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Abstract  
This paper investigates the problem of aggregation in the case of large linear dynamic panels, 
where each micro unit is potentially related to all other micro units, and where micro 
innovations are allowed to be cross sectionally dependent. Following  Pesaran (2003), an 
optimal aggregate function is derived and used (i) to establish conditions under which 
Granger’s (1980) conjecture regarding the long memory properties of aggregate variables 
from ‘a very large scale dynamic, econometric model’ holds, and (ii) to show which 
distributional features of micro parameters can be identified from the aggregate model. The 
paper also derives impulse response functions for the aggregate variables, distinguishing 
between the effects of macro and aggregated idiosyncratic shocks. Some of the findings of 
the paper are illustrated by Monte Carlo experiments. The paper also contains an empirical 
application to consumer price inflation in Germany, France and Italy, and re-examines the 
extent to which ‘observed’ inflation persistence at the aggregate level is due to aggregation 
and/or common unobserved factors. Our findings suggest that dynamic heterogeneity as 
well as persistent common factors are needed for explaining the observed persistence of the 
aggregate inflation. 
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1 Introduction

Nearly every study in economics must implicitly or explicitly aggregate: over time, individuals

(consumers, firms, or agents), products, or space, and usually over most of these dimensions. It is

therefore important that the consequences of aggregation for the analysis of economic problems of

interest are adequately understood. It is widely acknowledged that aggregation can be problematic,

but its implications for empirical research are often ignored either by adopting the concept of a

‘representative agent’, or by arguing that ‘aggregation errors’ are of second order importance.

However, there are empirical studies where aggregation errors are shown to be quite important,

including the contributions by Hsiao et al. (2005), Altissimo et al. (2009), and Imbs et al. (2005).1

There are several different aspects to the aggregation problem. One important issue is the

conditions under which micro parameters or some of their distributional features can be identified

and estimated from aggregate relations. Theil (1954) was the first to consider this problem in the

context of static micro relations. Robinson (1978) considers the problem of estimating moments of

the distribution of AR(1) micro coeffi cients, but excludes the possibility of a long memory when

deriving the asymptotic distribution of his proposed estimator. Pesaran (2003) discusses estimating

the average long-run micro effects and mean lags of the autoregressive distributed lag (ARDL) micro

models from aggregate data.

A second closely related problem is derivation of an optimal aggregate function which could be

used to compare persistence of shocks when aggregate and disaggregated models are considered.

Theil (1954), Lewbel (1994), and Pesaran (2003) consider the problem of deriving an optimal

aggregate function. The problem of aggregation of a finite number of independent autoregressive

moving average (ARMA) processes is considered, for example, by Granger and Morris (1976), Rose

(1977), and Lütkepohl (1984). The problem of aggregating a large number of independent time

series processes was first addressed by Robinson (1978) and Granger (1980). Granger showed that

aggregate variables can have fundamentally different time series properties as compared to those

of the underlying micro units. Focusing on autoregressive models (AR) of order 1, he showed that

aggregation can generate long memory even if the micro units follow stochastic processes with

1 In addition to the empirical studies, Geweke (1985) develops a theoretical example, where he argues that ignoring
the sensitivity of the aggregates to policy changes seems no more compelling than the Lucas critique of ignoring the
dependence of expectations on the policy regime.
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exponentially decaying autocovariances.

The aggregation problem has also been studied from the perspective of forecasting: is it better to

forecast using aggregate or disaggregate data, if the primary objective is to forecast the aggregates?

Pesaran, Pierse, and Kumar (1989) and Pesaran, Pierse, and Lee (1994), building on Grunfeld

and Griliches (1960), develop selection criteria for a choice between aggregate and disaggregate

specifications. Giacomini and Granger (2004) discuss forecasting of aggregates in the context of

space-time autoregressive models. Cross section aggregation of vector ARMA processes and a

comprehensive bibliography is provided in Lütkepohl (1987).

A third issue of importance concerns the role of common factors and cross-section dependence

in aggregation, which was first highlighted by Granger (1987), and further developed and discussed

in Forni and Lippi (1997) and Zaffaroni (2004). Granger showed that the strength and pattern

of cross section dependence plays a central role in aggregation. Using a simple factor model, he

argued that the factor dominates the aggregate relationship; and consequently, variables that may

have very good explanatory power at the micro level might be unimportant at the macro level, and

vice versa. Implications of Granger’s finding that common factors dominate aggregate relationships

have been explored in various papers in the literature.2

In this paper we investigate the problem of aggregation in the context of large linear dynamic

panels, or high-dimensional VARs, where each micro unit is potentially related to all other micro

units, and where micro innovations are allowed to be cross sectionally dependent. In this way the

earlier literature on aggregation of independent dynamic regressions is extended to aggregation

of dynamic models with interactions and cross section dependence. In particular, we allow for

various interconnections across the individual units, relax the assumption that micro coeffi cients

are independently distributed, and allow for a general pattern of cross section dependence of micro

innovations, which can be either strong or weak. Using this generalized framework we re-visit two of

the issues in the aggregation literature mentioned above. First, following Pesaran (2003), we derive

an optimal aggregate function and use it to establish links between parameters of the aggregate

2Granger also contributed to the discussion of temporal aggregation, aggregation of non-linear models, and small
scale aggregation of space-time processes. See Granger (1993), Granger and Siklos (1995), Granger and Lee (1999)
and Giacomini and Granger (2004). Other contributions to the theory of aggregation include the contributions
of Kelejian (1980), Stoker (1984), Stoker (1986), and Garderen et al. (2000), on aggregation of static non-linear
micro models, Pesaran and Smith (1995), Phillips and Moon (1999), and Trapani and Urga (2010) on the effects of
aggregation on cointegration. Granger (1990) and Stoker (1993) provide early surveys.
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function (macro parameters) and the distributional moments of the underlying micro parameters.

We examine the conditions under which the distributional features of micro parameters can be

identified from aggregate relations. We also use the optimal aggregate function to establish the

conditions under which Granger’s (1980) conjecture about the long memory properties of aggregate

variables from ‘a very large scale dynamic, econometric model’is valid.3

Understanding the persistence of aggregate variables is the second main objective of this paper,

where we compare impulse response functions of the aggregate variables derived using the optimal

aggregate function with the impulse responses obtained using the disaggregated model. The aggre-

gate shock in our set-up is defined as the sum of the macro and aggregated idiosyncratic shocks.

The issue of persistence and the relative importance of the two components of the aggregate shock

for the aggregate variable is also investigated by Monte Carlo experiments. The paper concludes

with an empirical application to consumer price inflation in Germany, France and Italy, and re-

examines the extent to which inflation persistence at the aggregate level is due to aggregation

and/or common unobserved factors. We find that dynamic heterogeneity alone cannot explain the

persistence of aggregate inflation, rather it is the combination of factor persistence and cross section

heterogeneity that seems to be responsible for the observed persistence of the aggregate inflation.

The remainder of the paper is organized as follows. We begin with the derivation of the optimal

aggregate function in Section 2 for a factor augmented VAR in N cross section units. The optimal

aggregate function is used in Section 3 to examine the relationship between micro and macro

parameters. The impulse responses of the effects of aggregated idiosyncratic and macro shocks

on the aggregate variable are derived and contrasted in Section 4. Monte Carlo experiments are

presented in Section 5, and Section 6 reports on the empirical application. Section 7 concludes the

paper. Some of the mathematical proofs are provided in an appendix.

A brief word on notations: ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote the

maximum absolute column and row sum norms ofA ∈Mn×n, respectively, whereMn×n is the space

of real-valued n×n matrices. ‖A‖ =
√
% (A′A) is the spectral norm ofA,4 % (A) ≡ max

1≤i≤n
{|λi (A)|}

is the spectral radius of A, and |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of A. All

3Granger uses different arguments to support his conjecture as compared to the formal analysis undertaken in this
paper.

4Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.

3



vectors are column vectors.

2 Aggregation of Factor Augmented VAR Models

Consider the following high-dimensional factor augmented VAR model in N cross section units

yt = Φyt−1 + Bxt + Γf t + εt, for t = 1, 2, ..., T, (1)

where xt = (x1t, x2t, ..., xNt)
′ is N × 1 vector of cross section specific regressors, ft is m× 1 vector

of common factors, Φ and B are N × N matrices of randomly distributed coeffi cients, and Γ is

an N × m matrix of randomly distributed factor loadings with elements γij , for i = 1, 2, ..., N ,

and j = 1, 2, ...,m. We denote the elements of Φ by φij , for i, j = 1, 2, ..., N , and assume that

B is a diagonal matrix with elements βi, also collected in the N × 1 vector β = (β1, β2, ..., βN )′.5

The objective is to derive an optimal aggregate function for ȳwt = w′yt in terms of its lagged

values, and current and lagged values of x̄wt = w′xt and ft, where w = (w1, w2, ..., wN )′ is a set

of predetermined aggregation weights such that ΣN
i=1wi = 1. Throughout, it is assumed that w is

known and the weights are granular, in the sense that

|wi|
‖w‖ = O

(
N−1/2

)
, for any i, and ‖w‖ = O

(
N−1/2

)
. (2)

Denote the aggregate information set by Ωt = (ȳw,t−1, ȳw,t−2, ..., x̄wt, x̄w,t−1, ..., ft, ft−1, ...).

When ft is not observed the current and lagged values of ft in Ωt must be replaced by their fitted or

forecast values obtained from an auxiliary model in ft and possibly other variables, not included in

(1). Consider the augmented information set, Υt = (yt−M ; xt,xt−1, ....; ft, ft−1, ...; ȳw,t−1, ȳw,t−2, ...),

that contains Ωt, and introduce the following assumptions on the eigenvalues of Φ and the idiosyn-

cratic errors, εt = (ε1t, ε2t, ..., εNt)
′.

ASSUMPTION 1 The coeffi cient matrix, Φ, of the V AR model in (1) have distinct eigenvalues

5This specification can be readily generalized to allow for more than one cross section specific regressors, by
replacing Bxt with B1x1t + B2x2t + ...+ Bkxkt.
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λi, for i = 1, 2, ..., N , and satisfy the following cross sectionally invariant conditional moments

E
(
λsi
∣∣Υt,P, εt−s

)
= as,

E (λsi |Υt,P,β ) = bs(β),

E (λsi |Υt,P,Γ) = cs(Γ),

 (3)

for all s = 1, 2, ..., and i = 1, 2, ..., N , where Υt = (yt−M ; xt,xt−1, ....; ft, ft−1, ...; ȳw,t−1, ȳw,t−2, ...),

P is N ×N matrix containing the eigenvectors of Φ as column vectors.

ASSUMPTION 2 The idiosyncratic shocks, εt = (ε1t, ε2t, ..., εNt)
′, in (1) are serially uncorre-

lated with zero means and finite variances.

Remark 1 Assumption 1 is analytically convenient and can be viewed as a natural generalization of

the simple AR(1) specifications considered by Robinson (1978), Granger (1980) and others. Using

the spectral decomposition of Φ = PΛP−1, where Λ =diag (λ1, λ2, ..., λN ) is a diagonal matrix with

eigenvalues of Φ on its diagonal, the factor augmented VAR model can be written as

y∗it = λiy
∗
i,t−1 + z∗it, i = 1, 2, ..., N, and t = 1, 2, ..., T ; (4)

where y∗it is the i
th element of y∗t = P−1yt, and z∗it is the i

th element of z∗t = P−1 (Bxt + Γf t + εt).

Consider now the conditions under which an optimal aggregate function exists for ȳ∗wt = w′y∗t =

w′P−1yt. We know from the existing literature that such an aggregate function exists if E (λsi |z∗it ) =

a∗s, for all i. Seen from this perspective our assumption that conditional on P the eigenvalues have

moments that do not depend on i seems sensible, and is likely to be essential for the validity of

Granger’s conjecture.

Remark 2 It is also worth noting that Assumption 1 does allow for a dependence of λi and the

loadings βi and γij.

As shown in Pesaran (2003), the optimal aggregate function (in a mean squared error sense) is

given by

ȳwt = E
(
w′yt |Ωt

)
+ vwt, (5)
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where by construction E (vwt |Ωt ) = 0, and vwt, t = 1, 2, ... are serially uncorrelated, although

they could be conditionally heteroskedastic.6 Solving (1) recursively forward from the initial state,

y−M , we have

yt = Φt+My−M +

t+M−1∑
s=0

Φs (Bxt−s + Γf t−s + εt−s) . (6)

Hence, using the spectral decomposition of Φ = PΛP−1, we obtain

ȳwt = w′PΛt+MP−1y−M +

t+M−1∑
s=0

w′PΛsP−1 (Bxt−s + Γf t−s + εt−s) . (7)

Let zbt = (P,Υt,B), zΓt = (P,Υt,Γ), zεt = (P,Υt,εt−s) and Qt = (P,Υt). It is clear that

Qt ⊂ zbt, Qt ⊂ zΓt, and Qt ⊂ zεt, and by the chain rule of expectations we obtain

E
(
PΛsP−1B |Qt

)
= E

[
E
(
PΛsP−1B |zbt

)
|Qt
]

= E
[
PE (Λs |zbt ) P−1B |Qt

]
.

Similarly,

E
(
PΛsP−1Γ |Qt

)
= E

[
E
(
PΛsP−1Γ |zΓt

)
|Qt
]

= E
[
PE (Λs |zΓt ) P−1Γ |Qt

]
.

But under (3) we have, E (Λs |zεt ) = asIN , E (Λs |zbt ) = bs(β)IN , and E (Λs |zΓt ) = cs(Γ)IN .

Hence

E
(
PΛsP−1B |Qt

)
= E

[
Pbs(β)P−1B |Qt

]
= E [bs(β)B |Qt ] .

Similarly,

E
(
PΛsP−1Γ |Qt

)
= E

[
E
(
PΛsP−1Γ |zbt

)
|Qt
]

= E
[
Pcs(Γ)P−1Γ |Qt

]
= E [cs(Γ)Γ |Qt ] .

6Recall that under Assumption 2, we have E(w′εt |Υt,Φ,B,Γ ) = 0, and hence E(w′εt |Υt,P ) = 0.
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Finally,

E
(
PΛsP−1εt−s |Qt

)
= E

[
E
(
PΛsP−1εt−s |zεt

)
|Qt
]

= E
[
PasINP−1εt−s |Qt

]
= asE (εt−s |Qt ) .

Taking expectations of both sides of (7) conditional on Qt, we now have

E (ȳwt |Qt ) = w′E
(
PΛt+MP−1 |Qt

)
y−M +

t+M−1∑
s=0

w′E
(
PΛsP−1B |Qt

)
xt−s +

t+M−1∑
s=0

w′E
(
PΛsP−1Γ |Qt

)
ft−s +

t+M−1∑
s=1

w′E
(
PΛsP−1εt−s |Qt

)
.

Using the results derived above we obtain

E (ȳwt |Qt ) =
(
w′y−M

)
at+M +

t+M−1∑
s=0

w′E [bs(β)B |Qt ] xt−s +

t+M−1∑
s=0

w′E [cs(Γ)Γ |Qt ] ft−s +

t+M−1∑
s=1

asE
(
w′εt−s |Qt

)
,

and finally taking expectations conditional on the available aggregate information set (and noting

that Ωt ⊂ Qt)

E (ȳwt |Ωt ) =
(
w′y−M

)
E (at+M |Ωt ) +

t+M−1∑
s=0

w′E [bs(β)B |Ωt ] xt−s (8)

+

t+M−1∑
s=0

w′E [cs(Γ)Γ |Ωt ] ft−s +

t+M−1∑
s=1

asE (ε̄w,t−s |Ωt ) .

where ε̄wt = w′εt.

2.1 Aggregation of stationary micro relations with random coeffi cients

The optimal aggregate function derived in (8) is quite general and holds for any N , and does

not require the underlying micro processes to be stationary. But its use in empirical applications

is limited as it depends on unobserved initial state, w′y−M , and the micro variables, xt. To
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derive empirically manageable aggregate functions in what follows we assume that the underlying

processes are stationary and the micro parameters, βi and γij , are random draws from a common

distribution. More specifically, we make the following assumptions:

ASSUMPTION 3 The micro coeffi cients, βi and γij, are random draws from common distribu-

tions with finite moments such that

E [bs(β)B |Ωt ] = bsIN , (9)

E [cs(Γ)Γ |Ωt ] = τNc′s, (10)

where bs(β) and cs(Γ) are defined by Assumption 1, bs = E [bs(β)βi], cs = E [cs(Γ)γi], and τN is

an N × 1 vector of ones.

ASSUMPTION 4 The eigenvalues of Φ, λi, are draws from a common distribution with support

over the range (−1, 1).

Under Assumption 3, (8) simplifies to

E (ȳwt |Ωt ) =
(
w′y−M

)
E (at+M |Ωt ) +

t+M−1∑
s=0

bsx̄w,t−s

+
t+M−1∑
s=0

c′sft−s +
t+M−1∑
s=1

asE (ε̄w,t−s |Ωt ) ,

where x̄wt = w′xt, and E (ȳwt |Ωt ) no longer depends on the individual specific regressors. Under

the additional Assumption 4, and for M suffi ciently large the initial states are also eliminated and

we have

E (ȳwt |Ωt ) =

∞∑
s=0

bsx̄w,t−s +

∞∑
s=0

c′sft−s +

∞∑
s=1

asηt−s.

where ηt−s = E (ε̄w,t−s |Ωt ). Note that
∑∞

s=1 asηt−s = E [
∑∞

s=1 asε̄w,t−s |Ωt ]. Using this result in

(5) we obtain the optimal aggregate function

ȳwt =
∞∑
s=0

bsx̄w,t−s +
∞∑
s=0

c′sft−s +
∞∑
s=1

asηt−s + vwt, (11)

which holds for any finite N .
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The dynamic properties of ȳwt and its persistence to shocks depend on the decay rates of the

distributed lag coeffi cients, {as}, {bs} and {cs}. If |λi| < 1 − ε, for some strictly positive constant

ε > 0, then the distributed lagged coeffi cients, {as}, {bs} and {cs} decay exponentially fast and the

aggregate function will not exhibit long memory features. However, in the case where λ′is are draws

from distributions with supports covering -1 and/or 1, the rate of decay of the distributed lagged

coeffi cients will be slower than exponential, typically the decay rate is given by 1/(1 + s), and the

resultant aggregate function will be subject to long memory effects. This result confirms Granger’s

conjecture in the case of large dimensional VAR models, and establishes suffi cient conditions for its

validity. Just to summarize, the conditions are as set out in Assumptions 1, 2, 3, and 4.

It is also worth noting that in general ȳwt has an infinite order distributed lag representation

even if the underlying micro relations have finite lag orders. This is an important consideration

in empirical macro economic analysis where the macro variables under consideration are often

constructed as aggregates of observations on a large number of micro units.

2.2 Limiting behavior of the optimal aggregate function

The aggregate function in (11) continues to hold even if N → ∞, so long as the degree of cross

section dependence in the idiosyncratic errors, ε1t, ε2t, ..., εNt, is suffi ciently weak, otherwise there is

no guarantee for the aggregation error to vanish as N →∞. To this end we introduce the following

assumption that governs the degree of error cross section dependence

ASSUMPTION 5 The idiosyncratic errors, εt = (ε1t, ε2t, ..., εNt)
′ in (1) are cross sectionally

weakly dependent in the sense that

‖Σε‖1 = ‖Σε‖∞ = O (Nαε) ,

where Σε = E(εtε
′
t), for some constant 0 ≤ αε < 1. (See Chudik, Pesaran, and Tosetti (2011)).

Remark 3 Condition 0 ≤ αε < 1 in Assumption 5 is suffi cient and necessary for weak cross

section dependence of micro innovations. See Chudik, Pesaran, and Tosetti (2011). Following

Bailey, Kapetanios, and Pesaran (2011), we shall refer to the constant αε as the exponent of cross

section dependence of the idiosyncratic shocks.
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Since under Assumption 2 the errors, εt for all t are serially uncorrelated, we have

V ar

( ∞∑
s=1

asε̄w,t−s

)
=

∞∑
s=1

a2
sV ar (ε̄w,t−s) ≤

( ∞∑
s=1

a2
s

)
sup
t

[V ar(ε̄wt)] .

Furthermore

V ar(ε̄wt) = w′Σεw ≤ ‖w‖2 % (Σε) ,

and by Assumption 5, and the granularity conditions (2), we have7

sup
t

[V ar(ε̄wt)] = O
(
Nαε−1

)
,

and
∑∞

s=1 asε̄w,t−s
q.m→ 0, so long as

∑∞
s=1 a

2
s < K, for some positive constant K.8 Recall that

under Assumption 5, αε < 1, and supt [V ar(ε̄wt)] → 0, as N → ∞. Also since
∑∞

s=1 asηt−s =

E (
∑∞

s=1 asūw,t−s |Ωt ), it follows that

∞∑
s=1

asηt−s
q.m→ 0, (12)

and hence for each t we have

ȳwt −
∞∑
s=0

bsx̄w,t−s −
∞∑
s=0

c′sft−s − vwt
q.m→ 0, as N →∞.

The limiting behavior of the error in the aggregate function, namely vwt, as N → ∞, depends

on the nature of the processes generating xit, ft, and εit, as well as the degree of cross sectional

dependence of the coeffi cients in Φ. Suffi cient conditions for vwt
q.m→ 0 are not presented here

due to space constraints, but can be found in Pesaran and Chudik (2011, Proposition 1). The key

conditions for vwt
q.m→ 0 are weak error cross sectional dependence and suffi ciently bounded dynamic

interactions across the units. These conditions are satisfied, for example, if ‖Σε‖ = ‖E (εtε
′
t)‖ < K,

and
∑∞

s=1E ‖Φs‖ ≤
∑∞

s=1E ‖Φ‖
s < K, for some finite positive constant, K. If on the other hand∑∞

s=1E ‖Φ‖
s is not bounded as N → ∞, or εt is strongly cross sectionally dependent, then the

aggregation error vwt does not necessarily converge to zero and could be sizeable.

7Note that % (Σε) ≤ ‖Σε‖1 = O (Nαε).
8A suffi cient condition for

∑∞
s=1 a

2
s to be bounded is |λi| < 1− ε, where ε is a small strictly positive number.
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3 Relationship between Micro and Macro Parameters

In this section we discuss the problem of identification of micro parameters, or some of their

distributional features, from the aggregate function given by (11). Although it is not possible to

recover all of the parameters of micro relations, there are a number of notable exceptions. An

important example is the average long-run impact defined by,

θ̄ =
1

N

N∑
i=1

θi =
1

N
τ ′N (IN −Φ)−1 β, (13)

where θ = (IN −Φ)−1 β =
(
β + Φβ + Φ2β + ...

)
is the N × 1 vector of individual long-run coeffi -

cients, and as before τN is an N ×1 vector of ones. Suppose that Assumptions 3 and 4 are satisfied

and denote the common mean of βi by β. Using (9), we have E (Φsβ) = E {E [bs(β)B |Ωt ]} = bsIN

for s = 0, 1, .... Hence, the elements of θ have a common mean, E (θi) = θ =
∑∞

`=0 bs, which does

not depend on the elements of P. If, in addition, the sequence of random variables θi is ergodic

in mean, then for suffi ciently large N , θ̄ is well approximated by its mean,
∑∞

`=0 bs, and the cross

sectional mean of the micro long-run effects can be estimated by the long-run coeffi cient of the

associated optimal aggregate model. This result holds even if βi and λi are not independently

distributed, and irrespective of whether micro shocks contain a common factor.

Whether θ̄
p→ θ deserves a comment. A suffi cient condition for θ̄ to converge to its mean (in

probability) is given by

‖V ar (θ)‖ = O
(
N1−ε) , for some ε > 0, (14)

in which case
∥∥V ar (θ̄)∥∥ ≤ N−1 ‖V ar (θ)‖ = O (N−ε)→ 0 as N →∞ and θ̄

q.m.→ θ. Condition (14)

need not always hold. This condition can be violated if there is a high degree of dependence of

micro coeffi cients βi across i, or if there is a dominant unit in the underlying model in which case

the column norm of Φ becomes unbounded in N .

The mean of βi is straightforward to identify from the aggregate relation since E (βi) = b0. But

further restrictions are needed for identification of E (λi) from the aggregate model. Similarly to

Pesaran (2003) and Lewbel (1994), independence of βi and λi would be suffi cient for the identifi-

cation of the moments of λi. Under the assumption that βi and λi are independently distributed,
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all moments of λi can be identified by

E (λsi ) =
bs
b0
. (15)

Another possibility is to adopt a parametric specification for the distribution of the micro

coeffi cients and then identify the unknown parameters of the cross sectional distribution of micro

coeffi cients from the aggregate specification. For example suppose βi is independently distributed

of λi, and λi has a beta distribution over (0, 1),

f (λ) =
λp−1

(
1− λq−1

)
B (p, q)

, p > 0, q > 0, 0 < λ < 1.

Then as discussed in Robinson (1978) and Pesaran (2003), we have

p =
b1 (b1 − b2)

b2b0 − b21
, q =

(b0 − b1) (b1 − b2)

b2b0 − b21
,

and θ = b0 (p+ q − 1) / (q − 1). Another example is uniform distribution for λi on interval [λmin, λmax],

λmin > −1, λmax < 1. Equation (15) can be solved to obtain (see Robinson, 1978),

λmin =
b1 −

√
3
(
b0b2 − b21

)
b0

, and λmax =
b1 +

√
3
(
b0b2 − b21

)
b0

.

4 Impulse Responses of Macro and Aggregated Idiosyncratic Shocks

For the analysis of impulse responses we assume that the common factors in (1) follow the VAR(1)

model

ft = Ψf t−1 + vt, (16)

where Ψ is an m×m matrix of coeffi cients, and vt = (v1t, v2t, ..., vmt)
′ is the m× 1 vector of macro

shocks. To simplify the analysis we also set β = 0, and write the micro relations as

yt = Φyt−1 + ut, ut = Γf t + εt. (17)

Including the exogenous variables, xt, in the model is relatively straightforward and does not affect

the impulse responses of the shocks to macro factors, vt, or the idiosyncratic errors. The lag orders
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of the VAR models in (16) and (17) are confined to unity only for expositional convenience.

We make the following additional assumption.

ASSUMPTION 6 The m × 1 macro shocks, vt, are distributed independently of εt′, for all t

and t′. They are also serially uncorrelated, with zero means, and a diagonal variance matrix,

Σv = Diag(σ2
v1
, σ2

v2
, ..., σ2

vm), where 0 < σ2
vj <∞, for all j.

We are interested in effects of two types of shocks on the aggregate variable ȳwt = w′yt, namely

the combined macro shocks, defined by v̄γ̄t = w′Γvt = γ̄ ′wvt, and the aggregated idiosyncratic

shock defined by ε̄wt = w′εt. We shall also consider the effects of a combined aggregate shock,

defined by

ξ̄wt = w′Γvt + w′εt = γ̄ ′wvt + ε̄wt = v̄γ̄t + ε̄wt,

on ȳw,t+s, for s = 0, 1, ..... ξ̄wt can be viewed as the aggregate shock, which can be identified from

aggregate equation in ȳwt, so long as an AR(∞) approximation for ȳwt exists. Since by assumption

εt and vt are distributed independently then

V ar
(
ξ̄wt
)

= γ̄ ′wΣvγ̄w+w′Σεw = σ2
v̄ + σ2

ε̄ = σ2
ξ̄ ,

where σ2
v̄ = γ̄ ′wΣvγ̄w is the variance of the combined macro shock, and σ

2
ε̄ = w′Σεw is the variance

of the aggregated idiosyncratic shock. Note that when ft is unobserved, the separate effects of macro

shock, v̄γ̄t, and aggregated idiosyncratic shock, ε̄wt, can only be identified under the disaggregated

model, (17). Only the effects of ξ̄wt on ȳw,t+h can be identified if the aggregate specification is used.

Using the disaggregate model we obtain the following generalized impulse response functions

(GIRFs)

gε̄ (s) = E (ȳw,t+s |ε̄wt = σε̄, It−1 )− E (ȳw,t+s |It−1 ) =
w′ΦsΣεw√

w′Σεw
, (18)

gvj (s) = E
(
ȳw,t+s

∣∣vjt = σvj , It−1

)
− E (ȳw,t+s |It−1 ) =

w′CsΣvej,v√
e′j,vΣvej,v

, (19)

for j = 1, 2, ...,m, where It is an information set consisting of all current and past available
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information at time t,

Cs =
s∑
j=0

Φs−jΓΨj , (20)

and ej,v is an m× 1 selection vector that selects the j-th element of vt. Hence

gv̄ (s) = E (ȳw,t+s |v̄γ̄t = σv̄, It−1 )− E (ȳw,t+s |It−1 ) =
w′CsΣvγ̄w√
γ̄ ′wΣvγ̄w

. (21)

Finally,

gξ̄ (s) = E
(
ȳw,t+s

∣∣ξ̄wt = σξ̄, It−1

)
− E (ȳw,t+s |It−1 )

=
w′CsΣvγ̄w+w′ΦsΣεw√

γ̄ ′wΣvγ̄w+w′Σεw
. (22)

Note that C0 = Γ, and we have gξ̄ (0) =
√
γ̄ ′wΣvγ̄w+w′Σεw = σξ̄, as to be expected.

When N is finite, both, the aggregated idiosyncratic shock (ε̄wt) and the combined macro shock

(v̄γ̄t), are important; and the impulse response of the aggregate shock on the aggregate variable,

given by (22), is a linear combination of gε̄ (s) and gv̄ (s), namely

gξ̄ (s) = ωv̄gv̄ (s) + ωε̄gε̄ (s) , (23)

where ωε̄ = σε̄/σξ̄, ωv̄ = σv̄/σξ̄, and ω
2
ε̄ + ω2

v̄ = 1.

When N → ∞, it is not necessarily true that both shocks are important, and limN→∞ σ
2
v̄/σ

2
ξ̄
,

if it exists, could be any value from the unit interval, including one or zero. We investigate the

case when N →∞ below. First, we consider the impulse responses of the aggregated idiosyncratic

shock on the aggregate variable in the next proposition.

Proposition 1 Suppose that ‖Σε‖1 = O (Nαε), for some constant 0 ≤ αs < 1, E ‖Φ‖ is bounded

in N , where ‖Φ‖ = % (ΦΦ′), and the aggregation weights satisfy ‖w‖ = O
(
N−1/2

)
. Then, for any

given s = 0, 1, 2, ..., we have

gε̄ (s) = Op

(
N (αε−1)/2

)
. (24)

For a proof see the Appendix.

The aggregated idiosyncratic shock and its corresponding impulse response function vanishes
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as N → ∞ at the rate which depends on the degree of cross section dependence of idiosyncratic

shocks. This rate could be very slow; and if the condition ‖w‖ = O
(
N−1/2

)
is not satisfied, then

the rate of convergence would depend also on the degree of granularity of the weights, wi. The

combined macro shock and its corresponding impulse-response function, on the other hand, does

not necessarily vanish as N →∞, depending on the factor loadings. For the ease of exposition, we

focus on the following model for factor loadings:

γi = ηi, for i = 1, 2, ..., [Nαγ̄ ] ,

γi = 0, for i = [Nαγ̄ ] + 1, ..., N ,

where ηi ∼ IID (γ,Ση), [Nαγ̄ ] denotes the integer part of Nαγ̄ , constant αγ̄ is the exponent of

cross section dependence of yit due to factors, see Bailey et al. (2011), and 0 < αγ̄ ≤ 1. Note that

the aggregated factor loadings satisfy plimN→∞N
1−αγ̄ γ̄w= γ, and the variance of the combined

macro shock, σ2
v̄ = γ̄ ′wΣvγ̄w, satisfies

plim
N→∞

N2(1−αγ̄)σ2
v̄ = γ ′Σvγ. (25)

The variance of the aggregated idiosyncratic shock, on the other hand, is bounded by

σ2
ε̄ = w′Σεw ≤ O

(
Nαε−1

)
. (26)

It follows from (25)-(26) that only when αγ̄ > (αε + 1) /2 and γ 6= 0, the variance of the (combined)

macro shock dominates, in which case plimN→∞ σ
2
v̄/σ

2
ξ̄

= 1, and the aggregate shock, ξ̄wt = v̄γ̄t+ε̄wt

converges in quadratic mean to the combined macro shock as N →∞. It is then possible to scale

gξ̄ (s) by σ−1
v̄ , and for any given s = 0, 1, 2, ..., we can obtain

plim
N→∞

[
σ−1
v̄ gξ̄ (s)

]
= plim

N→∞

[
σ−1
v̄ gv̄ (s)

]
.

When αγ̄ ≤ (αε + 1) /2 or when γ = 0, the macro shocks do not necessarily dominate the aggregated

idiosyncratic shock (as N → ∞), and the latter shock can be as important as macro shocks, or

even dominate the macro shocks as N →∞.
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5 A Monte Carlo Investigation

We consider a first-order VAR model with a single unobserved factor to examine the response

of ȳt = N−1
∑N

i=1 yit, to the aggregate shock, ξ̄t = γ̄vt + ε̄t, where γ̄ = N−1
∑N

i=1 γi and ε̄t =

N−1
∑N

i=1 εit. As before, we decompose the effects into the contribution due to a macro shock, vt,

and the aggregated idiosyncratic shock, ε̄t. Using (23), we have

gdξ̄ (s) = md
v (s) +md

ε̄ (s) , (27)

where md
v (s) = ωvg

d
v (s) , and md

ε̄ (s) = ωε̄g
d
ε̄ (s) are the respective contributions of the macro and

aggregated idiosyncratic shocks, and the weights ωv and ωε̄ are defined below (23).

Aggregation weights are set equal to N−1 in all simulations. The subscript d is introduced to

highlight the fact that these impulse responses are based on the disaggregate model. We know from

the theoretical results that in cases where the optimal aggregate function exists, the common factor

is strong (i.e. αγ = 1), and the idiosyncratic shocks are weakly correlated (i.e. αε = 0), then gd
ξ̄

(s)

converges to gdv (s) as N →∞, for all s. But it would be of interest to investigate the contributions

of macro and idiosyncratic shocks to the aggregate impulse response functions, when N is finite,

as well as when αγ takes intermediate values between 0 and 1.

We also use the Monte Carlo experiments to investigate persistence properties of the aggregate

variable. The degree and sources of persistence in macro variables, such as consumer price inflation,

output and real exchange rates, have been of considerable interest in economics. We know from

the theoretical results that there are two key components affecting the persistence of the aggregate

variables: distribution of the eigenvalues of lagged micro coeffi cients matrix, Φ, which we refer to

as dynamic heterogeneity, and the persistence of common factor itself, which we refer to as the

factor persistence. Our aim is to investigate how these two sources of persistence combine and get

amplified in the process of aggregation.

Finally, a related issue of practical significance is the effects of estimation uncertainty on the

above comparisons. To this end, we estimate disaggregated models using observations on individual

micro units, yit, as well as an aggregate model that only make use of the aggregate observations,

ȳt. We denote the estimated impulse responses of the aggregate shock on the aggregate variable
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by ĝd
ξ̄

(s) when based on the disaggregate model, and by ĝa
ξ̄

(s) when based on an aggregate au-

toregressive model fitted to ȳt. It is important to recall that the effects of macro and aggregated

idiosyncratic shocks cannot be identified from the aggregate model.

The remainder of this section is organized as follows. The next subsection outlines the Monte

Carlo design. Subsection 5.2 describes the estimation of gd
ξ̄

(s) using aggregate and disaggregate

data, and the last subsection discusses the main findings.

5.1 Monte Carlo design

To allow for neighborhood effects as well as an unobserved common factor we used the following

data generating process (DGP)

yit = λiyi,t−1 + γift + εit, for i = 1, (28)

and

yit = diyi−1,t−1 + λiyi,t−1 + γift + εit, for i = 2, 3, ..., N , (29)

where each unit, except the first, has one left neighbor (yi−1,t−1). The micro model given by

(28)-(29) can be written conveniently in vector notations as

yt = Φyt−1 + γft + εt, (30)

where yt = (y1t, y2t, ..., yNt)
′, γ = (γ1, γ2, ..., γN )′, εt = (ε1t, ε2t, ..., εNt)

′, and

Φ =



λ1 0 0 · · · 0

d2 λ2 0 · · · 0

0 d3 λ3 0

...
. . . . . .

0 0 dN λN


.

The autoregressive micro coeffi cients, λi, are generated as λi ∼ IIDU (0, λmax), for i = 1, 2, ..., N ,

with λmax = 0.9 or 1. Recall ȳt will exhibit long memory features when λmax = 1, but not when
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λmax = 0.9. The neighborhood coeffi cients, di, are generated as IIDU (0, 1− λi), for i = 2, 3, ..., N ,

to ensure bounded variances as N → ∞. Specifically, ‖Φ‖∞ ≤ maxi {|λi|+ |di|} < 1, see Chudik

and Pesaran (2011b).

The idiosyncratic errors, εt, are generated according to the following spatial autoregressive

process,

εt = δSεt + ςt, 0 < δ < 1,

where ςt = (ς1t, ς2t, ..., ςNt)
′, ςt ∼ IIDN

(
0, σ2

ς

)
, and the N×N dimensional spatial weights matrix

S is given by

S =



0 1 0 0 · · · 0

1
2 0 1

2 0 · · · 0

0 1
2 0 1

2 0

...
. . . . . . . . .

0 1
2 0 1

2

0 0 · · · 0 1 0


.

To ensure that the idiosyncratic errors are weakly correlated, the spatial autoregressive parameter,

δ, must lie in the range [0, 1). We set δ = 0.4. The variance σ2
ς is set equal to N/(τ

′
NRR′τN ),

where τN = (1, 1, ..., 1)′ and R = (IN − δS)−1, so that V ar (ε̄t) = N−1.

The common factor, ft, is generated as

ft = ψft−1 + vt, vt ∼ IIDN
(
0, 1− ψ2

)
, |ψ| < 1,

for t = −49,−48, ..., 1, 2, ..., T , with f−50 = 0. We consider three values for ψ = 0, 0.5 and 0.8. By

construction, V ar (ft) = 1.

Finally, the factor loadings are generated as

γi = ηi, for i = 1, 2, ..., [Nαγ ] ,

γi = 0, for i = [Nαγ ] + 1, [Nαγ ] + 2, ..., N ,

18



where [Nαγ ] denotes the integer part of Nαγ , 0 < αγ ≤ 1 is the exponent of cross section dependence

of yit due to the common factor, see Bailey et al. (2011), and ηi ∼ IIDN
(
1, 0.52

)
. The unobserved

common factor therefore affects a fraction [Nαγ ] /N of the units, with this fraction tending to

zero if αγ < 1. It is easily seen that γ̄ = N−1
∑N

i=1 γi = O (Nαγ ). We consider four values

for αγ ∈ {0.25, 0.5, 0.75, 1}, representing different degrees of cross section dependence due to the

common factor. Note that for αγ = 1, we have p limN→∞ γ̄ = 1, whereas p limN→∞ γ̄ = 0 for

αγ < 1. Note also that limN→∞NV ar (γ̄ft) = 1 for αγ = 0.5, in which case we would expect the

macro shock and the aggregated idiosyncratic shock to be of equal importance for gd
ξ̄

(s).

5.2 Estimation of gξ̄ (s) using aggregate and disaggregate data

The estimate of gξ̄ (s) based on the aggregate data, which we denote by ĝa
ξ̄

(s), is straightforward to

compute and can be based on the following autoregression, (intercepts are included in all regressions

below but not shown)

ȳt =

pa∑
`=1

π`ȳt−` + ζat.

To estimate gξ̄ (s) using disaggregated data is much more complicated and requires estimates

of the micro coeffi cients. In terms of the micro parameters, using ( 22), we have

gdξ̄ (s) = E
(
ȳw,t+s

∣∣ξ̄wt = σξ̄, It−1

)
− E (ȳw,t+s |It−1 )

=
s∑
`=0

Φ`
[
E
(
ut+s−`

∣∣ξ̄wt = σξ̄, It−1

)
− E (ut+s−` |It−1 )

]
. (31)

Following Chudik and Pesaran (2011b), we first estimate the nonzero elements of Φ, namely λi and

di, using the cross section augmented least squares regressions,

yit = λiyi,t−1 + diyi−1,t−1 + hi (L, phi) ȳt + ζit, for i = 2, 3, ..., N , (32)

where hi (L, pi) =
∑phi

`=0 hi`L
`, and phi is the lag order. The equation for the first micro unit is the

same except that it does not feature any neighborhood effects.9 These estimates are denoted by λ̂i
9Chudik and Pesaran (2011b) show that if ‖Φ‖∞ < 1, these augmented least squares estimates of the micro lagged

coeffi cients are consistent and asymptotically normal when αγ = 1 (as N,T
j→∞), and also when there is no factor,

i.e. γ = 0.
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and d̂i, and an estimate of uit is computed as

ûit = yit − λ̂iyi,t−1, for i = 1, and (33)

ûit = yit − λ̂iyi,t−1 − d̂iyi−1,t−1, for i = 2, 3, ..., N . (34)

To obtain an estimate of ξit = γivt + εit, we fit the following conditional models

ûit = rî̄ut + εit, for i = 1, 2, ..., N , (35)

where ̂̄ut = N−1
∑N

i=1 ûit; and the following marginal model,

̂̄ut = ψū̂̄ut−1 + ϑt. (36)

An estimate of ξit is computed as ξ̂it = ûit − r̂iψ̂ū̂̄ut−1, for i = 1, 2, ..., N , where r̂i and ψ̂ū are the

estimates of ri and ψū, respectively. When αγ = 1, ψ̂ū is a consistent estimator (as N,T
j→∞) of

the autoregressive parameter ψ that characterizes the persistence of the factor, r̂i is a consistent

estimator of the scaled factor loading, γi/γ̄, and the regression residuals from (36), denoted by ϑ̂t,

are consistent estimates of the macro shock, vt. But, when γ = 0, ūt = N−1
∑N

i=1 uit is serially

uncorrelated and ψ̂ū
p→ 0 as N,T

j→∞.

To compute the remaining terms in (31), we note that for s = ` = 0, E
(
ut
∣∣ξ̄wt = σ̂ξ̄, It−1

)
−

E (ut |It−1 ) = E
(
ξt
∣∣ξ̄wt = σ̂ξ̄, It−1

)
can be consistently estimated by Σ̂ξw/σ̂ξ̄, where σ̂ξ̄ =

(
w′Σ̂ξw

)1/2
,

Σ̂ξ = T−1
∑T

t=ph+1 ξ̂tξ̂
′
t, ξ̂t =

(
ξ̂1t, ξ̂2t, ..., ξ̂Nt

)′
, and ph = maxi phi. For s − ` > 0. Similarly,

E
(
ut+s−`

∣∣ξ̄wt = σ̂ξ̄, It−1

)
−E (ut+s−` |It−1 ) can be consistently estimated by ψ̂

s−`
u σ̂2

ϑr̂/
(
w′Σ̂ξw

)1/2
,

where r̂ = (r̂1, r̂2, ..., r̂N )′, and σ̂2
ϑ = T−1

∑T
t=ph+1 ϑ̂

2

t . All lag orders are selected by AIC with the

maximum lag order set to [T 1/2].

5.3 Monte Carlo Results

Figure 1 plots the relative contributions of macro and aggregated idiosyncratic shocks to the GIRF

of the aggregate variable for the sample of N = 200 micro units. See (27). There are four panels,

corresponding to different choices of cross section exponents, αγ , with the plots on the left of each
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panel relating to λmax = 0.9 and the ones on the right to λmax = 1. As expected, when αγ = 0.25

the macro shock is not ‘strong enough’and the aggregated idiosyncratic shock dominates. When

αγ = 0.5 (Panel B), the macro shock is equally important as the aggregated idiosyncratic shock.

As αγ is increased to 0.75 (Panel C), the aggregated idiosyncratic shock starts to play only a

minor role; and when αγ = 1 (Panel D), the macro shock completely dominates the aggregate

relationship. Similar results are obtained for N as small as 25 (not reported). Whether the support

of the distribution of the eigenvalues λi covers unity or not does not seem to make any difference

to the relative importance of the macro shock. Table 1 reports the weights ωv and ωε̄ for different

values of N , and complements what can be seen from the plots in Figure 1. Note that these weights

do not depend on the choice of λmax and by constructions ω2
v + ω2

ε̄ = 1. We see in Table 1 that for

αγ = 1, ωv is very close to unity for all values of N considered, and gd
ξ̄

(s) is mainly explained by

the macro shock, regardless of the shape of the impulse response functions.

Next we examine how dynamic heterogeneity and factor persistence affect the persistence of

the aggregate variable. Figure 2 plots the GIRF of the aggregate shock on the aggregate variable,

gdε̄ (s), for N = 200 and different values of λmax and ψ, that control the dynamic heterogeneity

and the persistence of the factor, respectively. Similarly to Figure 1, the plot on the left relates to

λmax = 0.9 and the one on the right to λmax = 1. It is interesting that gd
ξ̄

(s) looks very different

when we allow for serial correlation in the common factors. Even for a moderate value of ψ, say

0.5, the factor contributes significantly to the overall persistence of the aggregate. In contrast, the

effects of long memory on persistence (comparing the plots on the left and the right of the panels

in Figure 2), are rather modest. Common factor persistence tends to become accentuated by the

individual-specific dynamics.

Finally, we consider the estimates of gξ̄ (s) based on the disaggregate and the aggregate models,

namely ĝd
ξ̄

(s) and ĝa
ξ̄

(s). Table 2 reports the root mean square error (RMSE×100) of these estimates

averaged over horizons s = 0 to 12 and s = 13 to 24, for the parameter values αγ = 0.5, 1, and

ψ = 0.5, using 2000 Monte Carlo replications.10 The estimator based on the disaggregate model,

ĝd
ξ̄

(s), performs about 50 − 200% better than its counterpart based on the aggregate model. The

difference between the two estimators is slightly smaller when αγ = 0.5. As to be expected, an

10The bias statistics are not reported due to space constraint.
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increase in the time dimension improves the precision of the estimates considerably. Also, ĝd
ξ̄

(s)

improves with an increase in N , whereas the RMSE of ĝa
ξ̄

(s) is little affected by increasing N when

αγ = 1, but improves with N when αγ = 0.5.

Figure 1: Contribution of the macro and aggregated idiosyncratic shocks to GIRF of
one unit (1 s.e.) aggregate shock on the aggregate variable; N = 200.
Panel A. Experiments with αγ = 0.25.
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Panel B. Experiments with αγ = 0.5.
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Panel C. Experiments with αγ = 0.75.
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Panel D. Experiments with αγ = 1.
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Table 1: Weights ωv and ωε̄ in experiments with ψ = 0.5

αγ = 0.25 αγ = 0.5 αγ = 0.75 αγ = 1

N ωv ωε̄ ωv ωε̄ ωv ωε̄ ωv ωε̄

25 0.33 0.93 0.63 0.76 0.88 0.47 0.97 0.23

50 0.24 0.96 0.63 0.76 0.90 0.42 0.99 0.16

100 0.25 0.96 0.64 0.76 0.93 0.35 0.99 0.12

200 0.18 0.98 0.64 0.76 0.95 0.30 1.00 0.08

Notes: Weights ωv = σv/σξ̄ and ωε̄ = σε̄/σξ̄ do not depend on the parameter λmax.

Figure 2: GIRFs of one unit aggregate shock on the aggregate variable, gξ̄ (s), for
different persistence of common factor, ψ = 0, 0.5 and 0.8.
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Notes: The vertical axis shows units of the shock. N = 200 and αγ = 1.

Table 2: RMSE (×100) of estimating GIRF of one unit (1 s.e.) aggregate shock on the
aggregate variable, averaged over horizons s = 0 to 12 and s = 13 to 24.

Estimates averaged over Estimates averaged over
horizons from s = 0 to 12 horizons from s = 13 to 24

N\T 100 200 100 200
ĝaξ̄ ĝdξ̄ ĝaξ̄ ĝdξ̄ ĝaξ̄ ĝdξ̄ ĝaξ̄ ĝdξ̄

Experiments with αγ = 1

(a) λmax = 0.9

50 20.18 12.81 13.50 8.70 10.39 4.38 8.22 3.20

100 20.00 12.41 13.49 8.32 10.76 3.89 8.39 2.76

200 20.45 12.39 13.61 8.30 10.27 3.61 8.17 2.62

(b) λmax = 1

50 24.13 15.23 15.95 10.41 21.15 12.55 16.34 8.66

100 23.92 14.76 16.44 9.96 20.36 11.37 16.96 7.34

200 24.34 14.65 15.99 9.70 20.75 10.58 16.36 6.56

Experiments with αγ = 0.5

(c) λmax = 0.9

50 3.24 2.21 2.31 1.57 1.87 0.96 1.48 0.72

100 2.24 1.50 1.62 1.06 1.24 0.59 1.02 0.45

200 1.55 0.99 1.11 0.72 0.88 0.36 0.69 0.28

(d) λmax = 1

50 3.66 2.86 2.84 1.99 3.38 2.86 2.64 2.04

100 2.71 1.96 1.96 1.30 2.54 1.77 1.90 1.25

200 1.78 1.27 1.36 0.88 1.56 1.09 1.29 0.78

Notes: Experiments with ψ = 0.5.
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6 Inflation Persistence: Aggregation or Common Factor Persis-

tence

Persistence of aggregate inflation and its sources have attracted a great deal of attention in the

literature. Prices at the micro level are known to be relatively flexible, whereas at the aggregate

level the overall rate of inflation seems to be quite persistent. In a recent paper, using individual

category price series, Altissimo et al. (2009) conclude that "...the aggregation mechanism explains

a significant amount of aggregate inflation persistence." (p.231). In this section, we investigate the

robustness of this conclusion by estimating a factor augmented high dimensional VAR model in

disaggregate inflation series, where the relative contributions of aggregation and common factor

persistence can be evaluated. We also consider the way the two sources of persistence interact and

get amplified in the process. We use the same data set as the one used by Altissimo et al. (2009),

so that our respective conclusions can be compared more readily.11 We find that persistence due

to dynamic heterogeneity alone does not explain the persistence of the aggregate inflation, rather

it is the combination of factor persistence and dynamic heterogeneity that is responsible for the

high persistence of aggregate inflation as compared to the persistence of the underlying individual

inflation series.

6.1 Data

The inflation series for the i-th price category is computed as yit = 400 · [ln (qit)− ln (qi,t−1)], where

qit is the seasonally adjusted consumer price index of unit i at time t.12 Units are individual cate-

gories of the consumer price index (e.g. bread, wine, medical services,...) and the time dimension

is quarterly covering the period 1985Q1 to 2004Q2, altogether 78 observations per price category.

We have data on 85 categories in Germany, 145 in France and 168 in Italy. The aggregate inflation

measure is computed as ywt =
∑N

i=1wiyit, where N is the number of price categories and wi is

the weight of the ith category in the consumer price index. The empirical analysis is conducted

for each of the three countries separately. Country subscripts are, however, omitted to simplify

the notations. No micro regressors are included in the analysis, and all measures of persistence

11We are grateful to Altissimo et al. for providing us with their data set.
12Descriptive statistics of the individual price categories are provided in Altissimo et al. (2009, Table 2).
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reported below are therefore unconditional.

6.2 Micro model of consumer prices

Following Chudik and Pesaran (2011b), we investigate the possibility that there are unobserved

factors or neighborhood effects in the micro relations. Selecting neighboring units tends to be

subjective. Here we categorize individual units into a small sets of products that are close substitutes

and are generally close in terms of their characteristics. For example, spirits, wine and beer are

assumed to be ‘neighbors’. A complete list of ‘neighbors’for Germany is provided in Pesaran and

Chudik (2011). An alternative possibility would be to define neighbors in terms of their proximity

as measured by flows of transactions between different commodity categories using input-output

tables. But the misspecifications of neighboring units might not be that serious if the object of

the exercise is to estimate the persistence of shocks on the aggregates. With this in mind we

shall not pursue the input-output metric, although we acknowledge that it might be worth further

investigation.

Let Ci be the index set defining the neighbors of unit i, and consider the following local averages

y�it =
1

|Ci|
∑
j∈Ci

yjt = s′iyt, i = 1, 2, ..., N, (37)

where |Ci| is the number of neighbors of unit i, assumed to be small and fixed as N → ∞, si is

the corresponding N × 1 sparse weights vector with |Ci| nonzero elements. y�it represents the local

average of unit i. No unit is assumed to be dominant in the sense discussed by Chudik and Pesaran

(2011a).13

We follow Pesaran (2006) and its extension to dynamic panels in Chudik and Pesaran (2011b),

and model the effects of unobserved common factors by means of cross section averages, at the

national and sectoral levels. Accordingly, we use the economy wide average, ȳt = N−1
∑N

j=1 yjt,

and the three sectoral averages

ȳkt =
1

|Qk|
∑
j∈Qk

yjt = w′kyt, for k ∈ {f, g, s}, (38)

13We have also estimated high dimensional VAR models of consumer price categories with the consumer energy
category treated as a dominant unit, but found little empirical support for the dominance of consumer energy prices.
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where Qk for k = {f, g, s} defines the set of units belonging food and beverages sector (f), goods

sector (g), and services sector (s). |Qk| is the number of units in sector k, and wk is the corre-

sponding vector of sectoral weights. This set up allows us to accommodate up to four common

factors.

The following regressions are estimated by least squares for the price category i belonging to

sector k, (intercepts are included but not shown)

yit =

piφ∑
`=1

φii`yi,t−`+

pid∑
`=1

di`y
�
i,t−`+

pih∑
`=0

hi`ȳt−`+

pik∑
`=0

hki`ȳk,t−`+ζit, for i ∈ Qk and k ∈ {f, g, s}. (39)

The same equations are also estimated for the energy price category, but without sectoral averages.

Impulse response function of the aggregate shock on the aggregate variable in a disaggregate model

is computed in the same way as in Section 5, with the exception that higher lag orders for the

lagged micro coeffi cients are considered in (39) and we allow also for sectoral cross section averages

in addition to the country cross section averages. The lag orders for the individual price equations

are chosen by AIC with the maximum lag order set to 2 (to keep the number of unknown parameters

to be estimated at a reasonable level). In line with the theoretical derivations, a higher maximum

lag order is selected when estimating the aggregate inflation equations. See Footnote 14 below.

6.2.1 Estimation results

Table 3 summarizes the statistical significance of the various coeffi cients in the price equations, (39),

for Germany, France and Italy. The parameters are grouped into own lagged effects (φii`), lagged

neighborhood effects (di`), country effects (hi`), and sectoral effects (hki`, for k = f, g, s). All four

types of effects are statistically important, although own lagged effects, perhaps not surprisingly,

are more important statistically as compared to the other effects. At the 5% significance level, own

lagged effects are significant in 90 cases out of 112 in Germany, 111 cases out of 169 in France, and

158 out of 209 cases in Italy, representing 65%-80% share of all estimated own lagged effects. Local

and cross section averages are statistically significant in about 12-25% of cases, which is above the

5% nominal size of the tests. These results suggest that the micro relations that ignore common

factors and the neighborhood effects are most likely missspecified. Idiosyncratic shocks are likely

to dominate the micro relations, which could explain the lower rejection rate for the cross section
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averages, compared to the own lagged coeffi cients. The fit is relatively high in most cases. The

average R
2
is 56% in Germany, 48% in France, and 51% in Italy (median values are 61%, 52%, and

54%, respectively).

Table 3: Summary statistics for individual price relations for Germany, France and
Italy (equation (39))

No. of No. of significant

estimated coef. coef (at the 5% nominal level) Share

Results for Germany

Own lagged effects 112 90 80.4%

Lagged neighborhood effects 66 16 24.2%

Sectoral effects 182 34 18.7%

Country effects 190 33 17.4%

Results for France

Own lagged effects 169 111 65.7%

Lagged neighborhood effects 166 23 13.9%

Sectoral effects 302 57 18.9%

Country effects 314 38 12.1%

Results for Italy

Own lagged effects 209 158 75.6%

Lagged neighborhood effects 173 38 22.0%

Sectoral effects 335 54 16.1%

Country effects 345 73 21.2%

6.3 Sources of aggregate inflation persistence

For each of the three countries, we compute and report in Figure 3 the GIRF of a unit aggregate

shock on the aggregate variable, using aggregate and disaggregate models, as explained in Section

4. We also provide 90% bootstrap confidence bounds together with the bootstrap means.14 These

impulse responses are quite persistent. The estimates based on the disaggregate model show a

higher degree of persistence in the case of France and Italy.

14The description of bootstrap procedure is available from the authors upon request. The aggregate model is
assumed to follow the AR(p) process estimated using ȳt. The lag order is chosen by AIC in the case of Italy and

France with the maximum lag order set to
[
T 1/2

]
. In the case of Germany, both AIC and SBC chose p = 3, but the

corresponding GIRFs were erratic and volatile. Therefore, we set the lag order to 2, to generate a less erratic GIRF
for Germany.
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Figure 3: GIRFs of one unit aggregate shock on the aggregate variable
Panel A. Point estimates, y-axis shows units of the shock.

Germany France Italy

Panel B. Bootstrap means and 90% confidence bounds based on aggregate model; y-axis shows the estimated
size of the shock.

Germany France Italy

Panel C. Bootstrap means and 90% confidence bounds based on aggregate model; y-axis shows the estimated
size of the shock.

Germany France Italy

Using the estimates of micro lagged coeffi cients in (39), for i = 1, 2, ..., N , we compute eigen-

values of the companion matrix corresponding to the VAR polynomial matrix Φ̂(L),

Φ̂(L) =


φ̂11(L) · · · 0

. . .

0 · · · φ̂NN (L)

+


d̂1(L)s′1

...

dN (L)s′N

 ,
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where φ̂ii(L) =
∑piφ

`=1 φii`L
`−1, d̂i(L) =

∑pid
`=1 di`L

`−1, and φ̂ii` and d̂i` denote estimates of φii` and

di`, respectively. The modulus of the largest eigenvalue is 0.94 in Germany and Italy, and 0.89

in France, and do no cover unity. Hence, given the theory advanced in the paper, it is unlikely

that the dynamic heterogeneity alone could generate the degree of persistence observed in Figure

3. This conclusion is further investigated in Figure 4, which compares the estimates of GIRFs

for the aggregate shock on the aggregate variable with âs = w′ĜsτN at horizons s = 6, 12 and

24, where the matrix Ĝsis defined by Φ̂−1(L) = Ĝ (L) =
∑∞

s=0 ĜsL
`. âs shows the effects of

dynamic heterogeneity on the persistence of the aggregate variable, whereas the GIRFs of the

aggregate shock on the aggregate variable is determined by factor persistence as well as dynamic

heterogeneity. âs is found to die out much faster as compared to the effects of the aggregate shock

in the case of all the three countries. Thus, dynamic heterogeneity alone does not seem suffi cient

for explaining the observed persistence of the aggregate inflation. In the case of France and Italy,

âs is close to zero for s ≥ 6 months horizon.

Figure 4: GIRFs of one unit aggregate shocks on the aggregate variable and estimates
of as; bootstrap means and 90% confidence bounds, s = 6, 12 and 24.
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Notes: The vertical axis shows units of the shock.

Altissimo et al. (2009) reach a similar conclusion in terms of the importance of common factor

for the behavior of the aggregate inflation, albeit using a different set of techniques. They find one

unobserved common factor and estimate the following model in order to study the implications of

aggregation for the persistence of aggregate inflation, yit = ψi (L) vt + ϕi (L) εit, where ψi (L) and

ϕi (L) are unit-specific polynomials, vt is a serially uncorrelated unobserved common factor inno-

vation orthogonal to εit, and εit is IID
(
0, σ2

i

)
. Altissimo et al. (2009) find that the persistence of
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aggregate inflation originates from the unobserved common component, ψi (L) vt, and that the per-

sistence of the aggregate idiosyncratic component,
∑N

i=1wiψi (L) εit, is relatively small. The latter

finding is in line with our results, which shows that âs seems to decline at a geometric rate. Their

analysis focuses on the roots of ψi (L), but does not study whether one could decompose ψi (L) into

the products γi (L)µ (L), in which case one could write ψi (L) vt = γi (L)µ (L) vt = γi (L) ft where

ft = µ (L) vt could be viewed as a serially correlated unobserved common factor. Thus, by assuming

that the common factor is serially uncorrelated, they end up attributing the observed persistence

of inflation to the aggregation process. Accordingly, they find that the empirical distribution of the

maximal autoregressive roots (the modulus of the roots of ψi (L)) peaks at one, which leads them

to argue that the aggregate inflation presents a long memory behavior and that the aggregation

mechanism explains a significant part of aggregate inflation persistence.

Our exercise allows us to evaluate how the two sources of persistence - dynamic heterogeneity

and the unobserved common factor persistence - combine and get amplified in the process. Figure

4 shows that the interaction of the persistence in common factors and dynamic heterogeneity of the

underlying processes is likely the key to understanding the slow response of the aggregate inflation

to macro shocks. As pointed out by Granger (1987), a relatively benign common factor at the micro

level becomes pertinent by aggregation at the macro level, and therefore understanding where this

common factor comes from and why it is (or is not) persistent would be important for a proper

understanding of consumer price inflation behavior.

7 Conclusion

This paper extends the literature on aggregation of linear dynamic models in a number of directions.

We derive conditions under which an optimal aggregate equation exists in the case of large dynamic

panels with individual specific regressors and common factors. We also derive conditions under

which aggregation errors are of second order importance in empirical analysis, and show how these

conditions are related to the long memory property of aggregate time series models highlighted by

Granger. We also consider the problem of identification of some of the distributional features of

micro parameters from aggregate relations, and derive impulse response functions for the analysis

of the effects of the macro and aggregated idiosyncratic shocks on the aggregate variable, allowing
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for weak cross section dependence in the errors of the underlying dynamic panel data model. Some

of the theoretical findings are illustrated by a series of Monte Carlo simulations. An empirical

application investigating the sources of the persistence of aggregate inflation is also presented. It is

shown that the observed persistence of aggregate inflation could be due to a combination of factor

persistence and dynamic heterogeneity in the underlying micro model of inflation. It is hoped that

the present paper initiates further research in the area of aggregation in economics. There are

clearly important links between aggregation and pooling of information in dynamic heterogenous

panels which are worthy of further investigations. The present paper should be seen as a small step

in this direction.

A Mathematical Appendix

Proof of Proposition 1. Taking the absolute values of (18) and applying the matrix norm

inequality yields

|gε̄ (s)| ≤ ‖w‖ ‖Φs‖
∥∥∥∥ Σεw√

w′Σεw

∥∥∥∥ , for s = 1, 2, ...,

and for every possible realization of the random elements in Φ. The matrix Σε = V ar (εt) is sym-

metric and positive definite and therefore there exists a matrix Zε such that Σε =ZεZ
′
ε. Hence,

15

∥∥∥∥ Σεw√
w′Σεw

∥∥∥∥ =

∥∥∥∥∥Zε Z′εw√
w′ZεZ′εw

∥∥∥∥∥ ≤ ‖Zε‖ ‖Z′εw‖‖Z′εw‖
≤ ‖Zε‖ ,

and, the |gε̄ (s)| is bounded by

|gε̄ (s)| ≤ ‖w‖ ‖Φs‖ ‖Zε‖ . (A.1)

Taking expectations of the both sides of (A.1), and noting that E ‖Φs‖ ≤ [E ‖Φ‖]s < K, ‖w‖ =

O
(
N−1/2

)
, and ‖Zε‖ = ‖Σε‖1/2 ≤ (‖Σε‖1 ‖Σε‖∞)1/2 = ‖Σε‖1 = O

(
Nαε/2

)
establishes (24), as

desired.
15Note that

√
w′DεD′εw = ‖D′εw‖.
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