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Abstract. This paper addresses the hedging of bond portfolios interest rate
risk by drawing on the classical one-period no-arbitrage approach of finan-
cial economics. Under quite weak assumptions, several maximin portfolios
are introduced by means of semi-infinite mathematical programming prob-
lems. These problems involve several Banach spaces; consequently, infinite-
dimensional versions of classical algorithms are required. Furthermore, the
corresponding solutions satisfy a saddle-point condition illustrating how they
may provide appropriate hedging with respect to the interest rate risk.
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1. Introduction

Mathematical programming has been traditionally applied in economics and
engineering. However, a growing interest of applications in finance is observed.
After the pioneering work of Markowitz, a large number of papers have addressed
portfolio choice problems by using optimization methods. Currently, many finan-
cial market linked problems are the core of relevant optimization contributions.
The objective of the present paper is to study a hedging problem that involves
the term structure of interest rates (TSIR). The problem is to hedge a portfolio of
multiple liabilities. The hedging instruments are coupon bonds.
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For the simple case of hedging a short position in a zero-coupon bond by
using only long coupon bonds, it is worth noting that empirical studies show that
the old-fashioned duration approach has produced better hedging strategies than
those derived from more recent approaches (Ref. 1). A theoretical justification is
provided in Refs. 2–5. These papers show that the bond price convexity implies
that the duration strategies are close to maximin strategies; therefore, they are
robust against different changes on the TSIR and not only against parallel shifts. If
one considers the more realistic problem of hedging a portfolio of long and short
coupon bonds, then the convexity is lost.

We draw on the classical one-period no-arbitrage approach of financial eco-
nomics and analyze the time interval between the current date and the horizon
planning period m. The set of states of nature is a set of real functions on a
time interval [0, T ], T ≥ m, and corresponds to the feasible shocks on the TSIR.
The absence of arbitrage is assumed as well as the absence (in general) of a
riskless asset. We deal with n bonds (or more general assets) and suppose the
existence of functionals Vj (k(t)), j = 1, 2, . . . , n, providing a relationship be-
tween any shift k(t) on the TSIR and the value at m of the j th asset. In this
framework, we introduce the maximin strategies that play the role of hedging
portfolios.

This approach allows us to work under weak hypotheses. For instance, the
convexity of Vj is not necessarily required (therefore, short-selling restrictions do
not have to be imposed) and the tax effects may be incorporated. The uniqueness
of the horizon planning period may be eliminated because we can take m = 0
and assume short positions in theoretical zero coupon bonds that depend on the
manager’s liabilities (see Ref. 6 for a further discussion). The set of admissible
shocks k(t) on the TSIR contains a vast number of possibilities, since no special
dynamics is given.

The level of generality forces us to consider a mathematical framework far
more complex than usual in the literature. Indeed, if convexity fails, the saddle-
point characterization of maximin portfolios given in Ref. 4 does not hold. Hence,
we have to modify the functional Vj so that its convexity (even linearity) may be
retrieved in some sense. This is done by identifying Vj as a part of a new functional
Ej depending on a probability distribution and yielding the expected value at m

of the j th security under that probability distribution. As a consequence, we deal
with spaces of probability measures as well as spaces of continuous functions, L2

spaces, and other Banach spaces.
The paper is outlined as follows. Section 2 presents notations and basic

assumptions and results. Section 3 illustrates the relationships between maximin
portfolios and some semi-infinite optimization problems. Section 4 summarizes
a simplex-like method in Banach spaces and provides an illustrative example.
Section 5 concludes the paper.
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2. Preliminaries and Notations

Consider n arbitrary bonds Bj , j = 1, 2, . . . , n, and denote by p =
(p1, p2, . . . , pn), pj > 0, j = 1, 2, . . . , n, the vector of prices. Suppose that T

is a future date such that the bond maturities lie within the interval [0, T ]. Sup-
pose that m ∈ [0, T ] represents the horizon planning period and K is a set of
real-valued functions on [0, T ] whose elements are the admissible shocks on the
TSIR. The portfolio composed of qj units of Bj , j = 1, 2, . . . , n, is represented
by q = (q1, q2, . . . , qn) ∈ IRn and

∑n
j=1 pjqj is its price. If Vj (k) is the value

of Bj , j = 1, 2, . . . , n, at m if k ∈ K takes place, then the real-valued function
V : IRn × K → IR given by

V (q, k) =
n∑

j=1

qjVj (k) (1)

provides the value of q = (q1, . . . , qn) at m if k takes place. Important cases of
possible sets K and expressions for V (q, k) are given.

The expression (1) shows that the function V is linear in the variable q. We
assume that K is endowed with an appropriate topology and becomes Hausdorff
and compact. Moreover, Vj : K → IR, j = 1, 2, . . . , n, is assumed to be contin-
uous; therefore, it follows from (1) that V (q,−) : K → IR is also continuous in
the variable k.

Given q ∈ IRn, we define its guaranteed value at m by

V̄ (q) = Min{V (q, k); k ∈ K}, (2)

where V̄ : IRn → IR is a superadditive and positively homogeneous function. That
is, the properties

V̄ (q + q ′) ≥ V̄ (q) + V̄ (q ′) and V̄ (βq) = βV̄ (q)

hold for every β ≥ 0 and every q, q ′ ∈ IRn. Consequently, V̄ is concave.

Definition 2.1. Given Q ⊂ IRn and q̄ ∈ Q, q̄ is said to be Q-maximin if
V̄ (q) ≤ V̄ (q̄) holds for every q ∈ Q.

The set Q is defined by real constraints in practical applications. They may
be related to budget, short-selling, or duration restictions, liabilities, and other
situations.

Maximin portfolios may be very appropriate as hedging strategies because
they generalize the classical concept of immunized portfolio, as proved in Ref. 5
in a model where short sales are not allowed.

The classical one-period approach of financial economics considers that the
states of nature are given by probability spaces rather than Hausdorff and compact
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spaces and that future values are square-integrable functions rather than continuous
ones. This fact implies some advantages, since compactness is not required and the
space of square-integrable functions makes it possible to apply those properties
associated only with Hilbert spaces (orthogonality, see for instance Ref. 7). Instead,
the set of states of nature must be endowed with an initial probability measure
and this is the reason why we have modified the general framework. We focus
on very general sets of shocks and it would be difficult in practice to provide
these sets with realistic probabilities. Besides, Proposition 2.1 below shows that
the compactness of K is a general enough hypothesis and includes most cases as
the shocks of Refs. 3, 5, 6.

Proposition 2.1. Consider two positive real numbers λ1, λ2 and suppose
that C[0, T ] and L2[0, T ] are the spaces of continuous and square-integrable
functions on [0, T ]. Endow C[0, T ] with its usual norm topology and L2[0, T ]
with the weak topology. Then:

(a) If K1 ⊂ C[0, T ] is composed of those continuously differentiable func-
tions k such that |k(t)| ≤ λ1 and |k′(t)| ≤ λ2, for every t ∈ [0, T ], then
K1 is compact.

(b) If K2 ⊂ L2[0, T ] is composed of those functions k such that |k(t)| ≤ λ1

and |k(t2) − k(t1)| ≤ λ2 almost everywhere, then K2 is compact.
(c) If K3 is a closed ball of L2[0, T ], then K3 is compact.

Proof.

(a) The mean-value theorem permits us to prove that K1 is equi-continuous
and the Ascoli-Arzela’s theorem shows that all the closed, equi-continuous, and
norm-bounded subsets of C[0, T ] are compact; see Ref. 8 for further details on
the applied results.

(b) Suppose that k is in K2. We have that

‖ k ‖2 =
[∫ T

0
k(t)2dt

]0.5

≤ (
λ2

1T
)0.5 = λ1T

0.5,

and the set of feasible shocks is norm-bounded. Thus, the Alaoglu theorem implies
that set of feasible shocks is weak-compact if it is weak–closed. Since this set is
clearly convex, the Hahn-Banach theorem shows that it is sufficient to prove that
this set is closed. Hence, assume that the sequence (kθ )θ∈N ⊂ K2 tends to k in the
norm of L2[0, T ], IN being the set of natural numbers. Then, classical measure
theory shows that a subsequence converges almost everywhere to k; therefore,
k ∈ K2, since |k(t)| ≤ λ1 and |k(t2) − k(t1)| ≤ λ2 almost everywhere.

(c) It is an immediate consequence of the Alaoglu theorem. �
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As usual, C(K) denotes the Banach space of real-valued and continuous
functions on K endowed with the supremum norm. The Riesz representation
theorem establishes thatM(K) is the dual space of C(K),M(K) being the Banach
space of regular σ−additive measures on the Borel σ−algebra of K . The set of
nonnegative measures

M+(K) = {µ ∈ M(K); µ ≥ 0}
and the set of probability measures

P(K) = {µ ∈ M+(K); µ(K) = 1}
are important subsets of M(K); see Refs. 8, 9 for further details.

If k ∈ K , we consider its associated Dirac delta that concentrates all the mass
on k, i.e., the probability measure δk with δk(k) = 1. In some sense, k may be
identified with δk; therefore, K may be understood as a subset of P(K). Consider
E : IRn × M(K) −→ IR given by

E(q, µ) =
∫

K

V (q, k)dµ(k),

for q ∈ IRn and µ ∈ M(K). E is a bilinear extension of V , since

E(q, δk) = V (q, k), (3)

for every q ∈ IRn and every k ∈ K .

Proposition 2.2. If q ∈ IRn, then V̄ (q) = Min{E(q, µ); µ ∈ P(K)}.

Proof. The inequality

V̄ (q) ≥ Inf{E(q, µ); µ ∈ P(K)}
follows trivially from (2) and (3). Besides, (2) implies that

V (q, k) ≥ V̄ (q),

for every k ∈ K; thus,

E(q, µ) =
∫

K

V (q, k)dµ(k) ≥
∫

K

V̄ (q)dµ(k) = V̄ (q)

holds for every µ ∈ P(K). Hence,

Inf{E(q, µ); µ ∈ P(K)} ≥ V̄ (q). �
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3. Semi-Infinite Programming and Maximin Portfolios

This section is devoted to analyze some semi-infinite optimization problems
leading to maximin strategies. Thus, consider Q ⊂ IRn and the problem

Max y, (4a)

s.t.
n∑

j=1

qjVj (k) ≥ y, ∀k ∈ K, (4b)

q ∈ Q, (4c)

with q ∈ IRn and y ∈ IR being the decision variables. Problem (4) provides a useful
tool when computing maximin portfolios, since we have the following result whose
proof is omitted because it is quite simple.

Proposition 3.1. Given Q ⊂ IRn and q̄ ∈ Q, we have that b̄ is Q–maximin
if and only if there exists ȳ ∈ IR such that (q̄, ȳ) solves (4). In the affirmative case,
the equality ȳ = V̄ (q̄) holds.

Let us consider Problem (5) and Problem (6) below

Max y, (5a)

s.t.
n∑

j=1

qjVj (k) ≥ y, ∀k ∈ K, (5b)

q ∈ Q, (5c)
n∑

j=1

pjqj ≤ θ̄ , (5d)

Max
n∑

j=1

pjqj , (6a)

s.t.
n∑

j=1

qjVj (k) ≥ θ∗, ∀k ∈ K, (6b)

q ∈ Q. (6c)

θ̄ and θ∗ being arbitrary constants and (q, y) ∈ IRn × IR and q ∈ IRn being the
decision variables.

Proposition 3.1 points out that (5) yields the Q′–maximin portfolio where
Q′ is composed of those portfolios of Q whose total price is not larger than θ̄ .
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In practice, θ̄ may represent the capital to invest. Special attention may merit
the self-financing case θ̄ = 0 that arises frequently when a manager is hedging
liabilities of a given fund. On the other hand, Problem (6) allows agents to fix the
amount of money θ∗ to be guaranteed and to minimize the amount to invest.

Proposition 3.2. Consider a subset Q of IRn and two arbitrary real numbers
θ̄ and θ∗. Suppose that q∗ is the unique solution of (6) and take θ̄ = ∑n

j=1 pjq
∗
j .

Then, (q∗, V̄ (q∗)) solves (5) and q∗ is {q ∈ Q;
∑n

j=1 pjq
∗
j ≤ θ̄}–maximin.

Proof. If (q∗, V̄ (q∗)) does not solve (5), then take (q, y) ∈ Q × IR such
that

n∑

j=1

pjqj ≤
n∑

j=1

pjq
∗
j , (7)

n∑

j=1

qjVj (k) ≥ y > V̄ (q∗), (8)

for every k ∈ K . Since q∗ is (6)-feasible, one has that V̄ (q∗) ≥ θ∗ and q is (6)-
feasible due to (8). Thus, q∗ is not the unique solution of (6) owing to (7). �

The previous proposition may be established also if the uniqueness of q∗ is
replaced by another appropriate assumption. Moreover, as is shown in Theorem
3.1, it may be extended in the convex case. We focus on this situation with θ∗ = 1.
So, consider a convex set Q ⊂ IRn and the problem

Min
n∑

j=1

pjqj , (9a)

s.t.
∑n

j=1
qjVj (k) ≥ 1, ∀k ∈ K, (9b)

q ∈ Q (9c)

q = (q1, . . . , qn) being the decision variable. Problem (9) provides the minimum
price of those portfolios belonging to Q and guaranteeing one dollar.

Problem (9) is semi-infinite because the first constraint is valued in the space
C(K). Following the approach of Ref. 9, the dual variable belongs to the dual
space M(K) and the dual problem admits a maximin expression in terms of the
Lagrangian function. The dual problem becomes

Max
µ∈M1(K)

[

In f q∈Q

{∫

K

dµ(k) +
n∑

j=1

qj

(

pj −
∫

K

Vj (k)dµ(k)

)}]

, (10)

7



µ ∈ M(K) being the decision variable. The absence of a duality gap between
(9) and (10) is not guaranteed, since we are in the face of infinite-dimensional
problems (see Ref. 9). Thus, hereafter we will assume additional conditions.

Assumption A. There exists α > 0 such that V1(k) ≥ α for every k ∈ K .

Condition C. The set Q of Problems (9) and (10) is convex. Moreover, there
are β2, . . . , βn ∈ IR such that q = (β, β2, . . . βn) ∈ Q for every β > 0.

Condition C is clearly satisfied if (1, 0, 0, . . . 0) ∈ Q and Q is a convex
cone. Conditions A and C, along with arbitrage arguments, solve the duality gap
between (9) and (10). In fact, first of all, Problem (9) is feasible due to A and
C. Furthermore, (9) is also bounded, since an optimal value equal to −∞ would
imply the existence of portfolios with negative price guaranteeing one dollar at
least, providing investors with an arbitrage opportunity. Besides, the duality gap
between (9) and (10) vanishes and (10) is solvable because A and C lead to
the existence of q = (β, β2, . . . βn) ∈ Q such that V (q, k) > 1 for every k ∈ K;
therefore, the Slater qualification holds (Ref. 9). Finally, the optimal value MQ of
(9) and (10) cannot be negative, since, once again, MQ < 0 would imply arbitrage.
These properties are summarized in the statement below.

Proposition 3.3. Problems (9) and (10) are feasible and bounded and do
not generate a duality gap. Problem (10) is solvable and the optimal value of both
problems is positive if achieved in (9).

Theorem 3.1. Saddle-Point Theorem. Consider an arbitrary convex cone
Q and a positive amount of money C > 0. Define

QC =
{

q ∈ Q;
n∑

j=1

pjqj ≤ C

}

.

Assume that µ∗ solves (10), suppose that (9) attains its optimal value MQ, and
take RQ = 1/MQ. Then, the following assertions are equivalent:

(a) q∗ ∈ Q solves (9).
(b) q̄ = CRQq∗ is QC–maximin.
(c) (CRQq∗, RQµ∗) is a saddle point of E in QC × P(K), i.e.,

E(q,RQµ∗) ≤ E(CRQq∗, RQµ∗) ≤ E(CRQq∗, µ),

for every q ∈ QC and every µ ∈ P(K).
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Proof. (a) ⇒ (c) Suppose that µ is a probability measure. Since q∗ is
(9)-feasible, we have that

V (q∗, k) ≥ 1, for every k ∈ K.

Therefore,

E(q∗, µ) =
∫

K

V (q∗, k)dµ(k) ≥
∫

K

dµ(k) = 1

and

E(q∗, µ) ≥ E(q∗, RQµ∗)

will be proved if

E(q∗, RQµ∗) = 1. (11)

Suppose that we prove the inequality
n∑

j=1

pjq
∗
j ≥ E(q∗, µ∗). (12)

Then, bearing in mind that V̄ (q∗) ≥ 1 [q∗ is (9)-feasible] and that the price of q∗

and the integral of dµ∗ must equal MQ, we have that

MQ =
n∑

j=1

pjq
∗
j ≥ E(q∗, µ∗)

=
∫

K

V (q∗, k)dµ∗(k)

≥V̄ (q∗)
∫

K

dµ∗(k)

≥
∫

K

dµ∗ (k) = MQ.

Hence, all the previous terms must be equal and (11) follows after multiplying
the whole expression by RQ. Finally, let us see that (12) is fulfilled because µ∗ is
(10)-feasible. Indeed, according to (10),

Inf

⎧
⎨

⎩

∫

K

dµ∗(k) +
n∑

j=1

qj

(

pj −
∫

K

Vj (k)dµ∗(k)

)

; q ∈ Q

⎫
⎬

⎭
> −∞. (13)

Bearing in mind that Q is a cone,
n∑

j=1

qj

(

pj −
∫

K

Vj (k)dµ(k)

)

≥ 0, (14)
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for every q ∈ Q, since otherwise q could be multiplied by λ → ∞ and (13) would
fail. The expression (14) implies that

n∑

j=1

qjpj ≥ E(q, µ∗).

In order to prove the remainder inequality of the saddle-point condition, notice
again that

E(q, µ∗) ≤
n∑

j=1

qjpj

for every q ∈ Q. In particular, if the price of q is not greater than C, then

E(q,RQµ∗) ≤ RQC,

whereas the equality

E(CRQq∗, RQµ∗) = RQC

follows from (11).
(c) ⇒ (b) Proposition 2.2 and the inequality

E(CRQq∗, RQµ∗) ≤ E(CRQq∗, µ)

clearly imply that

V̄ (CRQq∗) = E(CRQq∗, RQµ∗).

Besides, from Proposition 2.2,

V̄ (q) ≤ E(q,RQµ∗) ≤ E(CRQq∗, RQµ∗),

for every q ∈ QC .
(b) ⇒ (a) Since CRQq∗ is QC–maximin, we have that CRQq∗ ∈ QC . Thus,

the price of q∗ cannot be larger than MQ; consequently, it is sufficient to prove
that q∗ is (9)-feasible. Let q be a solution of (9). The price of q equals MQ and
V̄ (q) ≥ 1. Hence, the price of CRQq equals C and, bearing in mind that V̄ is
positively homogeneous and CRQq∗ is QC–maximin, we have that

1 ≤ V̄ (q∗),
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because

CRQ ≤ CRQV̄ (q)

= V̄ (CRQq)

≤ V̄ (CRQq∗)

= CRQV̄ (q∗).
�

Remark 3.1. If Q is a convex cone, then Problem (10) becomes

Max
∫

K

dµ(k), (15a)

s.t.
n∑

j=1

pjqj ≥ E(q, µ), ∀q ∈ Q, (15b)

µ ≥ 0. (15c)

Theorem 3.1 illustrates that the maximin portfolio and the probability mea-
sure RQµ∗ are given by the solutions of (9) and (15), which can be derived from
a family of complementary slackness conditions. Thus, q∗ and µ∗ solve

n∑

j=1

qjVj (k) ≥ 1, ∀k ∈ K, (16a)

n∑

j=1

q ′
jpj ≥ E(q ′, µ), ∀q ′ ∈ Q, (16b)

q ∈ Q and µ ≥ 0, (16c)
n∑

j=1

qjVj (k) = 1, ∀k ∈ Sp(µ), (16d)

n∑

j=1

qjpj = E(q, µ), (16e)

q ∈ IRn and µ ∈ M(K) being unknowns and Sp(µ) denoting the support
of µ.

4. Applying a Semi-Infinite Simplex-Like Method

Propositions 3.2 and 3.3 and Theorem 3.1 have justified already the inter-
est of semi-infinite programming algorithms when computing maximin portfolios
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in practice. Furthermore, depending on the properties of Q, the involved op-
timization problems may be also convex or linear. The analysis of semi-infinite
programming algorithms has been deeply addressed in the literature and is beyond
our scope. However, since Theorem 3.1 and Remark 3.1 point out the relevance of
Problems (9) and (15), we present some of their features. In this line, Lemmas 4.1
and 4.2 below justify the interest of studying the set ext(Fd ) of extreme points of
the (15)-feasible setFd . Both proofs are omitted, since similar results are presented
in Ref. 10.

Lemma 4.1. Let Q be a convex cone. For every ε > 0, there exists an
extreme point µε of the (15)-feasible set such that

∫

K

dµε(k) ≥ MQ − ε.

Lemma 4.2. ext({µ ∈ M(K); µ ≥ 0, µ(K) ≤ 1}) = {0} ∪ {δk; k ∈ K}.

As usual, define

q + Q = {q + q ′ ∈ IRn; q ′ ∈ Q}, for every Q ⊂ IRn and every q ∈ IRn.

Then, recall that

LQ = {q ∈ Q; q + Q = Q}
is a linear space for any arbitrary closed convex cone Q ⊂ IRn. If L�

Q represents
the orthogonal space of LQ, then the recession cone of L�

Q ∩ Q is the set

L̃�
Q = {q ∈ L�

Q ∩ Q; q + L�
Q ∩ Q ⊂ L�

Q ∩ Q}.
It may be proved that L�

Q is a closed pointed convex cone. Moreover, L̃�
Q has a

finite basis if there exists {q1, q2, . . . , qs} ⊂ L̃�
Q such that every element of L̃�

Q

takes the form
∑s

i=1 xiq
i , with x1, x2, . . . , xs being nonnegative scalars. In such

a case, we will say that the dimension of L̃�
Q is dim(L̃�

Q) = s, if there are no basis
of L̃�

Q whose number of elements is smaller than s (Ref. 11).

Remark 4.1. Assume now that Q is a closed convex cone,

dim(L̃�
Q) = s, dim(LQ) = r.

Let {q1, q2, . . . , qs} be a basis of L̃�
Q and let {qs+1, qs+2, . . . , qs+r} be a ba-

sis of LQ. The representation theorem of closed convex sets (Ref. 11) ensures
that Q coincides with the set of points q satisfying q = ∑s+r

i=1 λiq
i , where

λ1, λ2, . . . , λs+r ∈ IR and λ1, λ2, . . . , λs ≥ 0. Then, once the slack variables are
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introduced, it is immediate to prove that (15) is equivalent to

Max
∫

K

dµ(k), (17a)

s.t. E(qi, µ) + xi = pi, i = 1, 2, . . . , s, (17b)

E(qi, µ) = pi, i = s + 1, s + 2, . . . , s + r, (17c)

µ ∈ M(K) and µ ≥ 0, (17d)

x1, x2, . . . , xs ≥ 0, in IR, (17e)

where x1, x2, . . . , xs and µ are the decision variables and

pi =
n∑

j=1

pjq
i
j

is the price of qi, i = 1, 2, . . . , s + r . It is clear that there exists a bijection between
the (15)-feasible set and the (17)-feasible one that preserves the extreme points.
Thus, if there is no confusion, we will denote both sets by Fd .

If one combines Lemma 4.2 and some results of Ref. 12 concerning the
extreme points of several sets of probability measures, then one gets the following
theorem.

Theorem 4.1. Under the assumptions of Remark 4.1, if (µ, x) ∈ M(K) ×
IRs is a extreme point of Fd , then there exist {k1, . . . , kt } ⊂ K and {α1, . . . , αt } ⊂
IR such that αi ≥ 0, i = 1, 2, . . . , t,

∑t
i=1 αi ≤ MQ, and µ = ∑t

i=1 αiδki
. Further-

more, if t ′ is the cardinal of Sp(x) = {i; xi �= 0}, then t + t ′ ≤ s + r .

Remark 4.2. Simplex-Like Algorithm. Next, we summarize the simplex-
like method allowing us to solve (17). We do not justify the steps of the algorithm,
since they follow easily from Ref. 10. We merely adapt the method to our particular
problem.

Step 1. Take an initial nondegenerate (i.e., t + t ′ = s + r , with the notations of
the previous theorem) (µ, x) ∈ ext(Fd ).

Step 2. Let ρ be the number of strictly positive slack variables of (µ, x). To
make things easier, suppose that x1, . . . , xρ > 0 and xρ+1 = · · · = xs = 0.
Take Sp(µ) = {kρ+1, . . . , ks+r}. Let B be the (basic) square matrix of
dimension s + r ,

B =
[

(V (qi, kj ))
i=1,...,s+r, Iρ

j=ρ+1,...,s+r 0
]
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where i indicates the row, j indicates the column, and Ip denotes the
identity matrix whose dimension is ρ. The matrix B is regular. Define

	k = (1, . . . , 1, 0, . . . , 0)B−1

[
(V (qi, k))ρi=1

(V (qi, k))s+r
i=ρ+1

]

, for every k ∈ K,

	i = (1, . . . , 1, 0, . . . , 0)B−1Et
i , for i = 1, 2, . . . , s,

Et
i being the transpose of

Ei = (0, 0, . . . , 0, 1, 0, . . . , 0), i = 1, 2, . . . , s + r.

It is important to remark that

	k − 1 = 0, if k ∈ Sp(µ),

	i = 0, if i ∈ Sp(x).

Compute

	 = Min({	k − 1; k ∈ K} ∪ {	i, i = 1, 2, . . . , s}).
We have that 	 cannot be strictly positive. If 	 = 0, then (µ, x) solves
(17).

Step 3. Case 1. Assume that 	 = 	k0 − 1 < 0. Then, k0 �∈ Sp(µ). Take

(γρ+1, . . . γs+r , γ1, . . . , γρ)t = B−1
(
V (qi, k0)s+r

i=1

)
,

γ = Min[{µ(kj ), xi/γj ; j = ρ + 1, . . . s + r, γj > 0} ∪ {xi/γi ;

= 1, . . . , ρ, γj > 0}], (18)

(µ̄(kρ+1), . . . , µ̄(ks+r ), x̄1, . . . , x̄ρ)t

= (µ(kρ+1), . . . , µ(ks+r ), x1, . . . , xρ)t

− γ (γρ+1, . . . γs+r , γ1, . . . , γρ)t , (19)

and µ̄(k0) = γ . We have that (µ̄, x̄) ∈ ext(Fd ) and the objective value has
been improved according to
∫

K

dµ̄(k) =
∫

K

dµ + µ̄(k0)(1 − 	k0 ).

Step 3. Case 2. Assume that 	 = 	θ < 0. Then, θ does not belong to Sp(x). Take

(γρ+1, . . . γs+r , γ1, . . . , γρ)t = B−1Et
θ ,

γ as (18) indicates, x̄θ = γ , and

(µ̄(kρ+1), . . . , µ̄(ks+r ), x̄1, . . . , x̄ρ)t
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as (19) indicates. Then, (µ̄, x̄) ∈ ext(Fd ) and the objective value improves
according to
∫

K

dµ̄(k) =
∫

K

dµ − x̄θ	θ .

Step 4. Let (µ̄, x̄) play the role of (µ, x) and go back to Step 2.

Example 4.1. Two particular cases arise when short sales on the available
bonds are imposed (Q = IRn

+) or omitted (Q = IRn). In the first situation LQ = {0}
and L̃T

Q = IRn
+, whereas LQ = IRn and L̃T

Q = {0} in the second one. Thus, Problem
(17) becomes Problem (20) or Problem (21) below

Max
∫

K

dµ(k), (20a)

s.t.
∫

K

Vj (k)dµ(k) + xj = pj , j = 1, 2, . . . , n, (20b)

µ ≥ 0, x1, x2, . . . , xs ≥ 0, (20c)

or
Max

∫

K

dµ(k), (21a)

s.t.
∫

K

Vj (k)dµ(k) = pj , j = 1, 2, . . . , n, (21b)

µ ≥ 0. (21c)

We have applied the simplex algorithm in order to compute the maximin portfolio
in a market where there are 6 available bonds with annual coupon equal to 0.1
dollars, principal value equal to 1 dollar, and maturity in 3, 4, 5, 6, 7, 8 years
respectively. For simplicity’s sake, we assume a flat initial TSIR with a constant
value equal to 10%. Then,

V (q, k) =
N∑

r=1

cr exp

(∫ m

tr

(k(t) + 0.1)dt

)

,

where {c1, c2, . . . , cn} is the set of coupons paid by q at {t1, t2, . . . , tN } respectively.
We have taken m = 5 years and K is the set of shocks introduced in Ref. 5 and
analyzed in Proposition 2.1b. We have selected the parameter λ2 = 0.05 = 5%
and it may be proved that the final result does not depend on λ1.

Under short sale restrictions the solution was: Buy the bonds with maturity in
6 (81.37% of the total investment) and 7 years (18.63%). The guaranteed amount
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is 96.1% of the initial capitalization rate R between zero and five years. For the
unconstrained problem, we obtained

q = (−32.41%,−13.60%, 146.76%,−0.27%,−46.84%, 47.65%),

guaranteeing 98.77% of R.

5. Conclusions

This paper has addressed the existence, properties, and computation of max-
imin portfolios in a hedging problem involving the TSIR. We have used the
one-period approach of financial economics and have taken the shock on the TSIR
as the state of nature. Once those functionals yielding the securities final value
are extended to abstract spaces, a general theory on optimization in banach spaces
may apply. From a financial viewpoint, the approach may be very useful to traders
and researches, since it works under weak assumptions. For instance, convexity
and short-selling restrictions do not have to be imposed, tax effects may be incor-
porated, the uniqueness of the horizon planning period may be relaxed, interest
rate-linked derivatives could be involved, and the set of admissible shocks on the
interest rates contains a vast number of possibilities because there are no dynamic
assumptions about them.
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