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Abstract

This is an outline of the origins and development of the way computability
theory and algorithmic complexity theory were incorporated into economic and
finance theories. We try to place, in the context of the development of com-
putable economics, some of the classics of the subject as well as those that have,
from time to time, been credited with having contributed to the advancement
of the field. Speculative thoughts on where the frontiers of computable eco-
nomics are, and how to move towards them, conclude the paper. In a precise
sense — both historically and analytically — it would not be an exaggeration to
claim that both the origins of computable economics and its frontiers are de-
fined by two classics, both by Banach and Mazur: that one page masterpiece
by Banach and Mazur ([5]), built on the foundations of Turing’s own classic,
and the unpublished Mazur conjecture of 1928, and its unpublished proof by
Banach ([38], ch. 6 & [68], ch. 1, §.6). For the undisputed original classic of
computable economics is Rabin’s effectivization of the Gale-Stewart game ([42];
[16]); the frontiers, as I see them, are defined by recursive analysis and con-
structive mathematics, underpinning computability over the computable and
constructive reals and providing computable foundations for the economist’s
Marshallian penchant for curve-sketching ([9]; [19]; and, in general, the con-
tents of Theoretical Computer Science, Vol. 219, Issue 1-2). The former
work has its roots in the Banach-Mazur game (cf. [38], especially p.30), at least
in one reading of it; the latter in ([5]), as well as other, earlier, contributions,
not least by Brouwer.



1 A Setting for Computability Theory and Al-
gorithmic Complexity Theory in Economics

"M.O. Rabin .... was the first ... to make a significant application
of recursion theory to the theory of games. In Rabin ([42]) it is
remarked that ‘It is obvious that not all games that are considered
within the theory of games are actually playable by human beings.’!
Here we find H. Simon’s [[51]] concept of bounded rationality as a
hidden theme, for the point of Rabin’s inquiry is to determine if
certain games of the Gale-Stewart variety can be won consistently
by Turing Machines that serve as surrogate players. To quote Rabin
[[42], p. 147] once more: 'The question arises as to what extent
the existence of winning strategies makes a win-lose [i.e., zero-sum)|
game trivial to play. Is it always possible to build a computer which
will play the game and consistently win?’

What Rabin is doing here is to provide an interpretation of Si-
mon’s concept of bounded rationality that is computational in character.
The significance of [[42]] is that the techniques of recursion theory are
used to fix a precise interpretation of computability within Church’s
Thesis."

[27], p- 84; underlining in the original.

Alain Lewis is a contemporary pioneer, whose research program on Fffec-
tively Constructive Mathematics ([28], [27]) had an immense flowering in the
years between the mid-1980s and the early 1990s. In his remarkably prescient
Monograph (manuscript), [27], the above elegant interpretation of (what he
calls) Rabin’s Theorem ([42]), brings together the three undisputed pioneers
of computable economics, i.e., Herbert Simon, Michael Rabin and Alain Lewis
himself, in one fell swoop, so to speak.

Velupillai’s earliest attempt at considering economic theoretical issues in
terms of computability theory goes back to his work on the computational com-
plexity of algorithms for mathematical programming formalizations of optimiza-
tion models in macroeconomics, from about 1976 — when Alan Turing, had not
his life been cut short by tragic events, would have been 64 years of age, the age
Velupillai has now reached!

Now, 36 years later, we commemorate the Turing Centennial with a well es-
tablished field of Computable Economics fully cognizant of the pioneering work
of Alan Turing and its relevance to many aspects of economic thoery, applied
economics, human problem solving and much else. It will not be incongruous
or inappropriate in any way if we single out two pioneering economists, Herbert
Simon and Alain Lewis, as those most responsible for contributing the initial

IThe exact quotation is ([42], p. 147):

"It is quite obvious that not all games which are considered in the theory of games
can actually be played by human beings."



impulse towards what came to be Computable Economics — in spite of ear-
lier stirrings by philosophers (Hilary Putnam) and computer scientists (Michael
Rabin).

This ‘next step in [economic] analysis’, conjectured the doyen of mathemat-
ical economics, Kenneth Arrow ([1], p.S398), ’ [would be] a more consistent
assumption of computability in the formulation of economic hypotheses’. But
this has mot been taken by economic theorists or, more pertinently, by any-
one claiming to be a computational economist, computable general equilibrium
theorist, applied computable general equilibrium theorist, algorithmic game the-
orist, so-called agent-based economic and financial modeller or any variety of
DSGE? theorist. Indeed, not too long after the famous, and decidedly non-
computable and non-constructive, Arrow-Debreu classic was published ([2], the
trio of outstanding mathematical economists, Arrow, Karlin and Scarf, cau-
tioned economists against facile conflation of ezistence theorems and effectively
computable solutions ([3], p.17). Despite this early ‘warning’ by three of the pio-
neering mathematical economists of economic theorising in the non-computable
mode, only in the sadly aborted research program on effectively constructive
economics by Alain Lewis and in my computable economics, have there been
systematic and coherent attempts to take Arrow’s conjecture seriously®. As far
as I am concerned, Simon ([51]), together with Michael Rabin ([42]*) and Alain
Lewis, are the undisputed pioneers of Computable Economics, and both of these
classics appeared in the public domain before ([3]). In [72] it was pointed out
that (pp. 25-6):

"[Simon’s] path towards a broader base for economics .... stressed
two empirical facts (quotes are from [53], p. x):

(I). ‘There exists a basic repertory of mechanisms and processes that
Thinking Man uses in all the domain in which he exhibits intelligent
behavior.’;

(IT). ‘The models we build initially for the several domains must all
be assembled from this same basic repertory, and common principles
of architecture must be followed throughout.” (italics added);"

It is at this point that I feel Simon’s research program pointed the
way toward computable economics in a precise sense. .....

Instead, the direction Simon took codified his research program in

2Dynamic Stochastic General Equilibrium.

3 Computable Economics is a name I coined in the early 1980s, from the outset with the
intention of encapsulating computability and constructivity assumption in economic theory.
My earliest recollection is 1983, when I announced a series of graduate lectures on Turing
and his Machine for Economists, in the department of economics at the European University
Institute. Only one person signed up for the course, Henrietta Grant-Peterkin, one of our
valued departmental secretaries! The course was still-born.

4In one of the most elegantly written ‘eternal’ classics of recursion theory, Hartley Rogers
([44]), the one blemish I found is the relegation of Rabin’s results to a minor problem (p.121,
ex. 8.5), with the unfortunate comment: ‘This is a special and trivial instance of a general
theorem about games’!



terms of the familiar notions of bounded rationality and satisficing
[underpinned by computational complexity theory] ..

I remain convinced that, had Simon made the explicit recursion-
theoretic link at some point in the development of his research pro-
gram, computable economics would have been codified much ear-
lier."

After reading [72], Simon wrote Velupillai as follows (italics added):

" As the book makes clear, my own journey through bounded ra-
tionality has taken a somewhat different path. Let me put it this way.
There are many levels of complezity in problems, and corresponding
boundaries between them. Turing computability is an outer bound-
ary, and as you show, any theory that requires more power than that
surely is irrelevant to any useful definition of human rationality. ....

Finally, we get to the empirical boundary, measured by labo-
ratory experiments on humans and by observation, of the level of
complexity that humans actually can handle, with and without their
computers, and - perhaps more important — what they actually do
to solve problems that lie beyond this strict boundary even though
they are within some of the broader limits.

The latter is an important point for economics, because we hu-
mans spend most of our lives making decisions that are far beyond
any of the levels of complexity we can handle exactly; and this is
where satisficing, floating aspiration levels, recognition and heuris-
tic search, and similar devices for arriving at good-enough decisions
take over. A parsimonious economic theory, and an empirically ver-
ifiable one, shows how human beings, using very simple procedures,
reach decisions that lie far beyond their capacity for finding exact
solutions by the usual maximizing criteria "

Simon chose to work within the ‘empirical boundary’, recognising immedi-
ately that computable economics was an attempt at defining, effectively, the
relevance of the ‘outer boundary’ for formalisation in economic theory.

The true significance of Lewis’s insight was to realise that Simon’s concept
of bounded rationality had to be given computational content; that Lewis did
not also realise that Simon did give it this content from the outset is besides the
point. But to give the notion of bounded rationality computational content in
the context of games played by computing machines is one thing; to interpret
bounded rationality as encapsulated in finite automata is quite another thing.
Fortunately, Lewis did not fall into the latter trap, one which many distinguished
game theorists almost willingly embraced.

The point missed by Lewis in his handsome tribute to Rabin is that this
classic came down in the great tradition of alternating games (see [71]), begun
by Zermelo at the beginning in ([84]), on the one hand; and, on the other
hand, down the even nobler and more ancient tradition of what is now called



combinatorial games (see the recent elegant, and eminently readable, [35] for a
fine exposition of the history and origins of this field, with copious references).
But there are many eminent game theorists who feel able to claim Zermelo as a
precursor of orthodox game theory. In some senses — particularly with regard to
von Neumann’s original min-max result and to the sustained non-constructive
and uncomputable methodology that underpins formal, orthodox, game theory
- this claim many have a modicum of truth to it.

Our own ‘take’ on Rabin’s classic as the fountainhead of computable eco-
nomics is its pedagogic value in providing a tutorial on how to effectivise a
non-effective framework in orthodox theory — whether economic or game theo-
retic. This is what I have emphasised in [71]. But, of course, it has also led to
a revitalisation of both a part of recursion theory (see p. 254 in the excellent —
although slightly dated — survey by Telgdrsky, [64], of recursion theoretic work
inspired by Banach-Mazur games for some of the early and classic references),
and a reflection on the possibility of avoiding reliance on the aziom of choice
(see below, the comment on the aziom of determinacy).

The von Neumann paper of 1928 ([81]), the ‘official’ fountainhead for or-
thodoxr game theory, etched indelibly, to an essentially non-existent Mathemat-
ical Economics community, what has eventually come to be called ‘Hilbert’s
Dogma’™, ‘consistency < existence’. This became — and largely remains — the
mathematical economist’s credo. Hence, too, the inevitable schizophrenia of
‘proving’ existence of equilibria, first, and looking for methods to construct and
compute them at a second, entirely unconnected, stage. Thus, too, the indis-
criminate appeals to the tertium non datur — and its implications — in ‘existence
proofs’, on the one hand, and the ignorance about the nature and foundations
of constructive mathematics and computability theory, on the other.

But it was not as if von Neumann was not aware of Brouwer’s opposition
to ‘Hilbert’s Dogma’, even as early as 1928, although there is reason to suspect
that something peculiar may have been going on. Hugo Steinhaus observed,

([62]):

"[My] inability [to prove the minimax theorem] was a consequence of
the ignorance of Zermelo’s paper in spite of its having been published
in 1913. .... J von Neumann was aware of the importance of the
minimax principle [in [81]]; it is, however, difficult to understand the
absence of a quotation of Zermelo’s lecture in his publications."

ibid, p. 460; italics added

Why didn’t von Neumann refer, in 1928, to the Zermelo-tradition of (alter-
nating) games? van Dalen, in his comprehensive and scrupulously fair biogra-

5In van Dalen’s measured, scholarly, opinion, [69], pp. 576-7 (italics added):

"Since Hilbert’s yardstick was calibrated by the continuum hypothesis, Hilbert’s
dogma, ‘consistency < existence’, and the like, he was by definition right. But
if one is willing to allow other yardsticks, no less significant, but based on
alternative principles, then Brouwer’s work could not be written off as obsolete
nineteenth century stuff."



phy of Brouwer, [69], p. 636, noted (italics added), without additional comment
that:

"In 1929 there was another publication in the intuitionistic tradition:
an intuitionistic analysis of the game of chess by Max Euwe®. It was a
paper in which the game was viewed as a spread (i.e., a tree with the
various positions as nodes). Euwe carried out precise constructive
estimates of various classes of games, and considered the influence
of the rules for draws. When he wrote his paper he was not aware
of the earlier literature of Zermelo and Dénés Konig. Von Neumann
called his attention to these papers, and in a letter to Brouwer, von
Neumann sketched a classical approach to the mathematics of chess,
pointing out that it could easily be constructivized."

von Neumann dinn’t provide this ‘easily constructivized’ approach — then,
or later? Perhaps it was easier to derive propositions appealing to the tertium
non datur, and to ‘Hilbert’s Dogma’, than to do the hard work of construct-
ing estimates of an algorithmic solution, as Euwe did”? Perhaps it was easier
to continue using the axziom of choice than to construct new axioms — say the
aziom of determinacy® — as Steinhaus and Mycielski did ([32])? Whatever the
reason, the fact remains that the von Neumann legacy was a legitimization of
‘Hilbert’s Dogma’ and the indiscriminate use of the axiom of choice in mathe-
matical economics and game theory.

Velupillai began to think of Game Theory in algorithmic modes — but not
what is today referred to as Algorithmic Game Theory — after realizing the
futility of algorithmising the uncompromisingly subjective von Neumann-Nash

6In a strange lapse, van Dalen refers to Euwe, 1929, without giving the exact details of
the reference in his excellent bibliography. The exact reference is [14]. Max Euwe was the
fifth World Chess Champion, between 1935-1937, having defeated Alexander Alekhine, on
December 15, 1935.

7At the end of his paper Euwe reports that von Neumann brought to his attention the
works by Zermelo and Konig, after he had completed his own work (ibid, p. 641). This
further substantiates the perplexity reported by Steinhaus (above) on the absence of any
reference to Zermelo in von Neumann’s official publications of the time. In any case, Euwe
then goes on (italics added):

"Der gegebene Beweis is aber nicht konstruktive, d.h. es wird keine Methode
angezeigt, mit Hilfe deren der gewinnweg, wenn iiberhaupt moglich, in endlicher
Zeit konstruiert werden kann."

8The introduction of this axiom is relevant in computable economics and point we wish to
make is best described in Takeuti’s observation ([63], pp. 73-4; italics added):

"There has been an idea, which was originally claimed by Godel and others,
that, if one added an axiom which is a strengthened version of the existence of a
measurable cardinal to existing axiomatic set theory, then various mathematical
problems might all be resolved. Theoretically, nobody would oppose such an
idea, but, in reality, most set theorists felt it was a fairy tale and it would never
really happen. But it has been realized by virtue of the axiom of determinateness,
which showed Goédel’s idea valid."



approach to game theory and beginning to understand the importance of Har-
rop’s theorem ([18]). This realization came after an understanding of effective
playability in arithmetical games, developed elegantly by Michael Rabin.

The brief, rich and primarily recursion theoretic framework of Harrop’s clas-
sic paper requires a deep understanding of the rich interplay between recursivity
and constructive representations of sets that are recursively enumerable. There
is also an obvious and formal connection between the notion of a finite com-
binatorial object, whose complexity is formally defined by the uncomputable
Kolmogorov measure of complexity, and the results in Harrop’s equally pio-
neering attempt to characterise the recursivity of finite sets and the resulting
indeterminacy — undecidability — of a Nash equilibrium even in the finite case.
To the best of my knowledge this interplay has never been mentioned or analysed
in the mathematical economic or game theoretic literature.

When Velupillai conceived the notion of computable economics in the early
1980s, he had in mind both constructive and computable mathematics as bases
for the formalization of economic theory. He was blissfully ignorant of the pio-
neering works by Rabin and Lewis, till about the late 1980s. Also, the important
work by Douglas Bridges based on constructive mathematics were unknown to
him when he was fashioning computable economics including constructive as-
sumptions and interpretations.

Finally, anyone even remotely familiar with Conway’s characteristically clear
note on A Gamut of Game Theories ([12]) and Turing’s classic on Solvable and
Unsolvable Problems ([67]), and Herbert Simon’s kind of behavioural economics
— called classical behavioural economics in this paper — will know that there is
an almost formal duality between problem solving and (combinatorial) games.
This is not a theme space allows us to develop, but it needs to be pointed out
that any future for computable economics will have to enlarge on this aspect of
the interaction between recursion theory, combinatorial games, Ramsey theory
and behavioural economics.

The paper is organised as follows. The next section is a retrospective of
some of the results obtained under the rubric of computable economics. The
section is sub-divided into two sub-sections: classical behavioural and (classi-
cal) computable economics. Section is a view of randomness and (statistical)
induction, underpinned by algorithmic complexity theory, but with suggestions
on an unususal double duality: one between algorithmic complexity theory and
computational complexity theory; the other between classical recursion theory
and constructive analysis. The final section outlines aspects of our view of the
frontiers of computable economics. The main vision here is the hope that ‘the
next step in computable economic analysis would be a more consistent’ con-
sideration of recursive or computable analysis, particularly in macroeconomic
dynamics.



2 Computability in Economics: A Retrospec-
tive

“[The] adoption of the infinitary, nonconstructive, set theoretic,
algebraic, and structural methods that are characteristic to mod-
ern mathematics [....] were controversial, however. At issue was
not just whether they are consistent, but, more pointedly, whether
they are meaningful and appropriate to mathematics. After all, if
one views mathematics as an essentially computational science, then
arguments without computational content, whatever their heuristic
value, are not properly mathematical. .. [At] the bare minimum,
we wish to know that the universal assertions we derive in the sys-
tem will not be contradicted by our experiences, and the existential
predictions will be borne out by calculation. This is exactly what
Hilbert’s program® was designed to do.”

[4], pp. 64-5; italics added

Thus, our claim is that the existential predictions made by the purely the-
oretical part of mathematical economics, game theory and economic theory
‘will [not] be borne out by calculations.” There is, therefore, a serious epis-
temological deficit — in the sense of economically relevant knowledge that can
be processed and accessed computationally and experimentally — in all of the
above approaches, claims to the contrary notwithstanding, that is unrectifiable
without wholly abandoning their current mathematical foundations. This is an
epistemological deficit even before considering the interaction between appeals
to infinite — even uncountably infinite — methods and processes in proofs, where
both the universal and existential quantifiers are freely used in such contexts,
and the finite numerical instances with which they are, ostensibly, ‘justified’.
This epistemological deficit requires even ‘deeper’ mathematical and philosoph-
ical considerations in Cantor’s Paradise'® of ordinals'! , where combinatorics,
too, have to be added to computable and constructive worlds to make sense of

9Velupillai has tried to make the case for interpreting the philosophy and methodology of
mathematical economics and economic theory in terms of the discipline of Hilbert’s program
in [?].

10Hilbert did not want to be driven out of ‘Cantor’s Paradise’ ([21]; p.191):

‘No one shall drive us out of the paradise which Cantor has created for us.’

To which the brilliant ‘Brouwerian’ response, if we may be forgiven for stating it this way,
by Wittgenstein was ([83]; p.103):

‘T would say, "I wouldn’t dream of trying to drive anyone out of this paradise."
I would try to do something quite different: I would try to show you that it is
not a paradise — so that you’ll leave of your own accord. I would say, You're
welcome to this; just look about you." ’

Where ‘Ramsey Theory’, ‘Goodstein Sequences’ and the ‘Goodstein theorem’, reign
supreme. In work in progress these issues are dealt with in some detail, as they pertain
to bridging the ‘epistemological deficit’ in economic theoretical discourse in the mathematical
mode.



claims by various mathematical economists and agent based modeling practi-
tioners.

Against this backdrop, within the framework of what we will now call classi-
cal computable economics, the following are some of the results that have been
derived'?: (1). Nash equilibria of (even) finite games are constructively indeter-
minate; (2). The Arrow-Debreu equilibrium is uncomputable (and its existence
is proved nonconstructively); (3). The Uzawa Equivalence Theorem is uncom-
putable and nonconstructive; (4). Computable General Equilibria are neither
computable nor constructive; (5). The Two Fundamental Theorems of Wel-
fare Economics are Uncomputable and Nonconstructive, respectively; (6). The
Negishi method is proved nonconstructively and the implied procedure in the
method is uncomputable; (7). There is no effective procedure to generate prefer-
ence orderings; (8). Rational expectations equilibria are uncomputable and are
generated by uncomputable and nonconstructive processes; (9). Policy rules in
macroeconomic models are noneffective; (10). Recursive Competitive Equilib-
ria (RCE), underpinning the Real Business Cycle (RBC) model and, hence, the
Dynamic Stochastic General Equilibrium (DSGE) benchmark model of Macro-
economics, are uncomputable; (11). Dynamical systems underpinning growth
theories are incapable of computation universality; (12). There are games in
which the player who in theory can always win cannot do so in practice because
it is impossible to supply him with effective instructions regarding how he/she
should play in order to win; (13). The theoretical benchmarks of Algorithmic
Game Theory are uncomputable and non-constructive; (14). Boundedly ratio-
nal agents,satisfying, formalised within the framework of (metamathematical)
decision problems are capable of effective procedures of rational choice.

In the next subsection we outline the computability theoretic background
against which # 14 can be demonstrated. The second subsection is a brief
outline of classical computable economics, in retrospective mode.

2.1 Notes on Classical Behavioural Economics - Com-
putable Foundations

"If we hurry , we can catch up to Turing on the path he pointed out
to us so many years ago."

Herbert Simon, [55], p. 101.

Velupillai coined the phrase classical behavioural economics to characterise
the kind of behavioural economics pioneered by Herbert Simon, which was un-
derpinned, at every level of theoretical and applied analysis, by a model of
computation. Invariably, although not always explicitly, it was Turing’s model
of computation. To highlight the difference between modern behavioural eco-
nomics, which is never underpinned by a model of computation, and the kind
of behavioural economics that was pioneered and practiced by Simon and his

12 Apart from the twelfth result, which is due to the pioneering work of Michael Rabin ([42])
in 1957, the rest are due to Velupillai. The first was suggested by Francisco Doria.

10



associates and followers, Velupillai decided to refer to the latter as practitioners
of classical behavioural economics®®.

The fundamental focus in classical behavioural economics is on decision prob-
lems faced by human problem solvers, the latter viewed as information process-
ing systems. All of these terms are given computational content, ab initio. But
given the scope of this paper we shall not have the possibility of a full charac-
terisation. The ensuing ‘bird’s eye’ view must suffice for now'?.

A decision problem asks whether there exists an algorithm to decide whether
a mathematical assertion does or does not have a proof; or a formal problem does
or does not have an algorithmic solution. Thus the characterization makes clear
the crucial role of an underpinning model of computation; secondly, the answer
is in the form of a yes/no response. Of course, there is the third alternative of
‘undecidable’, too. It is in this sense of decision problems that we interpret the
word ‘decisions’ here.

As for ‘problem solving’, we shall assume that this is to be interpreted in
the sense in which it is defined and used in the monumental classic by Newell
and Simon ([33]).

Finally, the model of computation is the Turing model, subject to the Church-
Turing Thesis.

To give a rigorous mathematical foundation for bounded rationality and sat-
isficing, as decision problems'®, it is necessary to underpin them in a dynamic
model of choice in a computable framework. However, any formalization un-
derpinned by a model of computation in the sense of computability theory is
intrinsically dynamic.

Consider the Boolean formula:

(33‘1 \/332 \/333)/\(.%‘1 V {".Z‘Q})/\(332\/{—\333})/\(1‘3\/{"33‘1})/\({_'23‘1\/{_|$2}\/{—\.T3})

(1)

Remark 1 Fach subformula within parenthesis is called a clause; The variables
and their negations that constitute clauses are called literals; It is ‘easy’ to ‘see’
that for the truth value of the above Boolean formula to be t(x;) = 1, all the

13See [48] for a more detailed discussion of this theme.

14Some details are discussed in greater and more rigorous depth in [73]

15The three most important classes of decision problems that almost characterise the subject
of computational complexity theory, underpinned by a model of computation — in general, the
model of computation in this context is the Nondeterministic Turing Machine — are the P,
NP and NP-Complete classes. Concisely, but not quite precisely, they can be described as
follows:

1. P defines the class of computable problems that are solvable in time bounded by
a polynomial function of the size of the input;

2. NP is the class of computable problems for which a solution can be wverified in
polynomial time;

3. A computable problem lies in the class called NP-Complete if every problem
that is in NP can be reduced to it in polynomial time.

11



subformulas within each of the parenthesis will have to be true. It is equally
‘easy’ to see that mo truth assignments whatsoever can satisfy the formula such
that its global value is true. This Boolean formula is unsatisfiable.

Problem 2 SAT — The Satisfiability Problem

Given m clauses, C;j(i = 1,....,m), containing the literals (of) z;(j =
s - n), determine if the formula C; ACy A ....... A Cy, is satisfiable.

Determine means ‘find an (efficient) algorithm’. To date it is not known
whether there is an efficient algorithm to solve the satisfiability problem — i.e.,
to determine the truth value of a Boolean formula. In other words, it is not
known whether SAT € P. But:

1

Theorem 3 SAT € NP
Finally, we have Cook’s famous theorem:

Theorem 4 Cook’s Theorem
SAT is NP — Complete

It is in the above kind of context and framework within which we are inter-
preting Simon’s vision of behavioural economics. In this framework optimization
is a very special case of the more general decision problem approach. The real
mathematical content of satisficing'® is best interpreted in terms of the sat-
isfiability problem of computational complexity theory, the framework used by
Simon consistently and persistently - and a framework to which he himself made
pioneering contributions.

Finally, there is the computably underpinned definition of bounded rational-
ity.

Theorem 5 The process of rational choice —i.e., boundedly rational choice
— by an economic agent is formally equivalent to the computing activity of a
suitably programmed (Universal) Turing machine.

Proof. By construction. See §3.2, pp. 29-36, Computable Economics [[72]]
[

Remark 6 The important caveat is ‘process’ of rational choice, which Simon
tirelessly emphasized by characterizing the difference between ‘procedural’ and
‘substantive’ rationality; the latter being the defining basis for Olympian ratio-
nality ([54], p-19), the former that of the computationally underpinned problem
solver facing decision problems. In the Olympian model the ‘process’ aspect is

161n [56], p. 295, Simon clarified the semantic sense of the word satisfice:

"The term ‘satisfice’, which appears in the Oxford English Dictionary as a
Northumbrian synonym for ‘satisfy’, was borrowed for this new use by H. A.
Simon (1956) in ‘Rational Choice and the Structure of the Environment’ [i.e,
[52]]".

12



submerged and dominated by the static optimization operator. By transforming
the agent into a problem solver, constrained by computational formalisms to de-
termine a decision problem, Simon was able to extract the procedural content in
any rational choice.

Definition 7 Computation Universality of a Dynamical System

A dynamical system is said to be capable of computation universality if, using
its initial conditions, it can be programmed to simulate the activities of any
arbitrary Turing Machine, in particular, the activities of a Universal Turing
Machine.

Theorem 8 Boundedly rational choice by an information processing agent within
the framework of a decision problem is capable of computation universality.

Proof. See [74]. m

We have only scratched a tiny part of the surface of the vast canvass on
which Simon sketched his vision of a computably underpinned behavioural eco-
nomics. Nothing in Simon’s behavioural economics — i.e., in Classical Behav-
toural Economics — was devoid of computable content. There was — is — never
any epistemological deficit in any computational sense in classical behavioural
economics.

2.2 Classical Computable Economics

"The method of ‘postulating’” what we want has many advantages;
they are the same as the advantages of theft over honest toil. Let us
leave them to others and proceed with our honest toil."

Bertrand Russell ([46], p. 71)

In computable economics, as in any computation with analogue computing
machines or in classical behavioural economics, all solutions are based on effec-
tively computable methods!”. Thus computation is intrinsic to the subject and
all formally defined entities in computable economics — as in classical behav-
ioural economics — are, therefore, algorithmically grounded. Given the algorith-
mic foundations of computability theory and the intrinsic dynamic form and
content of algorithms, it is clear that this will be a ‘mathematics with dynamic
and algorithmic overtones’'®. This means, thus, that computable economics is

17"We identify five varieties of computation, underpinned by computability theory, even if
not explicitly: classical recursion theory, computable analysis, constructive analysis, interval

analysis and classical numerical analysis (now given computable foundations in [7]).
18

“I think it is fair to say that for the main existence problems in the theory
of economic equilibrium, one can now bypass the fixed point approach and at-
tack the equations directly to give existence of solutions, with a simpler kind of
mathematics and even mathematics with dynamic and algorithmic overtones.”

[58], p.290; italics added.
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a case of a new kind of mathematics in old economic bottles. The ‘new kind of
mathematics’ implies new questions, new frameworks, new proof techniques - all
of them with algorithmic and dynamic content for digital domains and ranges.

Some of the key formal concepts of computable economics are, therefore:
solvability € Diophantine decision problems, decidability & undecidability, com-
putability & uncomputability, satisfiability, completeness & incompleteness, re-
cursivity and recursive enumerability, degrees of solvability (Turing degrees),
universality & the Universal Turing Machine and Computational, algorithmic
and stochastic complexity. The proof techniques of computable economics, as
a result of the new formalisms, will be, typically, invoking methods of: Diago-
nalization, The Halting Problem for Turing Machines, Rice’s Theorem, Incom-
pressibility theorems, Specker’s Theorem, Recursion Theorems. For example,
the recursion theorems will replace the use of traditional, non-constructive and
uncomputable, topological fix point theorems, routinely used in orthodox math-
ematical analysis. The other theorems have no counterpart in non-algorithmic
mathematics.

In the spirit of pouring new mathematical wines into old economic bottles,
the kind of economic problems that computable economics is immediately able
to grant a new lease of life are the classic ones of: computable and constructive
existence and learning of rational expectations equilibria, computable learning
and complexity of learning, computable and bounded rationality, computabil-
ity, constructivity and complexity of general equilibrium models, undecidabil-
ity, self-reproduction and self-reconstruction of models of economic dynamics
(growth & cycles), uncomputability and incompleteness in (finite and infinite)
game theory and of Nash Equilibria,decidability (playability) of arithmetical
games, the intractability (computational complexity) of optimization operators;
etc.

Suppose the starting point of the computable economist whose visions of
actual economic data, and its generation, are the following:

Conjecture 9 Observable variables are sequences that are generated from re-
cursively enumerable but not recursive sets, if rational agents underpin their
generation.

The above conjecture is is akin to the orthodox economic theorist and the
econometrician assuming that all observable data emanate from a structured
probability space and the problem of inference is simply to determine, by sta-
tistical or other means the parameters that characterise their probability distri-
butions.

All the way from microeconomic supply and demand functions to mone-
tary macroeconomic variables, parameters and functions, Diophantine relations,
equations and functions predominate in computable economics. This is because
the natural data types in economics are, at best, rational numbers. Hence, the
following famous theorem is used extensively.

The following three theorems of classical computability theory ([36]), for
example, are used to prove the uncomputability of rational expectations equi-
libria in orthodox frameworks, to construct computable rational expectations
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equilibria in computable macroeconomics and to formalise computable (macro-
economic) growth theory, respectively: Rice’s Theorem, the Halting Prob-
lem for Turing Machines (the recursion theoretic) Fixed Point Theorem
and the Recursion Theorem (related to invariance theorems in the domain
of algorithmic complexity theory).

The idea behind the recursion theorem is to formalize the activity of a Tur-
ing Machine that can obtain its own description and, then, compute with it.
This theorem is essential, too, for formalizing, recursion theoretically, a model
of growth in a macroeconomy and to determine and learn, computably and
constructively, rational expectations equilibria. The fiz point theorem and the
recursion theorem are also indispensable in the computable formalization of pol-
icy ineffectiveness postulates, time inconsistency and credibility in the theory
of macroeconomic policy. Even more than in microeconomics, where topological
fix point theorems have been indispensable in the formalizations underpinning
existence proofs, the role of the above fiz point theorem and the related recur-
sion theorem are absolutely fundamental in what I come to call Computable
Macroeconomics.

Anyone who is able to formalize these theorems, corollaries and conjectures
and work with them, would have mastered some of the key elements that form
the core of the necessary mathematics of computable economics. Unlike so-called
computable general equilibrium theory and its offshoots, computable economics
— and its offshoots — are intrinsically computational and numerical.

3 Randomness, Induction and Algorithmic Com-
plexity

"But it will be clear that, for those who hold that the mathemat-
ical universe consists of lawlike objects only, Kollektivs are equally
impossible."

[70], p.60; italics added.

We have come round to the belief, via Solomonoff ([60], [61]), that Keynes
([?]) is the origin, at least from an economist interested in the foundations of sta-
tistical induction (ibid, p. 350), of one strand of algorithmic complexity theory.
However, this is not to deny the fundamental importance of von MIses ([80]), his
remarkably cogent ‘manifesto’, Erst das Kollektiv, dann die Wharscheinlikhkeit,
his struggles to define a consistent notion of Kollektivs constructively and its
eventual realisation in the computability theoretic notion of (uncomputable)
Kolmogorov complezity. Few seem to have acknowledged the imporatnce of un-
derpinning Kollektivs on the Brouwerian notion of lawless sequences. A close
reading of [23], particularly chapter 33, would, we contend, substantiate our
stance that Keynes, too, was groping for such a notion, as always before its
time.

Current orthodoxy of the field of algorithmic complexity theory is elegantly
and comprehensively discussed, explained and described, all the way to the
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frontiers of research, in the almost encyclopaedic treatises by Li & Vitanyi ([29]),
Nies ([34]) and Downey & Hirschfeldt ([13]). Velupillai has had a stab at a
concise outline of the field, from the point of view of randomness and induction,
so that learning can be studied from the point of view of algorithmic complexity
(cf., [?], chapter 5), to which we may refer the interested for a potted survey of
the field!?.

The orthodox story, in an ultra-brief nutshell, is that the origins of the field
of algorithmic complexity theory lie in the work of Kolmogorov, Chaitin and
Solomonoff??, in their approaches to, respectively, the quantity of information
in finite objects, program-size descriptions of the information content of a finite
object and induction. For an economist the most interesting approach is that by
Solomonoff, whose starting point, in fact, was the Treatise on Probability, [?] by
Keynes. These original aims developed into, and linked with the earlier research
on, the von Mises attempt to define a frequency theory approach to probability,
randomness?’ and Bayesian estimation. All this is part of the folklore of the
subject, easily gleaned from any of the indicated references, above.

In all three traditions — i.e., the Kolmogorov, Chaitin and Solomonoff — the
intentions were to measure the amount of information necessary to describe a
given, finite, binary sequence (or string). A little more precisely, the idea is
as follows: given a string x, its algorithmic complexity is defined to be the
shortest string y from which a Universal Turing Machine?? can ‘produce’ the
given .0n the other hand, in computational complexity theory — particularly as
a result of adherence to ‘Post’s Program’ — attention is not focused on individual
finite strings. Instead the fundamental questions are about the computational
difficulty — i.e., complexity — of recognising sets. Thus, the problem is about
deciding whether a given finite string belongs to a particular set or not. It
will be evident that in computational complexity theory one tries to associate
a function 7,:N — N, to a recursive set, p such that g is accepted by those
Turing Machines, say ©, that run in time Q (7, (n)). Therefore, one way to
link algorithmic complexity theory with computational complexity theory will
be to define a notion of the former that is time-bounded and is able to capture

19Recursion theoretic Inductive Inference is elegantly and comprehensively treated in the
second volume of Odifreddi’s treatise on Classical Recursion Theory ([37], in particular, VIL.5
& IX.5). Learning of rational expectations equilibria in the setting of recursively enumerable
sets remains an incompletely explored field in macroeconomics — as it does in finance theory.

20The representative references for Chaitin, Kolmogorov and Solomonoff are, respectively,
[10], [26], [60] and [61].

210One direct link with computational complexity theory, was stated succinctly by Compag-
ner, [11], p.700 (italics added):

"..[T]he mathematical description of random sequences in terms of complex-
ity, which in algorithmic theory leads to the identification of randomness with
polynomial-time unpredictabilty."

Once algorithmic complexity theory is viewed as the basis for a definition of finite random
sequences, then it is inevitable that the emphasis will be on prediction rather than compu-
tation. Thus, the link with orthodox computational complexity theory is not as firm as the
inclusion of the sobriquet ‘complexity’ in the title may suggest.

221n the Solomonoff tradition the corresponding ‘universality’ resides in the concept of a
‘universal distribution’.
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aspects of the complexity of the set p. In other words, it is necessary to add a
time-bounded complexity component, as is routine in computational complexity
theory, to the standard measure of algorithmic complexity. If this is done, the
complexity of the finite string, x, will now be defined by the minimum of the
sum of the description length and a measure of the time required to produce
that z, from the given description. First steps towards such an attempt is made
in [77].

Since algorithmic complexity theory is, ab initio, underpinned by the Tur-
ing model of computation, it is natural to define time-constrained generation of
the descriptive complexity of members of sets. For example, as a computable
economist, we construct economic theories underpinned by Turing’s model of
computation. Given a computable economic theory, there will be naturally
definable time-bounded measures to describe the theory and, hence, immediate
considerations of computational complexity of such descriptions. This is the way
the complexity of solutions to ODE is studied. First, the ODE is either con-
structified or formalised within computability theory; then the computational
complexity of the constructified or computable theoretic solution is evaluated.
Thus, description is intrinsically algorithmized and the computable economist
can switch betwee algorithmic complexity theory and computational complexity
theory, in formal, dual, ways. However:

"There is also a technical sense of ‘complexity’ in logic, variously
known as Kolmogorov complexity, Solomonoff complexity, Chaitin
complexity, ...., algorithmic complexity, information-theoretic com-
plexity, and program-size complexity. The most common designa-
tion is ‘Kolmogorov complexity’ .... this is probably a manifestation
of the principle of "Them that’s got shall get,” since Kolmogorov is

the most famous of these mathematicians?3."

[15]; p. 137; italics added.

Franzén’s perceptive observation suggests that this whole area is really about
‘a technical sense of ‘complexity’ in logic’**. In this sense we would like to add
another point so as to dispel popular misconceptions about correlating or juxta-
posing complexity with incompleteness®®. Many an unwary reader of Chaitin’s

23In their comprehensive and admirable text on this subject, Li and Vitanyi first gave the
reason for subsuming all these different variations on one theme by the name ‘Kolmogorov
Complexity’, [29], p.84:

"Associating Kolmogorov’s name with [algorithmic|] complexity may also be an
example of the ‘Matthew Effect’ first noted in the Gospel according to Matthew,
25:29-30.."

24However, we believe Chaitin’s reference to his own pioneering work as ‘algorithmic infor-
mation theory’, is a much better encapsulation of the contents of the field and the intentions
of the pioneers. Indeed, the natural precursor is Shannon, rather than von Mises, but Whig
history is a messy affair and straightening out historical threads is a difficult task, even in a
contemporary field.

250r, simplicity with completeness. T am, of course, referring to incompleteness in the strict
metamathematical sense.
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important works - and his specific program-size approach to algorithmic infor-
mation theory, the incarnation of Kolmogorov complexity in Chaitin’s indepen-
dent work - has had a tendency to claim that incompleteness, undecidability or
uncomputability propositions are only valid in so-called ‘sufficiently complez’
mathematical systems. A fortiori, that intuitively simple computable systems
are not computationally complex. This is simply false. Very simple formal math-
ematical systems are capable of generating incompleteness and undecidability
propositions; just as intuitively very simple computable systems are capable of
encompassing incredibly complex computational complexities, as some of the
above examples have shown. Conversely, there are evidently complex systems
that are provably complete and decidable; and, similarly, there exist seemingly
complex functions that are capable of being computed, even primitive recur-
sively. As one obvious and famous example illustrating incompleteness and
essential undecidability in an intuitively simple, finitely axiomatizable, simply
consistent®® theory, one can take Robinson’s Arithmetic,[43], as shown in some
of the classic books of metamathematics®”, eg., [24], [25], pp. 280-1, [8], p.215,fF.

If the modern origins of computational complexity theory, via computability
theory, can be found in Hilbert’s Tenth Problem, then, equally, the proto-historic
origins of algorithmic complexity theory can found, via exact approximation
theory, in Hilbert’s Thirteenth Problem®®. Hilbert’s aim in formulating the 13th
Problem — based on problems of nomography?? - was to characterise functions in

26Gee [25], p.287, footnote 216 and [24], p.470, Theorem 53. The part played by simple con-
sistency and the analogy with Rosser’s result of the essential undecidability of N, [45], is also
discussed in the relevant parts of [25]. Furthermore, despite some unfortunate misprints and
unclarity, Franzén’s fine exposition of the use and abuse of Gddel’s Incompleteness theorems
has a good discussion of the way the Rosser sentence (rather than the more famous Gddel
sentence) is used in proving — by reference to [59] — undecidability in Robinson’s Arithmetic
([15], pp.158-9).

27T cite this example also because Robinson’s Arithmetic is sufficient to represent every
recursive function. It figures in the very first, ‘Introductory’, pages of Odifreddi’s compre-
hensive, yet pedagogical, textbooks of classical recursion theory, [36], §1.1, p.23. There are
many equivalent ways of setting out the axioms of Robinson’s Arithmetic (see, for example,
the discussion in [36]).

281f one reads the main content of the 13th Problem by replacing the word ‘nomography’
with ‘algorithm’, then the connection with the subject matter of this paper becomes fairly
clear, [20], p.424:

"[IJt is probable that the root of the equation of the seventh degree is a function
of its coefficients which does not belong to the class of functions capable of
nomographic construction, i.e., that it cannot be constructed by a finite number
of insertions of functions of two arguments. In order to prove this, the proof
would be necessary that the equation of the seventh degree f7 + xf3 + yf2 +
zf+1=0 is not solvable with the help of any continuous functions of only two
arguments. I may be allowed to add that I have satisfied myself by a rigorous
process that there exist analytical functions of three arguments x,y,z which
cannot be obtained by a finite chain of only two arguments."

Kolmogorov and Arnold refuted Hilbert’s conjecture by constructing representations of
continuous functions of several variables by the superposition of functions of one variable and
sums of functions.

29In the opening lines of the section stating the 13th Problem, Hilbert gives an intuitive
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terms of their complexity in a natural way: find those defining characteristics of
a function, such that, the given function can be built up from simpler functions
and simple operations. Hilbert’s honed intuition suggested the formulation of
the 13th Problem; it was — like the 10th Problem — solved ‘negatively’, by Kol-
mogorov and Arnold. The point to be emphasised here is, however, not the
direct and obvious connection with computational complexity theory?. Essen-
tially, Kolmogorov introduced the concept of ‘c—entropy’ of a metric space?!
‘to evaluate the order of increase of the volume of the [nomographic| table for
an increase in the accuracy of [nomographic] tabulation.” In other words, in his
work on approximation theory, preceding his work on algorithmic complexity
theory by only a few years, Kolmogorov defined the ‘size’ of a finite body — ac-
tually a subset of a Banach space — in terms of its ‘metric entropy’; on the other
hand, in his work on algorithmic complexity theory, he defined the information
content in a finite string in terms on ‘entropy’ (in the Shannon tradition), too.

Finally, the notion of randomness of finite strings, based on algorithmic com-
plexity theory can, we now suggest, also be defined via the constructive notion
of lawless sequences (or Choice Sequences, see [66]), first enunciated by Brouwer
. In this way, we think the computable economist, trained in classical recursion
theory or (in the inclusive sense), constructive analysis (say from [6]), supple-
mented by a mastery of one of the modern classics on algorithmic complexity
theory ([29], [34] or [13]) and any standard classic on computational complexity
theory (for eg., [39] or [47]), will be properly equipped to do justice to Turing’s
visions.

4 Computable Economics: Towards the Fron-
tiers

"The theory of recursive functions properly belongs to number
theory; indeed, the theory of recursive functions is, so to speak,
the function theory of number theory. ... The notion of recursive
function marks off those functions whose values can be effectively
calculated at every particular point; and just those functions are
useful in the natural sciences. Though the variables of recursive
functions do not run through all real numbers but only the natural

idea of ‘nomography’, [20], p.424:

"Nomography deals with the problem: to solve equations by means of drawings
of families of curves depending on an arbitrary parameter."”

Those of us who indulge in drawing vector fields might see the similarities!

30 A beautiful discussion of approximation theory from this point of view — albeit implicitly
— is given in an unfortunately little reference work by Vitushkin, [79]; a more technical and
comprehensive survey of Kolmogorov’s work on approximation theory is in [65].

31See [79], p. xiii and [30], chapters 9 & 10. ‘Order of increase’, ‘increase in the accu-
racy’, ‘'most favourable system of approximation’, ‘rapidity of convergence’ are some of the
phrases used in Kolmogorov approximation theory. These are the considerations that make
approximation theoretical considerations naturally algorithmic and, therefore, also amenable
to computational complexity analysis.
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numbers, probability theory as well as quantum theory operates with
functions of this latter kind; and recently recursive functions have
begun to be applied in analysis too."

[?], p.7; italics added.

At least since Walras devised the tdtonnement process and Pareto’s appeal
to the market as a computing device, there have been sporadic attempts to
find mechanisms to solve a system of supply-demand equilibrium equations,
going beyond the simple counting of equations and variables. But none of these
attempts to devise mechanisms to solve a system of equations were predicated
upon the elementary fact that the data types — the actual numbers — realised in,
and used by, economic processes were, at best, rational numbers. The natural
equilibrium relation between supply and demand, respecting the elementary
constraints of the equally natural data types of market — or any other kind
of economy — should be framed as a Diophantine decision problems, and the
way arithmetic games are formalised and shown to be effectively unsolvable in
analogy with the Unsolvability of Hilbert’s Tenth Problem (cf. [31]).

The Diophantine decision theoretic formalization is, thus, common to at least
three kinds of computable economics: classical behavioural economics, algorith-
mic game theory in its incarnation as arithmetic game theory and elementary
equilibrium economics. Even those, like Smale ([58]), who have perceptively
discerned the way the problem of finding mechanisms to solve equations was
subverted into formalizations of inequality relations which are then solved by
appeal to (unnatural) non-constructive, uncomputable, fixed point theorems did
not go far enough to realise that the data types of the variables and parameters
entering the equations needed not only to be constrained to be non-negative,
but also to be rational (or integer valued). Under these latter constraints, eco-
nomics in its behavioural, game theoretic and microeconomic modes must come
to terms with absolutely (algorithmically) undecidable problems. This is the
cardinal message of the path towards computable economics.

Therefore, if orthodox algorithmic game theory, orthodox mechanism theory
and computable general equilibrium theory have succeeded in computing their
respective equilibria, then they would have to have done it with algorithms
that are not subject to the strictures of the Church-Turing Thesis or do not
work within the (constructive) proof-as-algorithm paradigm. This raises the
mathematical meaning of the notion of algorithm in algorithmic game theory,
orthodox mechanism theory and computable general equilibrium theory (and
varieties of so-called computational economics). Either they are of the kind
used in numerical analysis and so-called ‘scientific computing’ (as if computing
in the recursion and constructive theoretic traditions are not ‘scientific’; see
[9] for a lucid definition and discussion of this seemingly innocuous concept)
and, if so, their algorithmic foundations are, in turn, constrained by either
the Church-Turing Thesis (as in [7]) or the (constructive) proof-as-algorithm
paradigm; or, the economic system and its agents and institutions are computing
the formally uncomputable and deciding the algorithmically undecidable (or are
formal systems that are inconsistent or incomplete).
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I believe Goodstein’s algorithm, [17] could be the paradigmatic example
for modelling rational - or integer - valued algorithmic (nonlinear) economic
dynamics (see, for example, [40]). Every sense in which the notion of algo-
rithm has been discussed above, for the path towards computable economics,
is most elegantly satisfied by this line of research, a line that has by-passed
the mathematical economics and nonlinear macrodynamics community. This
is the only way I know to be able to introduce the algorithmic construction of
an integer-valued dynamical system possessing a very simple global attractor,
and with immensely long, effectively calculable, transients, whose existence is
unprovable in Peano Arithmetic. Moreover, this kind of nonlinear dynamics,
subject to SSID, ultra-long transients and possessing simple global attractors
whose existence can be encapsulated within a classic Gddelian, Diophantine,
decision theoretic framework, makes it also possible to discuss effective policy
mechanisms (cf. [22]).

Kreisel’s characteristically perceptive observation (see quote above, in the
previous section), a plea for understanding the way to use the ‘Goodstein algo-
rithm’ in economic dynamics and the economist’s penchant for drawing curves
and for working with numbers defined over the real numbers, convinces us that
the most important frontier for computable economics is computable analysis,
([82]; coming down the [5] tradition) or computable calculus ([?], where a judi-
cious combination of constructive logic and recursion theory is used). We have
come to believe that every mathematically minded economist should be familiar
with the graph theorem of classical recursion theory ([36], p. 135-6), and not
simply be bamboozled by the Dirichlet-Kuratowski graph concept. The inter-
action between recursive and recursively enumerable sets, computable functions
and functions ‘plottable’ on a digital computer’s screen should be made clear to
all students of economics, almost more importantly than teaching them proba-
bility theory, statistics and the like. This is implicit in some of the claims about
the notion and definition of computation universality we have routinely been
using in classical computable economics.

With an integration of classical recursion theory, computable analysis and
a familiarity with the framework of Diophantine Decision Problems, and the
suggestions in the previous section on mastering the double duality between
algorithmic complexity and computational complexity, on the one hand, and
between classical recursion theory and constructive analysis, on the other, clas-
sical computable economics will be ready to embark on the path towards modern
computable economics, where not only the theory of the computer will be an
underpinning of economic theory; but also the empirical use of the hardware,
the pixels and the resolution that make the screen as much a part of the com-
putable economist’s ‘box of tools’ as its theory, will enrich the experiences of
being educated to be a computable economist.

It is incumbent upon us to make the attempt to prepare for a ‘computable
and constructive’ future, by writing the ‘sensible textbooks’ ([57]), for the next —
or future — generations of students, who will be the harbingers of the computable
approach to economics. It is only this way we can pay homage to Turing’s
genius.
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