver and Heravi, using comprehensive scanner data

of five products (washing machines, dishwashers, television sets, cameras and vacuum
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cleaners), show that the sample degradation is substantial even in a short period of one

year. The percentage of models of these five products that disappeared within one year

ranged between 29% and 47%, and the decline in the sales value ranged between 5% and

18%. Pakes (2003) and Benkard and Bajari (2005) find the sample degradation to be

more severe for personal computers—by 85% and 90%, respectively, in a year—leaving

ample room for sample selection bias.

It is a common concern that hedonic regressions, largely because of the unavail-

ability of data, omit relevant characteristics. Some of these characteristics may be

correlated with the included characteristics, leading to biased and inconsistent esti-

mates.1 Over the years, many authors have explicitly or implicitly acknowledged the

omitted variable bias problem in hedonic regressions, including Court (1939), Griliches

(1961), Pakes (2003), Hulten (2003), Benkard and Bajari (2005), Triplett (2006), and

Hill and Melser (2008). However, there has been little investigation of the omitted vari-

able problem specific to hedonic regressions, and particularly to hedonic imputation

methods, beyond a general understanding of the omitted variable problem in regression

analysis.2

The study is based on the premise that omitted variable bias is a fact in hedonic

regressions. The study focusses on hedonic imputation methods, where separate hedo-

nic regressions are hypothesized for each period of price comparison. Typically, and

in this study, prices are compared between two adjacent periods. Between two such

periods, the behavior of some characteristics may remain stable, while the behavior

of other characteristics may be unstable. These two sets of characteristics, stable and

unstable, may be treated differently in the omitted variable analysis of hedonic impu-

tation methods. The conjecture of this study is that it is the unstable characteristics

that drive price change, and therefore they should be included in the model in order to

attain consistency of the estimated price relatives. The stable characteristics, though

1The minimal requirement of an estimator is ‘consistency’. For practical purposes, inconsistency
can be viewed as being the same as bias.

2There may be other sources of bias including incorrect specification of the functional forms and
measurement errors in prices. This paper addresses only the omitted variable bias problem.
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important in each period, do not drive price change and therefore may be excluded,

as far as the consistency of the estimated price relatives is concerned. That is, under

certain stability conditions the omitted variable bias corresponding to each regression

may be canceled out. This study provides detailed expression of such stability condi-

tions for, and evaluates the performance of, both the level and log hedonic models in

the single and double imputation methods.

This study analyzes the omitted variable bias generated by each hedonic regres-

sion and then extends the analysis to hedonic imputation methods. Let us suppose that

the conjecture of this paper is correct, i.e. the relevant characteristics that are stable

between the periods can be omitted without having any effect on the consistency of

the estimated price relatives. This may have an important implication with regard to

the application of hedonic methods in order to construct quality adjusted indexes. For

example, in the used car market there are many characteristics that are relevant to con-

sumers in each period, including the make and model, age of car, engine size, odometer

reading, color and fuel efficiency. However, there may be only a few characteristics

that drive price change across two consecutive periods (such as fuel efficiency during

a period of volatile oil prices), while the implicit value of other characteristics remains

stable. This implies that data compilers may focus on a few select characteristics and,

as a result, reduce cost.3

The importance of obtaining consistent price relatives in order to calculate in-

dexes should be emphasized. Price relatives, including estimated price relatives, are the

building blocks for the construction of indexes. It can be shown that elementary indexes

(such as the Carli, Dutot and Jevons indexes) constructed on consistent price relatives

are themselves consistent. Let us suppose that p̂v are consistent price relatives of their

corresponding parameters θv, ∀v = 1, . . . , V . The estimated Jevons index, comparing

prices between the period t and t + 1, is the geometric mean of all the price relatives

p̂v: P̂t,t+1 =
∏V

v=1 (p̂v)
1/V . Using a property of probability limits (plim)—that if g(.) is

3Benkard and Bajari (2005) study the omitted variable bias problem in hedonic imputation methods.
The focus of their paper, different to this paper, is on outlining an estimation methodology using factor
analysis.
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a continuous function, then plim[g(x)] = g[plim(x)]—the following is obtained:

plim
(
P̂t,t+1

)
= plim

(
V∏

v=1

(p̂v)
1/V

)
=

V∏
v=1

[plim (p̂v)]
1/V =

V∏
v=1

(θv)
1/V

that is, the estimated Jevons index is a consistent estimate of the true Jevons index.

However, if the price relatives are inconsistent, and if there is no justification that

biases tend to cancel each other out, the elementary indexes, and any other price in-

dexes, including superlative indexes such as the Fisher and Törnqvist indexes, which

are weighted averages of individual price relatives, are also inconsistent.

This paper is organized as follows. The next section introduces hedonic imputa-

tion methods and presents some observations on recent literature that compares and

contrasts different hedonic methods. In section 3, the hedonic models are specified for

the log of prices and the coefficient stability condition required to attain consistency of

estimated price relatives is derived (a concise derivation for hedonic models specified

on price levels is provided in appendix A). Section 4 shows results of Monte Carlo sim-

ulations which are conducted in order to check whether the stability condition derived

analytically for large samples also holds for small samples. Section 5 discusses the im-

plications of the findings with regard to their application. Conclusions are drawn in

section 6.

2. Time Dummy, Single and Double Imputation

Hedonic Methods

The dominant hedonic regression methods are the time-dummy hedonic method and

the hedonic imputation method. In the time-dummy method, prices are hypothesized

as a function of time dummies and the characteristics variables. The characteristics

variables play the role of ‘controlling variables’ in the regression, and the coefficients

of time dummies reflect the average price change between the periods after holding
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the characteristics constant. If a relevant characteristic is omitted that is correlated

with any of the included characteristics or the time dummies, then the estimated time-

dummy coefficients are biased and inconsistent.

In the hedonic imputation method, separate regressions are specified for each pe-

riod. The method essentially involves predictions of the left hand side variable (price

or log-price) of the hedonic regressions. The varieties of goods sold in, say, period 0 are

predicted for period 1 by putting the estimated characteristics coefficients of period 1

into the value of the characteristics of period 0. Thus, if Pv,t+1 refers to a new variety

v that appeared in the market at period t + 1, then the hedonic imputation method

imputes Pv,t, i.e. the price of variety v before it appeared in the market. Let us call

this imputed price P̂v,t. Similarly, P̂v,t+1 is estimated from a hedonic regression when

variety v disappeared from the market at period t. Once all the varieties are ‘matched’

in this way, standard price index formulas can be used.

The hedonic imputation method offers two approaches—single imputation or dou-

ble imputation approaches. In the single imputation approach, only the unobserved

price is imputed. The single imputation price relative is Pv,t+1/P̂v,t or P̂v,t+1/Pv,t, de-

pending on whether item v is a new or disappearing item. In the double imputation

approach, on the other hand, both the observed and unobserved prices are imputed,

and the estimated price relative is P̂v,t+1/P̂v,t. The imputed prices such as P̂v,t and

P̂v,t+1 are biased and inconsistent due to omission of characteristics. But the question

is whether the price relatives Pv,t+1/P̂v,t, P̂v,t+1/Pv,t or P̂v,t+1/P̂v,t are also biased and

inconsistent or can they be unbiased and consistent under particular conditions?

In the existing literature, various authors have discussed which of the single or

double imputation methods is more appropriate. Triplett (2006) favors the minimum

use of imputation on the grounds of minimizing estimation variance unless there is

reason to believe that omitted characteristics have not changed between the comparison

periods. Hill and Melser (2008) suggest that the double imputation method is preferable

because of the potential of omitted variable biases being canceled out, however, they

do not provide any formal analysis in support of their argument. Pakes (2003) does
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not find any difference between the calculated indexes for personal computers obtained

from the single and double imputation methods and, therefore, chooses to report the

indexes using the single imputation price relatives. On the other hand, van Mulligen

(2003) finds a systematic difference in indexes for personal computers, notebooks and

servers—the double imputation index lies in between the single imputation index and

the matched model index.

The current study, conducting a formal analysis on the estimators of imputation

methods, finds that the single imputation method, similar to the time-dummy method,

produces inconsistent estimates, whereas the double imputation method may produce

consistent estimates under some stability conditions related to omitted characteristics

and depending on whether the hedonic models are estimated for the log or level of

prices. Consistency may be achieved even when each of the hedonic regressions produces

inconsistent estimates, and at the same time by being less demanding on data. Because

of the high prevalence of matched items between two adjacent periods in most markets,

the study shows that it is possible to evaluate the performance of alternative models in

terms of the magnitude of omitted variable bias.

3. Hedonic Models of Log Prices

3.1 Estimation of single and double imputation price relatives

from the correctly specified models

This section begins with setting the parameters of interest and estimating the single

and double imputation price relatives from the correctly specified log hedonic models

corresponding to periods 0 and 1. The following two equations specify the hedonic
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regressions for periods 0 and 1, respectively:

lnp0i =
K∑
k=1

βkz
0
k,i + ε0i ∀i = 1, . . . , I (1)

lnp1v =
K∑
k=1

δkz
1
k,v + ε1v ∀v = 1, . . . , V (2)

In equation 1, lnp0i denotes the log of price of item i in period 0, z0k,i refers to the

value of characteristic k for item i in period 0, and ε0i is the error term assumed to be

i.i.d. with zero mean and constant variance. In equation 2, the notations have similar

interpretations for item v in period 1. The first characteristics in both the equations,

z01 and z11 , take the value of 1 for all observations, indicating that they refer to the

intercept terms in the equations. This way of denoting the intercept terms eases the

use of notations in later sections. The parameters of interest for item i in period 0 and

item v in period 1 are the following, respectively (plim refers to probability limit):

plim
(
p0i |z01 , z02 , . . . , z0k

)
= exp

(
K∑
k=1

βkz
0
k,i

)
= exp

(
θ0i
)

(3)

plim
(
p1v|z11 , z12 , . . . , z1k

)
= exp

(
K∑
k=1

δkz
1
k,v

)
= exp

(
θ1v
)

(4)

Now let us suppose that item i and item v are the same item. Then, from equations 3

and 4, the following is obtained:

plim

(
p1i
p0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (5)

This sets the parameter of interest for the price relative of item i to be exp(Θi). If any

other alternative price relatives of item i converge to exp(Θi), then these price relatives

are consistent; otherwise they are asymptotically biased.

Let us now suppose that equations 1 and 2 satisfy the classical linear regression

model assumptions, including that each of ztk is uncorrelated with disturbance εt for
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t=0,1. The ordinary least squares method (OLS) provides consistent estimates of the

parameters in equations 1 and 2. That is, if β̂k are estimates of βk, and δ̂k are estimates

of δk, plim(β̂k) = βk and plim(δ̂k) = δk, ∀k = 1, . . . , K. The predicted prices obtained

from both equations are also consistent.4 That is, if p̂0i refers to the predicted price of

item i in period 0, then the probability limit of p̂0i is:5

plim
(
p̂0i |z01 , z02 , . . . , z0k

)
= plim

(
exp

(
K∑
k=1

β̂kz
0
k,i

))
= exp

(
θ0i
)

(6)

Turning now to period 1, if p̂1v is the predicted price of item v, then the probability

limit of p̂1v is:

plim
(
p̂1v|z11 , z12 , . . . , z1k

)
= plim

(
exp

(
K∑
k=1

δ̂kz
1
k,v

))
= exp

(
θ1v
)

(7)

Now hedonic imputation methods are applied in order to obtain the price relative

between periods 0 and 1 for item i sold in period 0 (hence, item i is a disappearing

item). The single imputation price relative is as follows:

p̂1i
p0i

=
exp

(∑K
k=1 δ̂kz

0
k,i

)
exp

(∑K
k=1 βkz

0
k,i + ε0i

) =
K∏
k=1

exp
(
δ̂k − βk

)
z0k,i × exp

(
−ε0i
)

(8)

where p̂1i in the numerator is obtained by multiplying the estimated coefficients of the

characteristics of period 1 with the value of the corresponding characteristics in period 0.

The regression function specified in equation 1 is substituted for p0i in the denominator.

In the double imputation method, p̂0i is used instead of p0i . The double imputation price

relative for the same item i is obtained as follows:

4This can be shown by using the rules of probability limits. The rules are: (1) if g(xn) is a continuous
function that is not a function of n, plim (g (xn)) = g (plim (xn)); and (2) if xn and yn are random
variables with plim (xn) = c and plim (yn) = d, then plim (xn ± yn) = c ± d, plim (xn × yn) = c × d
and plim (xn ÷ yn) = c÷d (for d 6= 0). For other rules of probability limits, see, for example, appendix
C, Wooldridge (2009).

5Goldberger (1968) shows that even if β̂ is an unbiased estimator of β, because of taking a non-

linear transformation, exp(β̂) is a biased estimator of exp(β). To correct for the bias, Kennedy (1981)

suggests the use of [exp(β̂+0.5σ̂2)] for the estimator of exp(β), where σ̂2 is an estimate of the variance

of β̂. However, in this paper the correction factor for this bias is not incorporated in the derivation.
This does not have any impact on the results of the paper.
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p̂1i

p̂0i
=
exp

(∑K
k=1 δ̂kz

0
k,i

)
exp

(∑K
k=1 β̂kz

0
k,i

) =
K∏
k=1

exp
(
δ̂k − β̂k

)
z0k,i (9)

By using the assumption of equation 1 that ε0i is an i.i.d with a zero mean,

plim (−ε0i ) = 0. Hence, the plim of the single imputation price relative:

plim

(
p̂1i
p0i

)
=

K∏
k=1

exp
[
plim

(
δ̂k

)
− plim (βk)

]
z0k,i

Substituting equations 3 and 7, the following is obtained:

plim

(
p̂1i
p0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (10)

that is, the single imputation price relatives estimated for disappearing items using

the imputed prices from equation 2 are consistent estimates of the true price relatives.

Furthermore, it can be shown that for the double imputation price relatives:

plim

(
p̂1i

p̂0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (11)

The above derivation indicates that both p̂1i /p
0
i and p̂1i /p̂

0
i provide the correct measure

of the price change of item i between periods 0 and 1 in the sense that they converge to

the true price relative, exp(Θi). This implies that if there is no potential for omission

of characteristics, one can use either the single or the double imputation method. The

next section shows that the prevalence of omitted characteristics shifts the preference

towards the double imputation method.

3.2 Coefficient stability conditions required to attain consis-

tency in the imputation methods

Let Z = [Za Zb] = [z1 z2 ... zs; zs+1 ... zK], where Z includes all the char-

acteristics specified in equations 1 and 2. Let us now suppose that Za contains the set
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of observed characteristics and Zb contains the set of unobserved characteristics. Thus,

the log of prices is now estimated on the characteristics z1, z2, . . . , zs for both periods 0

and 1. A further assumption is made that each of the unobserved characteristics is cor-

related with the set of observed characteristics. This implies that the models estimated

on the reduced set of characteristics suffer from the omitted variable problem, leading

to biased and inconsistent estimates of the coefficients and predicted prices.6

Now, using the ordinary least squares (OLS) method, the following predicted log

price for item i is obtained:

l̃np0i =
s∑

j=1

ξ̃jz
0
j,i (12)

Let γ0j,k = E(z0k) for j = 1 (i.e. for the intercept term) and ∀k = s + 1, . . . , K, and

γ0j,k = Cov(z0j , z
0
k)/V ar(z0j ), ∀j = 2, . . . , s and ∀k = s+ 1, . . . , K. The probability limit

of l̃np0i in equation 12 is taken, and E(u) = 0 and Cov(z0j , u) = 0, ∀j = 1, . . . , s are set

to get the following:

plim(l̃np0i ) =
s∑

j=1

βjz
0
j,i +

s∑
j=1

K∑
k=s+1

γ0j,kβkz
0
j,i (13)

Then,
∑K

k=s+1 βkz
0
k,i is added to the first term and subtracted from the second term of

the right-hand side of the equation to get:

plim(l̃np0i ) =
K∑
j=1

βjz
0
j,i +

K∑
k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,i − z0k,i

)

= θ0i +
K∑

k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,i − z0k,i

)
(14)

Consistency requires that the term
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
equals zero.

This term is zero if ∀k = s + 1, . . . , K either βk = 0 or
∑s

j=1 γ
0
j,kz

0
j,i − z0k,i = 0.

6For a detailed derivation of omitted variable bias in a multi-variable context, see, for example,
Johnston (1984).
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But βk 6= 0 since by assumption z0k is a relevant characteristic. The other term∑s
j=1 γ

0
j,kz

0
j,i − z0k,i = 0, if for item i, z0k is a perfect linear combination of the included

characteristics, i.e. z0k,i = γ1,kz
0
1,i + γ2,kz

0
2,i + . . .+ γs,kz

0
s,i. This may happen for an item

for a given z0k, but is unlikely to happen for ∀k = s + 1, . . . , K. Now let us consider

all items, i = 1, . . . , I. For all i,
∑s

j=1 γ
0
j,kz

0
j,i − z0k,i implies that z0k is a perfect linear

combination of the included characteristics. This is a redundant condition because if a

characteristic is a perfect linear combination of the other characteristics then it would

not have entered in the model specified in equation 1. There is another possibility

that since the term
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
involves summation, and there are

positive and negative numbers, these numbers somehow may cancel each other out.

However, there is no justification for this to happen. Hence, it can be concluded that:

plim(l̃np0i ) 6= θ0i

that is, l̃np0i is an inconsistent estimator of θ0i .

For period 1, let us denote the OLS estimates of the coefficient of the z1j charac-

teristic by η̃j. The imputed price of item i with the values of the characteristics set

z01 , z
0
2 , . . . , z

0
j is l̃np1i =

∑s
i=1 η̃jz

0
j,i. Note that item i is sold in period 0, not in period

1. Let γ1j,k = E(z1k) for j = 1 and ∀k = 1, . . . , K, and γ1j,k = Cov(z1j , z
1
k)/V ar(z1j ),

∀j = 2, . . . , s and ∀k = 1, . . . , K. Following the similar operations shown in equations

13 and 14, it can be shown that:

plim(l̃np1i ) = θ1i +
K∑

k=s+1

δk

(
s∑

j=1

γ1j,kz
0
j,i − z0k,i

)
, (15)

where, following on from the explanation provided for equation 14, it can be shown that

the term
∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= 0. This is mainly because δk 6= 0 and z0k is

not a perfect linear combination of the set of included characteristics, ∀k = s+1, . . . , K.

Hence:

plim(l̃np1i ) 6= θ1i

11



that is, l̃np1i is an inconsistent estimator of θ1i .

The single and double imputation price relatives estimated from models with re-

duced sets of characteristics are p̃1i /p
0
i and p̃1i /p̃

0
i , respectively. In order to derive the

conditions required for the price relatives to be consistent with respect to exp(Θi), their

probability limits are taken. The following is the derivation for the single imputation

method:

plim

(
p̃1i
p0i

)
= plim

exp
(
l̃np1i

)
exp

(
lnp0i

)
 =

exp
[
plim

(
l̃np1i

)]
exp

[
plim

(
lnp0i

)]
By substituting equation 3 in the denominator and equation 15 in the numerator, and

setting exp(θ1i )/exp(θ
0
i ) = exp(Θi) (see equation 5), the following is obtained:

plim

(
p̃1i
p0i

)
=

exp
[
θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp [θ0i ]

= exp (Θi)× exp

(
K∑

k=s+1

δk

(
s∑

j=1

γ1j,kz
0
j,i − z0k,i

))
(16)

Now the term
∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= 0. The explanation is the same as is

provided in equations 14 and 15. Hence:

plim

(
p̃1i
p0i

)
6= exp (Θi)

i.e. the single imputation method estimates inconsistent price relatives.

The bias is given by exp
(∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

))
. The direction and

magnitude of the bias depend on a number of factors, including some unknown values

(for example, γ1j,k). Hence, in practice it is impossible to find the direction and magni-

tude of bias corresponding to each of the price relatives. Moreover, Silver and Heravi

(2005), Haan (2007), and Melser and Syed (2008) argue that the pricing patterns be-
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tween new and disappearing items may vary systematically. This difference in pricing

patterns may lead to a systematic difference in the estimated residuals obtained from

hedonic regressions corresponding to new and disappearing items, implying that the

biases do not offset each other. It should also be noted that the bias depends on the

parameters of period 1 only, i.e. the period for which the price of item i is imputed,

implying that the expressions for bias vary between the single and double imputation

methods.

Now, in order to derive the conditions for consistency for the double imputation

method, the probability limit of the double imputation price relative, p̃1i /p̃
0
i , is taken:

plim

(
p̃1i

p̃0i

)
= plim

[
s∏

j=1

exp
(
δ̃j − β̃j

)
z0j,i

]

Using the rules of probability limits mentioned earlier, the following is obtained:

plim

(
p̃1i

p̃0i

)
=
plim

[∏s
j=1 exp

(
δ̃jz

0
j,i

)]
plim

[∏s
j=1 exp

(
β̃jz0j,i

)] =
exp

[
plim

(∑s
j=1 δ̃jz

0
j,i

)]
exp

[
plim

(∑s
j=1 β̃jz

0
j,i

)]
By substituting equations 14 and 15, it can be shown that:

plim

(
p̃1i

p̃0i

)
=

exp (θ1i )

exp (θ0i )
×
exp

[∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp

[∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)] (17)

Hence, it can be seen from equation 17 that:

If
exp

[∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp

[∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)] = 1 (18)

or
K∑

k=s+1

δk(
s∑

j=1

γ1j,kz
0
j,i − z0k,i) =

K∑
k=s+1

βk(
s∑

j=1

γ0j,kz
0
j,i − z0k,i) (19)

13



then

plim

(
p̃1i

p̃0i

)
=
exp(θ1i )

exp(θ0i )
= exp(Θi)

The magnitude of the bias is given by the difference between between 1 and the

left-hand side of equation 18. If the difference is positive, then the model overestimates

P 1
i /P

0
i , and if the difference is negative, the model underestimates P 1

i /P
0
i . In the next

section, a formula for the empirical estimates of the magnitude of bias is derived.

Equation 19 is referred to as the stability condition because consistency requires the

stability of two sets of parameters. First, the regression coefficients of the unobserved

characteristics in the hedonic equations are required to be the same across periods. If

they are not the same across periods, then this may bias the hedonic price indexes.

In appendix A, similar derivations are undertaken for the level hedonic models. It is

shown that the exact expressions of the stability conditions or the sources of bias differ

between the log and the level hedonic models (compare equations 19 and A.5).

The second set of parameters is related to the regression coefficients obtained

when each of the unobserved characteristics is regressed on each of the observed char-

acteristics. These regression coefficients are required to be the same across periods, i.e.

γ0j,k = γ1j,k, ∀j = 1, . . . , s and ∀k = s+1, . . . , K. The second set of regression coefficients

reflect how each of the excluded characteristics is configured with the set of included

characteristics.7 In the next section, a technique is derived to empirically test whether

equation 19 holds. This derivation will also provide a better intuitive understanding of

what equation 19 implies.

7Diewert et al. (2008), while comparing the time-dummy and hedonic imputation methods, find
that the change in the configuration of characteristics between the comparison periods is one of the
factors that determine the difference in the indexes obtained from the time-dummy and the hedonic
imputation methods.
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3.3 Using matched items to estimate the magnitude of omit-

ted variable bias

Let us now denote the items that were sold in both periods, the matched items, by

m = 1, . . . ,M . For these items, both the price relatives—ratios of observed prices and

double imputation price relatives—are available. This enables the evaluation of the

performance of the estimated hedonic models—the closer the estimated price relatives

to the observed price relatives, the lower is the omitted variable bias contaminating the

estimated price relatives.

It should be noted that the matched items dominate the total number of items sold

between two adjacent periods.8 For the purpose of constructing price indexes, prices

are usually compared between two adjacent months or between two adjacent quarters.

Benkard and Bajari (2005) report that more than 90% of personal computer models

observed in one month are also observed in the next month, though they argue at the

same time that it is impossible to obtain a reliable measure of price comparison using

the matched models because more than 90% of the models drop out within a period of

one year. Similarly, from table 2 of Silver and Heravi (2005), it can be calculated that

typically more than 95% of models are matched models between two adjacent months.9

Following from equation 12, it is possible to write the equation for period 0 as

follows:

lnp0m = ˜lnp0m + ẽ0m ∀m = 1, . . . ,M (20)

where ẽ0m is the estimated error when lnp0m is estimated on the reduced set of charac-

teristics. By rearranging terms in equation 20 and taking the probability limits of both

sides of the equation, the following is obtained:

8An exception is the housing market.
9It should be emphasized that although the majority of items are matched between two consecutive

months, this does not undermine the matching problem caused by new and disappearing items. This
is because, as the evidence shows, the problem becomes severe—both in terms of the turnover rates
and the resulting bias in indexes—because of the cumulative effect over a period of time.
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plim
(
ẽ0m

)
= plim

(
lnp0m

)
− plim

( ˜lnp0m) ∀m = 1, . . . ,M

By substituting plim (lnp0m)=θ0m (see equation 3) and equation 14 for plim
( ˜lnp0m), the

following is obtained:

plim
(
ẽ0m

)
= −

K∑
k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,m − z0k,m

)
∀m = 1, . . . ,M (21)

Similarly, for period 1, the following is obtained:

plim
(
ẽ1m

)
= −

K∑
k=s+1

δk

(
s∑

j=1

γ1j,kz
1
j,m − z1k,m

)
∀m = 1, . . . ,M (22)

where ẽ1m is the estimated error when lnp1m is estimated on the reduced set of charac-

teristics. Equations 4 and 15 are used for the derivation of equation 22.

Note that equations 21 and 22 refer to matched item m, implying that each of the

characteristics of item m for the two periods are the same, i.e. z0k,m = z1k,m = zk,m,

∀k = 1, . . . , K. This implies that equations 21 and 22 are simply the negative of the

left- and right-hand sides of equation 19, respectively, when equation 19 corresponds to

item m, ∀m = 1, . . . ,M . Thus, the bias in equation 18 can be estimated by:

exp
(
ẽ0m

)
exp

(
ẽ1m

) − 1 (23)

If
[
exp

(
ẽ0m

)
/exp

(
ẽ1m

)
− 1
]

is greater than 0, then the double imputation overesti-

mates the true price relative of item m; if the difference is less than 0, the double impu-

tation underestimates the true price relative. Among alternative models with different

sets of characteristics, the model that minimizes |exp
(
ẽ0m

)
/exp

(
ẽ1m

)
− 1| estimates

price relatives that are contaminated the least by the omission of relevant characteris-

tics. In a similar way, in the case of the single imputation method the bias in equation

16 can be estimated by:
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1

exp
(
ẽ1m

) − 1 (24)

3.4 Plausibility of equal correlations between the character-

istics across periods

Let us assume that the regression coefficients between the observed and unobserved

characteristics are equal between the two periods, i.e. γ0j,k = γ1j,k, ∀j = 1, . . . , s and

k = s+ 1, . . . , K. Hence, in equation 19,
∑s

j=1 γ
1
j,kz

0
j,i− z0k,i =

∑s
j=1 γ

0
j,kz

0
j,i− z0k,i = w0

k,i.

Thus, the stability condition in equation 19 reduces to:

K∑
k=s+1

δkw
0
k,i =

K∑
k=s+1

βkw
0
k,i

or

δk = βk, ∀k = s+ 1, . . . , K (25)

This implies that if the hedonic models are estimated for the log of prices, the con-

sistency of the estimated price relatives requires that the coefficients of the same un-

observed characteristic be equal between the comparison periods, provided that there

has not been any significant change in the configuration of the characteristics of items

between the comparison periods.

The assumption of the equality of the regression coefficients may be more plausible

in one market over another. Let us consider the housing market. For the housing market

this assumption would mean, say with regard to the relationship between the number

of bedrooms and lot size, that for a given number of bedrooms, the average lot size is

the same across periods. The housing market may be characterized by a high degree of

sluggishness from the supply side, where transactions of old houses by far dominate the

market. The matching problem arises because every house is different, but it may be

reasonable to assume that the configuration between the characteristics remains stable

in the housing market between two adjacent periods (for example, between two quarters

17



of a year). However, this assumption is unlikely to hold true in markets characterized

by a rapid rate of technological innovation, such as the personal computer market. This

is because technological advancement occurs at different rates with regard to different

features of personal computers. Thus, quality change is reflected in the change in the

configuration of characteristics, such as between the characteristics ‘CPU speed’ and

‘hard-disk size’.

Perhaps the housing market and the personal computer market are two extreme

examples in terms of the expected nature of qualitative change between two adjacent

periods. There are many other products where the matching problem arises in the

construction of indexes and where the changes in the configuration of characteristics

are not as pronounced as in the personal computer market, yet not as rigid as in the

housing market. This may include markets for many electronic products other than

computers, as well as the used car market and the markets for supermarket products

such as laundry products, beverages, etc. In these markets, qualitative changes may

occur in a few characteristics, and the stability condition indicates that in order to attain

consistency these characteristics should be included in the model. Testing γ0j,k = γ1j,k in

different markets may be an interesting area of further research.

4. Monte Carlo Simulations and Unbiased Price

Relatives

The analytical results in the previous section are obtained for large samples (or as

asymptotic properties) in order to estimate consistent price relatives. Now the question

is: do the results also hold for finite or small samples, and equivalently apply in order

to estimate unbiased price relatives?10 In this section, Monte Carlo simulations are

conducted: first, to check whether equation 18 or 19 which produces consistent price

10Note that it is more desirable to estimate unbiased and consistent estimators than to estimate
consistent but biased estimators. The analytical results focus on consistency instead of unbiasedness
because the derivations involving ratios and multiplications of random variables are relatively straight-
forward, with probability limits rather than expectational operators.
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relatives in the case of the double imputation method, produces unbiased price relatives

at the same time; and, second, to estimate the bias specified in equations 23 and

24 for both small and large samples. The simulations are conducted with different

specifications of the true and estimated hedonic models.

In period 0, the true model is obtained from the process lnp
(0)
i = 0.9 + 0.9x1,i +

0.9x2,i + εi and, in period 1, the true model is obtained from the process lnp
(1)
i =

0.9 + κ1x1,i + κ2x2,i + εi. εi is drawn from a normal distribution, εi ∼ N(0, 1). The

simulation exercise includes changing κ1 and κ2 to produce different scenarios. The

only two characteristics, x1 and x2, are drawn from a multivariate normal distribution

with means π1 and π2, variances ω2
1 and ω2

2, respectively, and covariance ρ12. For the

matched items, which account for 90% of the total items in periods 0 and 1, the means

and the variances are [π1, π2, ω
2
1, ω

2
2, ρ12] = [3, 3, 1, 1, 0.5].

The disappearing and new items account for 10% of the items in periods 0 and

1, respectively. The technological innovation occurs through changes in one of the

characteristics, x1 or x2, which may be reflected in the simulations through changes in

the means and marginal valuations of x1 or x2. For example, if the innovation occurs

through x1, then the mean of x1 for the disappearing items (πd
1) may be expected to be

lower than the mean of x1 for the matched items (π1), which in turn may be expected

to be lower than the mean of x1 for the new items (πn
1 ). Examples of x1, in the case

of computers, are the RAM or hard disk sizes of computers. Another way to look at

innovation is through cost savings. If the cost saving occurs through x1 then this may

be reflected in the simulation through a fall in κ1 between period 0 and 1.

The models in period 0 and 1 are estimated on an intercept and x1, hence the mod-

els omit x2. Whether x1 is the stable or the unstable characteristic depends on whether

πd
1 or πn

1 is different from 3 or whether κ1 is different from 0.9. Let [κ1, κ2] = [0.1, 0.9],

i.e. the marginal valuation of x1 falls in period 1, while the marginal valuation of x2

remains the same. Furthermore, let [πd
1 , π

n
1 ] = [3, 3] and [πd

2 , π
n
2 ] = [3, 3], i.e. the mean

values of the characteristics remain the same between the disappearing, matched and

new items. In this example, the unstable characteristic is included and the stable char-
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acteristic is excluded. Hence, according to equations 18 or 19, the double imputation

method is expected to produce consistent price relatives.

In order to check for unbiasedness, 8 Monte Carlo simulations corresponding to

10×3k−1 iterations for k = 1, . . . , 8, and each having a sample of 1000 observations, are

conducted. The means of the estimates of equation 23 converge towards 0, implying

that the double imputation price relatives are unbiased (see top part of columns 2 and

3 of table 1). In order to check for consistency, the sample size is increased by 10×3k−1

observations for k = 1, . . . , 8, while the number of iterations is kept fixed at 10. The

results show that the mean and variance converge to zero rapidly with the increase in

sample size (see the bottom part of columns 2 and 3 in table 1). Thus the simulation

results show that the double imputation price relatives are unbiased and consistent.11

Insert table 1 here.

The same estimates corresponding to equation 24, i.e. for the single imputation

method, are shown in columns 4 and 5 of table 1. The results show that there is no

tendency for the mean to converge to 0 with the increase in the number of iterations,

and the mean and variance to converge to 0 with the increase in the sample size. This

provides evidence that the single imputation price relatives are biased and inconsistent.

Now let [πd
1 , π

n
1 ] = [1, 5], [πd

2 , π
n
2 ] = [3, 3] and [κ1, κ2] = [0.1, 0.9]. In this case, the

technological progress occurs through the provision of an increasing number of x1 for a

given x2, and through cost savings in x1. Because of differing means, the variance of x1

differs between periods 0 and 1. This leads the correlation coefficient to change between

the two periods (i.e. γ0j,k 6= γ1j,k in equation 19). The simulation results provided in

columns 3 and 4 of table 2 show no tendency for the estimates of the means of equation

23 to converge to zero, implying that the double imputation method estimates biased

price relatives.12 The same conclusion is drawn with regard to equation 24 for the single

11If a large difference is created at the initial stage by setting a large difference between κ2 and 0.9,
between π1 and π2 and by increasing the variance of εi, the results with regard to convergence are the
same.

12If the change in mean value had happened with x2, then the double imputation price relatives
would have been consistent.
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imputation method (see columns 5 and 6 of table 2). Similarly, if [κ1, κ2] = [0.9, 0.1],

i.e. the omitted characteristic sees a drop in the marginal valuation, both the single and

double imputation price relatives are biased and inconsistent (see bottom part of table

2). However, importantly, the biases are found to be higher for the single imputation

method than for the double imputation method.13

Insert table 2 here.

With regard to the time-dummy method, it can be easily shown that the bias

generated by the time-dummy method is substantial even in a trivial case where the

double imputation method produces unbiased and consistent price indexes. Let us

suppose that all the items are matched between periods 0 and 1. Furthermore, let us

suppose that [κ1, κ2] = [0.9, 0.9]. As before, the models in both periods are estimated

on intercept and x1. It can be shown that the Jevons index constructed from taking the

geometric mean of the estimated double imputation price relatives is 1, i.e. the double

imputation method provides the correct measure of price change. On the contrary, the

time-dummy index—which is equivalent to the Jevons index—provides a biased estimate

of price change, where the magnitude of bias depends on the correlation between x2

and the time dummy. In the above example, even if the correlation is as low as 0.1, the

time-dummy index overestimates the price change by 9%.

5. Implications for Applications

There are a number of important implications of the results with regard to the appli-

cation of hedonic methods in the construction of quality adjusted indexes. First, if the

omitted variable bias is one of the main problems inhibiting the application of hedo-

nic methods, the single imputation method does not offer a better solution than the

time-dummy method. Both methods are equally demanding of the characteristics infor-

mation that is required to produce unbiased and consistent estimates of price change.

The double imputation method may produce unbiased and consistent estimates of price

13The results with regard to consistency are similar to that of unbiasedness.
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change even in the presence of a large number of unobserved characteristics. Also, the

simulation results show that even if the bias exists, the magnitude of bias is in general

lower in the double imputation than in the single imputation price relatives.

Second, the data requirement shifts from ‘all price determining characteristics’ to

‘price determining characteristics that drive the price changes between the comparison

periods’. If the log model is the preferred model, the data compilers may focus on

collection of information on the characteristics whose contribution, both in terms of

their marginal values to price and how they are configured with the other characteristics,

is expected to change between the periods. This may, on the one hand, reduce the data

requirement by a large amount while, on the other hand, make it possible to obtain

estimates that are ‘near consistent’, if not consistent.

The third implication is related to the second implication. The idea of what

constitutes an important variable differs between the single regression equation (hedonic

or otherwise) and the hedonic double imputation method. In the case of single regression

equations, an important variable is one that has a relatively large explanatory power,

whereas in the case of the hedonic imputation method an important variable is one

that has a large influence on the price change between the periods. In both cases, the

important variables may coincide in many markets but not necessarily in all markets.

Fourth, the stability conditions on the unobserved characteristics, conditions which

are required for unbiasedness and consistency, differ between the log and level models

(the derivation for the level hedonic models is provided in appendix A). In general, while

log models may be preferable where price changes are driven by a selected number of

characteristics, level models may be appropriate where a large number of characteristics

coefficients are expected to change by the same proportion. For example, the log models

may be appropriate for electronic markets because technological advancement may be

driven by a selected number of features in a particular electronic product, and the

level models may be more appropriate for the housing market because price is driven

by expectations of the future flow of income, where the expectations formed in two

adjacent periods may be similar with regard to the different physical features of a
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house.

Finally, in recent years a number of studies comparing the time-dummy and hedo-

nic imputation methods have argued in favor of using the hedonic imputation method

(see, for example, Silver and Heravi, 2007; Diewert et al., 2008). This is because the

hedonic imputation method allows the characteristics coefficients to vary, whereas the

time-dummy method constrains them to remain fixed between the periods. These stud-

ies analyze the observed characteristics only and do not draw any distinction between

the single and double imputation methods. In contrast, the current study focusses on

the unobserved characteristics and conducts a separate analysis on the single and double

imputation methods based on the omitted variable bias generated by the unobserved

characteristics. Although the methodological approach is different, the conclusion of

this study accords with the recent literature which argues in favor of using hedonic

imputation methods. Moreover, this study finds justification in favor of the double

imputation method. This is because the double imputation method has the potential

to address the omitted bias problem in hedonic regressions with the careful choice of

limited but selected characteristics.

6. Conclusion

In the case of single hedonic regressions, the omitted variable bias problem is simi-

lar to the problem with regressions in general, i.e. if the relevant variables that are

correlated with the included variables are omitted, the estimates are biased and incon-

sistent. However, this is not the case for the price relatives estimated from the double

imputation method, which involves the ratio of two hedonic regressions, because of the

potential of biases being canceled out. This study has taken a systematic look at the

omitted variable problem of hedonic imputation methods by analyzing the asymptotic

bias generated by each of the hedonic regressions. The study analyzed the log and level

hedonic models for both the single and double imputation methods.

The study found that the single imputation method does not have any advantage
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over the time-dummy method in terms of dealing with the omitted variable problem.

If the hedonic regressions exclude any relevant price determining characteristics, both

methods produce biased and inconsistent estimates. The double imputation method has

a clear advantage in this case. This study found that double imputation price relatives

can be unbiased and consistent even if the important price determining characteristics

corresponding to each of the hedonic regressions are omitted. The requirement for

attaining unbiasedness and consistency is that the contributions of the unobserved

characteristics in price determination are stable between the periods. Depending on

the products, this has the potential of reducing the data requirement, in terms of

characteristics information, by a large extent.

This study has outlined a method to estimate the magnitude of bias in the single

and double imputation price relatives for matched items. This method may indicate how

the hedonic imputation method performs in predicting the price relatives of unmatched,

i.e. new and disappearing, items. This estimated magnitude of bias may provide a

benchmark summary measure that can be used to compare the performance of different

hedonic imputation models applied to different data sets.

Appendix A: Hedonic models of price levels

Let us specify the models for periods 0 and 1 on price levels as follows:

p0i =
K∑
k=1

βkz
0
k,i + ε0i ∀i = 1, . . . , I (A.1)

p1v =
K∑
k=1

δkz
1
k,v + ε1v ∀v = 1, . . . , V (A.2)

where, similar to equations 1 and 2, z0k,i and z1k,i refer to the value of the characteristics

k for item i in periods 0 and 1, respectively. The first characteristics, z01 and z11 , are the

intercept terms of the equations. The error terms ε0i and ε1v are i.i.d. with zero mean

and constant variance. Furthermore, the classical linear regression model assumptions
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hold for models in equations A.1 and A.2.

Following similar steps to those shown in equations 6 to 11 for the log models,

it can be shown that the single and double imputation price relatives estimated from

equations A.1 and A.2 are consistent. That is:

plim

(
p̂1i
p0i

)
= plim

(
p̂1i

p̂0i

)
=
θ1i
θ0i

= Φi (A.3)

Let us now suppose that instead of estimating models on z1, . . . , zs, zs+1, . . . , zK

characteristics as specified in equations A.1 and A.2, the models are estimated on

z1, . . . , zs. Let p̃0i and p̃1v be the predicted prices obtained from the estimated mod-

els for items i and v, respectively. Following steps similar to those in equations 13 and

14, it can be shown that plim
(
p̃0i

)
= θ0i +

∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
6= θ0i , and,

following steps similar to those in equation 15, it can be shown for the imputed price

of item i in period 1 that plim
(
p̃1i

)
= θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= θ1i . Thus,

the probability limit of the single imputation price relative for item i is:

plim

(
p̃1i
p0i

)
6= θ1i
θ0i

= Φi

that is, the single imputation price relative for item i is inconsistent.

Now to the double imputation price relatives. Substituting the expressions for

plim
(
p̃0i

)
and plim

(
p̃1i

)
, the following is obtained:

plim

(
p̃1i

p̃0i

)
=
θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
θ0i +

∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

) (A.4)

Equation A.4 implies that if

θ1i
θ0i

=

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

) (A.5)

the double imputation price relatives estimated from level hedonic models are consistent.

Note that equation A.5 is the level hedonic model equivalent of equation 19 for the log
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hedonic model.

Thus to evaluate the performance of alternative models, the following is estimated

for the matched item m: (
p1m
p0m

)
−

(
ẽ1m

ẽ0m

)
(A.6)

The closer the value is towards zero, the lower is the omitted variable bias in the

estimated price relative of item m.

If γ0j,k = γ1j,k, ∀j = 1, . . . , s and k = s+1, . . . , K are set, then the stability condition

in equation A.5 reduces to:

∑s
j=1 δjzj,i∑s
j=1 βjzj,i

=

∑K
k=s+1 δkzk,i∑K
k=s+1 βkzk,i

(A.7)

Thus, the stability condition for the level models specified in equation A.7 differs from

that for the log models specified in equation 25. This implies that hypotheses about

the behavior of unobserved characteristics across periods have implications in the choice

between the level and the log models in the double imputation hedonic method.
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Table 1: Simulation Results for Double and Single Imputation Price Relatives when the
Stable Characteristic is Omitted

Simulations Double Imputation Single Imputation
κ1 = 0.1, κ2 = 0.9 κ1 = 0.1, κ2 = 0.9
Mean Variance Mean Variance

No of iterations1

10 0.0042 0.0244 0.0123 1.0064
30 0.0072 0.0313 0.8390 3.3538
90 -0.0006 0.0281 0.4580 1.5262
270 0.0016 0.0246 1.0442 3.5721
810 0.0006 0.0253 1.2725 4.1336
2460 0.0005 0.0247 1.2531 3.7287
7290 0.0004 0.0251 1.1870 3.7190
21870 0.0002 0.0255 1.2032 4.1710

Sample sizes2

100 0.0534 0.0863 0.7052 2.2129
300 -0.0204 0.0548 0.4410 0.9403
900 -0.0031 0.0192 0.4976 1.3767
2700 0.0017 0.0148 4.5119 12.9150
8100 0.0028 0.0104 1.1284 4.6546
24600 -0.0001 0.0063 2.1059 3.4185
72900 0.0012 0.0021 0.4586 2.3750
218700 -0.0002 0.0016 1.2400 2.5616
Notes: 1. Sample size=1000; 2. No. of iterations=10

Table 2: Simulation Results for Double and Single Imputation Price Relatives when the
Configuration of Characteristics Changes and the Unstable Characteristics are Omitted

Simulations No. of Double Imputation Single Imputation
Iterations Mean Variance Mean Variance

πd
1 = 1, πn

1 = 5 10 -0.0417 0.1137 0.8475 1.8530
κ1 = 0.1, κ2 = 0.9 30 0.0027 0.1593 0.4219 1.2269

90 0.0139 0.1837 0.4857 1.7682
270 0.0174 0.1386 1.5814 6.1601
810 0.0193 0.1556 1.1893 4.0624
2460 -0.0035 0.1499 1.0130 4.3506
7290 0.0029 0.1522 1.1450 4.4066
21870 0.0043 0.1490 1.1796 4.2468

πd
1 = 3, πn

1 = 3 10 0.0852 0.3870 1.1917 2.1996
κ1 = 0.9, κ2 = 0.1 30 -0.1728 0.7752 1.2507 2.5072

90 0.2815 0.8591 0.3956 1.8394
270 0.2448 0.8736 0.8178 2.3800
810 0.2609 1.1236 0.7106 2.4986
2460 0.2692 0.9780 0.5711 1.8508
7290 0.2649 0.9805 0.6481 2.1202
21870 0.2751 0.9913 0.6563 2.1727

Note: Sample size for all simulations is 1000.
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Abstract

Hedonic regressions are prone to omitted variable bias because many of the price de-

termining characteristics are typically unobserved. The estimation of price relatives for

new and disappearing goods using hedonic imputation methods involves taking ratios

of two hedonic models corresponding to two consecutive periods. This may lead to a

situation where the omitted variable bias in one of the hedonic regressions offsets the

other. This study finds that the single imputation hedonic method estimates inconsis-

tent price relatives, while the double imputation method may produce consistent price

relatives depending on the behavior of unobserved characteristics in the comparison

periods. The study outlines a methodology to estimate the magnitude of bias in single

and double imputation price relatives. The results of this study have implications with

regard to the construction of quality adjusted indexes.
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1. Introduction

An hedonic regression model specifies the price of a variety v at time t, Pv,t, as a

function of its determining characteristics and a random error term. The most common

use of hedonic regressions has been to disentangle the quality component of price change

from the observed price change to achieve better measures of ‘pure’ inflation. Hedonic

regressions have been used for quality adjustment in price changes since Waugh (1928)

and Court (1939), with Griliches (1961) reviving interest in the methodology. Boskin

et al. (1996) consider the hedonic regression to be the most promising approach to

control for quality changes, whereas Schultze and Mackie (2002) recommend following

a cautionary approach and emphasize the need for further research. Moulton (2001)

reports that approximately 18% of the US GDP final expenditures are deflated using

price indexes that use hedonic methods and this share is expected to rise.

Price comparison of ‘like with like’ is an essential requirement in the construction

of price indexes. This requirement raises problems in many markets, including super-

market product, electronic and housing markets. For example, electronic products, such

as computers, are subject to rapid technological innovation, leading to quick product

turnovers and short life cycles. Pv,t is observed if the model v was sold in period t,

but Pv,t+1 is unobserved if the model exited out of the market before the beginning

of period t + 1. In this case, the price relative Pv,t+1/Pv,t is unobserved. In housing

markets, every house is somewhat different and the same house is unlikely to be sold

in two adjacent periods. This implies that if v refers to a particular house, either Pv,t

or Pv,t+1 is unobserved. Hedonic regressions impute these unobserved prices, and let us

estimate the price relatives of unmatched, i.e. new and disappearing, items.

Price indexes calculated from only the matched varieties, i.e. the varieties that are

sold in both t and t+ 1, and leaving out the new and disappearing varieties, suffer from

sample selection bias (Boskin et al., 1996; Pakes, 2003; Benkard and Bajari, 2005; Silver

and Heravi, 2005). For example, Silver and Heravi, using comprehensive scanner data

of five products (washing machines, dishwashers, television sets, cameras and vacuum
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cleaners), show that the sample degradation is substantial even in a short period of one

year. The percentage of models of these five products that disappeared within one year

ranged between 29% and 47%, and the decline in the sales value ranged between 5% and

18%. Pakes (2003) and Benkard and Bajari (2005) find the sample degradation to be

more severe for personal computers—by 85% and 90%, respectively, in a year—leaving

ample room for sample selection bias.

It is a common concern that hedonic regressions, largely because of the unavail-

ability of data, omit relevant characteristics. Some of these characteristics may be

correlated with the included characteristics, leading to biased and inconsistent esti-

mates.1 Over the years, many authors have explicitly or implicitly acknowledged the

omitted variable bias problem in hedonic regressions, including Court (1939), Griliches

(1961), Pakes (2003), Hulten (2003), Benkard and Bajari (2005), Triplett (2006), and

Hill and Melser (2008). However, there has been little investigation of the omitted vari-

able problem specific to hedonic regressions, and particularly to hedonic imputation

methods, beyond a general understanding of the omitted variable problem in regression

analysis.2

The study is based on the premise that omitted variable bias is a fact in hedonic

regressions. The study focusses on hedonic imputation methods, where separate hedo-

nic regressions are hypothesized for each period of price comparison. Typically, and

in this study, prices are compared between two adjacent periods. Between two such

periods, the behavior of some characteristics may remain stable, while the behavior

of other characteristics may be unstable. These two sets of characteristics, stable and

unstable, may be treated differently in the omitted variable analysis of hedonic impu-

tation methods. The conjecture of this study is that it is the unstable characteristics

that drive price change, and therefore they should be included in the model in order to

attain consistency of the estimated price relatives. The stable characteristics, though

1The minimal requirement of an estimator is ‘consistency’. For practical purposes, inconsistency
can be viewed as being the same as bias.

2There may be other sources of bias including incorrect specification of the functional forms and
measurement errors in prices. This paper addresses only the omitted variable bias problem.
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important in each period, do not drive price change and therefore may be excluded,

as far as the consistency of the estimated price relatives is concerned. That is, under

certain stability conditions the omitted variable bias corresponding to each regression

may be canceled out. This study provides detailed expression of such stability condi-

tions for, and evaluates the performance of, both the level and log hedonic models in

the single and double imputation methods.

This study analyzes the omitted variable bias generated by each hedonic regres-

sion and then extends the analysis to hedonic imputation methods. Let us suppose that

the conjecture of this paper is correct, i.e. the relevant characteristics that are stable

between the periods can be omitted without having any effect on the consistency of

the estimated price relatives. This may have an important implication with regard to

the application of hedonic methods in order to construct quality adjusted indexes. For

example, in the used car market there are many characteristics that are relevant to con-

sumers in each period, including the make and model, age of car, engine size, odometer

reading, color and fuel efficiency. However, there may be only a few characteristics

that drive price change across two consecutive periods (such as fuel efficiency during

a period of volatile oil prices), while the implicit value of other characteristics remains

stable. This implies that data compilers may focus on a few select characteristics and,

as a result, reduce cost.3

The importance of obtaining consistent price relatives in order to calculate in-

dexes should be emphasized. Price relatives, including estimated price relatives, are the

building blocks for the construction of indexes. It can be shown that elementary indexes

(such as the Carli, Dutot and Jevons indexes) constructed on consistent price relatives

are themselves consistent. Let us suppose that p̂v are consistent price relatives of their

corresponding parameters θv, ∀v = 1, . . . , V . The estimated Jevons index, comparing

prices between the period t and t + 1, is the geometric mean of all the price relatives

p̂v: P̂t,t+1 =
∏V

v=1 (p̂v)
1/V . Using a property of probability limits (plim)—that if g(.) is

3Benkard and Bajari (2005) study the omitted variable bias problem in hedonic imputation methods.
The focus of their paper, different to this paper, is on outlining an estimation methodology using factor
analysis.
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a continuous function, then plim[g(x)] = g[plim(x)]—the following is obtained:

plim
(
P̂t,t+1

)
= plim

(
V∏

v=1

(p̂v)
1/V

)
=

V∏
v=1

[plim (p̂v)]
1/V =

V∏
v=1

(θv)
1/V

that is, the estimated Jevons index is a consistent estimate of the true Jevons index.

However, if the price relatives are inconsistent, and if there is no justification that

biases tend to cancel each other out, the elementary indexes, and any other price in-

dexes, including superlative indexes such as the Fisher and Törnqvist indexes, which

are weighted averages of individual price relatives, are also inconsistent.

This paper is organized as follows. The next section introduces hedonic imputa-

tion methods and presents some observations on recent literature that compares and

contrasts different hedonic methods. In section 3, the hedonic models are specified for

the log of prices and the coefficient stability condition required to attain consistency of

estimated price relatives is derived (a concise derivation for hedonic models specified

on price levels is provided in appendix A). Section 4 shows results of Monte Carlo sim-

ulations which are conducted in order to check whether the stability condition derived

analytically for large samples also holds for small samples. Section 5 discusses the im-

plications of the findings with regard to their application. Conclusions are drawn in

section 6.

2. Time Dummy, Single and Double Imputation

Hedonic Methods

The dominant hedonic regression methods are the time-dummy hedonic method and

the hedonic imputation method. In the time-dummy method, prices are hypothesized

as a function of time dummies and the characteristics variables. The characteristics

variables play the role of ‘controlling variables’ in the regression, and the coefficients

of time dummies reflect the average price change between the periods after holding
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the characteristics constant. If a relevant characteristic is omitted that is correlated

with any of the included characteristics or the time dummies, then the estimated time-

dummy coefficients are biased and inconsistent.

In the hedonic imputation method, separate regressions are specified for each pe-

riod. The method essentially involves predictions of the left hand side variable (price

or log-price) of the hedonic regressions. The varieties of goods sold in, say, period 0 are

predicted for period 1 by putting the estimated characteristics coefficients of period 1

into the value of the characteristics of period 0. Thus, if Pv,t+1 refers to a new variety

v that appeared in the market at period t + 1, then the hedonic imputation method

imputes Pv,t, i.e. the price of variety v before it appeared in the market. Let us call

this imputed price P̂v,t. Similarly, P̂v,t+1 is estimated from a hedonic regression when

variety v disappeared from the market at period t. Once all the varieties are ‘matched’

in this way, standard price index formulas can be used.

The hedonic imputation method offers two approaches—single imputation or dou-

ble imputation approaches. In the single imputation approach, only the unobserved

price is imputed. The single imputation price relative is Pv,t+1/P̂v,t or P̂v,t+1/Pv,t, de-

pending on whether item v is a new or disappearing item. In the double imputation

approach, on the other hand, both the observed and unobserved prices are imputed,

and the estimated price relative is P̂v,t+1/P̂v,t. The imputed prices such as P̂v,t and

P̂v,t+1 are biased and inconsistent due to omission of characteristics. But the question

is whether the price relatives Pv,t+1/P̂v,t, P̂v,t+1/Pv,t or P̂v,t+1/P̂v,t are also biased and

inconsistent or can they be unbiased and consistent under particular conditions?

In the existing literature, various authors have discussed which of the single or

double imputation methods is more appropriate. Triplett (2006) favors the minimum

use of imputation on the grounds of minimizing estimation variance unless there is

reason to believe that omitted characteristics have not changed between the comparison

periods. Hill and Melser (2008) suggest that the double imputation method is preferable

because of the potential of omitted variable biases being canceled out, however, they

do not provide any formal analysis in support of their argument. Pakes (2003) does
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not find any difference between the calculated indexes for personal computers obtained

from the single and double imputation methods and, therefore, chooses to report the

indexes using the single imputation price relatives. On the other hand, van Mulligen

(2003) finds a systematic difference in indexes for personal computers, notebooks and

servers—the double imputation index lies in between the single imputation index and

the matched model index.

The current study, conducting a formal analysis on the estimators of imputation

methods, finds that the single imputation method, similar to the time-dummy method,

produces inconsistent estimates, whereas the double imputation method may produce

consistent estimates under some stability conditions related to omitted characteristics

and depending on whether the hedonic models are estimated for the log or level of

prices. Consistency may be achieved even when each of the hedonic regressions produces

inconsistent estimates, and at the same time by being less demanding on data. Because

of the high prevalence of matched items between two adjacent periods in most markets,

the study shows that it is possible to evaluate the performance of alternative models in

terms of the magnitude of omitted variable bias.

3. Hedonic Models of Log Prices

3.1 Estimation of single and double imputation price relatives

from the correctly specified models

This section begins with setting the parameters of interest and estimating the single

and double imputation price relatives from the correctly specified log hedonic models

corresponding to periods 0 and 1. The following two equations specify the hedonic

6



regressions for periods 0 and 1, respectively:

lnp0i =
K∑
k=1

βkz
0
k,i + ε0i ∀i = 1, . . . , I (1)

lnp1v =
K∑
k=1

δkz
1
k,v + ε1v ∀v = 1, . . . , V (2)

In equation 1, lnp0i denotes the log of price of item i in period 0, z0k,i refers to the

value of characteristic k for item i in period 0, and ε0i is the error term assumed to be

i.i.d. with zero mean and constant variance. In equation 2, the notations have similar

interpretations for item v in period 1. The first characteristics in both the equations,

z01 and z11 , take the value of 1 for all observations, indicating that they refer to the

intercept terms in the equations. This way of denoting the intercept terms eases the

use of notations in later sections. The parameters of interest for item i in period 0 and

item v in period 1 are the following, respectively (plim refers to probability limit):

plim
(
p0i |z01 , z02 , . . . , z0k

)
= exp

(
K∑
k=1

βkz
0
k,i

)
= exp

(
θ0i
)

(3)

plim
(
p1v|z11 , z12 , . . . , z1k

)
= exp

(
K∑
k=1

δkz
1
k,v

)
= exp

(
θ1v
)

(4)

Now let us suppose that item i and item v are the same item. Then, from equations 3

and 4, the following is obtained:

plim

(
p1i
p0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (5)

This sets the parameter of interest for the price relative of item i to be exp(Θi). If any

other alternative price relatives of item i converge to exp(Θi), then these price relatives

are consistent; otherwise they are asymptotically biased.

Let us now suppose that equations 1 and 2 satisfy the classical linear regression

model assumptions, including that each of ztk is uncorrelated with disturbance εt for
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t=0,1. The ordinary least squares method (OLS) provides consistent estimates of the

parameters in equations 1 and 2. That is, if β̂k are estimates of βk, and δ̂k are estimates

of δk, plim(β̂k) = βk and plim(δ̂k) = δk, ∀k = 1, . . . , K. The predicted prices obtained

from both equations are also consistent.4 That is, if p̂0i refers to the predicted price of

item i in period 0, then the probability limit of p̂0i is:5

plim
(
p̂0i |z01 , z02 , . . . , z0k

)
= plim

(
exp

(
K∑
k=1

β̂kz
0
k,i

))
= exp

(
θ0i
)

(6)

Turning now to period 1, if p̂1v is the predicted price of item v, then the probability

limit of p̂1v is:

plim
(
p̂1v|z11 , z12 , . . . , z1k

)
= plim

(
exp

(
K∑
k=1

δ̂kz
1
k,v

))
= exp

(
θ1v
)

(7)

Now hedonic imputation methods are applied in order to obtain the price relative

between periods 0 and 1 for item i sold in period 0 (hence, item i is a disappearing

item). The single imputation price relative is as follows:

p̂1i
p0i

=
exp

(∑K
k=1 δ̂kz

0
k,i

)
exp

(∑K
k=1 βkz

0
k,i + ε0i

) =
K∏
k=1

exp
(
δ̂k − βk

)
z0k,i × exp

(
−ε0i
)

(8)

where p̂1i in the numerator is obtained by multiplying the estimated coefficients of the

characteristics of period 1 with the value of the corresponding characteristics in period 0.

The regression function specified in equation 1 is substituted for p0i in the denominator.

In the double imputation method, p̂0i is used instead of p0i . The double imputation price

relative for the same item i is obtained as follows:

4This can be shown by using the rules of probability limits. The rules are: (1) if g(xn) is a continuous
function that is not a function of n, plim (g (xn)) = g (plim (xn)); and (2) if xn and yn are random
variables with plim (xn) = c and plim (yn) = d, then plim (xn ± yn) = c ± d, plim (xn × yn) = c × d
and plim (xn ÷ yn) = c÷d (for d 6= 0). For other rules of probability limits, see, for example, appendix
C, Wooldridge (2009).

5Goldberger (1968) shows that even if β̂ is an unbiased estimator of β, because of taking a non-

linear transformation, exp(β̂) is a biased estimator of exp(β). To correct for the bias, Kennedy (1981)

suggests the use of [exp(β̂+0.5σ̂2)] for the estimator of exp(β), where σ̂2 is an estimate of the variance

of β̂. However, in this paper the correction factor for this bias is not incorporated in the derivation.
This does not have any impact on the results of the paper.
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p̂1i

p̂0i
=
exp

(∑K
k=1 δ̂kz

0
k,i

)
exp

(∑K
k=1 β̂kz

0
k,i

) =
K∏
k=1

exp
(
δ̂k − β̂k

)
z0k,i (9)

By using the assumption of equation 1 that ε0i is an i.i.d with a zero mean,

plim (−ε0i ) = 0. Hence, the plim of the single imputation price relative:

plim

(
p̂1i
p0i

)
=

K∏
k=1

exp
[
plim

(
δ̂k

)
− plim (βk)

]
z0k,i

Substituting equations 3 and 7, the following is obtained:

plim

(
p̂1i
p0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (10)

that is, the single imputation price relatives estimated for disappearing items using

the imputed prices from equation 2 are consistent estimates of the true price relatives.

Furthermore, it can be shown that for the double imputation price relatives:

plim

(
p̂1i

p̂0i

)
=
exp (θ1i )

exp (θ0i )
= exp(Θi) (11)

The above derivation indicates that both p̂1i /p
0
i and p̂1i /p̂

0
i provide the correct measure

of the price change of item i between periods 0 and 1 in the sense that they converge to

the true price relative, exp(Θi). This implies that if there is no potential for omission

of characteristics, one can use either the single or the double imputation method. The

next section shows that the prevalence of omitted characteristics shifts the preference

towards the double imputation method.

3.2 Coefficient stability conditions required to attain consis-

tency in the imputation methods

Let Z = [Za Zb] = [z1 z2 ... zs; zs+1 ... zK], where Z includes all the char-

acteristics specified in equations 1 and 2. Let us now suppose that Za contains the set
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of observed characteristics and Zb contains the set of unobserved characteristics. Thus,

the log of prices is now estimated on the characteristics z1, z2, . . . , zs for both periods 0

and 1. A further assumption is made that each of the unobserved characteristics is cor-

related with the set of observed characteristics. This implies that the models estimated

on the reduced set of characteristics suffer from the omitted variable problem, leading

to biased and inconsistent estimates of the coefficients and predicted prices.6

Now, using the ordinary least squares (OLS) method, the following predicted log

price for item i is obtained:

l̃np0i =
s∑

j=1

ξ̃jz
0
j,i (12)

Let γ0j,k = E(z0k) for j = 1 (i.e. for the intercept term) and ∀k = s + 1, . . . , K, and

γ0j,k = Cov(z0j , z
0
k)/V ar(z0j ), ∀j = 2, . . . , s and ∀k = s+ 1, . . . , K. The probability limit

of l̃np0i in equation 12 is taken, and E(u) = 0 and Cov(z0j , u) = 0, ∀j = 1, . . . , s are set

to get the following:

plim(l̃np0i ) =
s∑

j=1

βjz
0
j,i +

s∑
j=1

K∑
k=s+1

γ0j,kβkz
0
j,i (13)

Then,
∑K

k=s+1 βkz
0
k,i is added to the first term and subtracted from the second term of

the right-hand side of the equation to get:

plim(l̃np0i ) =
K∑
j=1

βjz
0
j,i +

K∑
k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,i − z0k,i

)

= θ0i +
K∑

k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,i − z0k,i

)
(14)

Consistency requires that the term
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
equals zero.

This term is zero if ∀k = s + 1, . . . , K either βk = 0 or
∑s

j=1 γ
0
j,kz

0
j,i − z0k,i = 0.

6For a detailed derivation of omitted variable bias in a multi-variable context, see, for example,
Johnston (1984).
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But βk 6= 0 since by assumption z0k is a relevant characteristic. The other term∑s
j=1 γ

0
j,kz

0
j,i − z0k,i = 0, if for item i, z0k is a perfect linear combination of the included

characteristics, i.e. z0k,i = γ1,kz
0
1,i + γ2,kz

0
2,i + . . .+ γs,kz

0
s,i. This may happen for an item

for a given z0k, but is unlikely to happen for ∀k = s + 1, . . . , K. Now let us consider

all items, i = 1, . . . , I. For all i,
∑s

j=1 γ
0
j,kz

0
j,i − z0k,i implies that z0k is a perfect linear

combination of the included characteristics. This is a redundant condition because if a

characteristic is a perfect linear combination of the other characteristics then it would

not have entered in the model specified in equation 1. There is another possibility

that since the term
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
involves summation, and there are

positive and negative numbers, these numbers somehow may cancel each other out.

However, there is no justification for this to happen. Hence, it can be concluded that:

plim(l̃np0i ) 6= θ0i

that is, l̃np0i is an inconsistent estimator of θ0i .

For period 1, let us denote the OLS estimates of the coefficient of the z1j charac-

teristic by η̃j. The imputed price of item i with the values of the characteristics set

z01 , z
0
2 , . . . , z

0
j is l̃np1i =

∑s
i=1 η̃jz

0
j,i. Note that item i is sold in period 0, not in period

1. Let γ1j,k = E(z1k) for j = 1 and ∀k = 1, . . . , K, and γ1j,k = Cov(z1j , z
1
k)/V ar(z1j ),

∀j = 2, . . . , s and ∀k = 1, . . . , K. Following the similar operations shown in equations

13 and 14, it can be shown that:

plim(l̃np1i ) = θ1i +
K∑

k=s+1

δk

(
s∑

j=1

γ1j,kz
0
j,i − z0k,i

)
, (15)

where, following on from the explanation provided for equation 14, it can be shown that

the term
∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= 0. This is mainly because δk 6= 0 and z0k is

not a perfect linear combination of the set of included characteristics, ∀k = s+1, . . . , K.

Hence:

plim(l̃np1i ) 6= θ1i

11



that is, l̃np1i is an inconsistent estimator of θ1i .

The single and double imputation price relatives estimated from models with re-

duced sets of characteristics are p̃1i /p
0
i and p̃1i /p̃

0
i , respectively. In order to derive the

conditions required for the price relatives to be consistent with respect to exp(Θi), their

probability limits are taken. The following is the derivation for the single imputation

method:

plim

(
p̃1i
p0i

)
= plim

exp
(
l̃np1i

)
exp

(
lnp0i

)
 =

exp
[
plim

(
l̃np1i

)]
exp

[
plim

(
lnp0i

)]
By substituting equation 3 in the denominator and equation 15 in the numerator, and

setting exp(θ1i )/exp(θ
0
i ) = exp(Θi) (see equation 5), the following is obtained:

plim

(
p̃1i
p0i

)
=

exp
[
θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp [θ0i ]

= exp (Θi)× exp

(
K∑

k=s+1

δk

(
s∑

j=1

γ1j,kz
0
j,i − z0k,i

))
(16)

Now the term
∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= 0. The explanation is the same as is

provided in equations 14 and 15. Hence:

plim

(
p̃1i
p0i

)
6= exp (Θi)

i.e. the single imputation method estimates inconsistent price relatives.

The bias is given by exp
(∑K

k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

))
. The direction and

magnitude of the bias depend on a number of factors, including some unknown values

(for example, γ1j,k). Hence, in practice it is impossible to find the direction and magni-

tude of bias corresponding to each of the price relatives. Moreover, Silver and Heravi

(2005), Haan (2007), and Melser and Syed (2008) argue that the pricing patterns be-

12



tween new and disappearing items may vary systematically. This difference in pricing

patterns may lead to a systematic difference in the estimated residuals obtained from

hedonic regressions corresponding to new and disappearing items, implying that the

biases do not offset each other. It should also be noted that the bias depends on the

parameters of period 1 only, i.e. the period for which the price of item i is imputed,

implying that the expressions for bias vary between the single and double imputation

methods.

Now, in order to derive the conditions for consistency for the double imputation

method, the probability limit of the double imputation price relative, p̃1i /p̃
0
i , is taken:

plim

(
p̃1i

p̃0i

)
= plim

[
s∏

j=1

exp
(
δ̃j − β̃j

)
z0j,i

]

Using the rules of probability limits mentioned earlier, the following is obtained:

plim

(
p̃1i

p̃0i

)
=
plim

[∏s
j=1 exp

(
δ̃jz

0
j,i

)]
plim

[∏s
j=1 exp

(
β̃jz0j,i

)] =
exp

[
plim

(∑s
j=1 δ̃jz

0
j,i

)]
exp

[
plim

(∑s
j=1 β̃jz

0
j,i

)]
By substituting equations 14 and 15, it can be shown that:

plim

(
p̃1i

p̃0i

)
=

exp (θ1i )

exp (θ0i )
×
exp

[∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp

[∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)] (17)

Hence, it can be seen from equation 17 that:

If
exp

[∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)]
exp

[∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)] = 1 (18)

or
K∑

k=s+1

δk(
s∑

j=1

γ1j,kz
0
j,i − z0k,i) =

K∑
k=s+1

βk(
s∑

j=1

γ0j,kz
0
j,i − z0k,i) (19)
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then

plim

(
p̃1i

p̃0i

)
=
exp(θ1i )

exp(θ0i )
= exp(Θi)

The magnitude of the bias is given by the difference between between 1 and the

left-hand side of equation 18. If the difference is positive, then the model overestimates

P 1
i /P

0
i , and if the difference is negative, the model underestimates P 1

i /P
0
i . In the next

section, a formula for the empirical estimates of the magnitude of bias is derived.

Equation 19 is referred to as the stability condition because consistency requires the

stability of two sets of parameters. First, the regression coefficients of the unobserved

characteristics in the hedonic equations are required to be the same across periods. If

they are not the same across periods, then this may bias the hedonic price indexes.

In appendix A, similar derivations are undertaken for the level hedonic models. It is

shown that the exact expressions of the stability conditions or the sources of bias differ

between the log and the level hedonic models (compare equations 19 and A.5).

The second set of parameters is related to the regression coefficients obtained

when each of the unobserved characteristics is regressed on each of the observed char-

acteristics. These regression coefficients are required to be the same across periods, i.e.

γ0j,k = γ1j,k, ∀j = 1, . . . , s and ∀k = s+1, . . . , K. The second set of regression coefficients

reflect how each of the excluded characteristics is configured with the set of included

characteristics.7 In the next section, a technique is derived to empirically test whether

equation 19 holds. This derivation will also provide a better intuitive understanding of

what equation 19 implies.

7Diewert et al. (2008), while comparing the time-dummy and hedonic imputation methods, find
that the change in the configuration of characteristics between the comparison periods is one of the
factors that determine the difference in the indexes obtained from the time-dummy and the hedonic
imputation methods.
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3.3 Using matched items to estimate the magnitude of omit-

ted variable bias

Let us now denote the items that were sold in both periods, the matched items, by

m = 1, . . . ,M . For these items, both the price relatives—ratios of observed prices and

double imputation price relatives—are available. This enables the evaluation of the

performance of the estimated hedonic models—the closer the estimated price relatives

to the observed price relatives, the lower is the omitted variable bias contaminating the

estimated price relatives.

It should be noted that the matched items dominate the total number of items sold

between two adjacent periods.8 For the purpose of constructing price indexes, prices

are usually compared between two adjacent months or between two adjacent quarters.

Benkard and Bajari (2005) report that more than 90% of personal computer models

observed in one month are also observed in the next month, though they argue at the

same time that it is impossible to obtain a reliable measure of price comparison using

the matched models because more than 90% of the models drop out within a period of

one year. Similarly, from table 2 of Silver and Heravi (2005), it can be calculated that

typically more than 95% of models are matched models between two adjacent months.9

Following from equation 12, it is possible to write the equation for period 0 as

follows:

lnp0m = ˜lnp0m + ẽ0m ∀m = 1, . . . ,M (20)

where ẽ0m is the estimated error when lnp0m is estimated on the reduced set of charac-

teristics. By rearranging terms in equation 20 and taking the probability limits of both

sides of the equation, the following is obtained:

8An exception is the housing market.
9It should be emphasized that although the majority of items are matched between two consecutive

months, this does not undermine the matching problem caused by new and disappearing items. This
is because, as the evidence shows, the problem becomes severe—both in terms of the turnover rates
and the resulting bias in indexes—because of the cumulative effect over a period of time.
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plim
(
ẽ0m

)
= plim

(
lnp0m

)
− plim

( ˜lnp0m) ∀m = 1, . . . ,M

By substituting plim (lnp0m)=θ0m (see equation 3) and equation 14 for plim
( ˜lnp0m), the

following is obtained:

plim
(
ẽ0m

)
= −

K∑
k=s+1

βk

(
s∑

j=1

γ0j,kz
0
j,m − z0k,m

)
∀m = 1, . . . ,M (21)

Similarly, for period 1, the following is obtained:

plim
(
ẽ1m

)
= −

K∑
k=s+1

δk

(
s∑

j=1

γ1j,kz
1
j,m − z1k,m

)
∀m = 1, . . . ,M (22)

where ẽ1m is the estimated error when lnp1m is estimated on the reduced set of charac-

teristics. Equations 4 and 15 are used for the derivation of equation 22.

Note that equations 21 and 22 refer to matched item m, implying that each of the

characteristics of item m for the two periods are the same, i.e. z0k,m = z1k,m = zk,m,

∀k = 1, . . . , K. This implies that equations 21 and 22 are simply the negative of the

left- and right-hand sides of equation 19, respectively, when equation 19 corresponds to

item m, ∀m = 1, . . . ,M . Thus, the bias in equation 18 can be estimated by:

exp
(
ẽ0m

)
exp

(
ẽ1m

) − 1 (23)

If
[
exp

(
ẽ0m

)
/exp

(
ẽ1m

)
− 1
]

is greater than 0, then the double imputation overesti-

mates the true price relative of item m; if the difference is less than 0, the double impu-

tation underestimates the true price relative. Among alternative models with different

sets of characteristics, the model that minimizes |exp
(
ẽ0m

)
/exp

(
ẽ1m

)
− 1| estimates

price relatives that are contaminated the least by the omission of relevant characteris-

tics. In a similar way, in the case of the single imputation method the bias in equation

16 can be estimated by:
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1

exp
(
ẽ1m

) − 1 (24)

3.4 Plausibility of equal correlations between the character-

istics across periods

Let us assume that the regression coefficients between the observed and unobserved

characteristics are equal between the two periods, i.e. γ0j,k = γ1j,k, ∀j = 1, . . . , s and

k = s+ 1, . . . , K. Hence, in equation 19,
∑s

j=1 γ
1
j,kz

0
j,i− z0k,i =

∑s
j=1 γ

0
j,kz

0
j,i− z0k,i = w0

k,i.

Thus, the stability condition in equation 19 reduces to:

K∑
k=s+1

δkw
0
k,i =

K∑
k=s+1

βkw
0
k,i

or

δk = βk, ∀k = s+ 1, . . . , K (25)

This implies that if the hedonic models are estimated for the log of prices, the con-

sistency of the estimated price relatives requires that the coefficients of the same un-

observed characteristic be equal between the comparison periods, provided that there

has not been any significant change in the configuration of the characteristics of items

between the comparison periods.

The assumption of the equality of the regression coefficients may be more plausible

in one market over another. Let us consider the housing market. For the housing market

this assumption would mean, say with regard to the relationship between the number

of bedrooms and lot size, that for a given number of bedrooms, the average lot size is

the same across periods. The housing market may be characterized by a high degree of

sluggishness from the supply side, where transactions of old houses by far dominate the

market. The matching problem arises because every house is different, but it may be

reasonable to assume that the configuration between the characteristics remains stable

in the housing market between two adjacent periods (for example, between two quarters
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of a year). However, this assumption is unlikely to hold true in markets characterized

by a rapid rate of technological innovation, such as the personal computer market. This

is because technological advancement occurs at different rates with regard to different

features of personal computers. Thus, quality change is reflected in the change in the

configuration of characteristics, such as between the characteristics ‘CPU speed’ and

‘hard-disk size’.

Perhaps the housing market and the personal computer market are two extreme

examples in terms of the expected nature of qualitative change between two adjacent

periods. There are many other products where the matching problem arises in the

construction of indexes and where the changes in the configuration of characteristics

are not as pronounced as in the personal computer market, yet not as rigid as in the

housing market. This may include markets for many electronic products other than

computers, as well as the used car market and the markets for supermarket products

such as laundry products, beverages, etc. In these markets, qualitative changes may

occur in a few characteristics, and the stability condition indicates that in order to attain

consistency these characteristics should be included in the model. Testing γ0j,k = γ1j,k in

different markets may be an interesting area of further research.

4. Monte Carlo Simulations and Unbiased Price

Relatives

The analytical results in the previous section are obtained for large samples (or as

asymptotic properties) in order to estimate consistent price relatives. Now the question

is: do the results also hold for finite or small samples, and equivalently apply in order

to estimate unbiased price relatives?10 In this section, Monte Carlo simulations are

conducted: first, to check whether equation 18 or 19 which produces consistent price

10Note that it is more desirable to estimate unbiased and consistent estimators than to estimate
consistent but biased estimators. The analytical results focus on consistency instead of unbiasedness
because the derivations involving ratios and multiplications of random variables are relatively straight-
forward, with probability limits rather than expectational operators.

18



relatives in the case of the double imputation method, produces unbiased price relatives

at the same time; and, second, to estimate the bias specified in equations 23 and

24 for both small and large samples. The simulations are conducted with different

specifications of the true and estimated hedonic models.

In period 0, the true model is obtained from the process lnp
(0)
i = 0.9 + 0.9x1,i +

0.9x2,i + εi and, in period 1, the true model is obtained from the process lnp
(1)
i =

0.9 + κ1x1,i + κ2x2,i + εi. εi is drawn from a normal distribution, εi ∼ N(0, 1). The

simulation exercise includes changing κ1 and κ2 to produce different scenarios. The

only two characteristics, x1 and x2, are drawn from a multivariate normal distribution

with means π1 and π2, variances ω2
1 and ω2

2, respectively, and covariance ρ12. For the

matched items, which account for 90% of the total items in periods 0 and 1, the means

and the variances are [π1, π2, ω
2
1, ω

2
2, ρ12] = [3, 3, 1, 1, 0.5].

The disappearing and new items account for 10% of the items in periods 0 and

1, respectively. The technological innovation occurs through changes in one of the

characteristics, x1 or x2, which may be reflected in the simulations through changes in

the means and marginal valuations of x1 or x2. For example, if the innovation occurs

through x1, then the mean of x1 for the disappearing items (πd
1) may be expected to be

lower than the mean of x1 for the matched items (π1), which in turn may be expected

to be lower than the mean of x1 for the new items (πn
1 ). Examples of x1, in the case

of computers, are the RAM or hard disk sizes of computers. Another way to look at

innovation is through cost savings. If the cost saving occurs through x1 then this may

be reflected in the simulation through a fall in κ1 between period 0 and 1.

The models in period 0 and 1 are estimated on an intercept and x1, hence the mod-

els omit x2. Whether x1 is the stable or the unstable characteristic depends on whether

πd
1 or πn

1 is different from 3 or whether κ1 is different from 0.9. Let [κ1, κ2] = [0.1, 0.9],

i.e. the marginal valuation of x1 falls in period 1, while the marginal valuation of x2

remains the same. Furthermore, let [πd
1 , π

n
1 ] = [3, 3] and [πd

2 , π
n
2 ] = [3, 3], i.e. the mean

values of the characteristics remain the same between the disappearing, matched and

new items. In this example, the unstable characteristic is included and the stable char-
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acteristic is excluded. Hence, according to equations 18 or 19, the double imputation

method is expected to produce consistent price relatives.

In order to check for unbiasedness, 8 Monte Carlo simulations corresponding to

10×3k−1 iterations for k = 1, . . . , 8, and each having a sample of 1000 observations, are

conducted. The means of the estimates of equation 23 converge towards 0, implying

that the double imputation price relatives are unbiased (see top part of columns 2 and

3 of table 1). In order to check for consistency, the sample size is increased by 10×3k−1

observations for k = 1, . . . , 8, while the number of iterations is kept fixed at 10. The

results show that the mean and variance converge to zero rapidly with the increase in

sample size (see the bottom part of columns 2 and 3 in table 1). Thus the simulation

results show that the double imputation price relatives are unbiased and consistent.11

Insert table 1 here.

The same estimates corresponding to equation 24, i.e. for the single imputation

method, are shown in columns 4 and 5 of table 1. The results show that there is no

tendency for the mean to converge to 0 with the increase in the number of iterations,

and the mean and variance to converge to 0 with the increase in the sample size. This

provides evidence that the single imputation price relatives are biased and inconsistent.

Now let [πd
1 , π

n
1 ] = [1, 5], [πd

2 , π
n
2 ] = [3, 3] and [κ1, κ2] = [0.1, 0.9]. In this case, the

technological progress occurs through the provision of an increasing number of x1 for a

given x2, and through cost savings in x1. Because of differing means, the variance of x1

differs between periods 0 and 1. This leads the correlation coefficient to change between

the two periods (i.e. γ0j,k 6= γ1j,k in equation 19). The simulation results provided in

columns 3 and 4 of table 2 show no tendency for the estimates of the means of equation

23 to converge to zero, implying that the double imputation method estimates biased

price relatives.12 The same conclusion is drawn with regard to equation 24 for the single

11If a large difference is created at the initial stage by setting a large difference between κ2 and 0.9,
between π1 and π2 and by increasing the variance of εi, the results with regard to convergence are the
same.

12If the change in mean value had happened with x2, then the double imputation price relatives
would have been consistent.
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imputation method (see columns 5 and 6 of table 2). Similarly, if [κ1, κ2] = [0.9, 0.1],

i.e. the omitted characteristic sees a drop in the marginal valuation, both the single and

double imputation price relatives are biased and inconsistent (see bottom part of table

2). However, importantly, the biases are found to be higher for the single imputation

method than for the double imputation method.13

Insert table 2 here.

With regard to the time-dummy method, it can be easily shown that the bias

generated by the time-dummy method is substantial even in a trivial case where the

double imputation method produces unbiased and consistent price indexes. Let us

suppose that all the items are matched between periods 0 and 1. Furthermore, let us

suppose that [κ1, κ2] = [0.9, 0.9]. As before, the models in both periods are estimated

on intercept and x1. It can be shown that the Jevons index constructed from taking the

geometric mean of the estimated double imputation price relatives is 1, i.e. the double

imputation method provides the correct measure of price change. On the contrary, the

time-dummy index—which is equivalent to the Jevons index—provides a biased estimate

of price change, where the magnitude of bias depends on the correlation between x2

and the time dummy. In the above example, even if the correlation is as low as 0.1, the

time-dummy index overestimates the price change by 9%.

5. Implications for Applications

There are a number of important implications of the results with regard to the appli-

cation of hedonic methods in the construction of quality adjusted indexes. First, if the

omitted variable bias is one of the main problems inhibiting the application of hedo-

nic methods, the single imputation method does not offer a better solution than the

time-dummy method. Both methods are equally demanding of the characteristics infor-

mation that is required to produce unbiased and consistent estimates of price change.

The double imputation method may produce unbiased and consistent estimates of price

13The results with regard to consistency are similar to that of unbiasedness.
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change even in the presence of a large number of unobserved characteristics. Also, the

simulation results show that even if the bias exists, the magnitude of bias is in general

lower in the double imputation than in the single imputation price relatives.

Second, the data requirement shifts from ‘all price determining characteristics’ to

‘price determining characteristics that drive the price changes between the comparison

periods’. If the log model is the preferred model, the data compilers may focus on

collection of information on the characteristics whose contribution, both in terms of

their marginal values to price and how they are configured with the other characteristics,

is expected to change between the periods. This may, on the one hand, reduce the data

requirement by a large amount while, on the other hand, make it possible to obtain

estimates that are ‘near consistent’, if not consistent.

The third implication is related to the second implication. The idea of what

constitutes an important variable differs between the single regression equation (hedonic

or otherwise) and the hedonic double imputation method. In the case of single regression

equations, an important variable is one that has a relatively large explanatory power,

whereas in the case of the hedonic imputation method an important variable is one

that has a large influence on the price change between the periods. In both cases, the

important variables may coincide in many markets but not necessarily in all markets.

Fourth, the stability conditions on the unobserved characteristics, conditions which

are required for unbiasedness and consistency, differ between the log and level models

(the derivation for the level hedonic models is provided in appendix A). In general, while

log models may be preferable where price changes are driven by a selected number of

characteristics, level models may be appropriate where a large number of characteristics

coefficients are expected to change by the same proportion. For example, the log models

may be appropriate for electronic markets because technological advancement may be

driven by a selected number of features in a particular electronic product, and the

level models may be more appropriate for the housing market because price is driven

by expectations of the future flow of income, where the expectations formed in two

adjacent periods may be similar with regard to the different physical features of a

22



house.

Finally, in recent years a number of studies comparing the time-dummy and hedo-

nic imputation methods have argued in favor of using the hedonic imputation method

(see, for example, Silver and Heravi, 2007; Diewert et al., 2008). This is because the

hedonic imputation method allows the characteristics coefficients to vary, whereas the

time-dummy method constrains them to remain fixed between the periods. These stud-

ies analyze the observed characteristics only and do not draw any distinction between

the single and double imputation methods. In contrast, the current study focusses on

the unobserved characteristics and conducts a separate analysis on the single and double

imputation methods based on the omitted variable bias generated by the unobserved

characteristics. Although the methodological approach is different, the conclusion of

this study accords with the recent literature which argues in favor of using hedonic

imputation methods. Moreover, this study finds justification in favor of the double

imputation method. This is because the double imputation method has the potential

to address the omitted bias problem in hedonic regressions with the careful choice of

limited but selected characteristics.

6. Conclusion

In the case of single hedonic regressions, the omitted variable bias problem is simi-

lar to the problem with regressions in general, i.e. if the relevant variables that are

correlated with the included variables are omitted, the estimates are biased and incon-

sistent. However, this is not the case for the price relatives estimated from the double

imputation method, which involves the ratio of two hedonic regressions, because of the

potential of biases being canceled out. This study has taken a systematic look at the

omitted variable problem of hedonic imputation methods by analyzing the asymptotic

bias generated by each of the hedonic regressions. The study analyzed the log and level

hedonic models for both the single and double imputation methods.

The study found that the single imputation method does not have any advantage
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over the time-dummy method in terms of dealing with the omitted variable problem.

If the hedonic regressions exclude any relevant price determining characteristics, both

methods produce biased and inconsistent estimates. The double imputation method has

a clear advantage in this case. This study found that double imputation price relatives

can be unbiased and consistent even if the important price determining characteristics

corresponding to each of the hedonic regressions are omitted. The requirement for

attaining unbiasedness and consistency is that the contributions of the unobserved

characteristics in price determination are stable between the periods. Depending on

the products, this has the potential of reducing the data requirement, in terms of

characteristics information, by a large extent.

This study has outlined a method to estimate the magnitude of bias in the single

and double imputation price relatives for matched items. This method may indicate how

the hedonic imputation method performs in predicting the price relatives of unmatched,

i.e. new and disappearing, items. This estimated magnitude of bias may provide a

benchmark summary measure that can be used to compare the performance of different

hedonic imputation models applied to different data sets.

Appendix A: Hedonic models of price levels

Let us specify the models for periods 0 and 1 on price levels as follows:

p0i =
K∑
k=1

βkz
0
k,i + ε0i ∀i = 1, . . . , I (A.1)

p1v =
K∑
k=1

δkz
1
k,v + ε1v ∀v = 1, . . . , V (A.2)

where, similar to equations 1 and 2, z0k,i and z1k,i refer to the value of the characteristics

k for item i in periods 0 and 1, respectively. The first characteristics, z01 and z11 , are the

intercept terms of the equations. The error terms ε0i and ε1v are i.i.d. with zero mean

and constant variance. Furthermore, the classical linear regression model assumptions
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hold for models in equations A.1 and A.2.

Following similar steps to those shown in equations 6 to 11 for the log models,

it can be shown that the single and double imputation price relatives estimated from

equations A.1 and A.2 are consistent. That is:

plim

(
p̂1i
p0i

)
= plim

(
p̂1i

p̂0i

)
=
θ1i
θ0i

= Φi (A.3)

Let us now suppose that instead of estimating models on z1, . . . , zs, zs+1, . . . , zK

characteristics as specified in equations A.1 and A.2, the models are estimated on

z1, . . . , zs. Let p̃0i and p̃1v be the predicted prices obtained from the estimated mod-

els for items i and v, respectively. Following steps similar to those in equations 13 and

14, it can be shown that plim
(
p̃0i

)
= θ0i +

∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

)
6= θ0i , and,

following steps similar to those in equation 15, it can be shown for the imputed price

of item i in period 1 that plim
(
p̃1i

)
= θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
6= θ1i . Thus,

the probability limit of the single imputation price relative for item i is:

plim

(
p̃1i
p0i

)
6= θ1i
θ0i

= Φi

that is, the single imputation price relative for item i is inconsistent.

Now to the double imputation price relatives. Substituting the expressions for

plim
(
p̃0i

)
and plim

(
p̃1i

)
, the following is obtained:

plim

(
p̃1i

p̃0i

)
=
θ1i +

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
θ0i +

∑K
k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

) (A.4)

Equation A.4 implies that if

θ1i
θ0i

=

∑K
k=s+1 δk

(∑s
j=1 γ

1
j,kz

0
j,i − z0k,i

)
∑K

k=s+1 βk

(∑s
j=1 γ

0
j,kz

0
j,i − z0k,i

) (A.5)

the double imputation price relatives estimated from level hedonic models are consistent.

Note that equation A.5 is the level hedonic model equivalent of equation 19 for the log
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hedonic model.

Thus to evaluate the performance of alternative models, the following is estimated

for the matched item m: (
p1m
p0m

)
−

(
ẽ1m

ẽ0m

)
(A.6)

The closer the value is towards zero, the lower is the omitted variable bias in the

estimated price relative of item m.

If γ0j,k = γ1j,k, ∀j = 1, . . . , s and k = s+1, . . . , K are set, then the stability condition

in equation A.5 reduces to:

∑s
j=1 δjzj,i∑s
j=1 βjzj,i

=

∑K
k=s+1 δkzk,i∑K
k=s+1 βkzk,i

(A.7)

Thus, the stability condition for the level models specified in equation A.7 differs from

that for the log models specified in equation 25. This implies that hypotheses about

the behavior of unobserved characteristics across periods have implications in the choice

between the level and the log models in the double imputation hedonic method.
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Table 1: Simulation Results for Double and Single Imputation Price Relatives when the
Stable Characteristic is Omitted

Simulations Double Imputation Single Imputation
κ1 = 0.1, κ2 = 0.9 κ1 = 0.1, κ2 = 0.9
Mean Variance Mean Variance

No of iterations1

10 0.0042 0.0244 0.0123 1.0064
30 0.0072 0.0313 0.8390 3.3538
90 -0.0006 0.0281 0.4580 1.5262
270 0.0016 0.0246 1.0442 3.5721
810 0.0006 0.0253 1.2725 4.1336
2460 0.0005 0.0247 1.2531 3.7287
7290 0.0004 0.0251 1.1870 3.7190
21870 0.0002 0.0255 1.2032 4.1710

Sample sizes2

100 0.0534 0.0863 0.7052 2.2129
300 -0.0204 0.0548 0.4410 0.9403
900 -0.0031 0.0192 0.4976 1.3767
2700 0.0017 0.0148 4.5119 12.9150
8100 0.0028 0.0104 1.1284 4.6546
24600 -0.0001 0.0063 2.1059 3.4185
72900 0.0012 0.0021 0.4586 2.3750
218700 -0.0002 0.0016 1.2400 2.5616
Notes: 1. Sample size=1000; 2. No. of iterations=10

Table 2: Simulation Results for Double and Single Imputation Price Relatives when the
Configuration of Characteristics Changes and the Unstable Characteristics are Omitted

Simulations No. of Double Imputation Single Imputation
Iterations Mean Variance Mean Variance

πd
1 = 1, πn

1 = 5 10 -0.0417 0.1137 0.8475 1.8530
κ1 = 0.1, κ2 = 0.9 30 0.0027 0.1593 0.4219 1.2269

90 0.0139 0.1837 0.4857 1.7682
270 0.0174 0.1386 1.5814 6.1601
810 0.0193 0.1556 1.1893 4.0624
2460 -0.0035 0.1499 1.0130 4.3506
7290 0.0029 0.1522 1.1450 4.4066
21870 0.0043 0.1490 1.1796 4.2468

πd
1 = 3, πn

1 = 3 10 0.0852 0.3870 1.1917 2.1996
κ1 = 0.9, κ2 = 0.1 30 -0.1728 0.7752 1.2507 2.5072

90 0.2815 0.8591 0.3956 1.8394
270 0.2448 0.8736 0.8178 2.3800
810 0.2609 1.1236 0.7106 2.4986
2460 0.2692 0.9780 0.5711 1.8508
7290 0.2649 0.9805 0.6481 2.1202
21870 0.2751 0.9913 0.6563 2.1727

Note: Sample size for all simulations is 1000.
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