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Bounded	Rationality	in	Principal‐Agent	Relationships		

by	Mathias	Erlei	&	Heike	Schenk‐Mathes	

Abstract:	We	conducted	six	treatments	of	a	standard	moral	hazard	experiment	with	
hidden	action.	All	treatments	had	identical	Nash	equilibria.	However,	the	behavior	in	all	
treatments	and	periods	was	inconsistent	with	established	agency	theory	(Nash	
equilibrium).	In	the	early	periods	of	the	experiment,	behavior	differed	significantly	
between	treatments.	This	difference	largely	vanished	in	the	final	periods.	We	used	logit	
equilibrium	(LE)	as	a	device	to	grasp	boundedly	rational	behavior	and	found	the	
following:	(1)	LE	predictions	are	much	closer	to	subjects’	behavior	in	the	laboratory;	(2)	
LE	probabilities	of	choosing	between	strategies	and	experimental	behavior	show	
remarkably	similar	patterns;	and	(3)	profit‐maximizing	contract	offers	according	to	the	
LE	are	close	to	those	derived	from	regressions.		
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1. Moral	hazard	with	hidden	action	as	an	established	theory	in	microeconomics	

Agency	problems	have	been	analyzed	theoretically	in	the	last	three	decades	under	a	

variety	of	conditions,	beginning	with	the	studies	of	Ross	(1973),	Holmstrom	(1979),	and	

Shavell	(1979).	Standard	theory	postulates	that	the	principal	and	the	agent	individually	

behave	rationally,	i.e.,	they	have	self‐centered	preferences	and	maximize	expected	

utility.	In	the	case	of	hidden	action,	after	signing	a	contract,	the	agent	takes	an	action	or	

chooses	an	effort	on	behalf	of	the	principal.	The	effort	cannot	be	observed	by	the	

principal.	A	higher	effort	of	the	agent	is	associated	with	a	higher	expected	outcome	that	

accrues	to	the	principal	and	results	in	higher	effort	costs	for	the	agent.	Since	the	

outcome	is	exposed	to	risk,	the	principal	cannot	deduce	the	agent’s	effort	ex	post.	

Therefore,	the	asymmetric	information	with	regard	to	the	agent’s	effort	induces	the	

well‐known	moral	hazard	problem.	The	agent	can	choose	an	inefficiently	low	level	of	

effort	that	the	principal	is	unable	to	detect.	Another	version	of	the	moral	hazard	problem	

arises	when	the	agent’s	effort	is	not	verifiable	by	a	third	party	responsible	for	the	

enforcement	of	the	contract	between	principal	and	agent.	Again,	the	principal	cannot	

force	the	agent	to	choose	the	efficient	level	of	effort.	The	source	of	the	moral	hazard	

problem	is	not	the	stochastic	outcome;	rather,	it	is	the	non‐enforceability	of	contractual	

agreements	based	on	effort	choice.	
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To	mitigate	or	even	prevent	the	moral	hazard	problem,	the	principal	can	offer	a	payment	

scheme	to	the	agent	in	which	payments	depend	on	outcomes.	The	basic	agency	problem	

consists	of	determining	the	optimal	payment	scheme	to	maximize	the	principal’s	

expected	utility	under	two	constraints.	First,	the	incentive	compatibility	constraint	is	

necessary	since	it	is	assumed	that	the	agent	chooses	the	effort	level	that	maximizes	his	

expected	utility.	Second,	the	participation	constraint	ensures	that	the	agent	obtains	a	

sufficiently	high	payment	to	accept	the	offer.		

The	moral	hazard	problem	is	of	practical	relevance,	particularly	when	linear	payment	

schemes	are	considered	(e.g.,	Holmstrom/Milgrom	1987,	Spremann	1987).	Assuming	a	

stochastic	outcome,	the	optimal	solution	is	characterized	by	a	trade‐off	between	Pareto‐

efficient	risk	sharing	and	maximum	motivation.	The	participation	constraint	is	binding,	

i.e.,	the	agent	realizes	only	his	reservation	utility.	If	both	contract	parties	are	risk	

neutral,	the	agent	will	become	the	residual	claimant.	The	agent	bears	all	risk,	and	the	

principal	receives	a	fixed	payment.	In	this	case,	the	first	best	solution	is	achievable.	If	the	

agent	is	risk	averse,	the	optimal	solution	is	only	second‐best	and	leads	to	the	above‐

mentioned	trade‐off	between	risk	sharing	and	motivation.		

The	moral	hazard	problem	has	received	much	attention	in	applied	microeconomics,	in	

topics	such	as	labor	economics,	insurance	economics,	organizational	design,	and	

managerial	accounting.	Therefore,	empirical	studies	are	necessary	to	confirm	the	

theoretical	results.	Unfortunately,	field	data	(such	as	payment	schemes	for	managers)	

are	rarely	available,	and	real‐world	contract	design	is	much	more	complex	than	

theoretical	principal‐agent	models.	Furthermore,	it	is	impossible	to	control	for	all	

variables.			Laboratory	experiments	are	a	more	appropriate	means	of	testing	these	

theoretical	predictions	since	the	principals’	contract	offers	and	the	agents’	choices	can	

be	observed.	In	addition,	important	factors	for	the	relationship,	such	as	the	effort	costs	

or	the	choice	sets	of	the	principal	and	the	agent,	can	be	controlled.			

In	the	early	1990s,	experiments	testing	the	principal‐agent	model	with	hidden	action	

were	conducted	by	Berg	et	al.	(1990)	and	Epstein	(1992),	and	the	findings	were	in	line	

with	standard	theory.	However,	their	experimental	design	only	allowed	for	two	possible	

actions,	and	the	set	of	feasible	contracts	that	they	used	was	extremely	small.	Later	

experimental	results	show	that	individuals	often	deviate	from	the	predictions	of	

standard	principal‐agent	theory	(Anderhub	et	al.	2002,	Cochard	and	Willinger	2005,	

Fehr	and	Gächter	2001,	Fehr	et	al.	2004,	Güth	et	al.	1998,	2001,	Keser	and	Willinger	
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2000,	2006).	In	these	experiments,	there	are	three	principal	findings	concerning	the	

subjects’	behavior.	First,	the	principals’	contract	offers	are	far	more	generous	than	those	

predicted	by	standard	theory.	Second,	the	agents’	acceptance	decisions	deviate	from	

individually	rational	behavior;	i.e.,	they	reject	contract	offers	even	if	the	offers	fulfill	the	

participation	constraint.	Third,	the	agents’	effort	choices	are	often	best	responses.	In	

case	of	deviations,	behavior	can	be	explained	by	fairness	norms	or	reciprocity.		

In	summary,	actual	behavior	in	experiments	is	sometimes	better	explained	by	fairness	

norms	and	reciprocity	than	by	standard	theory.	However,	these	findings	have	several	

shortcomings.	Similarly	to	the	experiments	conducted	in	the	early	1990s,	the	agents	in	

the	more	recent	studies	often	only	have	two	possible	actions	(e.g.,	Chernomaz	2011,	

Cochard	and	Willinger	2005,	Keser	and	Willinger	2000,	2006).	Most	studies	do	not	allow	

linear	payment	schemes	and	are	restricted	to	incentive	contracts	consisting	of	the	

payment	of	a	fixed	wage	and	a	fine	that	the	agent	has	to	pay	in	case	of	shirking.	

Typically,	shirking	cannot	be	verified	with	certainty	(e.g.,	Fehr	and	Gächter,	2001,	Fehr	

et	al.	2004)1.		Our	experiment	is	most	similar	to	the	studies	of	Anderhub	et	al.	(2002)	

and	Güth	at	al.	(2001).	In	those	studies	and	in	the	other	studies	mentioned	above,	

rational	behavior	is	assumed,	and	deviations	from	standard	theory	are	explained	by	

introducing	social	preferences.	Our	objective	is	to	determine	whether	bounded	

rationality	provides	a	better	explanation	of	the	experimental	data.		

We	conducted	six	treatments	that	included	a	principal‐agent	relationship	with	hidden	

(non‐verifiable)	action	as	a	key	element.	We	varied	factors	such	as	the	procedure	for	

role	assignment	or	the	matching	of	participants.	During	the	initial	periods,	there	were	

significant	differences	in	the	participants’	behavior	between	the	treatments,	but	these	

differences	almost	vanished	in	the	final	period.	Our	analysis	concludes	that	standard	

theory,	i.e.,	the	subgame	perfect	Nash	equilibrium	concept,	cannot	satisfactorily	explain	

the	laboratory	behavior.	We	use	logit	equilibrium	to	show	that	its	predictions	are	

remarkably	close	to	the	observed	behavior.		

																																																								

1	Their	focus	is	not	on	testing	the	principal‐agent	model;	rather,	they	test	the	crowding‐out	effect	of	

material	incentives.	
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The	paper	is	organized	as	follows:	Section	2	introduces	and	discusses	the	experimental	

design.	Section	3	presents	our	experimental	results.	Section	4	explains	the	experimental	

data	using	the	concept	of	logit	equilibria,	and	Section	5	concludes.	

2. Six	experimental	variations	of	the	standard	principal‐agent	model	

2.1. Experimental	design	

We	conducted	six	treatments.	In	each	treatment	we	considered	the	following	principal‐

agent	setting:	

At	stage	1,	the	principal	offers	a	contract	including	a	fixed	wage	(wage)	and	a	revenue	

share	(share)	in	%.	The	revenue	(r)	depends	on	the	agent’s	effort	(e)	and	is	given	by	

r(e)=35·e.	For	the	wage	and	the	share,	the	following	restrictions	must	hold:	

wage	∈	{‐700,	‐699,	…	,	699,	700}	

share	∈	{0,	1,	…	,	99,	100}.	

In	addition,	the	principal	suggests	a	work	effort	(suggested	effort)	to	the	agent	that	is	not	

binding	on	the	agent.	

At	stage	2,	the	agent	can	accept	or	reject	the	offer.	If	the	agent	rejects	the	offer,	both	the	

principal	and	the	agent	earn	a	payoff	of	zero.	Agents	that	accept	the	offer	enter	stage	3	

and	choose	a	work	effort	e	∈	{0,	1,	…	,	50}	that	induces	private	costs	of	c(e)	=	7/8	e².		

Therefore,	the	payoffs	of	the	principal,	πP,	and	the	agent,	πA,	are	given	by	

௉ߨ ൌ ቀ1 െ ௦௛௔௥௘

ଵ଴଴
ቁ ⋅ 35݁ െ 		݁݃ܽݓ

஺ߨ ൌ ௦௛௔௥௘

ଵ଴଴
⋅ 35݁ ൅ ݁݃ܽݓ െ ଻

଼
݁ଶ		

Each	of	the	six	treatments	comprised	six	periods.	The	participants	were	divided	into	

groups	of	two	members.	One	member	took	the	role	of	the	principal,	and	the	other	took	

the	role	of	the	agent.	The	six	treatments	differed	in	the	assignment	of	the	roles.	In	two	of	

the	six	treatments,	the	roles	were	randomly	assigned.	In	two	other	treatments,	we	

combined	the	principal‐agent	setting	with	an	auction	to	assign	the	role	of	the	principal	

to	the	member	giving	the	highest	bid.	In	the	remaining	two	treatments,	we	utilized	a	

real‐effort	play	to	determine	the	principal	of	the	group.	The	real‐effort	play	will	be	

explained	in	detail	below.	
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At	the	beginning	of	a	session	of	the	Baseline	treatment,	the	groups	were	randomly	

composed,	and	the	roles	were	randomly	assigned.	In	each	period,	the	three	stages	of	the	

principal‐agent	setting	were	played.	The	randomly	composed	groups	and	the	randomly	

assigned	roles	remained	the	same	during	each	session	of	the	treatment.	

The	Baseline	One	Shot	treatment	was	identical	to	the	Baseline	treatment,	except	that	the	

groups	were	dissolved	and	randomly	recomposed	after	each	period.	

At	the	beginning	of	a	session	of	the	One	Auction	treatment,	the	groups	were	composed.	

Then,	the	two	members	of	each	group	played	a	second	price‐sealed	bid	auction.	The	

member	with	the	highest	bid	was	given	the	role	of	the	principal	during	the	following	six	

periods	of	the	session	and	paid	a	price	amounting	to	the	bid	of	the	partner,	who	became	

the	agent.	In	case	that	the	bids	in	a	group	were	the	same,	the	member	who	took	the	most	

time	for	bidding	was	given	the	role	of	the	agent.	The	groups	remained	the	same,	and	

there	was	no	role	switch	during	a	session.	

At	the	beginning	of	each	period	in	the	Repeated	Auctions	treatment,	the	groups	were	

randomly	composed,	and	roles	were	assigned	by	a	second	price‐sealed	bid	auction.					

At	the	beginning	of	each	period	of	the	Real	Effort	treatment,	the	subjects	had	to	perform	

two	tasks	that	represented	graphical	optimization	problems	(see	for	example	van	Dijk	et	

al.	(2000)).	They	had	to	find	by	trial	and	error	the	highest	value	of	a	function	with	two	

variables.		Starting	at	the	origin,	the	subjects	could	increase	or	decrease	the	value	of	the	

variables	in	discrete	steps	of	1.	After	each	move,	the	value	of	the	function	was	indicated,	

and	the	subjects	had	to	wait	3	seconds	for	the	next	move.	The	time	lag	was	introduced	to	

ensure	that	no	advantage	was	provided	to	experienced	players	of	computer	games.		In	

every	period,	the	search	lasted	60	seconds.	The	subjects	worked	on	two	tasks	of	the	

same	type,	A	and	B,	but	the	parameters	of	the	function	differed:	the	optimal	values	of	the	

variables	leading	to	the	maximum	of	the	function	were	not	the	same	in	the	two	tasks	

(and	also	changed	from	period	to	period).	The	subjects	began	work	on	Task	A	and	then	

could	switch	tasks	whenever	they	wanted.		Task	B	was	rewarded	at	an	individual	piece	

rate.	Based	on	the	result	of	Task	A,	the	20	subjects	of	a	session	were	ranked	in	each	

period.	Then,	groups	of	two	members	were	composed	according	to	the	following	rule:	

The	subject	ranked	number	i,	i		{1,2,…,10},	and	the	subject	ranked	number	i+10	formed	

a	group.		Finally,	in	each	group,	the	subject	with	the	higher	score	for	Task	A	was	given	

the	role	of	the	principal.	The	other	subject	took	the	role	of	the	agent	for	this	period.	The	
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subjects	could	work	on	Task	A	to	directly	achieve	a	higher	payment,	or	they	could	spend	

time	on	Task	B	to	increase	the	probability	of	becoming	a	principal.	Since	the	equilibrium	

payoffs	of	the	principal	are	higher	than	the	agents’	payoffs,	becoming	a	principal	was	

valuable.	In	this	treatment,	the	principal	was	named	the	employer	and	the	agent	was	

named	the	employee.	

Finally,	in	the	Real	Effort	No	Framing	treatment,	the	terms	“employer”	and	“employee”	

were	substituted	with	the	neutral	terms	“participant	X”	and	“participant	Y.”	This	was	the	

only	difference	between	the	two	Real	Effort	treatments.	

Figure	2	shows	a	summary	of	the	experimental	design.	

	
(1)	Baseline,	(2)	Baseline	One	Shot,		(3)	One	Auction

(4)	Repeated	Auctions,	(5)	Real	Effort,	(6)	Real	Effort	No	Framing	

Figure	2:	The	six	treatments	considered		
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2.2. Experimental	procedures	

The	experiment	was	conducted	at	Clausthal	University	of	Technology	and	consisted	of	

12	sessions,	2	for	each	treatment.	In	all	treatments	but	one,	40	subjects	participated.	The	

Baseline	One	Shot	treatment	was	the	exception	with	only	36	subjects.	Each	subject	

participated	in	only	one	session.	The	subjects	were	separated	from	each	other	by	

blinders,	and	they	remained	anonymous.		

The	experiment	was	computerized	and	conducted	with	the	help	of	the	z‐Tree	

experimental	software	developed	by	Fischbacher	(2007).	At	the	beginning	of	a	session,	

the	instructions	appeared	on	a	computer	screen	and	were	simultaneously	read	aloud	by	

the	experimenter.	The	participants	had	to	answer	a	set	of	control	questions.	

Furthermore,	before	the	6	payoff	periods	began,	the	subjects	completed	two	training	

periods	to	become	familiar	with	the	rules	of	the	experiment.		

The	sessions	lasted	between	1.5	and	2	hours.	The	payment	was	24.66	€,	on	average.		

2.3. Discussion	of	the	design	

The	experimental	design	is	closely	related	to	that	of	Anderhub	et	al.	(2002)	and	Güth	et	

al.	(2001).		The	game	of	Anderhub	et	al.	(2002)	has	multiple	equilibria	with	shares	

between	500/7	and	100	percent	resulting	from	a	piecewise	linear	cost	function,	and	the	

optimal	effort	constitutes	a	corner	solution.	We	enlarged	the	set	of	feasible	efforts	to	

obtain	an	interior	optimal	solution	and	introduced	a	strictly	convex	cost	function	that		

leads	to	two	subgame	perfect	equilibria	(both	with	an	optimal	share	of	100	percent).	

Compared	with	Güth	et	al.	(2001),	our	sets	of	feasible	contracts	and	feasible	efforts	are	

larger,	but	they	remain	discrete	choice	sets.	In	contrast	to	our	study,	Güth	et	al.	(2001)	

analyze	agency	relationships	with	one	principal	and	two	agents.	Their	focus	is	not	only	

on	vertical	but	also	on	horizontal	fairness.	An	important	difference	between	our	study	

and	both	previous	studies	is	the	embedding	of	the	identical	principal‐agent	relationship	

in	different	treatments	(see	figure	2).		

As	in	Anderhub	at	al.	(2002)	and	Güth	et	al.	(2001),	and	in	contrast	to	the	other	above	

mentioned	studies,	we	consider	a	non‐stochastic	outcome.	Risk	preferences	are	

therefore	irrelevant,	which	allows	us	to	concentrate	on	motivation	devices.	However,	the	

non‐stochastic	outcome	leads	to	another	problem:	although	the	effort	is	not	observable,	
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it	can	be	calculated	ex	post	after	observing	the	outcome.	The	theoretical	solution	to	the	

motivation	problem	thus	consists	of	a	forcing	contract	in	which	the	agent	has	to	pay	a	

fine	in	case	of	shirking.	Therefore,	we	refer	to	non‐verifiability	of	the	effort,	and	our	

experimental	design	does	not	allow	of	forcing	contracts.	Hence,	the	reason	for	the	moral	

hazard	problem	is	not	asymmetric	information	about	the	effort	between	the	principal	

and	the	agent;	rather,	it	is	that	the	principal	cannot	punish	the	shirking	of	the	agent	and	

must	motivate	the	agent	with	a	linear	payment	scheme.	

3. Experimental	results	

In	this	section,	we	provide	an	overview	of	the	main	characteristics	of	behavior	in	our	six	

treatments.	Working	backwards	through	the	game	tree	of	our	experiment,	we	start	with	

the	agents’	effort	decisions	(Section	3.1),	and	we	continue	with	their	acceptance	decision	

(Section	3.2)	and	the	principals’	contract	offers	(Section	3.3).	

3.1. Effort	

Effort	choices	according	to	rational	behavior	within	the	different	subgames	vary	with	

the	underlying	contracts.	Sequentially	rational	behavior	demands	effort	to	be	chosen	

according	to	݁௜
௢௣௧ ൌ ௦௛௔௥௘೔

ହ
.	In	order	to	compare	effort	choices	under	differing	contracts,	

we	define	a	new	variable,	effort	deviation,	as	Δ݁ ൌ ݁௜ െ ݁௜
௢௣௧.	According	to	the	game	

theoretical	prediction,	Δ݁	is	expected	to	equal	zero,	or	it	should	at	least	converge	to	zero.	

Figure	3.1	provides	a	box	plot	of	effort	deviations	with	respect	to	all	six	treatments	and	

all	six	periods.	Each	box	plot	consists	of	a	box	that	is	supplemented	with	two	vertical	

lines	(the	whiskers)	and	(sometimes)	some	dots.	The	dots	represent	individual	outliers.		

The	upper	(lower)	vertical	lines	represent	the	range	of	the	upper	(lower)	quartile	of	

effort	deviations.	The	box	contains	the	inner	quartile	range	of	effort	deviations.	Inside	

the	boxes,	there	is	a	horizontal	line	showing	the	median	effort	deviation.		
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Note:	diff_e	describes	the	values	of	Δe.	Numbers	1	through	6	denote	periods.		

Figure	3.1:	Box	plot	of	effort	deviations		

Figure	3.1	clearly	shows	a	convergence	towards	rational	effort	choices.	In	period	2,	the	

median	effort	deviation	is	very	close	to	zero.	In	period	6,	it	is	exactly	zero	in	all	

treatments.	Furthermore,	the	dispersion	of	the	effort	deviation	in	the	final	period	is	very	

small.	In	the	Baseline	treatment,	the	remaining	box	representing	the	inner	quartile	

range	is	hardly	visible	at	all,	which	means	that	almost	all	choices	in	Period	6	correspond	

to	the	individually	optimal	efforts.		

Table	A1	given	in	the	appendix	shows	the	means	and	medians	for	all	treatments	and	all	

periods.	This	table	strongly	confirms	our	interpretation	of	Figure	3.1.	In	particular,	all	

medians	in	period	6	equal	zero,	and	the	means	fluctuate	closely	around	zero.	Therefore,	

we	can	state	our	first	result.	

Result	1:	Effort	decisions	are	close	to	the	corresponding	profit	maximizing	values.		

3.2. Contract	acceptance	behavior	

According	to	the	game	theoretical	predictions,	agents	will	accept	all	contract	offers	that	

enable	them	to	realize	nonnegative	profits.	This	condition	is	fulfilled	whenever	contract	

terms	are	such	that	݁݃ܽݓ௜ ൒ െ ଻

ଶ଴଴
௜݁ݎ݄ܽݏ

ଶ.	In	order	to	summarize	the	acceptance	

behavior,	we	define	classes	of	contract	offers	with	respect	to	(fixed)	wage	intervals	and	

(return)	share	intervals.	Each	wage	interval	is	labeled	according	to	its	upper	limit,	and	

each	share	interval	is	labeled	according	to	its	upper	value	as	a	percentage.	Table	3.1	

shows	the	fraction	of	accepted	offers	in	84	classes.		
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	 Share	classes	
Wage	classes	 0	 1…25 26...40 41...60 61...75 76...90	 91...100
–750…–351	 0	 0 0.5 	 0

–350	 	 0.50 0 0	
–349…–250	 	 1.00 0 0.2 0 	 0.74
–249…–150	 	 0.14 0 0 0.89 0.72	 0.81
–149…–50	 	 0.50 0.33 0.625 0.82 0.91	 1
–49…–1	 	 0 0.33 0.95 1 	 1

0	 	 1.00 0.64 0.86 0.96 1	
1…50	 	 0.83 1 0.96 1 	
51…150	 1	 0.89 0.96 0.97 1 	
151…250	 	 0.95 0.93 1 1 1	 1
251…350	 1	 1 1 0.80 	 1
351…750	 	 0.85 1 0.80 1 1	

Note:	Numbers	for	share	intervals	are	percentages.		

Table	3.1:	Fractions	of	accepted	offers		

Columns	2	through	8	show	a	thick	horizontal	line	demarcating	the	minimum	fixed	wage	

that	is	consistent	with	a	rational	acceptance	of	the	contract	offer.	In	other	words,	all	cells	

above	this	demarcating	line	offer	too	small	wages	so	that	theory	expects	agents	to	reject	

the	contract	with	a	probability	of	one.	In	contrast,	whenever	wages	are	larger	than	zero,	

standard	theory	predicts	that	offers	will	always	be	accepted.	Theory	is	somewhat	

confirmed	by	the	data,	because	most	numbers	above	the	demarcating	lines	are	close	to	

zero,	whereas	numbers	below	are	close	to	1.	The	“wrong	acceptances”,	i.e.,	those	cells	

above	the	demarcation	line	with	a	fraction	strictly	greater	than	zero,	add	up	to	only	

seven	cases.	None	of	these	cases	occurs	in	period	6.	Our	interpretation	is	therefore	that	

the	incorrect	acceptances	are	part	of	the	participants’	learning	processes.		

Result	2:	The	behavior	with	respect	to	accepting	or	declining	contract	offers	is	largely	

consistent	with	equilibrium	predictions.		

3.3. Contract	offers	

The	experimental	game	considered	in	this	paper	has	two	subgame	perfect	Nash	

Equilibria	with	two	rather	similar	contract	offers.	One	equilibrium	shows	a	fixed	wage	of	

–350	and	a	share	of	100	percent.	In	the	other	equilibrium,	the	wage	is	–349,	and	the	

share	again	equals	100	percent.	Accordingly,	equilibrium	predicts	that	principals	will	

always	choose	a	share	of	100	percent	and	a	wage	of	–349	or	–350.	However,	in	708	

cases,	these	equilibrium	contract	offers	have	not	been	proposed	even	once.		
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Table	3.2	shows	the	distribution	of	the	contract	offers.	This	distribution	may	be	

characterized	by	three	properties:	(1)	There	are	two	local	peaks.	One	peak	is	

characterized	by	shares	between	90	percent	and	100	percent	and	fixed	wages	between		

–249	and	–150.	The	other	peak	corresponds	to	less	asymmetric	payoff	distributions	

with	shares	between	41	percent	and	60	percent	and	wages	between	–49	and	+50.		

	(2)	In	each	column	of	Table	3.2,	we	highlight	the	two	cells	with	the	highest	frequencies.	

Combining	them	leads	to	an	upward‐sloping	area	within	the	table	that	starts	with	wages	

between	1	and	100	in	the	second	column	and	ends	with	wages	between	–299	and	–150.	

The	peaks	of	the	contract	distribution	lie	within	this	range.	(3)	Relative	frequencies	out	

of	the	high‐frequency	range	are	often	close	to	zero.		

Such	a	distribution	of	contract	offers	cannot	be	explained	by	conventional	subgame	

perfect	Nash	Equilibrium	because	it	only	contains	wages	of	–349	and	–350	in	

combination	with	a	share	of	100	percent,	i.e.,	contract	offers	which	have	not	been	chosen	

at	all.		

Result	3:	The	distribution	of	contract	offers	is	inconsistent	with	the	perfect	equilibrium	of	

the	underlying	principal‐agent	model.		
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	 	 	 Share 	 	
Wage	 10	 20 30	 40 50 60 70 80 90	 100	 Total
‐650	 0.56	 0.00 0.14	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.71	
‐600	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐550	 0.00	 0.14 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.14	
‐500	 0.14	 0.14 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.14	 0.42	
‐450	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐400	 0.14	 0.28 0.14	 0.00 0.14 0.14 0.00 0.00 0.00	 0.00	 0.85	

‐350	 0.42	 0.14 0.00	 0.00 0.00 0.00 0.00 0.28 0.00	 0.00	 0.85	

‐300	 0.28	 0.00 0.14	 0.00 0.42 0.14 0.28 0.00 0.00	 0.42	 1.69	
‐250	 0.00	 0.00 0.28	 0.00 0.14 0.00 0.00 0.00 0.00	 2.82	 3.25	

‐200	 0.00	 0.14 0.56	 0.00 0.42 0.00 0.14 0.28 1.27	 5.23	 8.05	

‐150	 0.00	 0.14 0.28	 0.14 0.28 0.14 0.14 1.69 1.27	 3.81	 7.91	

‐100	 0.14	 0.00 0.28	 0.42 0.99 0.14 0.99 1.41 0.56	 0.14	 5.08	
‐50	 0.00	 0.14 0.14	 0.00 2.12 1.27 1.13 0.42 0.14	 0.00	 5.37	

0	 0.56	 0.28 0.71	 1.84 6.50 4.52 1.98 1.84 0.28	 0.14	 18.64	

50	 1.13	 0.85 1.98	 2.68 4.66 2.12 0.42 0.14 0.00	 0.00	 13.98	

100	 1.55	 1.27 3.39	 2.82 2.40 0.85 0.28 0.00 0.00	 0.00	 12.57	
150	 0.28	 0.71 1.41	 1.84 0.85 0.42 0.00 0.00 0.00	 0.00	 5.51	
200	 0.14	 1.55 0.42	 1.13 1.84 0.00 0.14 0.14 0.14	 0.14	 5.65	
250	 0.28	 0.42 0.71	 0.42 0.42 0.42 0.00 0.28 0.00	 0.00	 2.97	
300	 0.14	 0.28 0.28	 0.28 0.42 0.14 0.00 0.00 0.00	 0.14	 1.69	
350	 0.28	 0.42 0.28	 0.00 0.14 0.00 0.00 0.00 0.00	 0.00	 1.13	
400	 0.42	 0.28 0.00	 0.00 0.28 0.00 0.00 0.00 0.00	 0.00	 0.99	
450	 0.14	 0.00 0.00	 0.00 0.00 0.00 0.00 0.14 0.00	 0.00	 0.28	
500	 0.28	 0.00 0.00	 0.00 0.14 0.00 0.00 0.00 0.14	 0.00	 0.56	
550	 0.28	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.28	
600	 0.14	 0.14 0.00	 0.00 0.00 0.14 0.14 0.00 0.00	 0.00	 0.56	
650	 0.00	 0.00 0.14	 0.00 0.00 0.00 0.00 0.14 0.14	 0.00	 0.42	
700	 0.00	 0.00 0.14	 0.00 0.14 0.00 0.00 0.14 0.00	 0.00	 0.42	
Total	 7.34	 7.34 11.44	 11.58 22.32 10.45 5.65 6.92 3.95	 12.99	 100
Notes:	Wage	and	share	classes	are	labeled	by	their	upper	limits.	Wages	are	absolute	numbers,	shares	are	

percentages.		

Table	3.2:	Distribution	of	contract	offers.	

Neglecting	the	different	mechanisms	for	assigning	the	roles	in	our	experiment,	we	can	

state	that	all	treatments	have	identical	perfect	equilibria.	From	a	theoretical	point	of	

view,	we	thus	expect	to	see	no	major	differences	between	treatments.	Table	3.3	shows	

the	means	and	medians	of	contract	characteristics	with	respect	to	the	six	treatments.		
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Treatment	 Mean	

(wage)	

Mean	

(share)	

Median

(wage)	

Median	

(share)	

Baseline	 –38.1 59.0 –30 60	

One	Auction	 26.9 58.3 0 55	

Baseline	One	Shot	 –10.5 59.1 0 50	

Real	Effort	 53.1 46.7 50 50	

Real	Effort	No	Framing	 –54.1 47.9 –5 50	

Repeated	Auctions	 26.1 41.2 23.5 45	

Table	3.3:	Means	and	medians	of	contract	terms	(all	periods)		

Differences	are	obviously	present	between	the	treatments.	The	mean	fixed	wages	are	

below	zero	only	in	the	treatments	Baseline,	Baseline	One	Shot,	and	Real	Effort	No	

Framing.	The	mean	shares	in	Baseline,	One	Auction,	and	Baseline	One	Shot	are	close	to	

60,	whereas	they	are	well	below	50	in	the	remaining	treatments.	Kruskal‐Wallis	

equality‐of‐population	tests	for	the	fixed	wage	in	period	1	reject	the	null	hypotheses	

(equal	populations)	with	p‐values	of	0.0042	(all	treatments)	and	0.0279	(all	treatments	

except	Repeated	Auctions).2		

It	is	an	open	question	whether	behavior	in	treatments	is	similar	above	all	periods.	

Another	open	question	is	whether	contract	offers	finally	converge.	Therefore,	we	also	

present	summary	statistics	of	contract	offers	in	the	final	period.		

	

Treatment	 Mean	

(wage)	

Mean	

(share)	

Median

(wage)	

Median	

(share)	

Baseline	 –29.6 52.7 0 55.0	

One	Auction	 –13.9 65.4 0 68.5	

Baseline	One	Shot	 –88.2 64.9 –95 55.0	

Real	Effort	 –45.3 57.3 0 52.5	

Real	Effort	No	Framing	 –83.5 60.0 0 50.0	

Repeated	Auctions	 –27.9 44.4 5.5 47.5	

Table	3.4:	Means	and	medians	of	contract	terms	(period	6)		

In	period	6,	the	mean	wages	are	negative	in	all	treatments.	Moreover,	the	mean	shares	of	

Real	Effort	and	Real	Effort	No	Framing	have	increased	substantially	and	can	hardly	be	

																																																								

2	As	will	be	seen	later,	the	Repeated	Auctions	treatment	diverges	somewhat	from	the	other	treatments,	

which	is	why	we	test	for	all	treatments	except	Repeated	Auctions.		
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distinguished	from	the	first	three	treatments.	The	share	only	remains	well	below	50	in	

the	Repeated	Auctions	treatment.	Our	interpretation	of	these	data	is	that	the	

participants	underwent	a	learning	process	that	induced	a	convergence	of	behavior.	

However,	in	the	Repeated	Auctions	treatment,	this	learning	process	seems	to	have	been	

slower	than	in	the	other	treatments.		

Result	4:	We	find	large	and	significant	treatment	effects	in	early	periods	and	little	

evidence	for	treatment	effects	in	the	final	period.		

Our	interpretation	that	participants	underwent	a	learning	process	is	corroborated	by	

the	distribution	of	contracts	in	period	6	given	in	Table	3.5.	Contracts	outside	the	largely	

unchanged	high‐frequency	range	were	chosen	less	frequently,	and	the	relative	

frequencies	of	most	contract	terms	inside	the	area	increased.	Note	that	we	cannot	

observe	a	convergence	toward	the	perfect	equilibrium,	which	lies	outside	the	high‐

frequency	range.		

The	distribution	of	contract	terms	is	thus	very	similar	to	the	distribution	for	all	periods,	

with	the	exception	that	there	seems	to	be	much	less	noise.		

Result	5:	There	is	no	convergence	towards	the	perfect	equilibrium.		

In	summary,	we	find	a	fairly	stable	pattern	of	contract	offers	that	is	clearly	inconsistent	

with	the	equilibrium	prediction.	The	differences	between	treatments	prove	to	be	

unstable.	We	interpret	the	treatment	effects	as	phenomena	of	bounded	rationality	and	

learning	that	diminish	with	players’	experience.	Consequently,	we	have	not	provided	an	

explanation	for	subjects’	behavior	in	our	experiment	yet.	In	the	following	section,	we	try	

to	provide	such	an	explanation	by	referring	to	an	equilibrium	concept	that	explicitly	

accounts	for	bounded	rationality	and	that	may	be	interpreted	as	the	endpoint	of	a	

learning	process,	i.e.,	the	logit	equilibrium.		
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	 	 	 Share 	 	
Wage	 10	 20 30	 40 50 60 70 80 90	 100	 Total
‐650	 0.85	 0.00 0.85	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 1.69
‐600	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐550	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐500	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐450	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
‐400	 0.00	 0.00 0.00	 0.00 0.00 0.85 0.00 0.00 0.00	 0.00	 0.85	

‐350	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.85 0.00	 0.00	 0.85	

‐300	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.85 0.00 0.00	 0.85	 1.69	
‐250	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 4.24	 4.24	

‐200	 0.00	 0.00 0.85	 0.00 0.00 0.00 0.00 0.00 3.39	 6.78	 11.02	

‐150	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.85 0.00 1.69	 5.08	 7.63	

‐100	 0.00	 0.00 0.00	 0.00 8.85 0.00 0.85 0.85 0.85	 0.00	 3.39	
‐50	 0.00	 0.00 0.00	 0.00 4.24 2.54 1.69 0.00 0.00	 0.00	 8.47	

0	 1.69	 0.85 2.54	 1.69 10.17 5.08 4.24 1.69 0.00	 0.00	 27.97	

50	 1.69	 0.85 1.69	 5.93 5.93 1.69 0.85 0.00 0.00	 0.00	 18.64

100	 0.00	 0.00 3.39	 0.85 0.85 0.00 0.00 0.00 0.00	 0.00	 5.08	
150	 0.00	 0.00 1.69	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 1.69
200	 0.00	 0.85 0.00	 1.69 0.00 0.00 0.00 0.00 0.00	 0.00	 2.54
250	 0.00	 0.00 0.00	 0.00 0.85 0.85 0.00 0.00 0.00	 0.00	 1.69
300	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
350	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
400	 0.00	 0.00 0.00	 0.00 0.85 0.00 0.00 0.00 0.00	 0.00	 0.85	
450	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
500	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
550	 0.85	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.85	
600	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
650	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.85 0.00	 0.00	 0.85	
700	 0.00	 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00	 0.00	 0.00	
Total	 5.08	 2.54 11.02	 10.17 23.73 11.02 9.32 4.24 5.93	 16.95	 100
Notes:	Wage	and	share	classes	are	labeled	by	their	upper	limits.	Wages	are	absolute	numbers,	shares	are	

percentages.	Framed	cells	show	the	local	peaks	from	Table	3.2.		

Table	3.5:	Distribution	of	contract	offers	in	the	final	period.	

4. Explaining	participants’	boundedly	rational	behavior	with	logit	equilibria		

4.1. Logit	equilibrium	as	a	device	for	grasping	bounded	rationality	

In	Nash	equilibria,	players	perfectly	optimize	their	strategy	choice	given	the	strategies	of	

all	other	players.	They	never	choose	suboptimal	strategies,	and	they	never	make	

mistakes.	Logit	equilibrium	is	a	game	theoretic	equilibrium	concept	that	takes	erroneous	

behavior	into	account.	Logit	equilibrium	is	a	particular	case	of	quantal	response	

equilibria,	a	concept	developed	by	McKelvey	and	Palfrey	(1995,	1998).	The	essence	of	
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the	logit	equilibrium	is	to	transfer	the	idea	of	probabilistic	choice	(Luce	1959)	into	the	

spheres	of	game	theory.		

Let	ߨܧ௜௞		denote	the	expected	payoff	(or	expected	utility)	of	player	i	choosing	strategy	k,	

݇ ∈ ሼ1,2, … , 		by	given	is	k	choosing	of	probability	i’s	player	then	ሽ,ܭ

	
௜௞ݎ݌ ൌ

ୣ
ుಘ౟ౡ
ഋ

∑ ୣ
ుಘ౟ౠ
ഋ಼

ೕసభ

.	
(3.1)

Here,	μ	denotes	the	error	parameter.	If	μ	converges	to	infinity,	the	player	behaves	

completely	unintelligently	and	chooses	a	strategy	according	to	a	uniform	distribution.	In	

case	of	ߤ → 0,	the	player	is	perfectly	rational.	For	intermediate	values,	each	strategy	is	

chosen	with	strictly	positive	probability,	and	strategies	providing	higher	expected	

profits	are	chosen	with	higher	probabilities.		

In	economic	games,	a	strategy’s	expected	payoff	is	usually	also	dependent	on	the	other	

players’	strategies,	i.e.,	ߨܧ௜௞ ൌ ∑ ௜ሻିݏ௘ሺݎ݌ ⋅ ,௜௞ሺ݇ߨ ௜ሻ௦ష೔ିݏ ,	with	ିݏ௜	denoting	the	strategy	

combination	of	all	players	without	player	i	and	ݎ݌௘ሺିݏ௜ሻ	denoting	the	player	i’s	expected	

probability	that	the	other	players	choose	this	particular	strategy	combination.	The	logit	

equilibrium	is	then	defined	by	two	requirements.	(1)	The	probability	of	each	player	i	

choosing	his	strategy	k	is	given	by	(3.1)	for	all	players	and	all	strategies,	and	(2)	all	

players’	beliefs	about	the	distribution	of	the	other	players’	strategy	combinations	are	

correct,	i.e.,	ݎ݌௘ሺିݏ௜ሻ ൌ 		.௜ሻିݏሺݎ݌

For	each	value	of	the	error	parameter	μ	there	is	a	specific	logit	equilibrium.	In	most	

applications,	the	error	parameter	is	estimated	with	maximum	likelihood	techniques.	

Note	that	in	case	of	ߤ → 0,	the	logit	equilibrium	coincides	with	a	specific	Nash	

equilibrium.	McKelvey	and	Palfrey	(1998)	extend	the	concept	of	quantal	response	

equilibrium	in	general	and	the	concept	of	logit	equilibrium	in	particular	to	extensive	

form	games.	The	logit	equilibrium	then	corresponds	to	the	logit	equilibrium	of	the	agent	

normal	form	of	the	underlying	game.	In	case	of	ߤ → 0	the	logit	equilibrium	converges	to	

a	sequential	equilibrium.		

Anderson,	Goeree,	and	Holt	(2004)	show	that	the	logit	equilibrium	can	be	interpreted	as	

the	steady	state	of	a	noisy	directional	learning	process	in	which	players	are	subject	to	

normal	errors.	In	this	paper,	we	adopt	this	special	interpretation	so	that	the	behavior	in	

the	final	period	will	be	interpreted	as	the	endpoint	of	such	a	learning	process.		
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Before	applying	the	equilibrium	concept	to	our	own	experiment,	it	is	worth	mentioning	

that	numerous	successful	applications	of	logit	equilibrium	to	specific	contexts	exist	

(Anderson	et	al.	1998,	2001,	2002;	Capra	et	al.	1999;	Goeree	and	Holt	2000,	2001;	

Goeree	et	al.	2002).	In	fact,	quantal	response	equilibrium	has	been	so	successful	that	

Camerer	et	al.	(2004)	suggest	that	“Quantal	response	equilibrium	(QRE),	a	statistical	

generalization	of	Nash,	almost	always	explains	the	direction	of	deviations	from	Nash	and	

should	replace	Nash	as	the	static	benchmark	to	which	other	models	are	routinely	

compared.”		

4.2. Logit	equilibrium	of	our	experimental	games	

As	previously	mentioned,	the	logit	equilibrium	of	our	experimental	game	varies	with	the	

error	parameter	μ.	For	example,	if	 	converges	to	zero,	the	distribution	of	contract	

offers	will	converge	to	a	probability	of	one	that	the	wage	will	be	set	to	–349	and	the	

share	will	approach	100	percent.	In	contrast,	if	μ	approaches	infinity,	all	possible	

contract	offers	will	be	chosen	with	the	same	probability.	Our	main	task,	therefore,	is	to	

estimate	μ.	We	conducted	a	standard	maximum	likelihood	estimation	with	118	cases	for	

contract	offers,	118	decisions	whether	to	accept	the	offer,	and	97	effort	choices	in	period	

6.	According	to	our	estimation,	the	magnitude	of	the	error	parameter	is	ߤ ൌ 52.56.	This	

value	is	significantly	greater	than	zero	(p	<	0.001).3	Consequently,	we	reject	the	

hypothesis	of	perfectly	rational	behavior.	Table	4.1	shows	the	logit‐equilibrium	

distribution	with	this	error	parameter.		

																																																								

3	The	log‐likelihood	value	of	our	estimation	is	–1597.50.		
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	 	 	 Share 	 	
Wage	 10	 20 30	 40 50 60 70 80 90	 100	 Total
‐650	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.1	 0.1	 1.0
‐600	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.1	 0.1	 1.0
‐550	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.1	 0.1	 1.0
‐500	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.1	 0.1	 1.0
‐450	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.1	 0.2	 1.1
‐400	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.2	 0.3	 1.3

‐350	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.2 0.2	 0.6	 1.7

‐300	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.2 0.2 0.4	 1.6	 3.0
‐250	 0.1	 0.1 0.1	 0.1 0.1 0.2 0.2 0.4 1.1	 3.7	 6.1

‐200	 0.1	 0.1 0.1	 0.1 0.2 0.2 0.4 0.9 2.9	 5.2	 10.2

‐150	 0.2	 0.2 0.2	 0.2 0.2 0.4 0.8 2.3 4.7	 4.1	 13.3

‐100	 0.2	 0.2 0.2	 0.3 0.4 0.8 2.0 3.9 4.2	 2.2	 14.4
‐50	 0.3	 0.3 0.3	 0.5 0.9 1.7 3.0 3.5 2.4	 1.0	 13.9

0	 0.4	 0.4 0.6	 0.9 1.4 2.2 2.6 2.0 1.0	 0.4	 11.9

50	 0.5	 0.5 0.7	 1.0 1.4 1.6 1.4 0.9 0.4	 0.1	 8.5

100	 0.4	 0.4 0.6	 0.7 0.8 0.8 0.6 0.4 0.2	 0.1	 5.0
150	 0.2	 0.2 0.3	 0.3 0.4 0.3 0.2 0.1 0.1	 0.0	 2.1
200	 0.1	 0.1 0.1	 0.1 0.1 0.1 0.1 0.1 0.0	 0.0	 0.8
250	 0.0	 0.0 0.0	 0.1 0.1 0.1 0.0 0.0 0.0	 0.0	 0.3
300	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
350	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
400	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
450	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
500	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
550	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
600	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
650	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
700	 0.0	 0.0 0.0	 0.0 0.0 0.0 0.0 0.0 0.0	 0.0	 0.0
Total	 3.2	 3.2 3.9	 5.0 6.7 9.1 12.1 15.4 18.2	 19.8	

Notes:	Wage	and	share	classes	are	labeled	by	their	upper	limits.	Wages	are	absolute	numbers,	shares	are	percentages.	

The	framed	cells	show	the	local	peaks	from	Table	3.2.		

Table	4.1:	Distribution	of	contract	offers	according	to	logit	equilibrium		

(μ	=	52.56)4	

Comparing	Table	4.1	with	Table	3.5,	we	find	that	the	distribution	of	contract	offers	

according	to	logit	equilibrium	has	a	peak	at	wages	between	–150	and	‐200	with	shares	

between	91	and	100	percent.	We	also	find	a	similar	high‐frequency	range	of	contract	

offers.	Most	probabilities	outside	this	range	are	close	to	zero.	Therefore,	logit	

																																																								

4	The	fact	that	total	numbers	don’t	add	up	to	100	is	due	to	rounding	errors.		
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equilibrium	explains	the	distribution	of	contract	offers	far	better	than	standard	Nash	

equilibrium.	This	finding	can	also	be	illustrated	by	some	summary	statistics	given	in	

Table	4.2.	The	expected	value	of	fixed	wages	and	the	expected	value	of	revenue	shares	in	

the	logit	equilibrium	are	much	closer	to	the	data	means	than	the	corresponding	values	in	

the	Nash	equilibria.		

	

	
Mean	or	expected	values	

of	fixed	wages	

Mean	or	expected	values	

of	revenue	shares	

Data	(period	6)	 –47.36	 57.31	

Nash	equilibrium	 –349	/	–350	 100	

Logit	equilibrium	 –143.15	 67.14	

Table	4.2:	Summary	statistics	of	contract	offers	

Although	logit	equilibrium	performs	better	than	Nash	equilibrium,	there	are	still	two	

major	shortcomings.	First,	we	cannot	reconstruct	the	second	peak	in	the	distribution	of	

empirical	contract	offers.	This	second	peak	located	around	a	wage	of	zero	and	a	share	of	

50	percent	is	simply	absent	in	our	logit	equilibrium.	We	conjecture	that	the	second	peak	

may	best	be	explained	as	a	focal	point.	A	fixed	wage	of	zero	and	a	share	of	50	percent	are	

both	medial	values	within	the	range	of	feasible	values.	Furthermore,	this	contract	offer	

realizes	an	equal	distribution	of	revenues.	Two	other	contracts	lying	close	to	the	medial	

contract	are	<wage	=	43.75;	share	=	50>	and	<wage	=	0;	share	=	66.67>.	Both	offers	

induce	a	symmetric	distribution	of	profits	if	the	agent	chooses	individually	optimal	

levels	of	effort.		

Second,	the	mean	of	the	fixed	wages	in	period	6	is	still	substantially	greater	than	the	

expected	value	of	wages	in	the	logit	equilibrium.	We	suppose	that	this	is	largely	due	to	a	

combination	of	subjects’	dislike	of	offering	negative	wages	and	a	rather	slow	learning	

process.	Table	4.3	shows	the	empirical	means	of	wages	over	periods.	The	wages	are	

obviously	decreasing	and	they	may	not	have	reached	their	final	values	in	the	final	

periods	of	our	sessions.		

Period	 1	 2	 3	 4	 5	 6	

Means	of	wages	 60.9	 18.4	 6.0	 –8.4	 –25.0	 –47.4	

Table	4.3:	Means	of	fixed	wages	over	periods	
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Logit	equilibrium	also	has	interesting	implications	for	normative	agency	theory.	

Subgame	perfect	Nash	equilibrium	contracts	are	anything	but	optimal.	According	to	the	

logic	of	logit	equilibrium,	a	contract	offer	of	<wage=–350;	share=100>	will	be	rejected	

with	a	probability	of	62.2	percent,	and	the	principal’s	expected	profit	is	thereby	reduced	

to	132.19.	Even	the	focal	contract	<wage=0;	share=50>	is	superior	to	the	Nash	contract.	

As	the	focal	contract	will	be	accepted	with	a	probability	of	77.3	percent,	its	expected	

profits	according	to	logit	equilibrium	amount	to	140.18.	However,	the	contract	

maximizing	the	principal’s	profit	comprises	a	fixed	wage	of	–253	and	a	share	of	100	

percent.	In	this	case,	the	contract	will	be	accepted	with	a	probability	of	79.4	percent,	and	

the	expected	principal’s	profits	equal	200.76.	Logit	equilibrium	retains	the	insight	that	a	

large	share	of	100	is	efficient.	However,	it	also	shows	that	it	is	important	that	the	agent	

has	a	sufficiently	high	incentive	for	accepting	the	offer.	The	commonly	used	participation	

constraint,	which	states	that	it	is	sufficient	for	the	principal	to	cover	the	agent’s	

monetary	opportunity	cost,	simply	does	not	work	for	laboratory	behavior.	Increasing	

the	agent’s	fixed	wage,	however,	generates	a	real	incentive	for	the	agent	to	enter	the	

contractual	relationship.		

5. Discussion		

Both	the	empirical	distribution	of	contract	offers	and	the	agents’	acceptance	behavior	

show	that	the	distribution	of	surplus	is	important	for	understanding	subjects’	behavior.	

It	therefore	seems	likely	that	social	preferences	might	be	involved.	Inequity	aversion	

(Fehr	and	Schmidt	1999;	Bolton	and	Ockenfels	2000)	and	social	welfare	preferences	

(Charness	and	Rabin	2002)	are	the	most	prominent	approaches	for	this	kind	of	

reasoning.	It	shows,	however,	that	a	mere	change	of	the	utility	function	that	leaves	the	

concept	of	Nash	equilibrium	uncontested	cannot	explain	the	above	pattern	of	contract	

distributions.	Inequity	aversion	and	social	welfare	preferences	both	leave	no	room	for	

contracts	with	shares	below	100	percent,	as	we	assumed	a	non‐stochastic	outcome.	In	

inequity	aversion	models,	any	fairness	aspect	can	be	resolved	by	paying	higher	fixed	

wages.	Any	decrease	in	the	agent’s	share	creates	an	inefficiency	that	reduces	both	

participants’	utilities.	The	same	argument	holds	for	social	welfare	preferences.	

Correspondingly,	the	high‐frequency	range	of	contracts	with	shares	below	100	percent	

cannot	be	explained.		

It	is	still	possible,	however,	to	combine	the	concept	of	logit	equilibrium	with	social	

preferences.	We	calculated	other	logit	equilibria	for	different	utility	functions	that	
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account	for	such	preferences,	and	the	high‐frequency	range	of	contract	offers	remains	

close	to	the	basic	logit	equilibrium	without	social	preferences.	One	important	difference	

occurred,	however:	The	high‐frequency	range	is	shifted	downward	towards	the	contract	

<wage=–175;	share=100>.		

We	conducted	new	estimations	for	the	error	parameter	μ	of	the	logit	models	with	

various	specifications	of	social	preferences.	In	doing	this,	we	found	out	that	introducing	

social	preferences	simultaneously	in	stage	2	(accepting	or	rejecting	the	offer)	and	in	

stage	3	(effort)	decreases	the	log‐likelihood	value	of	the	estimation.	This	also	holds	for	

the	introduction	of	inequity	aversion	in	stage	3	(effort).	In	contrast,	introducing	social	

welfare	preferences	(Charness	and	Rabin	2002)	in	stage	3	slightly	increased	the	log‐

likelihood.	Our	overall	judgment	is	that	the	introduction	of	social	preferences	has	only	a	

limited	impact	on	our	ability	to	explain	the	laboratory	behavior	in	our	experiment.		

Finally,	we	discuss	the	usefulness	of	applying	stage‐specific	error	parameters	in	the	logit	

model.	Up	to	now,	it	is	common	practice	to	estimate	one	error	parameter	for	each	game.	

This	parameter	is	meant	to	describe	the	subjects’	degree	of	rationality,	which	varies	

with	each	game.	This	is	sensible	because	different	games	are	differently	complicated	

such	that	each	game	needs	its	own	error	parameter	(Anderson	et	al.	2002,	41).	However,	

it	is	also	true	that	different	stages	within	a	game	may	be	differently	complicated	so	that	

each	decision	stage	may	require	a	specific	error	parameter	to	account	for	the	different	

characteristics	of	the	corresponding	decision	problem	(cf.	Goeree	at	al.	2005,	363).		

To	see	whether	this	has	an	impact	on	our	results,	we	estimated	an	error	parameter	for	

each	stage	using	the	data	of	period	6.	We	started	with	the	error	parameter	in	stage	3	and	

used	the	estimated	value	to	calculate	the	expected	profits	in	earlier	periods.	We	then	

estimated	the	error	parameter	of	stage	2	and	used	this	value	for	our	final	estimation	of	

the	error	parameter	of	stage	1.	This	backward	estimation	procedure	provides	the	error	

parameters	ߤଵ ൌ ଶߤ	,65.35 ൌ 39.43	and	ߤଷ ൌ 40.58.	The	magnitudes	of	the	parameters	

are	plausible	because	the	decisions	in	stages	2	and	3	are	clearly	less	difficult	than	the	

choice	of	a	contract	offer	in	stage	1.	The	log‐likelihood	values	also	improved.	However,	

the	theoretical	logit	distribution	of	contract	offers	changed	only	marginally.	

Correspondingly,	we	confined	ourselves	to	a	single	error	parameter	for	the	experimental	

game.		
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6. Conclusion		

Our	experimental	data	indicate	that	a	learning	process	occurs	and	that	the	principals’	

contract	offers	in	the	final	period	are	similar	to	the	predictions	made	according	to	logit	

equilibrium.	In	contrast,	the	contract	offer	in	subgame	perfect	Nash	equilibrium	is	not	

chosen	even	once.	Inequity	aversion	or	social	welfare	preferences	may	play	a	role	but	do	

not	explain	the	contract	distribution	in	our	experiment	if	combined	with	the	assumption	

of	rational	behavior.	In	particular,	contracts	with	shares	less	than	100	percent	cannot	be	

explained	with	utility	functions	including	social	preferences	as	long	as	the	Nash	

equilibrium	concept	is	applied.		

We	conclude	that	logit	equilibrium	is	much	better	suited	to	predict	behavior	in	

principal‐agent	settings	than	subgame	perfect	Nash	equilibrium	so	that	we	corroborate	

the	suggestion	of	Camerer	et	al.	that	QRE	“should	replace	Nash	as	the	static	benchmark	

to	which	other	models	are	routinely	compared.”				
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Appendix	A:	Data	tables	

Table	A1:	Means	and	medians	of	effort	deviations	Δe	

	 Means		
	 Period	

Treatment		 1 2 3 4 5	 6	
Baseline	 2.8 0.1 0.7 1.2 0.5	 0.6	
One	Auction	 5.7 0.8 4.0 4.8 1.7	 2.5	
Baseline	One	Shot	 2.4 3.4 2.8 0.4 0.6	 –1.2	
Real	Effort	 4.9 1.4 1.0 –0.5 –0.1	 –0.2	
Real	Effort	No	Framing	 8.4 3.4 1.4 0.4 6.0	 –0.9	
Repeated	Auctions	 5.2 3.1 3.5 2.6 –0.8	 0.9	
	 Medians		
	 Period	
Treatment	 1 2 3 4 5	 6	
Baseline	 2 0 0 0 0	 0	
One	Auction	 5.6 0 1.5 1 0	 0	
Baseline	One	Shot	 1 .5 1 0 0	 0	
Real	Effort	 2.5 0 0 0 0	 0	
Real	Effort	No	Framing	 4 0 1 0 1	 0	
Repeated	Auctions	 7.5 1 1 1.7 0	 0	

	

	

	

	

	


