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CHAPTER 1

Introduction

Dynamic game theory brings together four features that are key to many situations in eco-
nomics, ecology, and elsewhere: optimizing behavior, presence of multiple agents/players,
enduring consequences of decisions and lack of complete information for the agents about
the system. To deal with problems bearing these four features the dynamic game theory
methodology splits the modeling of the problem into three parts.

The first part deals with modeling the environment in which the agents act. Usually,
a set of ordinary differential equations is specified to model the agents’ interaction with
the environment. However, there do exist many other mathematical models to describe
systems which change over time, for instance, differential algebraic equations, differential
equations with discontinuous right hand side, partial differential equations, time delay
equations and stochastic differential equations. All of these give rise to different classes
of dynamic games which have their own specific features. These equations are assumed
to capture the primary (dynamical) features of the environment. A characteristic property
of this specification is that these dynamic equations mostly contain a set of so called input
functions. These input functions model the effect of the actions taken by the agents on the
environment during the course of the game.

The next part deals with modeling the agents’ objectives. Usually the agents’ objectives
are formalized as cost/utility functionals which have to be minimized (maximized). This
minimization (maximization) is commonly performed subject to the specified dynamic
model of the environment. Techniques developed in optimal control theory play a central
role in solving dynamic games. In fact, from a historical perspective, the theory of dynamic
games arose from a merge of static game theory and optimal control theory.

The information agents have about the game is crucial for the outcome of the decision
making. A characteristic for a static game is that it takes place in one moment of time: all
players make their choice once and simultaneously and, dependent on the choices made,
each player receives his payoff. In such a formulation important issues like the order of
play in the decision process, information available to the players at the time of their deci-
sions, and the evolution of the game are suppressed. In case the agent’s act in a dynamic
environment these issues are, however, crucial and need to be properly specified before
one can infer the outcome of the game. This specification is the third modeling part that



2 Introduction

characterizes the dynamic game theory methodology.
This thesis is based on four self contained independent chapters in the field of dynamic

games. There are some differences in notation between chapters. The central theme of
each chapter is related to one or more of the, above discussed, modeling components.

Chapter 2 studies the problem of finding Pareto solutions in a dynamic game. Here, the
agents’ interaction environment is modeled by an ordinary differential equation. Assuming
that the game is played indefinitely, often called as infinite horizon, and players use the so
called open loop strategies, the necessary and sufficient conditions for the existence of non
improvable (Pareto) solutions are formulated. Further, these results are used to analyze a
specific class of dynamic games called the linear quadratic differential game. The obtained
results can also be used to analyze multi-objective optimal control problems.

Chapter 3 analyzes a noncooperative dynamic game when the agents’ interaction en-
vironment is modeled by a linear constant coefficient differential algebraic equation. A
method to decouple the dynamic and algebraic parts of the environment is discussed. Nec-
essary and sufficient conditions for the existence of feedback Nash equilibria are obtained.
Further, a geometric interpretation for the multiplicity of Nash equilibria is provided. Mer-
its and drawbacks of the proposed approach are illustrated with examples.

Chapter 4 makes an attempt to introduce dynamics in coalitional games which are
generally static in nature. In particular, this chapter investigates some allocation rules in
certain dynamic transferable utility games. Here, the term dynamic refers to a situation
where the average value of each coalition in the long run is known but its instantaneous
value is unknown (interval uncertainty). These allocation rules ensure convergence of
average allocations to the average core, a coalitionally stable set [77], of the average game
and are designed based on complete and incomplete information of the extra reward.

Chapter 5 first analyzes the optimal control problem when the agents’ interaction en-
vironment displays a switching behavior, which is captured by differential equations with
discontinuous right hand side. The shallow lake model, a widely studied non linear dy-
namic game in environmental economics, is studied to highlight the key difference from
the smooth case. The obtained results are used to compute the symmetric open loop Nash
equilibrium.

This thesis is an outcome of research collaboration. Chapters 2 and 3 are co-authored
with J. C. Engwerda; cf. [85, 84]. Chapter 4 is a joint work with D. Bauso; cf. [12, 11].
Finally, chapter 5 is co-authored with J. M. Schumacher and J. C. Engwerda.



CHAPTER 2

Necessary and Sufficient Conditions for Pareto Optimality
in Infinite Horizon Cooperative Differential Games

2.1 Introduction
In this chapter we address the problem of finding the set of Pareto optimal solutions in the
situation where a single player has multiple objectives or multiple players, N players here,
decide to coordinate their actions with an intent to minimize their costs. The system or
the dynamic environment where the players interact is modeled by a (set of) differential
equation(s), and we assume an open-loop information structure. Every player i may choose
his action/control trajectory, ui(.), arbitrarily from the set U i of piecewise continuous
functions1. Formally, the players are assumed to minimize the performance criteria:

Ji(x0,u1,u2 · · · ,uN) =
∫ ∞

0
gi(t,x(t),u1(t),u2(t), · · · ,uN(t))dt, (2.1)

where x(t) ∈ Rn is the solution of the differential equation (dynamic environment)

ẋ(t) = f (t,x(t),u1(t),u2(t), · · · ,uN(t)), x(0) = x0 ∈ Rn. (2.2)

Here, ui(t) ∈ Rmi with ui(.) ∈ U i and we denote u = (u1,u2, · · · ,uN) ∈ U i ×U i ×·· ·×
U N = U with U being the set of admissible controls. Let m = m1 +m2 + · · ·+mN . For
the above problem to be well-defined we assume that f (t,x,u) : R×Rn ×U → Rn and
gi(t,x,u) : R×Rn ×U → R, i = 1,2, · · ·N, are continuous and all the partial derivatives
of f and gi w.r.t. x and u exist and are continuous. Further, we assume that the integrals
involved in the player’s objectives converge2.

Pareto optimality plays a central role in analyzing these problems. Since we are inter-
ested in the joint minimization of the objectives of the players, the cost incurred by a single
player cannot be minimized without increasing the cost incurred by other players. So, we
consider solutions which cannot be improved upon by all the players simultaneously; the
so called Pareto optimal solutions. Formally, the set of controls u∗ ∈ U is Pareto optimal

1ui ∈ Ui could be any measurable function such that ui(t) ∈Ui ⊂ Rmi , see e.g., [63] or [35].
2If the integrals do not converge there exist other notions of optimality, see [95], [26], and the analysis

becomes involved.
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if the set of inequalities Ji(x0,u) ≤ Ji(x0,u∗), i = 1,2, · · · ,N, with at least one of the in-
equalities being strict, does not allow for any solution in u ∈ U . The corresponding point
(J1(x0,u∗),J2(x0,u∗), · · · ,JN(x0,u∗))∈RN is called a Pareto solution. The set of all Pareto
solutions is called the Pareto frontier.

In this chapter we are interested in finding Pareto optimal solutions of the infinite hori-
zon cooperative game problem (1,2). Here, we do not consider formation of subcoalitions
and the possibility of utility transfers during the course of the game. We assume play-
ers make binding agreements towards cooperation at the start of the game and continue
for ever, which requires the use pre-commitment strategies by the players. This aspect
motivates the use of open loop information structure in the chapter.

By varying the controls/actions in U one obtains a set of feasible points in RN and the
Pareto frontier constitutes the set of non improvable points. Further, we do not consider the
aspect of selecting a particular point on the Pareto frontier, i.e., bargaining, and one may
consult, e.g., chapter 6 of [35] for these issues. So, in cooperative game theory terminology
the problem (1,2) relates to the issue of finding costs incurred by the grand coalition in a
non transferable utility game described in strategic form, see [77] and [69].

A well known way to find Pareto optimal controls is to solve a parametrized optimal
control problem [118, 65]. However, it is unclear whether all Pareto optimal solutions
are obtained using this procedure, see example 4.2 [38]. The closest references we could
track, towards finding Pareto solutions in differential games, are [29], [19] and [107].
The necessary conditions for Pareto solutions where cost functions are just functions of
the terminal state were given in [107] and the affiliated papers [102] and [66] . In [107]
geometric properties of Pareto surfaces were used to derive necessary conditions which are
in the spirit of maximum principle. Some difference with our work are: they assume that
the admissible controls are of the feedback type and the terminal state should belong to
some n− 1 dimensional surface. Recently, [38] gives necessary and sufficient conditions
for Pareto optimality for finite horizon cooperative differential games.

Almost all of the earlier works address the problem of finding Pareto solutions in the
finite horizon case. In this chapter we focus on infinite horizon cooperative differential
games. In section 2.2 we present a necessary and sufficient characterization of Pareto
optimality which entails to reformulate the Pareto optimality problem as N constrained
infinite horizon optimal control problems. As a consequence, our results are in the spirit
of the maximum principle, and this is also one of the reason why open loop strategies are
used in this chapter.

We stress that this reformulation should not be confused with decentralization prob-
lems3 where each player i by choosing actions, without coordination, from the strategy set

3Marschak [71] introduced a class of cooperative decision making problems called team problems. Here,
the objectives of the players are identical and as a result team optimality and person by person optimality are
analogous to Pareto optimality and Nash equilibrium respectively. Team decision problems play a crucial
role in understanding decentralization control problems, see [54].
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U i to achieve a Pareto optimum. Instead, in our approach, the constraints depend upon a
Pareto solution due to the above reformulation, see lemma 2.2.2.

Due to the above reformulation our results are closely related to necessary and suffi-
cient conditions for optimality of infinite horizon optimal control problems. Infinite hori-
zon optimal control problems arise when no natural bound can be placed on the time
horizon, for example while modeling capital accumulation processes (economic growth)
and in biological sciences. In his seminal work on the theory of saving, Ramsey [83] used
a dynamic optimization model defined on an unbounded time horizon, see [2] for more
details. As the objectives can grow unbounded different notions of optimality have been
introduced, see [26, 95] more details on the analysis. The necessary conditions for opti-
mality given by the maximum principle are incomplete as transversality conditions are not
clearly specified. As a result one obtains a large number of extremal trajectories. A natural
extension of finite horizon transversality conditions, in general, is not possible, see [51].
Only by imposing certain restrictions on the system such an extension can be made, see
[75], [95], [93] and more recently [5] and [109].

In section 2.3 we show, by making a particular assumption on the Lagrange multipli-
ers, that the necessary conditions for Pareto optimality are same as the necessary conditions
for optimality of a weighted sum optimal control problem. Further, we observe that an ex-
tension of finite horizon transversality conditions is a weak sufficient condition to satisfy
this assumption. For discounted autonomous systems, [75] derives necessary conditions
for free endpoint optimal control problems. We extend these results for the constrained
problems (due to the above reformulation) and derive weak sufficient conditions for this
assumption to hold true. In section 2.4 we derive sufficient conditions for Pareto optimality
in the spirit of Arrow’s sufficiency results in optimal control. In section 2.5 we consider
regular indefinite infinite planning horizon linear quadratic differential games where the
cost involved for the state variable has an arbitrary sign and the use of every control is
quadratically penalized. We observe that if the dynamic system is controllable then this
assumption holds true naturally. The linear quadratic case was recently solved for both a
finite and infinite planning horizon in [37] assuming that the problem is a convex function
of the control variables and the initial state is arbitrary. In this chapter we concentrate on
the general case and where the initial state is fixed and the planning horizon is infinite.
We provide some examples to illustrate subtleties and open issues. For the scalar case,
by imposing a restriction on the control space, we show that all Pareto optimal solutions
can be obtained using the weighting method and provide an algorithm to compute all the
Pareto solutions.

Notation: We use the following notation. Let N = {1,2, · · · ,N} denote the grand coali-
tion and let N\{i} denote the coalition of all players excluding player i. Let PN denote
the N dimensional unit simplex. RN

+ denotes a cone consisting of N dimensional vectors
with non negative entries. 1N denotes a vector in RN with all its entries equal to 1. y′
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represents the transpose of the vector y ∈ RN . |x| represents the absolute value of x ∈ R.
||y|| represents the Euclidean norm of the vector y ∈ RN . |y|i represents the absolute value
of the ith entry of the vector y. |A|(m,n) represents the absolute value of entry (m,n) of
the matrix A. A > 0 denotes matrix A is strictly positive definite. fx(.) represents the
partial derivative of the function f (.) w.r.t x. Φ fx(t,0) = e

∫ t
0 fx(x,u)dt represents the state

transition matrix associated with the linear autonomous linear ordinary differential equa-
tion ẋ = fx(x,u)x, x(0) = x0. −→ω ∈RN

+ denotes the vector whose entries ωi are the weights
assigned to the cost function of each player. We define the weighted sum function G(.) as
G(−→ω , t,x(t),u(t)) = ∑i∈N ωigi(t,x(t),u(t)). Mω represents the weighted matrix ∑i∈N ωiMi

where −→ω represents the weight vector, and Mi is the weighting matrix that appears in
player i’s objective. sp{v1,v2, · · · ,vk} represents the subspace spanned by the vectors
v1,v2, · · · ,vk.

2.2 Pareto optimality
In this section we state conditions to characterize Pareto optimal controls. Lemma 2.2.1,
given below, states that every control minimizing a weighted sum of the cost function of all
players (where all weights are strictly positive) is Pareto optimal. So, varying the positive
weights over the unit simplex one obtains, in principle, different Pareto optimal controls.
A proof of the lemma can be found in [38, 65].

Lemma 2.2.1. Let αi ∈ (0,1), with ∑N
i=0 αi = 1. Assume u∗ ∈ U is such that

u∗ ∈ argmin
u∈U

{
N

∑
i=1

αiJi(x0,u)

}
. (2.3)

Then u∗ is Pareto optimal.

The above lemma implies that minimizing the weighted sum is an easy way to find Pareto
optimal controls. Being a sufficient condition it is, however, unclear whether we obtain all
Pareto optimal controls in this way. In fact the above procedure may yield no Pareto effi-
cient controls, while an infinite number of Pareto solutions exist. The following example
illustrates this point.

Example 2.2.1. Consider

ẋ(t) = u1(t)−u2(t), x(0) = 0,

together with the cost functions

J1(x0,u1,u2) =
∫ ∞

0
(u1(t)−u2(t))dt and J2(x0,u1,u2) =

∫ ∞

0
x2(t)(u2(t)−u1(t))dt.

The control spaces Ui, i = 1,2 are defined as

Ui =
{

ui(.) is piecewise continuous
∣∣J j(x0,u1,u2) exists, j = 1,2, and lim

t→∞
x(t) exists

}
.
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Then, by simple calculations we have J2(x0,u1,u2)=−1
3 (limt→∞ x(t))3 =−1

3J3
1(x0,u1,u2)

for all (u1,u2). Clearly, by choosing different values for control functions ui(.) every
point in the (J1,J2) plane satisfying J2 = −1

3J3
1 can be obtained. Furthermore, it is clear

that every point on this curve is Pareto optimal. Now, consider the minimization of
Jα(x0,u1,u2) = αJ1(x0,u1,u2)+(1−α)J2(x0,u1,u2) subject to the dynamics given above
and with α ∈ (0,1). We choose u1(.) = 0 and u2(.) = −I[0,c], where I[0,c] represents
the indicator function for the interval [0, c]. Then, straight forward calculations yield
Jα(x0,u1,u2) = αc− 1−α

3 c3. By choosing c arbitrarily large, Jα(x0,u1,u2) can be made
arbitrarily small, i.e., Jα(x0,u1,u2) does not have a minimum.

Lemma 2.2.2 mentioned below gives both a necessary and sufficient characterization
of Pareto solutions. It states that every player’s Pareto optimal solutions can be obtained
as the solution of a constrained optimization problem. The proof is along the lines of the
finite dimensional case considered in chapter 22 of [99].

Lemma 2.2.2. u∗ ∈ U is Pareto optimal if and only if for all i, u∗(.) minimizes Ji(x0,u)
on the constrained set

Ui ,
{

u|J j(x0,u)≤ J j(x0,u∗), j = 1, · · · ,N, j 6= i
}
, for i = 1, · · · ,N. (2.4)

Proof. ⇒ Suppose u∗ is Pareto optimal. Then u∗ ∈ Uk
4, ∀k, so Uk 6= /0. Now, if u∗ does

not minimize Jk(x0,u) on the constraint set Uk for some k, then there exists a u such that
J j(x0,u) ≤ J j(x0,u∗) for all j 6= k and Jk(x0,u) < Jk(x0,u∗). This contradicts the Pareto
optimality of u∗.
⇐ Suppose u∗ minimizes each Jk(x0,u) on Uk. If û does not provide a Pareto optimum,
then there exists a u(.) ∈ U and an index k such that Ji(x0,u) 6= Ji(x0,u∗) for all i and
Jk(x0,u)< Jk(x0,u∗). This contradicts the minimality of u∗ for Jk(x0,u) on Uk.

We observe that for a fixed player the constraint set Ui defined in (2.4) depends on the en-
tries of the Pareto optimal solution that represents the loss of the other players. Therefore
this result mainly serves theoretical purposes, as we will see, e.g., in the proof of theo-
rem 2.3.1 and theorem 2.3.3. Using the above lemma, we next argue that Pareto optimal
controls satisfy the dynamic programming principle.

Corollary 2.2.1. If u∗ ∈ U is a Pareto optimal control for x(0) = x0 in (1,2), then for
any τ > 0, u∗ ([τ,∞)) is a Pareto optimal control for x(τ) = x∗(τ) in (1,2). Here, x∗(τ) =
x(t,0,u∗([0,τ])) is the value of the state at τ generated by u∗([0,τ]).

Proof. Let Ui(τ), with x(τ) = x∗(τ), be the constrained set defined as:

Ui(τ) =
{

u
∣∣J j(x(τ),u)≤ J j(x(τ),u∗ ([τ,∞)) , j = 1, · · · ,N, j 6= i

}
.

4The admissible control space Ui defined in (2.4) is not rectangular, in general.
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Consider a control u ∈ Ui(τ) and let ue ([0,∞)) be a control defined on [0,∞) such that
ue ([0,τ)) = u∗ ([0,τ)) and ue ([τ,∞)) = u, then x(τ,0,ue([0,τ)) = x∗(τ). Further,

J j (x0,ue) =
∫ ∞

0
g j(t,x(t),ue(t))dt

=
∫ τ

0
g j(t,x∗(t),u∗(t)) dt +

∫ ∞

τ
g j(t,x(t),u(t)) dt

(as u ∈ Ui(τ), we have)

≤
∫ τ

0
g j(t,x∗(t),u∗(t)) dt +

∫ ∞

τ
g j(t,x∗(t),u∗(t)) dt

=
∫ ∞

0
g j(t,x∗(t),u∗(t)) dt = J j(x0,u∗).

The above inequality holds for all j = 1, · · · ,N, j 6= i. Clearly, ue ([0,∞))∈Ui(0) i.e., every
element u ∈ Ui(τ) can be viewed as an element ue ∈ Ui(0) restricted to the time interval
[τ,∞). From the dynamic programming principle it follows directly that u∗ ([τ,∞)) has to
minimize Ji(x∗(τ),u) for u ∈ Ui(τ).

We used lemma 2.2.2 in the proof of corollary 2.2.1. Further, being an optimal control
problem, it can be shown that strategies that satisfy lemma 2.2.1 also satisfy the statement
of corollary 2.2.1. Another result that follows directly from lemma 2.2.2 is that if the
argument at which some player’s cost is minimized is unique, then this control is Pareto
optimal too (see corollary 2.5 in [38] for the proof).

Corollary 2.2.2. Assume J1(x0,u) has a minimum which is uniquely attained at u∗. Then(
J1(x0,u∗), J2(x0,u∗), · · · ,JN(x0,u∗)

)
is a Pareto solution.

We give the following result from lemma 2.2.2. Since, Pareto optimality is preserved
for every strictly monotonic transformation of the cost functions, if the player’s costs are
modified as J̃i(x0,u) = Ji(x0,u)− c, c ∈ R, ∀i ∈ N, then we have the following corollary.

Corollary 2.2.3. The set of Pareto optimal strategies for the games with player’s objectives
as Ji(x0,u) and J̃i(x0,u), i ∈ N, is the same.

2.3 Necessary conditions for the general case
In this section, using lemma 2.2.2 we derive necessary conditions of Pareto optimality for
the problem (2.2,2.1) in a general setting. Before proceeding in this direction we give the
following notation for the N person infinite horizon cooperative differential game:

(P) for each i ∈ N min
u∈U

∫ ∞

0
gi(t,x(t),u(t))dt

subject to ẋ(t) = f (t,x(t),u(t)), x(0) = x0.

Let u∗ be a Pareto optimal strategy for the problem (P) and x∗ be the trajectory generated
by u∗. Using lemma 2.2.2, (P) is equivalently written as N constrained optimal control
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problems, denoted by (Pi) for each player i ∈ N, as follows:

(Pi) min
u∈Ui

∫ ∞

0
gi(t,x(t),u(t))dt

subject to ẋ(t) = f (t,x(t),u(t)), x(0) = x0.

The control space Ui in (Pi) is constrained and depends on the Pareto optimal solution of
players j ∈ N\{i}. Introducing the auxiliary states x̃i

j(t), j ∈ N\{i} as

x̃i
j(t) =

∫ t

0
gi(t,x(t),u(t))dt, x̃i

j(0) = 0,

the constraint set Ui can be represented as

Ui ,
{

u ∈ U
∣∣ ˙̃xi

j(t) = g j(t,x(t),u(t)), x̃i
j(0) = 0,

lim
t→∞

x̃i
j(t)≤ x̃i∗

j =
∫ ∞

0
gi(t,x∗(t),u∗(t))dt, ∀ j ∈ N\{i}

}
.

The unconstrained representation, w.r.t to control space, of (Pi) is then given as:

(Pi) min
u∈U

∫ ∞

0
gi(t,x(t),u(t))dt

subject to ẋ(t) = f (t,x(t),u(t)), x(0) = x0

˙̃xi
j(t) = g j(t,x(t),u(t)), x̃i

j(0) = 0, lim
t→∞

x̃i
j(t)≤ x̃i∗

j , ∀ j ∈ N\{i}.

Collecting the above and from lemma 2.2.2, we have the following proposition.

Proposition 2.3.1. u∗ is a Pareto optimal control for the cooperative game problem (P) ⇔
u∗ is an optimal control for the problems (Pi), i ∈ N.

The optimal control problems (Pi) have mixed end point constraints, i.e., limt→∞ x(t) is
free and limt→∞ x̃i

j(t), j ∈ N\{i} are constrained. Let Hi denote the Hamiltonian associ-
ated with the problem (Pi) and be defined as (with abuse of notation) Hi = λ 0

i gi +λ ′
i f +

∑ j∈N\{i} µ i
jg j. From proposition 2.3.1, by applying Pontryagin maximum principle for

(Pi) one can obtain necessary conditions for Pareto optimality for (P). These necessary
conditions give a set of extremal trajectories and the associated transversality conditions
allow one to single out the optimal one. If the game problem (P) is finite horizon type, then
the transversality conditions associated with the problem (Pi) are λi(T ) = 0, 0 < T < ∞
and µ i

j ≥ 0 for j ∈ N\{i}, i ∈ N and the maximum principle holds in normal form i.e.,
λ 0

i = 1, i ∈ N (refer to proposition 3.16, [48]). Using these ideas it was shown in [38]
that necessary conditions for Pareto optimality for (P) are same as the necessary condi-
tions for optimality of a weighted sum optimal control problem. The main result there
hinges upon the transversality conditions and normality of the problems (Pi). Unfortu-
nately, for the infinite horizon case the necessary conditions for optimality of the problems
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(Pi) are incomplete (see pg. 234, theorem 12 of [95]). The above finite horizon transver-
sality conditions generally do not naturally carry over to the infinite horizon case. Refer to
[51, 48, 75, 95, 5] for counterexamples to illustrate this behavior.

We will see in the following discussion that µ i
j(t) = µ i

j (constants) due to the special

structure of x̃i
j(t). Let

−→
λ i =

(
µ i

1, · · · ,µ i
i−1,λ

0
i , µ i

i+1, · · · ,µ i
N
)′
, i ∈ N. In the theorem 2.3.1

below, by making an assumption on
−→
λ i we show, using proposition 2.3.1, that necessary

conditions of Pareto optimality of (P) are the same as the necessary conditions for opti-
mality of a weighted sum optimal control problem.

Assumption 2.3.1. For each problem (Pi), the Lagrange multipliers associated with the
objective function and the states (x̃i

j(t)) are non negative with at least one of them strictly

positive, i.e.,
−→
λ i ∈ RN

+\{0}.

Theorem 2.3.1. If (J1(x0,u∗),J2(x0,u∗), · · · ,JN(x0,u∗)) is a Pareto candidate for prob-
lem (P) and assumption 2.3.1 holds, then there exists an −→α ∈ PN , a co-state function
λ (t) : [0,∞) → Rn such that, with Hamiltonian defined as H

(−→α , t,x(t), u(t),λ (t)
)
=

λ ′(t) f (t,x(t),u(t))+G(−→α , t,x(t),u(t)), the following conditions are satisfied.

H(−→α , t,x∗(t),u∗(t),λ (t))≤H(−→α , t,x∗(t),u(t),λ (t)) (2.5a)

H0(−→α , t,x∗(t),λ (t)) =min
u(t)

H(−→α , t,x∗(t),u(t),λ (t))

λ̇ (t) =−H0
x (
−→α , t,x∗(t),λ (t)) (2.5b)

ẋ∗(t) = H0
λ (
−→α , t,x∗(t),λ (t)) s.t x∗(0) = x0 (2.5c)(−→α ,λ (t)

)
6=0, ∀t ∈ [0,∞), −→α ∈ PN . (2.5d)

Proof. From proposition 2.3.1, if u∗ is Pareto optimal for (P) then the pair (x∗,u∗) is
optimal for the problem (Pi). We define the Hamiltonian associated with (Pi) as:

Hi(t,x(t),u(t),λ (t)), λ ′
i (t) f (t,x(t),u(t))+λ 0

i gi(t,x(t),u(t))+ ∑
j∈N\{i}

µ i
j(t)g j(t,x(t),u(t)).

(2.6)

So, from Pontryagin’s maximum principle there exist a constant λ 0
i and co-state functions

(continuous and piecewise continuously differentiable) λi(t) ∈ Rn and µ i
j(t) ∈ R, j ∈ Si

N
such that:

(λ 0
i ,λi(t),µ i

j(t)) 6= (0,0,0), j ∈ N\{i}, t ∈ [0,∞) (2.7a)

Hi(t,x∗(t),u∗(t),λ (t)) ≤ Hi(t,x∗(t),u(t),λ (t)) (2.7b)

H0
i (t,x(t),λ (t)) = min

u(t)
Hi(t,x(t),u(t),λ (t))

λ̇i(t) = −H0
i x(t,x

∗(t),λ (t)) (2.7c)

µ̇ i
j(t) = −H0

i x̃i
j
(t,x∗(t),λ (t)). (2.7d)
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Since (H0
i )x̃i

j
= 0, multipliers associated with the auxiliary variables µ i

j(t) = µ i
j (con-

stants) and the Hamiltonian can be written as Hi(t,x(t),u(t),λ (t)) = λ ′
i (t) f (t,x(t),u(t))+

G(
−→
λ i, t,x(t),u(t)). The first order conditions are:

λ ′
i (t) f (t,x∗(t),u∗(t))+G(

−→
λ i, t,x∗(t),u∗(t))≤ λ ′

i (t) f (t,x∗(t),u(t))+G(
−→
λ i, t,x∗(t),u(t))

(2.8)

λ̇i(t) =− f ′x(t,x
∗(t),u∗(t))λi(t)−Gx(

−→
λ i, t,x∗(t),u∗(t)). (2.9)

Taking a sum over i ∈ N for (2.8) and (2.9) yields

∑
i∈N

(
λ ′

i (t) f (t,x∗(t),u∗(t))+G(
−→
λ i, t,x∗(t),u∗(t))

)
≤

∑
i∈N

(
λ ′

i (t) f (t,x∗(t),u(t))+G(
−→
λ i, t,x∗(t),u(t))

)
, (2.10)

∑
i∈N

λ̇i(t) =− f ′x(t,x
∗(t),u∗(t)) ∑

i∈N

λi(t)− ∑
i∈N

Gx(
−→
λ i, t,x∗(t),u∗(t)). (2.11)

Let us introduce d = ∑i∈N

(
λ 0

i +∑ j∈N\{i} µ i
j

)
. By assumption 2.3.1 we have d > 0. We

define λ (t) = 1
d ∑i∈N λi(t), αi =

1
d

(
λ 0

i +∑ j∈N\{i} µ j
i

)
, i ∈ N and a vector −→α =

(
α1, · · · ,

αN
)′. Notice that −→α ∈ PN by assumption (1). Dividing the equation (2.10) by d we have:

λ ′(t) f (t,x∗(t),u∗(t))+G(−→α , t,x∗(t),u∗(t))≤ λ ′(t) f (t,x∗(t),u(t))+G(−→α , t,x∗(t),u(t))
(2.12)

λ̇ (t) =− f ′x(t,x
∗(t),u∗(t))λ (t)−Gx(

−→α , t,x∗(t),u∗(t)). (2.13)

Next we define the modified Hamiltonian as

H(−→α , t,x(t),u(t),λ (t)), λ ′(t) f (t,x(t),u(t))+G(−→α , t,x(t),u(t)).

Then necessary conditions for u∗ to be Pareto optimal control can be rewritten as (2.5).

Remark 2.3.1. The necessary conditions given by (2.5) are closely related to the minimiza-
tion of ∑i∈N αiJi subject to (2.2), i.e., the weighted sum optimal control problem. There
are, however, some subtle differences. When the weighted sum optimal control problem
admits maximum principle in normal form then one obtains necessary conditions as (2.5).

A natural extension of finite horizon transversality conditions to the infinite horizon case
for the problem (Pi), i ∈ N leads to λ 0

i = 1 and µ i
j ≥ 0 for i ∈ N, and as result guarantees

assumption 2.3.1. For the analysis that follows from now onwards we focus on weak
sufficient conditions that allow such an extension. Towards that end, we first consider non-
autonomous systems. In general, such an extension is achieved by imposing restrictions on
the system parameters, also called as growth conditions. Specializing theorem 3.16 [95]
or example 10.3 [93] to the problem (Pi), we have the following corollary:
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Corollary 2.3.1. If there exist non-negative numbers a, b and c with c > Nb such that the
following conditions are satisfied for t ≥ 0 and all x(t):

(|gix(t,x(t),u(t)|)m ≤ ae−ct , m = 1, · · · ,N, ∀i ∈ N (2.14a)

(| fx(t,x(t),u(t)|)(l,m) ≤ b, l = 1, · · · ,N, m = 1, · · · ,N. (2.14b)

Then assumption 2.3.1 is satisfied. Consequently, for every Pareto solution the necessary
conditions given by (2.5) hold true and in addition limt→∞ λ (t) = 0 is satisfied.

Proof. If conditions (2.14) hold true, then by theorem 3.16 of [95], the finite horizon
transversality conditions do extend to the infinite horizon case. As a result, λ 0

i = 1,
µ j

i ≥ 0, ∀ j ∈ N\{i} and limt→∞ λi(t) = 0 are satisfied for the constrained optimal con-
trol problem (Pi) we have

−→
λ i ∈ RN

+\{0}. Clearly assumption 2.3.1 is satisfied. So, the
necessary conditions given by (2.5) hold true and in addition limt→∞ λ (t) = 0.

The following example demonstrates the application of theorem 2.3.1 and corollary 2.3.1.

Example 2.3.1. Consider the following game problem:

(P) J1(x0,u1,u2) =
∫ ∞

0
e−ρt/2(u1(t)−u2(t))dt and

J2(x0,u1,u2) =
∫ ∞

0
e−3ρt/2x2(t)(u2(t)−u1(t))dt

subject to ẋ(t) =
ρ
2

x(t)+u1(t)−u2(t), x(0) = 0, t ∈ [0,∞)

u ∈ U , s.t. U =
{

u(.)
∣∣ ∀t ≥ 0, u(t) ∈ E ⊂ R2, E is a closed and bounded set

}
.

Taking the transformations x̃(t) = e−ρt/2x(t) and ũi(t) = e−ρt/2ui(t), we transform the
game (P) as a new game (P̃) given by:

(P̃) J1(x0, ũ1, ũ2) =
∫ ∞

0
(ũ1(t)− ũ2(t))dt and

J2(x0, ũ1, ũ2) =
∫ ∞

0
x̃2(t)(ũ2(t)− ũ1(t))dt

subject to ˙̃x(t) = ũ1(t)− ũ2(t), x̃(0) = 0, t ∈ [0,∞). (2.15)

We have Ji(x0,u1,u2) = Ji(x0, ũ1, ũ2), i = 1,2. The player’s objectives are simplified as:

J1(x0, ũ1, ũ2) =
∫ ∞

0
(ũ1(t)− ũ2(t))dt = lim

t→∞
x̃(t)

J2(x0, ũ1, ũ2) =
∫ ∞

0
x̃2(t)(ũ2(t)− ũ1(t))dt =−1

3

(
lim
t→∞

x̃(t)
)3

.

By construction, |ui(t)|< c for some c > 0, i = 1,2, ∀ t ≥ 0 and limt→∞ x̃(t)≤ 2c/ρ . We
notice that J2 =−1

3J3
1 for all (u1,u2) and choosing different values for the control functions
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ui(.), every point in the (J1,J2) plane satisfying J2 = −1
3J3

1 can be attained. Moreover,
every point on this curve is Pareto optimal. This conclusion can be derived from the
application of theorem 2.3.1 and corollary 2.3.1 too. With straightforward calculations we
can show that for (P̃), | fx̃(.)| = 0, |g1x̃(.)| = 0, |g2x̃(.)| ≤ 2|x̃(t)||ũ1(t)− ũ2(t)| ≤ 4c2/ρ .
The growth conditions mentioned in corollary 2.3.1 hold true for the game problem (P̃).
Then from theorem 2.3.1 there exists a co-state function λ̃ (t), with Hamiltonian defined as

H(.) = λ̃ (t)(ũ1(t)− ũ2(t))+
(
α − (1−α)x̃2(t)

)
(ũ2(t)− ũ1(t)) .

Further, H(.) attains a minimum w.r.t ũi(.), i = 1,2 only if

λ̃ (t)+
(

α − (1−α)x̃∗
2
(t)
)
= 0 for all t ∈ [0,∞). (2.16)

As the growth conditions are satisfied we have limt→∞ λ̃ (t) = 0. The adjoint variable λ̃ (t)
satisfies (by differentiating (2.16))

˙̃λ (t) = 2(1−α)x̃∗(t)(ũ2(t)− ũ1(t)), ∀t ∈ [0,∞) lim
t→∞

λ̃ (t) = 0.

We see that the necessary condition (7b) also results in the same differential equation for
λ̃ (t), ∀ t ∈ [0,∞). Using (2.16) we can conclude that for arbitrary choices of u1(.) and
u2(.), theorem 2.3.1 holds true by choosing α such that limt→∞ x̃∗

2
(t) = α

1−α . So, all the
controls u1(.) and u2(.) are candidates for Pareto solutions (as they satisfy the necessary
conditions). To show that the candidates are indeed Pareto optimal we have to show that
the necessary conditions are sufficient too. This aspect is treated in example 2.4.1.

2.3.1 Discounted autonomous systems
The growth conditions given in corollary 2.3.1 ensure that assumption 2.3.1 is satisfied.
However, the conditions (2.14) are quite strict. In this subsection we analyze games defined
by autonomous systems with exponentially discounted player’s costs and for this class
of problems assumption 2.3.1 is guaranteed under mild conditions. The discount factor
ρ is assumed to be strictly positive. We represent the game problem as (Pρ) and the
related optimal control problem as (Pρ

i ). For discounted autonomous systems, Michel [75]
gives necessary conditions for optimality for free endpoint infinite horizon optimal control
problems. However, in the present case the problems (Pρ

i ) are constrained with constraints
taking a special structure. In the following discussion, owing to this special structure, we
show that the conditions given by Michel [75] are sufficient to guarantee assumption 2.3.1.
As a result, the necessary conditions for Pareto optimality of (Pρ ) are the same as the
necessary conditions for optimality of a weighted sum optimal control problem.

As a first step, we derive the necessary conditions for optimality for the mixed endpoint
constrained optimal control problem (Pρ

i ) (in similar lines of [75]5). If u∗ is a Pareto

5Notice, the necessary conditions given by Michel [75] considers only the free end point optimal control
problem.
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optimal strategy for the game problem (Pρ ), then from proposition 2.3.1 u∗ is optimal for
the constrained optimal control problem (Pρ

i ), i ∈ N given by:

(Pρ
i ) min

u∈U

∫ ∞

0
e−ρtgi(x(t),u(t))dt

subject to ẋ(t) = f (x(t),u(t)), x(0) = x0, u ∈ U

˙̃x j(t) = e−ρtg j(x(t),u(t)), x̃i
j(0) = 0, lim

t→∞
x̃i

j(t)≤ x̃i∗
j , ∀ j ∈ N\{i}.

Let (x∗(t),u∗(t)), 0 ≤ t ≤ ∞ be the optimal admissible pair for problem (Pρ
i ), we fix T > 0

and define hi(z), i ∈ N as:

hi(z) =
∫ ∞

z
e−ρtgi (x∗(t − z+T ),u∗(t − z+T ))dt. (2.17)

To derive the necessary conditions for optimality of u∗, we first consider the following
truncated and augmented problem (Pρ

iT ) (associated with the problem (Pρ
i )) defined as fol-

lows:

(Pρ
iT ) min

u∈U
hi(z(T )−T )+

∫ T

0
v(t)e−ρz(t)gi(Y (t),U(t))dt

subject to Ẏ (t) = v(t) f (Y (t),U(t)), Y (0) = Y0, Y (T ) = x∗(T ), U ∈ U

˙̃Y i
j(t) = v(t)e−ρz(t)g j(Y (t),U(t)),

Ỹ i
j(0) = 0, Ỹ i

j(T )+h j(z(T )−T )≤ x̃i∗
j , ∀ j ∈ N\{i} (2.18)

ż(t) = v(t), z(0) = 0, v(t) ∈
[
1/2,∞

)
.

Remark 2.3.2. Notice that the above problem is a mixed end point constrained finite hori-
zon problem, i.e., X(T ) is fixed and Y i

j(T ) is constrained. Further, (2.18) captures the
constraint set Ui defined in lemma 2.2.2.

The following lemma, which is useful in theorem 2.3.2, relates the optimal solution of
(Pρ

i ) to the optimal solution (Pρ
iT ). The proof of lemma 2.3.1 is given in the appendix. We

notice that the special structure of constraints given by (2.18) plays a role in arriving at this
conclusion.

Lemma 2.3.1. If (x∗(t),u∗(t)) is an optimal admissible pair for the problem (Pρ
i ) then(

x∗(t), t,u∗(t),1
)
, t ∈ [0, T ], is an optimal admissible pair for the problem (Pρ

iT ).

Using the above lemma, we give necessary conditions for optimality of problem (Pρ
i ) in

the following theorem (see appendix for the proof).

Theorem 2.3.2. If (x∗(t),u∗(t)), t ∈
[
0, ∞

)
is an optimal pair for the problem (Pρ

i ) then

there exist
−→
λ i ∈RN

+, l0
i ∈Rn and continuous functions λi(t)∈Rn and γi(t)∈R respectively
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such that(−→
λ i,λi(t),γi(t)

)
6= (0,0,0), ∀t ≥ 0,

∥∥∥(−→λ i,λi(0)
)∥∥∥= 1 (2.19a)

λ̇i(t) =−e−ρtGx(
−→
λ i,x∗(t),u∗(t))− f ′x(x

∗(t),u∗(t))λi(t), λi(0) = l0
i (2.19b)

γ̇i(t) = ρ e−ρtG(
−→
λ i,x∗(t),u∗(t)), lim

t→∞
γi(t) = 0 (2.19c)

H(
−→
λ i, t,x∗(t),u(t),λ (t)), λ ′

i (t) f (x∗(t),u∗(t))+ e−ρtG(
−→
λ i,x∗(t),u∗(t))

H(
−→
λ i, t,x∗(t),u∗(t),λ (t))≤ H(

−→
λ i, t,x∗(t),u(t),λ (t)) ∀u(t) (2.19d)

H(
−→
λ i, t,x∗(t),u∗(t),λ (t)) =−γi(t). (2.19e)

Remark 2.3.3. Though the approach in lemma 2.3.1 and theorem 2.3.2 is similar to the one
given in [75], the main differences lie in the problem formulation. In [75], the necessary
conditions are obtained for the free endpoint unconstrained infinite horizon optimal control
problem. However, the game problem (Pρ ), due to proposition 2.3.1, leads to N mixed
endpoint constrained optimal control problems (Pρ

i ).

From theorem 2.3.2, if u∗ is optimal for the problem (Pi) then there exists a
−→
λ i ∈ RN

+

such that the conditions (2.19) hold true. These necessary conditions are closely related
to the minimization of a weighted sum optimal control problem with the weight vector−→
λ i. This observation is evident in the non-autonomous case as well, see (2.8) and (2.9).
Due to the special structure of the constraint set Ui, the term G(

−→
λ i,x∗(t),u∗(t)), weighted

instantaneous undiscounted cost of the players, appears in the necessary conditions for
optimality of all the problems (Pρ

i ), i ∈ N. Now, from (2.19a) and (2.19c) if limt→∞ λi(t) =
0 then assumption 2.3.1 holds true. As the scrap value associated with problem (Pρ

i ) is
zero, limt→∞ λi(t) = 0 is the natural transversality condition. In the discussion that follows
we give two possible ways, in corollary 2.3.2 and corollary 2.3.3, to ensure limt→∞ λi(t) =
0. For autonomous systems [75] gives assumptions under which the natural transversality
condition holds for the free endpoint case with maximization criterion. We show in the
corollary 2.3.2 that these conditions, formulated as assumption 2.3.2 below, also suffice to
conclude that this transversality condition holds for the problem (Pρ

i ). The proof, given in
the appendix, is along the same lines of [75], and requires the following assumption.

Assumption 2.3.2. gi(x(t),u(t)), ∀i ∈ N is non positive and there exists a neighborhood V
of 0 ∈Rn which is contained in the set of possible velocities f (x∗(t),u(t)) for all u ∈ U if
t → ∞.

Corollary 2.3.2. Let assumption 2.3.2 hold true. Then, an optimal solution for the problem
(Pρ

i ) satisfies in addition to the conditions (2.19), the following transversality condition:
limt→∞ λi(t) = 0.

Remark 2.3.4. a) The nonpositivity assumption 2.3.2 can be relaxed in the following
way. If the instantaneous undiscounted costs of players gi(x(t),u(t)), i ∈ N are
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bounded above for all pairs (x(t),u(t)), t ∈ [0,∞) then by assigning a new cost
g̃i(x(t),u(t)) = gi(x(t),u(t))−M with M = maxi∈N supt∈[0,∞) gi(x(t),u(t)) leaves
g̃(x(t),u(t)) nonpositive. Now, by defining a new game (P̃ρ ) with g̃(.) as the instan-
taneous undiscounted costs for player i we observe that Pareto optimal controls (if
they exist) of (Pρ ) and (P̃ρ ) coincide. We will use this idea in example 2.3.2 to find
Pareto optimal controls.

b) Notice that the second condition in assumption 2.3.2 is identical to the notion of state
reachability when the state dynamics is described by a linear constant coefficient
differential equation.

The conditions given in assumption 2.3.2 are mild but they are difficult to verify except
for special cases, see remark 2.3.4(b) and example 2.3.2. Another possibility is to seek
for (growth) conditions so as to obtain a bound on ||λi(t)||. Recently, [95, 5] discuss such
conditions for a class of free end point optimal control problems. In the following corollary
2.3.3, which is in the same spirit as the above works, we give (growth) conditions for the
problem (Pρ

i ). Towards that end, we make the following assumption. The proof of the
corollary is provided in the appendix.

Assumption 2.3.3. a) There exist a s ≥ 0 and an r ≥ 0 such that

||gix(x(t),u(t))|| ≤ s(1+ ||x(t)||r) for all x(t) ∈ Rn,u ∈ U and i ∈ N.

b) There exist nonnegative constants c1, c2, c3 and λ ∈R, such that for every admissible
pair (x(t),u(t)), one has

||x(t)|| ≤ c1 + c2eλ t for all t ≥ 0

||Φ fx(t,0)|| ≤ c3eλ tfor all t ≥ 0.

c) For every admissible pair (x(t),u(t)) the eigenvalues of fx(x(t),u(t)) are strictly
positive.

Corollary 2.3.3. Let assumption 2.3.3 hold true. Then, an optimal solution for problem
(Pρ

i ) satisfies in addition to the conditions (2.19), the following transversality condition
limt→∞ λi(t) = 0 if ρ > (1+ r)λ .

Remark 2.3.5. a) In the above corollary, by selecting a high discount factor the natural
transversality condition is obtained. When the state evolution dynamics is linear and
player’s objectives are convex in the control variable, the growth conditions (a) and
(b) given in assumption 2.3.3 are similar to those obtained in [5] and [6].

b) In [5], the free endpoint infinite horizon optimal control problem is approximated
with a series of free endpoint finite horizon problems whereas in the current ap-
proach (Pρ

i ) is approximated with fixed endpoint problems. As a result, an addi-
tional condition (c) appears in the assumption 2.3.3, see the proof in appendix for
more details.
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To summarize, Corollaries 2.3.2 and 2.3.3 are sufficient conditions to ensure that assump-
tion 2.3.1 holds true. Now, collecting the above results we proceed to the main result of
the subsection.

Theorem 2.3.3. Let assumption 2.3.2 or 2.3.3 hold true. If
(
J1(x0,u∗),J2(x0,u∗), · · · ,

JN(x0,u∗)
)

is a Pareto optimal solution for problem (P) then there exists an −→α ∈ PN

and a co-state function λ (t) : [0,∞)→Rn such that the following conditions are satisfied.

H(−→α , t,x(t),u(t),λ (t)), λ ′(t) f (t,x(t),u(t))+ e−ρtG(−→α ,x(t),u(t)) (2.20a)

H(−→α , t,x∗(t),u∗(t),λ (t))≤ H(−→α , t,x∗(t),u(t),λ (t)), ∀u(t) (2.20b)

H0(−→α , t,x∗(t),λ (t)) = min
u(t)

H(−→α , t,x∗(t),u(t),λ (t))

λ̇ (t) =−H0
x (
−→α , t,x∗(t),λ (t)), λ (0) = l0 ∈ Rn, lim

t→∞
λ (t) = 0 (2.20c)

ẋ∗(t) = H0
λ (
−→α , t,x∗(t),λ (t)), x∗(0) = x0 (2.20d)

γ̇(t) = ρ G(−→α ,x∗(t),u∗(t)), lim
t→∞

γ(t) = 0 (2.20e)

H0(−→α , t,x∗(t),λ (t)) =−γ(t) (2.20f)(−→α ,γ(t),λ (t)
)
6= 0, ∀t ∈ [0,∞), −→α ∈ PN . (2.20g)

Proof. If assumptions 2.3.2 or 2.3.3 hold true then for each problem (Pρ
i )

−→
λ i ∈ RN

+\{0}
and limt→∞ λi(t) = 0. We define d = ∑i∈N

−→
λ ′

i1N , αi =
1
d

(
λ 0

i +∑ j∈N\{i} µ j
i

)
, i ∈ N and

a vector −→α = (α1, · · · ,αN)
′. We notice that −→α ∈ PN . Taking the summation of equation

(2.19b) for all i ∈ N and defining λ (t) = 1
d ∑i∈N λi(t) we observe that conditions (2.20b)

and (2.20c) are satisfied. Taking the summation of equation (2.19c) for all i ∈ N and
defining γ(t) = 1

d ∑i∈N γi(t), the conditions (2.20e) and (2.20f) are satisfied. Since, −→α ∈
PN and limt→∞ λ (t) = 0 we observe that (2.20g) is satisfied.

Next, we consider an example from [56] to illustrate usage of assumption 2.3.2 and theo-
rem 2.3.3.

Example 2.3.2. Consider a fishery game with two players. The evolution of the stock of
fish, in a particular area, is governed by the differential equation

ẋ(t) = ax(t)−bx(t) lnx(t)−u1(t)−u2(t), x(0) = x0 ≥ 2, (2.21)

where x(t) refers to the stock of fish, and a> 0, b> 0. It is assumed that x(t)≥ 2, t ∈ [0,∞).
In (2.21), the stock of fish x(t) depends upon ax(t) births, bx(t) lnx(t) deaths and the
fishing efforts of player i, ui(t) = wi(t)x(t), at each point in time t. Each fisherman tries to
maximize his utility Ji(.), given by:

Ji(x0,u1,u2) =
∫ ∞

0
e−ρt lnui(t) dt.
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We assume 0 < ε ≤ wi(t)< ∞ for the utility to be well defined. By taking the transforma-
tion y(t) = lnx(t) the system (2.21) is modified as:

ẏ(t) = a−by(t)−w1(t)−w2(t), y(0) = lnx(0), (2.22)

and the player’s utility is transformed as:

Ji(x0,u1,u2) =
∫ ∞

0
e−ρt (y(t)+ lnwi(t)) dt. (2.23)

We notice that the instantaneous undiscounted reward is bounded below. As the system
(2.22) is controllable, from remark 2.3.4.a) we notice that assumption 2.3.2 is satisfied. So
all Pareto candidates can be obtained by solving the necessary conditions associated with
the weighted sum optimal control problem :

min
w1,w2

{
−
∫ ∞

0
e−ρt (y(t)+α lnw1(t)+(1−α) lnw2(t))dt

}
,

subject to (2.22). We define the Hamiltonian as

H(α, t,y,w1,w2,λ ), λ (t)(a−by(t)−w1(t)−w2(t))

− e−ρt (y(t)+α lnw1(t)+(1−α) lnw2(t)) .

Taking Hwi = 0, i = 1,2 gives w1(t) = − α
λ (t)e

−ρt and w2(t) = −1−α
λ (t) e−ρt . The adjoint

variable is governed by

λ̇ (t) = bλ (t)+ e−ρt , lim
t→∞

λ (t) = 0,

and the solution is given as λ (t) = − e−ρt

ρ+b . The candidates for Pareto optimal strategies in
open loop form are given by:

u∗1(t) = α(ρ +b)em(t,x0)

u∗2(t) = (1−α)(ρ +b)em(t,x0),

where m(t,x0) = e−bt lnx0 +
a−(b+ρ)

b

(
1− e−bt). The candidates for Pareto solutions are

given as

J∗1(x0,u1,u2) =
ρ lnx0 +a− (ρ +b)

ρ(ρ +b)
+

ln(α(ρ +b))
ρ

J∗2(x0,u1,u2) =
ρ lnx0 +a− (ρ +b)

ρ(ρ +b)
+

ln((1−α)(ρ +b))
ρ

. (2.24)
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2.4 Sufficient conditions for Pareto optimality
It is well known [42] that if the action spaces as well as the players objective functions
are convex then minimization of the weighted sum of the objectives results in all Pareto
solutions. We give the following theorem from [35].

Theorem 2.4.1. If U is convex and Ji(x0,u) is convex in u for all i = 1,2, · · · ,N then for
all Pareto optimal u∗ there exist −→α ∈ PN , such that u∗ ∈ argminu∈U ∑N

i=1 αiJi(x0,u).

Recently in [37], this property was used to obtain both necessary and sufficient conditions
for the existence of Pareto optimal solutions for regular convex linear quadratic differential
games. In general it is a difficult task to check if the players objectives are convex func-
tions of controls. However, under some conditions the solutions of (2.20) result in Pareto
optimal strategies. In this section we derive sufficient conditions for a strategy to be Pareto
optimal. The sufficient conditions given in the theorem below are inspired by Arrow’s suf-
ficient conditions [95] in optimal control. Further, these sufficient conditions are given for
non-autonomous systems and they hold true for discounted autonomous systems as well.

Theorem 2.4.2. Assume that there exists −→α ∈ PN and a co-state function λ (t) : [0,∞)→
Rn satisfying (2.20c). Introduce the Hamiltonian H(t,−→α ,x(t),u(t),λ (t)) = f (t,x(t), u(t))
+G(−→α , t,x(t),u(t)). Assume that the Hamiltonian has a minimum w.r.t u(t) for all x(t),
denoted by H0(−→α , t,x(t),λ (t)) = minu(t)H(−→α , t,x(t),u(t),λ (t)). If H0(−→α , t,x(t), λ (t)

)
is convex in x(t) and liminft→∞ λ ′(t) (x∗(t)− x(t))≥ 0, then u∗(t) is Pareto optimal.

Proof. From the convexity of H0(−→α , t,x(t),λ (t)) we have:

H0(−→α , t,x(t),λ (t))−H0(−→α , t,x∗(t),λ (t))≥ H0
x (
−→α , t,x∗(t),λ (t))(x(t)− x∗(t))

Since, H(−→α , t,x(t),u(t),λ (t))≥H0(−→α , t,x(t),λ (t))=H(−→α , t,x∗(t),u∗(t),λ (t)) we have:

H(−→α , t,x(t),u(t),λ (t))−H(−→α , t,x∗(t),u∗(t),λ (t))≥ H0
x
′
(−→α , t,x∗(t),λ (t))(x(t)− x∗(t))

=−λ̇ ′(t)(x(t)− x∗(t)) (by (2.20c)).

Using the definition of Hamiltonian, the above inequality can be written as:

λ ′(t)( f (t,x(t),u(t)− f (t,x∗(t),u∗(t)))+G(−→α , t,x(t),u(t))−G(−→α , t,x∗(t),u∗(t))

≥−λ̇ ′(t)(x(t)− x∗(t))

(
G(−→α , t,x(t),u(t))−G(−→α , t,x∗(t),u∗(t))

)
≥ λ̇ ′(t)(x∗(t)− x(t))+λ ′(t)(ẋ∗(t)− ẋ(t))

=
d
dt

(
λ ′(t)(x∗(t)− x(t))

)
.

Taking the integrals on both sides we have∫ T

0

(
G(−→α , t,x(t),u(t))−G(−→α , t,x∗(t),u∗(t))

)
dt ≥

(
λ ′(t)(x∗(t)− x(t))

)∣∣∣T
0
.
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As x∗(0) = x(0) = x0 and λ (0) is bounded the above inequality is given as:∫ T

0

(
G(−→α , t,x(t),u(t))−G(−→α , t,x∗(t),u∗(t))

)
dt ≥

(
λ ′(T )(x∗(T )− x(T ))

)
.

Taking T → ∞

J(u)− J(u∗)≥ lim
t→∞

λ ′(t)(x∗(t)− x(t))≥ liminf
t→∞

λ ′(t)(x∗(t)− x(t))≥ 0.

Clearly, by lemma 2.2.1 u∗ is Pareto optimal.

Example 2.4.1. (sufficient conditions): We illustrate theorem 2.4.2 by considering exam-
ple 2.3.1 again. First, we notice that H0(t, x̃∗, λ̃ ) = 0 so H0(t, x̃∗, λ̃ ) is convex in x̃(t). Next,
limt→∞ x̃(t) exists and is finite and limt→∞ λ̃ (t) = 0, so liminft→∞ λ̃ (t) (x̃∗(t)− x̃(t)) = 0.
So, by theorem 2.4.2 every control (u1,u2) is Pareto optimal.

Example 2.4.2. (sufficient conditions): For example 2.3.2 the candidates for Pareto solu-
tions are given by (2.24). If the model in example 2.3.2 satisfies the sufficient conditions
mentioned in theorem 2.4.2, then all Pareto solutions are indeed given by (2.24). The
minimized Hamiltonian is given by:

H0(t,y(t),λ (t)) =−ρ y(t)
ρ +b

e−ρt + e−ρt
(

1− a
ρ +b

− ln
(
αα(1−α)1−α(ρ +b)

))
.

Clearly, H0(t,y(t),λ (t)) is convex (linear here) in y(t). Since wi(t), i= 1,2, is bounded we
have |y(t)| ≤ (c1 + c2e−bt). Further, λ (t) = − e−ρt

ρ+b , thus we have liminft→∞ λ (t)(y∗(t)−
y(t)) = 0. The fishery model satisfies the sufficient conditions as given by theorem 2.4.2.
So, all the candidates given by (2.24) are Pareto solutions.

2.5 Linear quadratic case
In this section we consider the discounted infinite planning horizon linear quadratic co-
operative differential game (denoted as (PLQ)). Player i ∈ N may choose his control tra-
jectory, ui(.) from the set of admissible controls U where the specific choice of control
space will be clarified below. The problem is to determine the set of Pareto solutions for
the cooperative game defined by

(PLQ) min
u∈U

Ji(x0,u) (2.25)

Ji(x0,u) =
∫ ∞

0
e−ρt(x′(t) u′(t))Mi(x′(t) u′(t))′dt

subject to ẋ(t) = Ax(t)+ ∑
i∈N

Biui(t), x(0) = x0. (2.26)

Where Mi =

[
Qi S′i
Si Ri

]
is symmetric, Ri ≥ 0, i = 1, · · · ,N. We define the following spaces:
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a) LN
2,loc , {u |

∫ ∞
0 u′(t)u(t)dt < ∞}, i.e., the set of locally square-integrable functions.

b) L+
2,s(x0;x,A),

{
u ∈ LN

2,loc| s.t limt→∞ x(t) = 0, ẋ(t) = Ax(t)+Bu(t), x(0) = x0

}
.

It can be proved, for instance see lemma 2.1 [38], that the control spaces mentioned above
are convex. We take LN

2,loc as the choice of control space U unless otherwise specified. In
the following corollary we give conditions under which assumption 2.3.1 is satisfied.

Lemma 2.5.1. For (PLQ), if the pair (A,B) is controllable then assumption 2.3.1 holds
true.

Proof. If u∗ is Pareto optimal then by proposition 2.3.1 u∗ is optimal for the PLQ
i , i ∈ N.

Here, PLQ
i represents the linear quadratic analog of the constrained subproblem Pi de-

fined in section 2.3. The necessary conditions for optimality of u∗ are given by equa-
tions (2.19). Assuming an interior solution u∗(t), the first order condition translates to
e−ρt (2Rλiu

∗(t)+2Sλix
∗(t)
)
+ B′λ (t) = 0. If

−→
λ i = 0, then conditions lead to λ̇i(t) =

−A′λi(t), γ̇i(t) = 0 and the above first order condition would be B′λi(t) = 0. This implies
B′λ̇i(t) =−B′A′λi(t) = 0. Repeating the same n−1 times we see that λ ′(t)

[
B AB A2B

· · · An−1B
]
= 0. As, (A,B) is controllable we necessarily have λi(t) = 0 for all t. Further

as γ̇i(t) = 0 and limt→∞ γi(t) = 0 we have γi(t) = 0 for all t. But this violates the necessary
condition (2.19a). So,

−→
λ i ∈ RN

+\{0} and assumption 2.3.1 holds true.

Remark 2.5.1. Specializing corollary 2.3.2 to the linear quadratic case to guarantee as-
sumption 2.3.1 may require restrictions on the system parameters and control space U 6.

In the next theorem we specialize theorem 2.3.3 for the linear quadratic case. Towards that
end, we define z(t) = e−ρt/2x(t), v(t) = e−ρt/2u(t), p(t) = eρt/2λ (t) and Ã = A− ρ

2 I.

Theorem 2.5.1. Let (A,B) is controllable. If (J1(x0,u∗), · · · ,JN(x0,u∗)) is a Pareto solu-
tion for the problem (2.25,2.26) then there exists an −→α ∈ PN such that

e−ρt [x∗′(t) u∗′(t)
]
Mα
[
x∗′(t) u∗′(t)

]′
+λ ′(t)(Ax∗(t)+Bu∗(t))≤

e−ρt [x∗′(t) u∗′(t)
]

Mα
[
x∗′(t) u′(t)

]′
+λ ′(t)(Ax∗(t)+Bu(t))

(2.27a)

ẋ∗(t) = Ax∗(t)+Bu∗(t), x∗(0) = x0, (2.27b)

λ̇ (t) =−A′λ (t)− e−ρt (2Qαx∗(t)+2Sαu∗(t)) λ (0) = l0 ∈ Rn. (2.27c)

In case α is such that Rα > 0, the above equations can be equivalently rephrased as that
every Pareto optimal control satisfies u∗(t) = eρt/2v∗(t) where v∗(t) = −R−1

α
(
Sαz∗(t)+

6 A sufficient condition to satisfy assumption 2.3.1 can be shown as (A, B) controllable, A is stable and
u(t) ∈ E ⊂ Rm, with E being a bounded set.
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B′p(t)
)
. (z∗(t), p(t)) is the solution of the linear autonomous differential equation given

by: [
ż∗(t)
ṗ(t)

]
= Gα

[
z∗(t)
p(t)

]
, z(0) = x0 (given), p(0) = l0 ∈ Rn. (2.28)

Proof. (PLQ) is a special case of (Pρ ). Again using proposition 2.3.1 we have u∗ is optimal
for PLQ

i , i ∈ N. Since (A,B) is controllable from lemma 2.5.1 assumption 2.3.1 holds true,
i.e.,

−→
λ i

0 ∈ RN
+\{0}, i ∈ N. So, the necessary conditions (2.27a-2.27c) follow directly from

theorem 2.3.3.

Remark 2.5.2. Here, Gα is a Hamiltonian matrix given by

Gα ,
[

Ã−BR−1
α Sα −BR−1

α B′

−
(
Qα −SαR−1

α Sα
)

−
(
Ã−BR−1

α Sα
)′] .

The extremal trajectories generated by the Hamiltonian flow (2.28) depend on x0 and α .
The additional information that we have is p(0) = l0 ∈ Rn is bounded. The eigenvalues
of the Hamiltonian matrix Gα are symmetric w.r.t real and imaginary axis. So, Gα has at
most n eigenvalues with negative real part. Bounded trajectories of (2.28) evolve on the
stable manifolds and converge towards the equilibrium points of (2.28). The state of the
Hamiltonian system,

[
z′(t) p′(t)

]′
, has 2n variables and out of which only n, related to

x0, are free. The co-state variable p(t) can be obtained as a result of the above bounded-
ness restriction and as a result depends on the initial state x0. In nonlinear models, it is
very common to have multiple co-state trajectories, converging to the equilibrium point,
resulting in the same optimal cost, see [48, chapter 5].

To restrict the number of possible extremal trajectories we make the following assumption
on admissible controls.

Assumption 2.5.1. The admissible controls v satisfy the property: v ∈ L+
2,s(x0,z, Ã).

Notice, assumption 2.5.1 requires limt→∞ z(t) = 0 whereas x(t) = eρt/2z(t) can grow un-
bounded. Strong restrictions on the system parameters ensure limt→∞ x(t) = 0 , see section
5 of [26] for more details. Theorem 2.5.1 only gives necessary conditions and solving these
equations we obtain Pareto candidates. Further, we notice that these necessary conditions
are similar, with controllability assumption, to necessary conditions for optimality of a
weighted sum optimal control problem. The following theorem relates Pareto optimality
with weighted sum minimization. We first define the weighted sum objective as:

Jβ (x0,u) =
∫ ∞

0
e−ρt [x′(t) u′(t)

]
Mβ
[
x′(t) u′(t)

]′
dt,

where
−→
β ∈ PN , Ri > 0, i ∈ N and x(t) solves

ẋ(t) = Ax(t)+Bu(t), x(0) = x0. (2.29)
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Theorem 2.5.2. Let (A,B) be controllable. If u∗ is Pareto optimal then there exists a−→
β ∈ PN such that the following condition holds true

Jβ (x0,u)− Jβ (x0,u∗)+ lim
t→∞

λ ′(t)(x(t)− x∗(t)) = Jβ (0,u−u∗). (2.30)

Proof. First we notice,

Jβ (x0,u)− Jβ (x0,u∗) =
∫ ∞

0
e−ρt

[
x(t)
u(t)

]′
Mβ

[
x(t)
u(t)

]
dt −

∫ ∞

0
e−ρt

[
x∗(t)
u∗(t)

]′
Mβ

[
x∗(t)
u∗(t)

]
dt

=
∫ ∞

0
e−ρt

[
x(t)− x∗(t)
u(t)−u∗(t)

]′
Mβ

[
x(t)− x∗(t)
u(t)−u∗(t)

]
dt

+2
∫ ∞

0
e−ρt

[
x∗(t)
u∗(t)

]′
Mβ

[
x(t)− x∗(t)
u(t)−u∗(t)

]
dt.

We recognize the first part of the sum on the righthand side of the above equations as
Jβ (0,u−u∗). Since u∗ is Pareto optimal from theorem 2.5.1 there exists a

−→
β ∈ PN such

that (2.27a-2.27c) hold true. Now, we observe using conditions (2.27a) and (2.27c) that

lim
t→∞

λ ′(t)(x(t)− x∗(t))−λ ′(0)(x(0)− x∗(0)) =
∫ ∞

0

d
dt

(
λ ′(t)(x(t)− x∗(t))

)
dt

=−2
∫ ∞

0
e−ρt

[
x∗(t)
u∗(t)

]′
Mβ

[
x(t)− x∗(t)
u(t)−u∗(t)

]
dt.

Since λ (0) is bounded, the second term in sum on the lefthand side of the above equation
vanishes and results in equation (2.30).

Theorem 2.5.3 given below states that, under controllability condition, for a fixed initial
state a weighted sum (single player) linear quadratic optimal control problem has a solution
if and only if the cost function is convex in u, the necessary conditions resulting from the
maximum principle and a transversality condition are satisfied.

Theorem 2.5.3. We have the following assertions for Jβ (x0,v).

a) (Convexity) For any α ∈ [0,1], ui ∈ U , i = 1,2 and
−→
β ∈ PN we have

αJβ (x0,u1)+(1−α)Jβ (x0,u2)− Jβ (z0,αu1 +(1−α)u2)

= α(1−α)Jβ (0,u1 −u2). (2.31)

b) Let (A,B) be controllable, then u∗ = argminu∈U Jβ (x0,u) exists if

i) minu∈U Jβ (0,u) exists (and equals zero).
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ii) there exist u∗, x∗ and λ that satisfy, for all t ≥ 0

e−ρt (2Qβ x∗(t)+2Rβ u∗(t)
)
+B′λ (t) = 0, where (2.32a)

ẋ∗(t) = Ax∗(t)+Bu∗(t) x∗(0) = x0 (2.32b)

λ̇ (t) =−A′λ (t)− e−ρt (2Qβ x∗(t)+2Sβ u∗(t)
)

λ (0) = l0 ∈ Rn. (2.32c)

Conversely, if (i), (ii) and in addition liminft→∞ λ ′(t)(x∗(t)− x(t)) ≥ 0 holds true then
u∗ = argminu∈U Jβ (x0,u).

Proof. a) By linearity of the system (2.29) if xi(t) is generated by ui(t) with xi(0) = x0

for i = 1,2. Then for α ∈ [0,1], αu1(t)+ (1−α)u2(t) generates αx1(t)+ (1−α)x2(t)
with initial state as x0.

Jβ (x0,αu1(t)+(1−α)u2(t))

=
∫ ∞

0
e−ρt

[
αx1(t)+(1−α)x2(t)
αu1(t)+(1−α)u2(t)

]′
Mβ

[
αx1(t)+(1−α)x2(t)
αu1(t)+(1−α)u2(t)

]
dt

= α2Jβ (x0,u1)+(1−α)2Jβ (x0,u2)

+2α(1−α)
∫ ∞

0
e−ρt

[
x1(t)
u1(t)

]′
Mβ

[
x2(t)
u2(t)

]
dt

αJβ (x0,u1)+(1−α)Jβ (x0,u2)− Jβ (x0,αu1(t)+(1−α)u2(t))

= α(1−α)
∫ ∞

0
e−ρt

[
x1(t)− x2(t)
u1(t)−u2(t)

]′
Mβ

[
x1(t)− x2(t)
u1(t)−u2(t)

]
dt.

Using the linearity property we identify the integral on the right hand side as Jβ (0,u1−u2).

b) ⇒ First, we have x(t,x0,u) = eAtx0 +
∫ t

0 eA(t−s)Bu(s)ds. So, introducing p(t) = eAtx0

and w(t) =
∫ t

0 eA(t−s)Bu(s)ds, we have x(t) = p(t)+w(t). Some elementary calculations
then show that

J(x0,u) = J(0,u)+
∫ ∞

0
e−ρs p′(s)Q0 p(s)ds+2

∫ ∞

0
e−ρs (p′(s)Q0w(s)+ p′(s)V0u(s)

)
ds.

Therefore for any τ ∈ R we have

J(x0,τu) = τ2J(0,u)+
∫ ∞

0
e−ρs p′(s)Q0 p(s)ds+2τ

∫ ∞

0
e−ρs (p′(s)Q0w(s)+ p′(s)V0u(s)

)
ds.

So, if J(0,u) < 0 for some u ∈ U , J(z0,τu) can be made arbitrarily small by choosing τ
large enough. Therefore we conclude that if minu∈U J(z0,u) exists, necessarily J(0,u)≥ 0
for every u ∈ U . Since J(0,0) = 0 it is obvious that condition (i) holds. Since u∗ is
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a minimizer the necessary conditions for optimality hold in normal form following the
reasoning given by lemma 2.5.1, and (ii) holds true.
⇐ If there exists a u∗ satisfying (2.32) then following the proof of theorem 2.5.2 we have
Jβ (x0,u)− Jβ (x0,u∗) + limt→∞ λ ′(t)(x(t)− x∗(t)) = Jβ (0,u− u∗) for all u ∈ U . From
(i) we have Jβ (x0,u)− Jβ (x0,u∗) ≥ limt→∞ λ ′(t)(x∗(t)− x(t)). By assumption, we have
liminft→∞ λ ′(t)(x∗(t)− x(t))≥ 0. So, Jβ (x0,u)≥ Jβ (x0,u∗) for all u ∈ U .

2.5.1 Fixed initial state
In this section we give additional properties of Pareto solutions that arise due to linear
quadratic nature of the game (PLQ). First, the following properties hold true due to the
linearity of the game (PLQ), refer lemma 3.2 [38] for a detailed proof.

Lemma 2.5.2. Assume u∗ is a Pareto optimal control for (2.25, 2.26). Then µu∗ is a Pareto
optimal control for (2.25, 2.26) with x(0) = µx0.

As a result of the above lemma, if for the initial state x0 = 0 there exists a Pareto solution
different from zero, then all points on the half-line connecting this point and zero are also
Pareto solutions. We state this observation formally in the next corollary.

Corollary 2.5.1. Consider the cooperative game (2.25, 2.26) with x0 = 0. Assume u∗ is a
Pareto optimal control for this game yielding the Pareto solution J∗. Then for all µ ∈ R,
µu∗ yields the Pareto solution µ2J∗.

For the two player case in a finite horizon setting theorem 3.6 [38] shows that all Pareto
solutions can be obtained using the weighting method using a technical lemma 3.5 [38].
The following theorem is an infinite horizon counter part of theorem 3.6 [38].

Theorem 2.5.4. Let (A,B) be controllable. Consider the two-player case of the problem
with Ri > 0.

1. If (J1(x0,u∗),J2(x0,u∗)) is a Pareto solution for problem (PLQ), then there exists an
α ∈ [0,1] such that

(i) (2.32) holds (with u∗ defined correspondingly) and

(ii) for this α , infu Jα(0,u) = infu (αJ1(0,u)+(1−α)J2(0,u)) exists.

2. Conversely, if there exists an α ∈ (0,1) such that (i) and (ii) above hold true, then(
J1(x0,u∗), J2(x0,u∗)

)
is a Pareto solution.

Proof. 1) From lemma 3.5 and item (1) of theorem 3.6 in [38], it follows that if (J1(x0,u∗),
J2(x0,u∗)) is a Pareto solution then u∗ minimizes the weighted sum Jα(x0,u). The remain-
ing part follows from theorem item (b) of 2.5.3. 2) Follows from item (b) of theorem 2.5.3
and a direct application of lemma 2.2.1.
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Remark 2.5.3. Note that theorem 2.5.4 does not assume that the cost functions Ji are con-
vex, and almost all Pareto solutions can be obtained using the weighting method. Here
‘almost all’ refers to Pareto solutions which are obtained by using the weights in the in-
terval (0, 1). The only additional Pareto optimal solutions that may exist are obtained by
considering strategies ũ = argminu∈U Ji(x0,u) for some i ∈ N, i.e., giving a weight equal
to 1 for a single player. It is still unclear if the same conclusion can be derived in a N(> 2)
player setting.

2.5.2 Arbitrary initial state
In this section we consider conditions under which (PLQ) has a Pareto solution for an
arbitrary initial state. It is well known [110, 119] that the solution of (2.28) is closely
related to the existence of the solution to the following algebraic Riccati equation (ARE):

Ã′X +XÃ− (XB+Sα)R−1
α
(
B′X +Sα

)
+Qα = 0. (ARE)

Using theorem 5 [110] and theorem 13.9 [119], we state the following proposition:

Proposition 2.5.1. Let (Ã,B) be controllable. Then the following are equivalent.

a) The frequency domain inequality (FDI) satisfies

Ψα( jω) =
[
B′(− jω − Ã′)−1 I

]
Mα

[
( jω − Ã)−1B

I

]
≥ εB′(− jω − Ã′)−1( jω − Ã)−1B,

for some ε > 0 and 0 ≤ ω ≤ ∞.

b) The (ARE) has a unique real symmetric stabilizing solution Xα such that σ(Ã −
BR−1

α (B′Xα +Sα)) ∈ C−.

c) The Hamiltonian matrix Gα has no jω − axis eigenvalues and there exists an n
dimensional stable graph subspace7.

Lemma 2.5.3. Let (Ã,B) be controllable. If the (ARE) has a real symmetric stabiliz-
ing solution for −→α 1, · · · ,−→α k ∈ PN then (ARE) has a solution for all −→α in the cone
K (−→α 1,

−→α 2, · · · ,−→α k), where

K (−→α 1,
−→α 2, · · · ,−→α k) =

{
−→α ∈ PN

∣∣−→α =
k

∑
i=1

κi
−→α i, κi > 0, i = 1,2, · · · ,k

}
.

7Let S represent the subspace spanned by eigenvectors, denoted by
[

X1

X2

]
2n×n

, associated with stable

eigenvalues. If X1n×n is invertible then we call S a stable graph subspace.
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Proof. From proposition 2.5.1(b), if the (ARE) has a solution for −→α i ∈ PN then Ψαi( jω)

satisfies the inequality given in proposition 2.5.1(a) for i = 1,2, · · · ,k. So, for any −→α ∈
K (−→α 1,

−→α 2, · · · ,−→α k), Ψα( jω) = ∑k
i=1 κiΨαi( jω) ≥ εB′(− jω − Ã′)−1( jω − Ã)−1B for

some ε > 0 and 0 ≤ w ≤ ∞. Again from proposition 2.5.1 we have that (ARE) with
−→α ∈ K (−→α 1,

−→α 2, · · · ,−→α k) has a real symmetric stabilizing solution.

In the theorem 2.5.5 given below we consider the special case when (ARE) has a stabilizing
solution for the vertices of the simplex PN .

Theorem 2.5.5. Let (Ã,B) be stabilizable and v ∈ L+
2,s(x0,z, Ã). Assume (ARE) has a

solution for −→α =−→e i, i = 1,2, · · · ,N, where −→e i is the ith standard unit vector in RN . Then
for all initial states a Pareto solution exists. For a fixed initial state the set of all Pareto
solutions is given by {(J1(x0,u∗α), · · · ,JN(x0,u∗α))}. Here, for a fixed −→α ∈ PN ,

u∗α(t) =−e−ρt/2R−1
α
(
B′Xα +Vα

)
z∗(t),

where z∗(t) satisfies ż∗(t) =
(
Ã−BR−1

α (B′Xα +Vα)
)

z∗(t), z∗(0) = x0.

Proof. If −→α =−→e i then the game problem reduces to a single player optimal control prob-
lem. Recalling theorem 2.7 [38], if (Ã,B) is stabilizable then minu∈U Ji(x0,u) exists if
and only if (ARE) has a unique stabilizing real symmetric solution X . Under this condi-
tion minu∈U Ji(x0,u) = x′0Xix0 is attained uniquely by u∗(t) =−eρt/2R−1

i (B′Xi +Vi)z∗(t),
where z∗(.) solves ż∗(t) =

(
Ã−BR−1

i (B′Xi +Vi)
)

z∗(t). Clearly, we have Ji(0,u) ≥ minu

Ji(0,u) = 0. So, from theorem 2.5.3, Ji(x0,u) is strictly convex in u. As a result if (ARE)
has a real symmetric stabilizing solution for −→α = −→e i, i = 1,2, · · · ,N then players’ ob-
jectives Ji(x0,u) are strictly convex in u. Since the choice of control space is convex,
from theorem 2.4.1 it follows that for all Pareto optimal u∗ there exist −→α ∈ PN such that
u∗ = argminu∈U ∑N

i αiJi(x0,u) for all x0. Notice, we only require that (Ã,B) to be stabi-
lizable for this conclusion. Further, there exists a one-one correspondence between Pareto
surface and PN .

In the following lemma we show under certain conditions that a Pareto optimal control
minimizes a weighted sum optimal control problem.

Lemma 2.5.4. Let (Ã,B) be controllable and v ∈ L+
2,s(x0,z, Ã). If u∗ is Pareto optimal then

there exists a
−→
β ∈ PN such that conditions (2.30) holds true. Further, if (ARE) has a

unique real symmetric stabilizing solution for this
−→
β then u∗ minimizes Jβ (x0,u).

Proof. If u∗ is Pareto optimal then from theorem 2.5.2 there exists a
−→
β ∈ PN such that

(2.30) holds true. Suppose if (ARE) has a unique real symmetric stabilizing solution Xβ ,
then Jβ (x0,u) is strictly convex. So, there exists a unique ũ = argminu∈U Jβ (x0,u) such
that J(x0, ũ) = x′0Xβ x0, in particular minu∈U Jβ (0,u) = 0. To show u∗ = ũ we proceed as
follows. From (2.30) and above arguments we have Jβ (x0,u)− Jβ (x0,u∗)+ limt→∞ λ ′(t)
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(x(t)−x∗(t))≥ 0. With straightforward calculations we can show that lim→∞ p′(t)(z∗(t)−
z(t)) = lim→∞ λ ′(t)(x∗(t)− x(t)). From, proposition 2.5.1 we have that Gβ has an n di-
mensional stable graph subspace. So, the optimal co-state rule is given uniquely by p(t) =
Xβ z∗(t). As Xβ is stabilizing and v ∈ L+

2,s(x0,z, Ã), we have that limt→∞(z(t)− z∗(t)) = 0,
and as a result limt→∞ p′(t)(z(t)− z∗(t)) = 0 . Clearly, Jβ (x0,u)−Jβ (x0,u∗)≥ 0 for all x0.
So, u∗ also minimizes Jβ (x0,u). From the uniqueness of the minimizer we have u∗= ũ.

A question which next naturally arises is whether we can characterize all Pareto solutions
in a way similar to theorem 2.5.5 if there exists some player who can obtain arbitrarily low
costs if he is allowed to manipulate all control instruments that affect the system, that is, if
not all cost functions are convex. Such situations occur if, say player 1 could, by choosing
the actions of player 2, achieve arbitrarily low costs (i.e., gains). This occurs at the expense
of player 2, whose costs increase using the corresponding control scheme. We use lemma
2.5.3 and lemma 2.5.4 to address this issue in the following corollary.

Corollary 2.5.2. Let (A,B) be controllable and v ∈ L+
2,s(x0,z, Ã). Consider the prob-

lem with Ri > 0. Assume (ARE) has a solution for −→α i ∈ PN , i = 1,2, · · · ,k. Then
for all initial states a Pareto solution exists. For a fixed initial state and for all −→α ∈
K (−→α 1,

−→α 2, · · · ,−→α k), {(J1(x0,u∗α), · · · ,JN(x0,u∗α))} yield Pareto solutions. Here u∗α(t) =
e−ρt/2v∗(t), v∗(t) = −R−1

α (Sα +B′Xα)z∗(t), z∗(t) solves the differential equation ż∗(t) =(
Ã− BR−1

α
(
Sα +B′Xα

))
z∗(t), z∗(0) = x0 and Xα solves (ARE).

The number of extremal trajectories are considerably reduced by assumption 2.5.1. The
co-state rule, see section 5.3 of [48], which defines the co-state trajectory, in general,
depends on the initial state. However, if (ARE) has a unique stabilizing solution it is
defined by p(t) = Xαz∗(t) and does not depend on the choice of the initial state. The
following example demonstrates these subtleties.

Example 2.5.1. Consider the cooperative game with

Ji(x0,u) =
∫ ∞

0
e−ρt

2

∑
j=1

(
q2

i jx
2
j(t)+ r2

i ju
2
j(t)
)

dt, i = 1,2

subject to ẋ(t) = (A+
ρ
2

I)x(t)+B1u1(t)+B2u2(t), x(0) = x0 6= 0, ρ > 0

v(t) = eρt/2v(t), v ∈ L+
2,s(x0,z, Ã).

Here we take A = diag(a1,a2), [B1 B2] = I. Choosing ri j > 0, qi2 > 0, i, j = 1,2, q11 =

−a2
1r11 and q21 =−a2

1r21 we can show that the eigenvalues of the Hamiltonian matrix Gα

as {−s, 0, 0, s}, where s =
√

a2
2 +

αq12+(1−α)q22
αr12+(1−α)r22

> 0. The eigenvector and generalized

eigenvector corresponding to eigenvalue zero are v1
0 =

[
1 0 a1 (αr11 +(1−α)r12) 0

]′
and v2

0 =
[
1/a1 0 0 0

]′
. The eigenvector corresponding to the stable eigenvalue −s is

calculated as v1
−s =

[
0 s−a2

aq12+(1−a)q22
0 1

]′
. The admissible extremal trajectories could
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belong to one of the subspaces, namely sp{v1
0}, sp{v1

0, v
2
0}, sp{v1

−s} and sp{v1
−s, v

1
0}.

Taking assumption 2.5.1 some trajectories can be ruled out.

(z∗(t), p(t)) ∈ sp{v1
0}: In this case the we obtain v∗1(t) =−a1z∗1(t), v∗2(t) = 0, z∗1(t) = x1(0),

z∗2(t) = ea2tx2(0) = 0, p1(t) =−a1(αr11 +(1−α)r12)z∗1(t) and p2(t) = 0 for all t.

(z∗(t), p(t)) ∈ sp{v1
0, v

2
0}: In this case the we obtain, in addition to the above extremal,

v∗1(t) = 0, v∗2(t) = 0, z∗1(t) = ea1tx1(0), z∗2(t) = ea2tx2(0) = 0, p1(t) = 0 and p2(t) = 0 for
all t.

(z∗(t), p(t)) ∈ sp{v1
0, v

1
−s}: In this case the we obtain

v∗1(t) = −a1z∗1(t), v∗2(t) = − (s−a2)(αr12+(1−α)r22)
αq12+(1−α)q22

z∗2(t), z∗1(t) = x(0), z∗2(t) = e−stx2(0),

p1(t) = a1(αr11 +(1−α)r12)z∗1(t) and p2(t) =
(s−a2)

αq12+(1−α)q22
z∗2(t) for all t.

(z∗(t), p(t)) ∈ sp{v1
−s}: In this case the we obtain

v∗1(t) = 0, v∗2(t) = − (s−a2)(αr12+(1−α)r22)
αq12+(1−α)q22

z∗2(t), z∗1(t) = ea1tx(0) = 0, z∗2(t) = e−stx2(0),

p1(t) = 0 and p2(t) =
(s−a2)

αq12+(1−α)q22
z∗2(t) for all t.

Since v ∈ L+
2,s(x0,z, Ã), admissible extremals satisfy limt→∞ z∗(t) = 0. In the first two

cases the obtained extremal trajectories are possible only with x0 = 0. In the latter two
cases we see that the obtained extremals are possible with x0 = (0,x2(0)) where x2(0)
is arbitrary. Further, these extremals are same. Now we check if this extremal is Pareto
optimal using the sufficient conditions given by theorem 2.4.2. The minimized Hamil-
tonian is given by H0(.) = 0. Since admissibility requires limt→∞ z(t) = 0 we see that
limt→∞ p′(t)(z∗(t)− z(t)) = 0. So, the obtained controls are indeed Pareto optimal. Fur-
ther, we see that not all initial states, in particular x1(0) 6= 0, result in a Pareto solution.

2.5.3 The scalar case
In this subsection we discuss the scalar case in more detail. Notice, assuming bi 6= 0, i =
1,2, · · · ,N, controllability is trivially satisfied. Using lemma 2.5.2 some interesting ob-
servations can be derived for the scalar case. The choice of control space is taken as
L+

2,s(x0,z, Ã). So, all the admissible trajectories satisfy limt→∞ z(t) = 0. The Hamiltonian

matrix takes the form Gα =

[
e − f
−g −e

]
, with f > 0. Now, we have the following 3 possible

cases.

a) Gα has eigenvalue zero with geometric multiplicity 1. Straightforward calculations
show that z(t) = x0 +(ex0 − f l0)t and p(t) = l0 − (gx0 − el0)t. For admissibility of
extremal trajectories we require limt→∞ z(t) = 0, and this is possible only if x0 = 0
and l0 = 0 as f 6= 0. The possibility of eigenvalue zero with geometric multiplicity
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2 is ruled out as f 6= 0.

b) Gα has complex eigenvalues. Again, straight forward calculations show that z(t) =
x0 cos(wt)+(ex0 − f l0)sin(wt) and p(t) = l0 cos(wt)− (gx0 + el0)sin(wt). Follow-
ing the same reasoning as above we have that x0 = 0 and l0 = 0.

c) The eigenvector corresponding to the stable eigenvalue is always a graph subspace.
If σ > 0 is an eigenvalue of Gα then −σ is also an eigenvalue of Gα . As f > 0, the
eigenvector corresponding to −σ can always be taken as

[
1 (e+σ)/ f

]′
.

Theorem 2.5.6 below states that if (PLQ) has a Pareto solution for a non zero initial state,
then it can be found using the weighting method.

Lemma 2.5.5. Consider the scalar system with Ri > 0, i ∈ N and v ∈ L+
2,s(x0,z, Ã). Let

x0 6= 0. If (PLQ) has a Pareto optimal control ũ∗(x0) then there exists an −→α ∈ PN such
that min∑i∈N αiJi subject to (2.26) has a solution for all initial states (including x0 = 0).

Proof. Let (J1(x0,u∗),J2(x0,u∗), · · · ,JN(x0,u∗)) is a Pareto solution for some x0 6= 0. Since
x0 is a scalar, from lemma 2.5.2 the scalar game (PLQ) has a Pareto solution for every ini-
tial state. Let x0 6= 0 be fixed. Let α , z∗(t) and p(t), with a corresponding solution v∗(x0),
solve (2.28). Due to linearity we see that for the same choice of α , µx0, µz∗(t) and µ p(t)
also solves (2.28). This means (2.28) has a solution for all x0. Since, v ∈ L+

2,s(x0,z, Ã) we
have limt→∞ z(t) = 0 for all x0. Following the discussion above Gα must have an eigen-
value with negative real part. Which means Gα has no eigenvalues on the imaginary axis
and there exists a stable graph subspace. So, the (ARE) has a real stabilizing solution from
proposition 2.5.1. Again from lemma 2.5.4 this means that u∗ minimizes the weighted sum
objective with α as the weight vector for all initial states x0.

Remark 2.5.4. a) As already noticed in the proof of lemma 2.5.5 it follows directly
from lemma 2.5.2 that, in case the scalar game has a Pareto solution for some initial
state different from zero, the game (2.25, 2.26) has a Pareto solution for every initial
state.

b) From the proof of lemma 2.5.5 we can in fact conclude the following result. If
for x0 6= 0 there exists a Pareto solution and (2.28) has a solution with the choice of
−→̄α = (ᾱ1, · · · , ᾱN)∈PN , then the scalar optimization problem min∑i∈N ᾱiJi subject
to (2.26) has a solution for all initial states x0 ∈ R. In other words all candidates
obtained from theorem 2.5.1 are indeed Pareto solutions.

Theorem 2.5.6. Consider the scalar system with Ri > 0, i ∈ N and v ∈ L+
2,s(x0,z, Ã).

Then for some x0 6= 0 (2.25, 2.26) has a Pareto optimal control ũ∗(x0) if and only if there
exists −→α ∈ PN such that for every x0, min∑i∈N αiJi subject to (2.26) has a solution.
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Proof. ⇒ In particular, it follows that if (2.25, 2.26) has a Pareto optimal solution for some
x0 6= 0 then lemma 2.5.5 yields the advertized result.

⇐ Since Rα > 0, if there exists an −→α ∈ PN such that for every x0 min∑i∈N αiJi has
a solution then the associated (ARE) has a stabilizing solution. The control strategy thus
obtained is unique. Further, this control is indeed Pareto optimal from theorem 2.5.1.

In other words, theorem 2.5.6 shows that to find all Pareto solutions of the game (2.25,
2.26), with arbitrary initial state (or for some initial state different from zero) one has to
determine all −→α ∈ PN for which (ARE) has a stabilizing solution. From remark 2.5.4.b
and theorem 2.5.6 we have the following algorithm to find all the Pareto solutions for a
scalar game.

Algorithm 2.5.1. With assumption 2.5.1 holding true, consider the scalar system with
Ri > 0, i ∈ N. Let us define the index set I(α) as

I(α) =
{−→α ∈ PN

∣∣(ARE) has a stabilizing solution Xα
}
.

1. To find all Pareto solutions of the game (2.25, 2.26) with arbitrary initial state one
has to determine the set I(α). Then, the set of Pareto optimal controls is given by

ũ∗(t) =−R−1
α
(
B′Xα +Sα

)
e(Ã−BR−1

α (B′Xα+Sα ))tx0 with −→α ∈ I(α), (2.33)

where Kα solves the corresponding (ARE).

2. To find all Pareto solutions for which the game (2.25, 2.26) has a Pareto solution for
a fixed initial state x0 6= 0 use step (1).

3. If x0 = 0 and I(α) is non empty, u∗ ≡ 0 is a Pareto optimal control. We know from
corollary 2.5.1 that if we find a Pareto solution different from zero, then all points on
the half-line through this solution and zero are Pareto solutions too.

We consider example 6.2 from [35] to illustrate the usage of algorithm 2.5.1.

Example 2.5.2. Consider the situation in which there are two individuals who invest in
a public stock of knowledge. Let x(t) be the stock of knowledge at time t and ui(t) the
investment of player i in public knowledge at time t. Assume that the stock of knowledge
evolves according to the accumulation equation

ẋ(t) =−βx(t)+u1(t)+u2(t), x(0) = x0,

where β is the depreciation rate. Assume that each player derives quadratic utility from the
consumption of the stock of knowledge and that the cost of investment increases quadrati-
cally with the investment effort. That is, the cost function of both players is given by

Ji =
∫ ∞

0
e−θ t {−qix2(t)+ riu2

i (t)
}

dt.
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Since the investment efforts are bounded and the system is controllable all Pareto solutions
can be obtained using the weighting method. It can be easily verified that the associated
(ARE) has a stabilizing solution if(

β +
θ
2

)2

− (αq1 +(1−α)q2)

(
1

αr1
+

1
(1−α)r2

)
> 0.

For the choice of model parameters β = 2, θ = 0.05, ri = qi = 1, i = 1,2 the above
condition is written as α(1−α) > 0.2380, 0 < α < 1. Applying the algorithm 2.5.1 we
find I(α) = (0.3902, 0.6098) and all Pareto efficient controls are given by (2.33).

Next, we consider an example to illustrate that in general the set of Pareto optimal control
actions is not convex.

Example 2.5.3. Consider the cooperative game with

J1 =
∫ ∞

0
e−ρt

(
x2(t)+

9
10

u2
1(t)+

1
10

u2
2(t)
)

dt and

J2 =
∫ ∞

0
e−ρt

(
x2(t)+

1
10

u2
1(t)+

9
10

u2
2(t)
)

dt

subject to the system ẋ =
ρ
2

x+
4
10

(u1 +u2) , x(0) = x0 6= 0, ρ > 0.

Here player i controls ui. Using the algorithm 2.5.1 the game has a Pareto optimal solution
for those α ∈ [0, 1] for which the (ARE) −sx2

α + 1 = 0, where s = 16
(9α−8)(8α+1) . Taking

xα =
√

s here, we see that for all α ∈ [0,1] there is a Pareto solution. The set of all Pareto
optimal controls is given by

u∗α(t) = eρt/2v∗α(t), v∗α(t) =−4xα
10

[
10

1+8α
10

9α−1

]
z∗(t), ż∗(t) =

4
10
[
1 1

]
v∗α(t), z∗(0) = x0 6= 0

For α = 1
4 and α = 3

4 the Pareto controls are given by v∗1
4
(t) =

[
−1.5275
−0.6547

]
z∗(t) and v∗3

4
(t) =[

−0.6547
−1.5275

]
z∗(t) respectively. Now consider the convex combination ũ(t) = 1

2u∗1
4
(t) +

1
2u∗3

4
(t). With straightforward calculations it can be verified that this choice of control

yields the same cost, J̃ = 1.2548, i = 1,2, for both players. On the other hand choosing
α = 1

2 we observe that the Pareto control u∗1
2

yields a lower cost, same for both the players,

J∗1
2
= 1.25 < 1.2548 = J̃. So, ũ is not Pareto optimal, and this example demonstrates that

in general the set of Pareto optimal controls is not convex.

2.6 Conclusions
In this chapter we derive necessary conditions for the existence of Pareto solutions in an
infinite horizon cooperative differential game with open loop information structure. We
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consider non-autonomous and discounted autonomous systems for the analysis. These
conditions are in the spirit of the maximum principle. For autonomous systems we de-
rive some necessary conditions for optimality by exploiting the special constraint structure
(due to reformulation of Pareto optimality). We gave some weak conditions, related to the
extension of finite horizon transversality conditions, under which the necessary conditions
for Pareto optimality are same as those of a weighted sum optimal control problem. Fur-
thermore, we derive conditions under which the necessary conditions are also sufficient.

Later, the obtained results are used to analyze the regular indefinite infinite horizon
linear quadratic differential game. We show that if the dynamic system is controllable then
all Pareto candidates can be obtained by solving the necessary conditions for optimality
of a weighted sum optimal control problem. For the two player case we show that almost
all Pareto solutions can be obtained by using the weighting method even if player’s cost
functions are not convex. For the N player scalar case we present an algorithm to calculate
all the Pareto solutions if the initial state differs from zero. This algorithm proceeds by
determining the elements in the unit simplex for which the associated weighted algebraic
Riccati equation has a solution. We illustrate the subtleties with relevant examples.

The condition that players cooperate indefinitely could be too restrictive in some real
world problems, for instance, joint ventures. A method based on moving horizons seems
to be a logical and flexible alternative to the infinite horizon approach. Further, it would
be interesting to see how the necessary and sufficient conditions can be formulated if the
feedback information pattern is assumed.

2.A Appendix
Proof of Lemma 2.3.1. We prove the lemma using a contradiction argument. Suppose(
x∗(t), t,u∗(t),1

)
, t ∈ [0, T ] is not optimal for the problem (Pρ

iT ) then there exists an
admissible pair (Ŷ (t), ẑ(t),Û(t), v̂(t)), t ∈ [0, T ] such that

hi(ẑ(T )−T )+
∫ T

0
v̂(t)e−ρ ẑ(t)gi(Ŷ (t),Û(t))dt <

∫ ∞

0
e−ρtgi(x∗(t),u∗(t))dt

h j(ẑ(T )−T )+
∫ T

0
v̂(t)e−ρ ẑ(t)g j(Ŷ (t),Û(t))dt ≤

∫ ∞

0
e−ρtg j(x∗(t),u∗(t))dt, ∀ j ∈ N\{i}.

Since v̂(t) ∈ [1/2, ∞), ẑ(t) is an increasing function defined on [0, T ] so by the in-
verse function theorem ẑ(t) is invertible on [0, ẑ(T )]. We define x̂(s) = Ŷ (ẑ−1(s)) and
û(s) = Û(ẑ−1(s)) for s ∈ [0, ẑ(T )] and observe that x̂(0) = Ŷ (ẑ−1(0)) = x0 and x̂(z(T )) =
Ŷ (ẑ−1(ẑ(T ))) = Ŷ (T ) = x∗(T ). Further, we have x̂(s) defined on s ∈ [0, ẑ(T )] as:

x̂(z(t)) = x0 +
∫ t

0

˙̂Y (t)dt = x0 +
∫ T

0
v̂(t) f (Y (t),U(t))dt.

Taking s = z(t) we have

x̂(s) = x0 +
∫ s

0
f (Y (z−1(s)),U(z−1(s)))ds = x0 +

∫ s

0
f (x̂(s), û(s))ds,
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for s ∈ [0, ẑ(T )]. Since x̂(s) satisfies the above integral equation we have ˙̂x(s) = f (x̂(s),
û(s)), x̂(0) = x0, s ∈ [0, ẑ(T )]. Next, for s > ẑ(T ), we define x̂(s) = x∗(s− ẑ(T )+T ) and
û(s) = u∗(s− ẑ(T )+T ). Then we observe that ẋ(s) = f (x(s),u(s)) with x(ẑ(T )) = x∗(T ).
Clearly the pair (x̂(s), û(s)), s ∈

[
0, ∞

)
is admissible for problem (Pρ

i ) and satisfies the
following conditions∫ ∞

0
e−ρtgi(x̂(t), û(t))dt <

∫ ∞

0
e−ρtgi(x∗(t),u∗(t))dt∫ ∞

0
e−ρtg j(x̂(t), û(t))dt ≤

∫ ∞

0
e−ρtg j(x∗(t),u∗(t))dt, ∀ j ∈ N\{i},

which clearly violates the optimality of (x∗(t),u∗(t)) for the problem (Pρ
i ).

Proof of Theorem 2.3.2. (Pρ
iT ) is a mixed endpoint constrained finite horizon optimal con-

trol problem. We first define the Hamiltonian HiT

(−→
λ iT ,z(t),Y (t),v(t),U(t)

)
as:

HiT (.), v(t)e−ρz(t)

λ 0
iT gi(Y (t),U(t))+ ∑

j∈N\{i}
µ i

jT (t)g j(Y (t),U(t))


+ v(t)λ ′

i (t) f (Y (t),U(t))+ v(t)γi(t). (2.34)

The necessary conditions are: there exist λ 0
iT ∈ R+, µ i

jT (t) ∈ R, λiT (t) ∈ Rn, γiT (t) ∈ R
such that for almost every t ∈ [0,T ] (the partial derivatives of the Hamiltonian given below
are evaluated at the optimal pair ((x∗(t), t),(u∗(t),1))):

λ̇iT (t) =−(HiT )Y =− f ′x(x
∗(t),u∗(t))λiT (t)−λ 0

iT e−ρtgix(x
∗(t),u∗(t))

− ∑
j∈N\{i}

µ i
jT (t)e

−ρtg jx(x
∗(t),u∗(t)), λiT (T ) free

µ̇ i
jT (t) =−(HiT )Ỹ i

j
, µ i

jT (T )≥ 0, µ i
jT (T )

(
x̃ j(T )+h j(0)− x̃∗j

)
= 0, ∀ j ∈ N\{i}

γ̇iT (t) =−(HiT )z , γiT (T ) = λ 0
iT hix(0)+µ i

jT (T )h jx(0)(
λ 0

iT , {µ i
jT (t), j ∈ N\{i}},λiT (t),γiT (t)

)
6= (0, · · · ,0) .

Since (HiT )x̃i
j
= 0, we have µ i

jT (t) = µ i
jT ≥ 0, ∀ j ∈ N\{i}. Let

−→
λ iT =

(
µ i

1T
, · · · ,µ i

i−1T
,

λ 0
iT ,µ

i
i+1T

, · · · ,µ i
NT

)
. Then

−→
λ iT ∈ RN

+. Next we show by contradiction that also from

the necessary conditions
(−→

λ iT ,λiT (0)
)
6= (0,0). For, if

(−→
λ iT ,λiT (0)

)
= (0,0) then the

necessary conditions give that

λ̇iT (t) =− f ′x(x
∗(t),u∗(t))λiT (t),

which results in λiT (t) = 0 for t ∈ [0,T ]. Further,
−→
λ iT = 0 leads to γiT (t) = 0 for t ∈

[0,T ] which violates the necessary condition
(−→

λ iT ,λiT (t),γiT (t)
)
6= (0,0,0) for all 0 ≤
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t ≤ T . Since λiT (T ) is free, we choose (without loss of generality) λiT (0) such that∥∥∥(−→λ iT ,λiT (0)
)∥∥∥= 1. The adjoint variable λiT (t) satisfies:

λ̇iT (t) =− f ′x(x
∗(t),u∗(t))λiT (t)− e−ρtGx(

−→
λ iT ,x

∗(t),u(t)), λiT (0) = l0
iT , (2.35)

whereas γiT (t) satisfies

γ̇iT (t) =−(HiT )z = ρ G(
−→
λ iT ,x

∗(t),u∗(t)). (2.36)

From the definition of h(.) we have:

γiT (T ) = ρλ 0
iT

∫ ∞

T
e−ρtgi(x∗(t),u∗(t))dt +ρ ∑

j∈N\{i}
µ i

jT

∫ ∞

T
e−ρtg j(x∗(t),u∗(t))dt

= ρ
∫ ∞

T
e−ρtG(

−→
λ iT ,x

∗(t),u∗(t))dt. (2.37)

The Hamiltonian is linear in v(t) and the minimum w.r.t (U(t),v(t)) on the set U ×
[1/2, ∞) is attained at (u∗(t),1). The minimum of the Hamiltonian w.r.t v(t) for U(t) =
u∗(t) is achieved at an interior point of [1/2, ∞), so we have:

e−ρtG(
−→
λ iT ,x

∗(t),u∗(t))+λ ′
iT (t) f (x∗(t),u∗(t))+ γiT (t) = 0, ∀t ∈ [0,T ]. (2.38)

The minimum of the Hamiltonian w.r.t U(t) is independent of v(t) (positive scaling) and
does not depend on the term γi(t)v(t). So, the minimum of HiT w.r.t U(t) at v(t) = 1 is
achieved at

u∗(t) = argmin
U(t)

HiT (
−→
λ iT , t,x

∗(t),z(t) = t,U(t),v(t) = 1,λiT (t),γiT (t))

= argmin
u(t)

(
e−ρtG(

−→
λ iT ,x

∗(t),u(t))+λ ′
iT (t) f (x∗(t),u(t))

)
, ∀t ∈ [0,T ]. (2.39)

Now, consider an increasing sequence {Tk}k∈N such that limk→∞ Tk = ∞. We can asso-
ciate an optimal control problem (PiTk

) with each Tk such that the necessary conditions

as discussed above hold true. Then there exists a sequence
{(−→

λ iTk
, l0

iTk

)}
such that

−→
λ iTk

∈ RN
+ and

∥∥∥(−→λ iTk
, l0

iTk

)∥∥∥ = 1. We know from the Bolzano-Weierstrass theorem that
every bounded sequence has a convergent subsequence. Using the same indices for such a
subsequence we infer that there exists

−→
λ i ∈ RN

+ and l0
i such that

lim
k→∞

−→
λ iTk

=
−→
λ i ∈ RN

+ and lim
k→∞

l0
iTk

= l0
i such that

∥∥∥(−→λ i, l0
i

)∥∥∥= 1. (2.40)

We observe that (2.35) is a linear ODE. So we can write λiTk
(t) as:

λiTk
(t) = Φ− f ′x(t,0)l

0
iTk

−
∫ t

0
Φ− f ′x(t,s)e

−ρsGx(
−→
λ iT ,x

∗(s),u∗(s))ds, (2.41)



36 Pareto optimality in infinite horizon cooperative differential games

where Φ− f ′x(t,s) is the state transition matrix associated with ż(t) =− f ′x(x
∗(t),u∗(t)) z(t).

Since the weights of
−→
λ iTk

appear linearly in Gx(.) as k → ∞, λi(t) satisfies the differential
equation (2.19b). A similar argument holds for γiTk

(t), condition (2.38) and (2.39) resulting
in (2.19c), (2.19e) and (2.19d) respectively.

Proof of Corollary 2.3.2. From the necessary conditions (2.19d) and (2.19e) of theorem
2.3.2 we have

e−ρtG(
−→
λ i,x∗(t),u(t))+λ ′

i (t) f (x∗(t),u(t))

≥ e−ρtG(
−→
λ i,x∗(t),u∗(t))+λ ′

i (t) f (x∗(t),u∗(t)) =−γi(t).

By assumption 2 we have λ ′
i (t) f (x∗(t),u(t))≥−γi(t). Next define q(t) as follows:

q(t) =
λi(t)

max{1, ||λi(t)||}
. Since ||q(t)|| ≤ 1 we have limsup

t→∞
||q(t)||= l.

If l = 0 there is nothing to prove. So assume l > 0 and consider a sequence {tn} converging
to infinity such that ||q(tn)||> l/2. Since there exists u(t) such that Bδ>0

8 ⊂ f (x∗(t),u(t)),
there exists an ε > 0 such that 2ε

l < δ . So, there exists un(tn) such that f (x∗(tn),un(tn)) =
−(2ε/l)q(tn). Since, limt→∞ γi(t) = 0 we take the above sequence {tn} such that −lε/2 ≤
−γ(tn)≤ lε/2. Collecting all the above we have:

λ ′
i (tn) f (x∗(tn),un(tn)) =−max{1, ||λi(tn)||}(2ε/l) ||q(tn)||2 ≥−γi(tn)

γi(tn)≥ max{1, ||λi(tn)||}(2ε/l) ||q(tn)||2 > lε/2.

Clearly, this is a contradiction and thus limt→∞ λi(t) = 0.

Proof of Corollary 2.3.3. From the assumption 2.3.3 there exist constants c4 ≥ 0, c5 ≥ 0,
c6 ≥ 0 and c7 ≥ 0 such that:

e−ρt |gi(x(t),u(t))| ≤ e−ρt (c4 + c5||x(t)||r+1)≤ c6e−ρt + c7e−(ρ−(r+1)λ )t .

Since ρ > (1+r)λ , the player’s costs Ji(x0,u) converge for every admissible pair (x(t),u(t)).
For the problem (Pi) we rewrite λi(t) (from (2.19b)) as follows:

λi(t) = Φ− f ′x(t,0) l0
i −

∫ t

0
e−ρsΦ− f ′x(t,s) Gx(x∗(s),u∗(s))ds

= Φ− f ′x(t,0)
(

l0
i −

∫ t

0
e−ρsΦ− f ′x(0,s) Gx(x∗(s),u∗(s))ds

)
(

we know Φ− f ′x(t,s) =
(

Φ−1
fx (t,s)

)′
= Φ′

fx(s, t)
)

= Φ− f ′x(t,0)
(

l0
i −

∫ t

0
e−ρsΦ′

fx(s,0) Gx(x∗(s),u∗(s))ds
)
.

8Unit ball in Rnof radius δ > 0.
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The norm of λi(t) is bounded as:

||λi(t)|| ≤
∥∥Φ− f ′x(t,0)

∥∥(||l0
i ||+

∫ t

0
e−ρs∥∥Φ fx(s,0)

∥∥‖Gx(x∗(s),u∗(s))‖ds
)

(from assumption 2.3.3b there exist a c8 ≥ 0, a c9 ≥ 0 such that)

≤
∥∥Φ− f ′x(t,0)

∥∥(||l0
i ||+

∫ t

0
e−ρs

(
c8eλ s + c9e(1+r)λ s

)
ds
)

(l0
i is bounded, so there exist a c10 ≥ 0, a c11 ≥ 0 and c12 ≥ 0) such that

≤
∥∥Φ− f ′x(t,0)

∥∥(c10 + c11e−(ρ−λ )t + c12e−(ρ−(1+r)λ )t
)
.

Let φ 0(t) and φ0(t) denote the largest and smallest eigenvalues of the Hermitian part9 of
− f ′x(x

∗(t),u∗(t)). By assumption − f ′x(x
∗(t),u∗(t)) is bounded and has strictly negative

eigenvalues, so we have −∞ < φ0(t)≤ φ 0(t)< 0, ∀t ≥ 0. From [52, lemma 4.2] we have:

exp
(∫ T

0
µ0(s)ds

)
≤
∥∥Φ− f ′x(t,0)

∥∥≤ exp
(∫ T

0
µ0(s)ds

)
.

Since µ0(s) < 0 for all s ≥ 0 we have limt→∞
∥∥Φ− f ′x(t,0)

∥∥= 0. By assumption ρ > (1+
r)λ , so limt→∞ λi(t) = 0 follows directly.

9The Hermitian part of matrix A is defined here as AH = 1
2 (A+A′).
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CHAPTER 3

Feedback Nash Equilibria for Descriptor Differential
Games using Matrix Projectors

3.1 Introduction
Dynamic game theory captures multi person decision making processes that occur in time.
These problems arise in several disciplines such as monetary policy coordination, ecology
and several others, refer to [34] for a detailed overview. The dynamic environment where
the players interact is often modeled by a set of ordinary differential equations and the
related theory for such games is well established [7]. Complex systems, however, include
modeling with both differential and algebraic equations, i.e., differential algebraic equa-
tions. Problems of this kind appear in studying systems which are constrained and which
operate under different timescales, for example in environmental economics where global
warming is assumed to be a system which has slow dynamics that is affected by various
processes that have fast dynamics. Descriptor systems, linear differential algebraic equa-
tions, approximate such multiple time scale systems. Differential games for descriptor
systems were e.g., already studied by Xu and Mizukami in [115]. Further, these authors
considered the leader follower information structure in [116]. Glizer [46] considers the
asymptotic behavior of the zero-sum game solution from a cheap control perspective. In
[68] the necessary and sufficient conditions for optimal H∞ control, also a differential
game, for linear constant coefficient descriptor systems with arbitrary index have been
formulated. More recently, Engwerda et al. [40] give solvability conditions, with open
loop information pattern, for the index1 1 linear quadratic differential game and in [41] for
higher order indices. [39] considers the index 1 case with feedback information pattern.
The main tool used to analyze the descriptor system in most of the works uses Kronecker
canonical form (KCF). The differential and algebraic parts of a descriptor system can be
decoupled using KCF. It is known, however, that computing KCF for a descriptor system
is still a challenge, see [55] for some recent developments.

In this chapter, we consider the linear quadratic differential game on a descriptor sys-
tem with feedback information pattern. Feedback strategies are generally preferred due to

1Index roughly translates to the number of differentiations required to represent a differential algebraic
equation as a differential equation, see section 3.2.
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attractive properties such as strong time consistency. We consider a geometric approach
towards decoupling the descriptor system instead of KCF. We lean heavily on the matrix
projector techniques pioneered by März et al. [49, 73]. We review some important results
on matrix projectors in appendix A. Further, we propose an algorithm to compute ma-
trix projectors that completely decouple a descriptor system into algebraic and differential
parts. In section 3.2 we introduce the game problem. We analyze effect of feedback on
a decoupled system and analyze the informational non uniqueness property of feedback
strategies. In section 3.3 we give solvability conditions for the game problem for the index
1 case. Later, for descriptor systems with higher order indices, we give an approach to
recast the problem as an index 1 case. We demonstrate the limitation of this method with
an example. Finally section 3.4 concludes.

Notation: We use the following notation. X ′ represents the transpose of X ∈ Rn×m. X†

represents Moore-Penrose pseudo inverse of X . For n > m, X† gives a left inverse of X ,
when X has full column rank. ImX and kerX represents the column space and null space
of X respectively. The symbol ⊕ denotes direct sum.

3.2 Preliminaries
In this section we assume that players i = 1,2 like to minimize Ji(x0,u1,u2),

where Ji(x0,u1,u2) =
∫ ∞

0

[
x′(t) u′1(t) u′2(t)

]
Mi
[
x′(t) u′1(t) u′2(t)

]′ dt, (3.1)

Mi =

Di Vi Wi

V ′
i R1i Ni

W ′
i N′

i R2i

 , Di = DT
i , Rii > 0, i = 1,2, and x(t) satisfies

Eẋ(t) = Ax(t)+B1u1(t)+B2u2(t), x(0) = x0, (3.2)

where x(t) ∈ Rn, ui(t) ∈ Rmi, i = 1,2, A ∈ Rn×n, E ∈ Rn×n, Bi ∈ Rn×mi, i = 1,2 and
dimensions of other matrices are defined appropriately. Games with discounted objectives
can be reformulated as (3.1-3.2) by a simple change of variables as A → A− θ

2 E, where
θ > 0 is the discount factor, see example 3.3.2 for an illustration. The information pattern
considered in this chapter is of the feedback type and we assume that players use linear
feedback strategies of the form ui(t) = Fix(t), i = 1,2. u∗ = (u∗1,u

∗
2) is called a feedback

Nash equilibrium (FBNE) if the usual inequalities apply, i.e., no player can improve his
performance by a unilateral deviation from this set of equilibrium actions. We introduce
the notation F∗

−i which corresponds to the strategies, u j(t) = Fjx(t), j = 1,2, j 6= i, used by
all the players excluding the player i. Now, the formal definition of FBNE reads as follows:

Definition 3.2.1. F∗ = (F∗
1 ,F

∗
2 ) is called a feedback Nash equilibrium if for i = 1,2,

Ji(x0,F∗
i ,F

∗
−i)≤ Ji(x0,Fi,F∗

−i) for every input x0 and Fi.

The following lemma follows directly from the definition of FBNE.
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Lemma 3.2.1. Let H ∈ Rn×d . (F∗
1 , F∗

2 ) is a FBNE for the game defined by the cost
Ji(x0,F1H,F2H) and the system ẋ(t) = (A+B1F1H +B2F2H)x(t), x(0) = x0 if and only if
(G∗

1, G∗
2) is a FBNE for the game defined by the cost Ji(x0,G1,G2) and the system ẋ(t) =

(A+B1G1 +B2G2)x(t), x(0) = x0 and (F∗
1 ,F

∗
2 ) solve the set of equations F∗

1 H = G∗
1 and

F∗
2 H = G∗

2
2.

For E = I, we recall the following result from theorem 8.5 of [35].

Theorem 3.2.1. Assume that matrix G =

[
R11 N1

N′
2 R22

]
is invertible. Then the differential

game (3.1,3.2) with E = I, has a feedback Nash equilibrium (F∗
1 ,F

∗
2 ) for every initial state

if and only if [
F∗

1
F∗

2

]
=−G−1

[
B′

1X1 +V ′
1

B′
2X2 +W ′

2

]
. (3.3)

Here (X1,X2) are a symmetric stabilizing solution of the coupled algebraic Riccati equa-
tions

D1 +W1F∗
2 +F∗

2
′W ′

1 +F ′
2R21F∗

2 −F∗
1
′R11F∗

1 +X1 (A+B2F∗
2 )+(A+B2F∗

2 )
′X1 = 0

D2 +V2F∗
1 +F∗

1
′V ′

2 +F∗
1
′R12F∗

1 −F∗
2
′R22F∗

2 +X2 (A+B1F∗
1 )+(A+B1F∗

1 )
′X2 = 0.

The above coupled algebraic Riccati equations are solvable only for special cases, see
[36] for a discussion on algorithms. The system (3.2) is solvable, under assumptions on
smoothness of u(t) and consistent initial states x0, if the pencil λE − A is regular i.e.,
det(λE −A) 6= 0 for at least one λ . We call (E, A) a regular pair if the pencil λE −A is
regular. The index, denoted by a whole number µ , of the descriptor system is the number
of differentiations required to solve the descriptor system as an ordinary differential equa-
tion, see section 2 of [22]. The solution of the descriptor system depends on the derivatives
of the input up to an order of µ −1. There are several approaches used to analyze the de-
scriptor system and the most notable of such methods is the KCF. Though it serves the
purpose of analyzing a descriptor system, computation of the KCF for a regular pencil
is still a challenge, see [55] for details. There are algorithms such as GUPTRI, see [33],
which reveal the Jordan structure of the pencil without actually computing the canonical
form. However, a complete knowledge of the canonical form, i.e., the matrices that repre-
sent the left and right deflating subspaces of the matrix pencil, is required to compute the
Nash strategies. We summarize the main problem addressed in this section as follows:

Problem 3.2.1. Consider the performance criterion (3.1) and system (3.2), where rank(E)
= r < n = dim(x). Assume (E,A) is regular with index µ . Find conditions under which
(3.1,3.2) has a feedback Nash solution ui = Fix.

2Solvable if and only if KerH ⊂ KerG∗
i , i = 1,2.
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If E is non-singular, the FBNE are obtained using theorem 3.2.1. The result given in
theorem 3.2.1 is based on the dynamic programming principle, see [7, 35]. The optimal
control problem of descriptor systems has been recently solved by Mehrmann et al. [61]
using ideas from behavioral systems theory [82]. They derive necessary conditions for
optimality which result in a differential algebraic equation. Further, it was shown that an
optimal solution is obtained by solving the resulting optimal system instead of a Riccati
equation.

We solve the problem 3.2.1 by first decoupling algebraic and dynamic components of
the descriptor system and later eliminate the algebraic components. The problem consid-
ered above is posed in a very general setting. We did not make assumptions with respect
to stabilizing properties of the feedback strategies, which is generally the case when E is
non-singular.

In his seminal paper Smale [101] puts forward the idea of interpreting differential al-
gebraic equations as vector fields on manifolds. In the later works by Rheinboldt, in [87],
and Reich, in [86], the authors discuss the classes of DAEs which can be seen as vector
fields on constraint manifolds (due to algebraic constraints). For linear DAEs, März et al.,
[49] develop a matrix chain approach to decouple a descriptor system into differential and
algebraic parts. If the pencil λE −A is regular, then it was shown in theorem 3.1 of [73]
that the existence of so called canonical projectors is guaranteed. Using canonical projec-
tors a descriptor system can be decoupled canonically as a vector field and as a constraint
manifold. Recently, Wong [113, 114] demonstrates the computational advantage of the
matrix projector methods in engineering applications. In appendix A, we review important
details of matrix projectors and discuss an algorithm to generate the canonical projectors
for a regular matrix pencil. A regular descriptor system can be decoupled completely,
using canonical projectors (Qi,Pi), i = 0,1, · · · ,µ −1, as follows:

ṁ(t) = P0 · · ·Pµ−1E−1
µ Am(t)+P0 · · ·Pµ−1E−1

µ Bu(t), m(0) = P0 · · ·Pµ−1x0 (3.4a)

n(t) =−
µ−1

∑
i=0

NiE−1
µ Bui(t), n(0) = (I −P0 · · ·Pµ−1)x0 (3.4b)

x(t) = m(t)+n(t), m(t) = P0 · · ·Pµ−1x(t), n(t) =
(
I −P0 · · ·Pµ−1

)
x(t), (3.4c)

where m(t) and n(t) are projections of the state x(t). Here Pi, Qi = I−Pi, i= 0,1, · · · ,µ−1
are canonical projectors generated by a regular pair (E,A), refer to appendix A for details.
This decomposition is unique for a regular pair (E,A).

Remark 3.2.1. Since m(0) ∈ Im(P0P1 · · ·Pµ−1) and ṁ(t) ∈ Im(P0P1 · · ·Pµ−1), from lemma
3.2.1 of [9], we have m(t) ∈ Im(P0P1 · · ·Pµ−1), ∀t ≥ 0. In other words, equation (3.4a)
represents an invariant flow and m(t) belongs to the invariant subspace Im(P0P1 · · ·Pµ−1)⊂
Rn for all t ≥ 0.

Using the above remark we have the following lemma:
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Lemma 3.2.2. m(t)∈Rn is isomorphic to a vector ml(t)∈Rd , where d = dim
(
Im(P0P1 · · ·

Pµ−1)
)
< n. Further, there exist matrices Yd×n and Zn×d such that ml(t) = Y m(t), m(t) =

Zml(t) and ZY = P0P1 · · ·Pµ−1.

Proof. The first part of the lemma is obvious from remark 3.2.1. For the second part we
know from [49] that P0P1 · · ·Pµ−1 is a projector. So, we have m(t) = P0P1 · · ·Pµ−1m(t),
taking the SVD of P0P1 · · ·Pµ−1 as Un×dΣd×dV ′

d×n we have m(t) =UΣV ′m(t). Identifying
Z =UΣ and Y =V ′ we have that ml(t) = Y m(t) and m(t) = Zml(t).

From (3.4a-3.4b) it is clear that x(t) is continuous if u(t) is at least µ − 1 times differen-
tiable. We denote U to be the set of admissible controls, i.e., u(.) ∈ U is atleast µ − 1
times differentiable. Notice, that at t = 0 the initial state, x0, and higher order derivatives
of the input satisfy the equation (3.4b). The initial states that satisfy this constraint are
referred to as consistent. Let X0 denote the consistent initial state manifold, then it is
characterized in the following lemma:

Lemma 3.2.3. For every u(.) ∈ U , the descriptor system (3.2) yields a unique continuous
state trajectory if x0 ∈ X0.

Proof. Violation of the algebraic constraint (3.4b) at t = 0 results in a jump, i.e., x(0+) =
limt↓0 x(t) 6= limt↑0 x(t) = x(0−) = x(0). Let us define

X0 ,
{

x0 ∈ Rn

∣∣∣∣∣ (I −P0P1 · · ·Pµ−1
)

x0 =−
µ−1

∑
i=0

NiE−1
µ Bui(0)

}
. (3.5)

For an admissible u(t), such jumps can be avoided if x0 ∈ X0.

From lemma 3.2.2 the low dimensional representation of the inherent ODE (3.4a) is given
by:

ṁl(t) = Y P0P1 · · ·Pµ−1E−1
µ (AZml(t)+B1u1(t)+B2u2(t)) , ml(0) = Y P0P1 · · ·Pµ−1x0.

(3.6)

We define the following classes of feedback strategies:

a) Class of partial state information feedbacks P , where players use ui(t) = Kiml(t).

b) Class of full state information feedbacks F , where players use ui(t) = Fix(t).

An application of a particular feedback strategy can alter the behavior of the descriptor sys-
tem, for instance, change in the index and regularity may fail to hold. However, if players
use strategies from class P we show, in the theorem 3.2.2 below, that both regularity and
index are preserved. In the discussion that follows , taking m = m1+m2, we denote u(t) =
[u′1(t) u′2(t)]

′ ∈Rm, B = [B1 B2]∈Rn×m, F = [F ′
1 F ′

2]
′ ∈Rm×n and K = [K′

1 K′
2]
′ ∈Rm×d .

We denote by K ∈ P if players use strategies ui(t) = Kiml(t), i = 1,2 and by F ∈ F if
players use strategies ui(t) = Fix(t), i = 1,2. We need the following auxiliary result to
prove theorem 3.2.2.
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Lemma 3.2.4. For the admissible projectors Qi and Pi, i = 0,1, · · · ,µ − 1 we have the
following:

a) P0P1 · · ·Pµ−1Qi = 0, i ∈ {0,1,µ −2}

b) P0P1 · · ·Pµ−1Pi = P0P1 · · ·Pµ−1, i ∈ {0,1,µ −2}.

Proof. a) For i∈ {0,1,µ−2}, P0P1 · · ·Pµ−1Qi = P0P1 · · ·Pµ−2(I−Qµ−1)Qi, from admissi-
bility of Qi’s (see appendix A) we know Q jQi = 0 for j > i. So, we have P0P1 · · ·Pµ−1Qi =

P0P1 · · ·Pµ−2Qi, repeating this µ − i−1 times we have P0P1 · · ·Pµ−1Qi = P0P1 · · ·PiQi = 0.

b) For i ∈ {0,1,µ − 2}, P0P1 · · ·Pµ−1Pi = P0P1 · · ·Pµ−1(I − Qi), from part (a), derived
above, we have P0P1 · · ·Pµ−1Pi = P0P1 · · ·Pµ−1.

Theorem 3.2.2. The class P is index preserving, i.e., (E, A) and
(
E, A+BKY P0P1 · · ·

Pµ−1
)

have the same index for any K ∈ P .

Proof. Consider the regular index-µ descriptor system. From theorem 3.A.1 we know Eµ
is non singular. The descriptor system with partial information feedback is given by:

Eẋ = Ax+BKml =
(
A+BKY P0P1 · · ·Pµ−1

)
x.

Let (Ẽi, Ãi) be the matrix chain obtained by taking Ẽ0 =E and Ã0 =A+BKY P0P1 · · ·Pµ−1.
Then we need to show that the matrix chain stops after µ steps i.e., Ẽµ is nonsingular.
We prove the result using an induction argument. For i = 0, clearly Ẽi = Ei = E and
Ãi = Ai +BKY P0P1 · · ·Pµ−1. For i = 1 as ker Ẽ0 = kerE0 = kerE, we take Q̃0 = Q0

Ẽ1 = E +
(
A+BKY P0P1 · · ·Pµ−1

)
Q0

= E +AQ0 +BKY P0P1 · · ·Pµ−1Q0

= E1 +BKY P0P1 · · ·Pµ−1Q0 = E1 (follows from lemma 3.2.4.a),

Ã1 =
(
A+BKY P0P1 · · ·Pµ−1

)
P0

= AP0 +BKY P0P1 · · ·Pµ−1P0

= A1 +BKY P0P1 · · ·Pµ−1 (follows from lemma 3.2.4.b).

We assume Ẽk = Ek and Ãk = Ak + BKY P0P1 · · ·Pµ−1 for 0 ≤ k ≤ i and we show that
Ẽk = Ek and Ãk = Ak+BKY P0P1 · · ·Pµ−1 for 0 ≤ k ≤ i+1. For i = 1 the above assumption
holds true since we already showed Ẽ1 = E1 and Ã1 = A1 +BKY P0P1 · · ·Pµ−1. Now, since
Ẽk = Ek we have Q̃k = Qk and P̃k = Pk for 0 ≤ k ≤ i as only the image of Qk is fixed (as
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kerEk).

Ẽi+1 = Ẽi + ÃiQ̃i

= Ei +
(
Ai +BKY P0P1 · · ·Pµ−1

)
Qi

= Ei +AiQi +BKY P0P1 · · ·Pµ−1Qi = Ei+1 (follows from lemma 3.2.4.a),

Ãi+1 = ÃiP̃i

=
(
Ai +BKY P0P1 · · ·Pµ−1

)
Pi

= Ai+1 +BKY P0P1 · · ·Pµ−1Pi (follows from lemma 3.2.4.b).

So, by induction we have Ẽk = Ek and Ãk = Ak +BKY P0P1 · · ·Pµ−1 for 0 ≤ k ≤ µ . Further,
Eµ is nonsingular, since the pencil (A,B) is regular with index-µ is nonsingular, we have
Ẽµ is nonsingular as well. So, by theorem 3.A.1 the pencil (E, A+BKY P0P1 · · ·Pµ−1) is
regular with index µ .

Remark 3.2.2. We cannot guarantee such index preserving property, in general, for any
F ∈ F . Let us denote the index preserving subclass by Fµ , of F . We notice for any
K ∈ P the players use u(t) = Kml(t) = KY m(t) =

(
KY P0P1 · · ·Pµ−1

)
x(t). Thus for every

strategy K ∈ P there exists an index preserving strategy
(
KY P0P1 · · ·Pµ−1

)
∈ Fµ ⊂ F .

Example 3.2.1. We demonstrate the subtleties in remark 3.2.2 with an example. Consider

the descriptor system with E =

[
1 0
0 0

]
, A =

[
1 1
1 1

]
and B =

[
1 1
1 1

]
. Taking Q0 =

[
0 0
0 1

]
as the projector to KerE we see that E1 = E +AQ0 =

[
1 1
0 1

]
. So, from theorem 3.A.1

the pencil (E,A) has an index equal to 1. We define F =

{[
f1 f2

f3 f4

]
∈ R2×2

}
. Now,

the index of the pencil (E,A+BF) for any F ∈ F is determined by the rank of the matrix

E1 = E+(A+BF)Q0 =

[
1 1+ f2 + f4

0 1+ f2 + f4

]
. So, the index preserving class is given by F1 ={[

f1 f2

f3 f4

]
∈ R2×2

∣∣∣∣ 1+ f2 + f4 6= 0
}

. For any F /∈F1 the index of the pencil (E,A+BF)

is greater than 1.

3.2.1 Informational non uniqueness
When players use a strategy F ∈ F , let the index of the resulting autonomous descriptor
system (3.2) be µ̃ . Here, feedback alters the static and dynamic spectral properties of
the pencil (A,B) and as a result µ̃ is different from µ unless F = Fµ . A canonical
decomposition of the descriptor system, for t > 0, once the players use an F ∈ F is given
by:

˙̃m(t) = P̃0 · · · P̃µ̃−1E−1
µ̃ Am̃(t), m̃(0) = P̃0 · · · P̃µ̃−1x0 (3.7)

ñ(t) = 0.
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So, for t > 0 the players actually use m̃(t), as x(t) = m̃(t) + ñ(t) = m̃(t), and m̃(t) ∈
Im(P̃0 · · · P̃µ̃−1) ⊂ Rn. From lemma 3.2.2 we have that m̃(t) is isomorphic to m̃l(t). As
a result, for t > 0, we see that x(t) ∈ Rn is isomorphic to m̃l(t) ∈ Rd with d < n. The
algebraic constraints in the descriptor system render some of the state variables in x(t)
redundant. This feature is captured in the canonical decomposition (3.7) by an invariant
flow. However, we notice that a canonical decomposition (3.7) could be given only after
applying the full state feedback F ∈ F . Further, the canonical projectors and the players’
costs vary with F in a way that is not easily tractable for applications like optimal control.
This limitation motivates an investigation for the existence of index preserving feedback
strategies. In theorem 3.2.2 we showed that the class P is index preserving. So, a ques-
tion arises if players restrict their strategies Fµ , see remark 3.2.2, can we infer that it is
sufficient for players to use a strategy in P? We show in the theorem 3.2.3 below that
this observation is true for µ = 1. Consider an index 1 descriptor system (3.2), then with a
canonical decomposition we have:

ṁl(t) = Y P0E−1
1 Am(t)+Y P0E−1

1 Bu(t), m0(0) = Y P0x0 (3.8a)

n(t) = −Q0E−1
1 Bu(t), n(0) = Q0x0. (3.8b)

Lemma 3.2.5. Assume (E, A) regular and index 1, then for any F ∈ F1 we have that
(I +Q0E−1

1 BF) is non-singular.

Proof. Since (E, A) is index 1, for any projector Q0 such that ImQ0 = KerE we have by
theorem 3.A.1, E +AQ0 is non-singular. For any F ∈ F1 we have (E,A+BF) is index 1.
As a result, for any Q0 with ImQ0 = KerE, we have E +(A+BF)Q0 is non-singular.

E +(A+BF)Q0 = E +AQ0 +BFQ0 = E1 +BFQ0 = E1
(
I +E−1

1 BFQ0
)
.

Clearly,
(
I +E−1

1 BFQ0
)

is non-singular. We know,

det
(
I +E−1

1 BFQ0
)
= det

([
I −E−1

1 BF
Q0 I

])
= det

(
I +Q0E−1

1 BF
)
,

so,
(
I +Q0E−1

1 BF
)

is also non-singular.

Theorem 3.2.3. Every full state information feedback F ∈F1 can be realized as a partial
state feedback K = Ω(F) = F

(
I +Q0E−1

1 BF
)−1

Z.

Proof. Using an F ∈ F1, i.e., with u(t) = Fx(t), in the system (3.8a-3.8b) we have:

ṁl(t) = Y P0E−1
1 AZml(t)+Y P0E−1

1 BFx(t), ml(0) = Y P0x0

n(t) = −Q0E−1
1 BFx(t).

From the second equation we have n(t) = −Q0E−1
1 BFZml(t)−Q0E−1

1 BFn(t). Conse-

quently, using lemma 3.2.5, we have n(t) =−
(
I +Q0E−1

1 BF
)−1

Q0E−1
1 BFZml(t). Thus,
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x(t) is given as:

x(t) = m(t)+n(t)

=
(

I −
(
I +Q0E−1

1 BF
)−1

Q0E−1
1 BF

)
Zml(t)

=
(
I +Q0E−1

1 BF
)−1

Zml(t). (3.9)

Therefore the inherent ODE is given by:

ṁl(t) = Y P0E−1
1

(
A+BF

(
I +Q0E−1

1 BF
)−1
)

Zml(t).

Now, let us define a mapping Ω : F1 → P , i.e., K = Ω(F), as

K = Ω(F) = F
(
I +Q0E−1

1 BF
)−1

Z. (3.10)

Using the identity Q0E−1
1 BF

(
I +Q0E−1

1 BF
)−1

=
(
I +Q0E−1

1 BF
)−1

Q0E−1
1 BF , we have:

ṁl(t) = Y P0E−1
1 AZml(t)+Y P0E−1

1 BKml(t)

n(t) = −
(
I +Q0E−1

1 BF
)−1

Q0E−1
1 BFZml(t)

= −Q0E−1
1 BKml(t).

Remark 3.2.3. The autonomous regular descriptor system, after F is applied, can be seen
canonically as a vector field on a manifold (a proper linear subspace ImP0 here). What
theorem 3.2.3 says is that applying an F ∈ F1 to (3.2) is same as applying Ω(F) ∈ P

to the vector field (3.4a). Since Ω(.) is a many to one mapping we expect to have more
than one F ∈ F1 resulting in the same closed loop behavior. Further, for applications like
optimal control or dynamic games it will suffice to regulate (3.4a) using a partial state
feedback, say K ∈ P , then reconstruct the full state feedback as Ω−1(K) ∈ F1.

We analyze some properties of Ω−1(.) in the following theorem.

Theorem 3.2.4. For any K ∈ P , the inverse map Ω−1(.) is given by

Ω−1(K) = KS† +T (I −SS†), (3.11)

where S = Z −Q0E−1
1 BK and T ∈ Rm×n is arbitrary. Further, Ω−1(K) is non empty.

Proof. From (3.10) we have

Z −Q0E−1
1 BK =

(
I −Q0E−1

1 BF
(
I +Q0E−1

1 BF
)−1
)

Z =
(
I +Q0E−1

1 BF
)−1

Z.

Since Z has full column rank and from the above we notice that Z −Q0E−1
1 BK has full

column rank. Now, taking S = Z −Q0E−1
1 BK, (3.10) is given by K = FS. Now, for given

a K ∈ P , all solutions F ∈ F1 are characterized, see pg. 295 [1], by

F = Ω−1(K) = KS† +T
(

I −SS†
)
, (3.12)
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where T ∈ Rm×n is arbitrary. For the non emptiness part, applying a feedback K ∈ P

means u(t) = Kml(t) = KY m(t) = KY Zml(t). So, K and KY Z are same strategies resulting
in same closed-loop behavior. Replacing K with KY Z and choosing T = KY = KY ZY in
(3.12) we have F = KY ZS† +KY ZY

(
I −SS†) = KY ZY +KY ZS† −KY ZY SS† = KY +

KY ZS† −KY ZY ZS† −KY P0Q0E−1
1 BKS† = KY . So, for every K ∈ P , there is a trivial

solution Ω−1(K) = F = KY ∈ F1, and this observation coincides with remark 3.2.2.

Remark 3.2.4. The game (3.1,3.2) with strategy set P is informationally inferior (see
section 6.3 [7]) to F1, since P ⊆ F1. However, we showed that for every F ∈ F1 there
exists a Ω(F)∈P . Here, K = Ω(F) encapsulates entire state information. In other words,
being a deterministic optimization problem providing more information about the state
does not improve the optimal solution. We recall from proposition 6.3.2 [7], that players
cannot realize a cost lesser than what is achieved with an equilibrium strategy from P ,
by searching in F1. We show later that there exist many informationally non unique
equilibrium strategies in F1 which correspond to a single solution of the game. However,
the situation can be quite different in a stochastic setting, see section 6.7 of [7].

Remark 3.2.5. Notice that the analysis in this section is restricted to index 1. For higher or-
der indices the algebraic constraints cannot be eliminated easily as they include derivatives
of inputs. However, we address this case with a different approach in section 3.3.2.

3.3 Feedback Nash equilibria
3.3.1 Index 1 case
In this section we collect all the results discussed in the previous section to derive FBNE
for the differential game (3.1, 3.2). We consider the index 1 case. The game (3.1, 3.2),
when players use strategies ui = Fix, i = 1,2, with F = [F1 F2] ∈ F1, can be written as:

Ji(x0,F1,F2) =

∫
∞

0

x′(t)

 I
F1

F2

′Di Vi Wi

V ′
i Ri1 Ni

W ′
i N′

i R2i

 I
F1

F2

x(t)dt

Eẋ(t) = (A+BF)x(t), x(0) = x0.

Using theorem 3.2.3 the game (3.1, 3.2) is transformed as follows:

Ji(ml(0),K1,K2) =

∫
∞

0

m′
l(t)

 I
K1

K2

′D̃i Ṽi W̃i

Ṽi R̃1i Ñi

W̃i Ñi R̃2i

 I
K1

K2

ml(t) dt (3.14a)

ṁl(t) =
(
Ã+ B̃K

)
ml(t), ml(0) = Y P0x0, (3.14b)
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where F =
[
F ′

1 F ′
2
]′

, B =
[
B1 B2

]
, K =

[
K′

1 K′
2
]′

, Ã = Y P0E−1
1 AX , B̃ = Y P0E−1

1 B andD̃i Ṽi W̃i

Ṽi R̃1i Ñi

W̃i Ñi R̃2i

= Z ′

Di Vi Wi

V ′
i Ri1 Ni

W ′
i N′

i R2i

Z , Z =

Z −Q0E−1
1 B1 −Q0E−1

1 B2

0 I 0
0 0 I

 .
Notice that the game (3.1,3.2) is transformed into a game where the players’ objectives
and system dynamics are given by (3.14a) and (3.14b) respectively. We are interested in
first finding FBNE of the resulting lower order game (3.14a,3.14b) and later use theorem
3.2.4 to obtain FBNE of the game (3.1,3.2). We seek for stabilizing strategies to keep
the players’ objectives bounded. To this end, we make an assumption that K ∈ P is
stabilizing i.e., Ã+ B̃K is stable 3. Further, if ml(t) → 0 then from (3.9) we have that
x(t)→ 0. Moreover, K ∈P and Ω−1(K)∈F1 have the same closed-loop behavior and as
a result the FBNE of the game (3.1,3.2) are stabilizing too. Now, The main result is given
as follows:

Theorem 3.3.1. Let µ = 1 and assume that matrix G̃ =

[
R̃11 Ñ1

Ñ′
2 R̃22

]
is invertible and the

matrices R̃ii > 0, i = 1,2. Then (F∗
1 , F∗

2 ) is a stabilizing FBNE for (3.1, 3.2) for every
consistent initial state if and only if F∗ ∈ Ω−1(K) where K is given by

K =

[
K1

K2

]
=−G̃−1

[
B̃′

1X1 +Ṽ ′
1

B̃′
2X2 +W̃ ′

2

]
, (3.15)

and (X1, X2) are a symmetric stabilizing solution of the coupled algebraic Riccati equa-
tions

D̃1 +W̃1K2 +K′
2W̃ ′

1 +K′
2R̃21K2 −K′

1R̃11K1 +X1
(
Ã+ B̃2K2

)
+
(
Ã+ B̃2K2

)′X1 = 0
(3.16a)

D̃2 +Ṽ2K1 +K′
1Ṽ ′

2 +K′
1R̃12K1 −K′

2R̃22K2 +X2
(
Ã+ B̃1K1

)
+
(
Ã+ B̃1K1

)′X2 = 0.
(3.16b)

Moreover, Ji = x′0P′
0Y ′XiY P0x0.

Proof. Let us define H =
(
I +Q0E−1

1 BF
)−1

Z and we notice that H has full column rank.
From the above reformulation it follows directly from lemma 3.2.1 that (F∗

1 ,F
∗
2 ) is a FBNE

for (3.1,3.2) for every consistent initial state if and only if (K1,K2) is a FBNE for the game
(3.14a,3.14b) and (F∗

1 ,F
∗
2 ) solve F∗ ∈ Ω−1(K). Further, by theorem 3.2.1 we have that

(K1, K2) is a FBNE for every initial state for the game (3.14a,3.14b) if and only if (3.15)
holds where (X1,X2) are a stabilizing solution of (3.16a,3.16b).

3It is not clear as to which player can influence stability of the closed loop system. However, the stabi-
lization constraint can be justified from the supposition that both players have a first priority in stabilizing
the system. Whether this coordination actually takes place, depends on the outcome of the game. Only if the
players have the impression that their actions are such that the system becomes unstable, will they coordinate
their actions in order to realize this meta-objective and adapt their actions accordingly. See section 8.3 of
[35] for a detailed discussion.



50 Feedback Nash equilibria in descriptor differential games

Remark 3.3.1. The algebraic constraint is given by n(t) =−Q0E−1
1 BKml(t) =−Q0E−1

1 B
KY m(t). Then, the consistent initial state manifold is characterized as:

X0 =
{

x0 ∈ Rn
∣∣∣ Q0(I +E−1

1 BKY P0)x0 = 0
}
,

where K is the lower order FBNE given by (3.15).

3.3.2 Index µ > 1 case
Lemma 3.2.5 and theorem 3.2.3 were obtained by restricting the class of feedbacks to
F1 and as a result the projectors P0 and Q0 were retained even for the modified pencil
(E, A+BF). However, for µ > 1 the projector chains change with an exception for the
class P , as demonstrated in theorem 3.2.2. For the index 1 case, the map Ω(.), as shown
in (3.9), removes all the redundant state information. However, for µ > 1, due to presence
of derivatives in the algebraic constraints, even if the strategies are restricted to Fµ it is not
clear if a mapping Ω : Fµ →P , similar to (3.10), exists. However, we have the following
sufficient condition.

Proposition 3.3.1. If Di
(
I −P0 · · ·Pµ−1

)
= 0, V ′

i
(
I −P0 · · ·Pµ−1

)
= 0 and W ′

i
(
I −P0 · · ·

Pµ−1
)
= 0 for i = 1,2, then players’ objectives do not include the algebraic constraints.

Further, the game (3.1, 3.2) can be solved using a partial state feedback.

Proof. Using (3.4c), the integrand in (3.1) is rewritten as:

(m(t)+n(t))′Di (m(t)+n(t))+(m(t)+n(t))′Viu1(t)+(m(t)+n(t))′Wiu2(t)

+u′1(t)V
′
i (m(t)+n(t))+u′1(t)W

′
i (m(t)+n(t))+ · · · . (3.17)

Again from (3.4c), we have n(t) =
(
I −P0 · · ·Pµ−1

)
x(t). Now, if the conditions given in

the statement of the lemma hold true then (3.17) is given by

m′(t)Dim(t)+m′(t)Viu1(t)+m′(t)Wiu2(t)+u′1(t)V
′
i m(t)+u′1(t)W

′
i m(t)+ · · · .

As m(t) = Zml(t), the game (3.1, 3.2) is same as the game obtained by replacing (3.1) with

∫ t f

0

[
m′

l(t) u′1(t) u′2(t)
]

M̃i
[
m′

l(t) u′1(t) u′2(t)
]′ dt, where M̃i =

Z′DiZ Z′Vi Z′Wi

V ′
i Z R1i Ni

W ′
i Z N′

i R2i

 ,
and (3.2) with (3.6) respectively. Clearly, we see that the algebraic part of the descriptor
system does not influence player’s objectives and the resulting game is solved using theo-
rem 3.2.1 with partial state feedback strategies of the type ui(t) = Kiml(t), i = 1,2.

The conditions given in the above proposition can be too restrictive and we suggest a
different approach so as to recast the problem to the index 1 case. The response of a
descriptor system is characterized by the eigenstructure of the pencil (E,A). In the classi-
cal pole placement problem for systems where E is non-singular a desired eigenstructure
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can be achieved, under a controllability assumption of the system, by using a derivative
or proportional feedback. For descriptor systems there are several notions of controlla-
bility, for example, see [30, 117]. A descriptor system (3.2) is impulse controllable if
rank([E AN∞ B]) = n, where the columns of N∞ span KerE. If the descriptor system
is impulse controllable then it was shown, in corollary 7 [24], that there exists a matrix
G ∈ Rm×n such that the pencil (E, A+BG) is regular and has index at most 1.

If the dynamic environment where the players interact is modeled by a descriptor sys-
tem with index µ then the strategies of players should be sufficiently smooth, and as a
result players cannot adapt their strategies quickly. We make an assumption that players
are obliged first, with an incentive that they can adapt quickly later, so as to regularize the
system using a proportional state feedback. The players use strategies of type ui = Gix+vi

such that the resulting descriptor system, given by Eẋ = (A+B1G1 +B2G2)x+B1v1 +

B2v2 = (A+BG)x+Bv, x(0) = x0 has index 1. This involves finding matrices G such that
the projector chain stops after one step, i.e., E1 = E +(A+BG)Q0 is non singular, where
Q0 is a projector such that ImQ0 = KerE. An SVD based algorithm is presented in [24] to
construct such regularizing feedbacks.

Now, once the higher index descriptor system is regularized we can apply the theory
developed in section 3.3.1 to compute the FBNE. This involves replacing the matrix A with
A+BG in the analysis of sections 3.2.1 and 3.3.1. Notice that there exists more than one
regularizing matrix G and not all of them give stabilizing solutions to the Riccati equations.
We demonstrate this drawback with an example in the next section.

3.3.3 Examples

Example 3.3.1. We consider [45] the issue of convergence of feedback Nash solution of
the singularly perturbed system

ẋ1(t) = x1(t)+2x2(t)+u1(t)+u2(t), x1(0) = 1

ε ẋ2(t) = −x1(t)−2x2(t)+2u1(t)+2u2(t), x2(0) = 2,

with performance criteria

Ji =
∫ ∞

0

{
[x′1(t)x

′
1(t)]Qi[x′1(t)x

′
1(t)]

′+u′i(t)Riiui(t)+u′j(t)Ri ju j(t)
}

dt, i 6= j, i, j = 1,2,

where Di =

[
2 1
1 2

]
, Rii = 1 and Ri j = 1. In this example the converged feedback Nash

equilibrium strategies are F∗
i = limε↓0 Fi(ε) = [−1.50908, −0.7321], i= 1,2. The reduced

order system, obtained by taking ε = 0, is a descriptor system. With Q0 =

[
0 0
0 1

]
as

the initial projector and E1 = E +AQ0 =

[
1 2
0 −2

]
, the canonical projector is obtained as

Q0 =

[
0 0

1/2 1

]
. Using the canonical projector we have E1 =

[
2 2
−1 −2

]
, Z =

[
−1
1/2

]
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and Y =
[
−1 0

]
. The transformed system parameters (cf. (3.14a, 3.14b)) are Ã = 0,

B̃ =
[
−3 −3

]
, Q̃i = 3/2, Ṽi = 0, W̃i = 0, R̃ii = 3 , R̃i j = 4, j 6= i and Ñi = 2, i = 1,2.

Straightforward calculations show that the set of FBNE for this game, defined by Fi =

[ fi1 fi2], i=1,2, satisfy:

fi2 =− 2
2
√

2+1
fi1 −

√
2

2
√

2+1
, i = 1,2, fi1 is arbitrary.

As observed in [45], we see that the FBNE of the original game, i.e., F∗
i = limε↓0 Fi(ε),

does not belong to the set of the FBNE obtained from the lower order game as shown in the
figure 3.1. If F∗

i = limε↓0 Fi(ε) ∈ Ω−1(K), then the game is considered to be well posed
and this property is desired as the lower order FBNE, i.e., Ω−1(K), are robust against
uncertainties of the parameter ε . See [57] for a detailed discussion.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

fi1

f
i
2

fi2 = −

2

2
√

2+1
fi1 −

√
2

2
√

2+1

limε↓0 F∗
i
(ε)

Figure 3.1 – The FBNE of the singularly perturbed system, i.e., (ε 6= 0), is repre-
sented as the black dot and the set of FBNE of the lower order game is represented
by the gray line.

Example 3.3.2. In this example we show that the suggested regularization approach, as
given in section 3.3.2, for higher order index cases gives different solutions based on the
choice of G used. The example, from [41], is a macro-economic stabilization problem.
Assume that a monetary and fiscal authority like to stabilize some key macro-economic
variables, i.e., the real interest rate, r, inflation, ṗ, and the output gap, y, after a shock has
occurred. The system is described by the following equations:

r(t) = i(t)− ṗ(t) (3.18a)

ẏ(t) =−αi(t)+α ṗ(t)+β f (t) (3.18b)

m(t)− p(t) = γy(t)−δ i(t). (3.18c)
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Here p(t) is the price level, i(t) denotes the nominal interest rate, m(t) is the money supply
and f (t) the fiscal policy. The first two instruments, the nominal interest rate and money
supply, are determined by the monetary authority of the country, whereas the level of
the third instrument, the fiscal policy, is set by the government. Here, Equation (3.18a)
models the real interest rate, (3.18b) is a simple growth equation of the output gap and
(3.18c) models asset market equilibrium. Assume that an initial shock in the real interest
rate, price level and output gap has occurred, all equal to one (in the respective units).
Introducing as the state variable x(t) = [r(t) p(t) y(t)]′, u1(t) = [i(t) m(t)]′ and u2(t) = f (t)
the model can be rewritten as (3.2), where

E =

0 1 0
0 −α 1
0 0 0

 , A =

−1 0 0
0 0 0
0 −1 −γ

 , B1 =

 1 0
−α 0
δ 0

 , B2 =

0
β
0

 and x0 =

1
1
1

 .
The performance criteria of the players are given as:

Ji =
∫ ∞

0
e−θ t [x′(t) u′1(t) u′2(t)

]
Mi
[
x′(t) u′1(t) u′2(t)

]′ dt, i = 1,2.

Since the performance indices are discounted, we make the following change of variables
A → A− θ

2 E. It can be easily verified that the system is regular if 1+αγ 6= 0. We observe
that the pencil (E,A) has index 2. Taking α = 1/2, β = 3/4, γ = 1, δ = 1/2 and θ = 0.15,

the initial choice of Q0 =

1 0 0
0 0 0
0 0 0

 and G = (gi j) we see that with g11 + 2g21 6= 0, the

system can be regularized. The matrices entering the players costs are D1 = diag{2,2,1},
D2 = diag{1,1,2}, R11 = diag{2,2}, R21 = 1, R12 = diag{1,1}, R22 = 2, Vi = 0, Wi = 0,

Ni = 0, i = 1,2. For the following choices of regularizing matrices G =

 2 −1 −1
1/2 0 0

0 0 0


and G =

 1 0 0
1/2 0 0

0 0 0

 the eigenvalues of Ã+ B̃K are found to be (−1.2292,−0.58473)

and (−1.7905,−0.57729) respectively. Further, if the choice of the regularizing matrix is

G =

 2 1 1
1/2 3 4

0 1 1

, we observe that the coupled Riccati equations do not have a solution.

So, we see that the choice of regularizing matrix G does affect the solution of the game.
However, if players agree, before switching to noncooperative mode of play, upon a par-
ticular choice of the regularizing matrix then this method can be used to find FBNE for
games defined with higher order descriptor systems.
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3.4 Conclusions
In this chapter we consider the regular indefinite infinite planning horizon linear quadratic
differential game for descriptor systems. Firstly, we develop an algorithm to generate
canonical projectors for a regular matrix pair, and using these projectors it is possible to
canonically decouple a descriptor system into differential and algebraic parts. Later, we
analyze the effect of feedback on a regular descriptor system. We show, for the index 1
case, that there exists a many to one mapping from full state index preserving feedbacks to
the projected state feedbacks leading to informational non-uniqueness. Further, we discuss
the properties of the inverse mapping and derived necessary and sufficient conditions for
the existence of FBNE. These conditions were stated in terms of a projected system. A
complete parametrization was derived for the set of FBNE. For the higher order index case,
under an impulse controllability assumption, we suggest a regularization based approach
to recast the problem to an index 1 case. However, it is unclear as to how the Riccati
equations depend upon the class of regularizing matrices. We demonstrated the drawback
of the approach with an example. The obtained theoretical results can be generalized
straightforwardly to the N player case. We observed that the closed-loop system evolves
invariantly on a proper linear subspace of Rn, the configuration space. So, the FBNE
is an inverse projection of the FBNE obtained from the lower order (projected) system.
Further, in case there exists a FBNE, usually, there exists an infinite number of feedback
Nash equilibria which all give rise to the same closed-loop behavior of the system. For
future work, it would be interesting, for instance, to investigate the question whether in a
singularly perturbed game the full order FBNE belongs to the set of inverse projections of
the lower order FBNE, this aspect was studied in [45, 57]. Further, it would be interesting
to search for equilibria within this set that satisfy some additional properties, like e.g.
robustness.

3.A Appendix
For a regular index-µ pencil λE −A, we consider the following sequences of matrices,
subspaces and projectors

E0 = E, A0 = A (3.19a)

for i ≥ 0 Ei+1 = Ei +AiQi, Ai+1 = AiPi (3.19b)

Q2
i = Qi, ImQi = KerEi, Pi = I −Qi. (3.19c)

For the matrix chain (3.19a-3.19c) an important result, following [49], is given as:

Theorem 3.A.1. If (E,A) is a regular pencil with the index µ , then the matrices E0, E1,

· · · , Eµ−1 are singular, whereas Eµ is non-singular. Conversely, if Eµ is non-singular and
E0, E1, · · · , Eµ−1 are singular, then (E,A) is a regular pencil with index µ .

The projectors Qi, i = 0,1, · · · ,µ − 1 are not unique since the range of Qi is fixed as
KerEi and KerQi is arbitrary. Later, we see that this arbitrariness is helpful to construct
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an algorithm. We review some important properties of matrix projectors below. Refer
[73, 113] for details.

1. (KerEi ∩KerAi) = (KerEi ∩KerEi+1)⊆ (KerEi+1 ∩KerEi+2).

2. Following theorem 2.1 of [73], for a regular pencil with index µ , the projectors
Q0, Q1, · · · , Qµ−1 can be constructed such that Q jQi = 0 for j > i. Projectors
satisfying this property are called admissible projectors.

The above properties hold true irrespective of the choice of projectors. We elaborate
more on properties 1 and 2 here. For a regular pencil with index µ , Eµ is non-singular
so KerEµ = {0}. From property (1), given above, we have (KerE0 ∩KerE1) ⊆ ·· · ⊆(
KerEµ−2 ∩KerEµ−1

)
⊆
(
KerEµ−1 ∩KerEµ

)
= {0}. This implies

(
KerE0 ⊕ ·· ·⊕

KerEi−1
)
∩KerEi = {0} or (ImQ0 ⊕ ImQ1 ⊕·· ·⊕ ImQi−1)∩ ImQi = {0}, see lemma 2.6

[72] for details. We recall the following lemma:

Lemma 3.A.1 (lemma 2.5, [73]). For two subspaces of Rm L = span{l1, l2, · · · , ls}, N =

span{n1,n2, · · · ,nt}, L∩N = 0, there is a projector U such that ImU = L, KerU ⊇ N.

Proof. Denote by R the m× (s+ t) matrix consisting of the columns l1, · · · , ls,n1, · · · ,nt .
Since N∩L = 0, s+ t ≤ n, and l1, · · · , ls,n1, · · · ,nt are linearly independent. Then, R is full
column rank and the desired projector U is constructed as

U = R
[

I 0
0 0

](
R′R
)−1 R′, where R =

[
l1, · · · , ls n1 · · · ,nt

]
. (3.20)

Using lemma 3.A.1 we can choose Qi such that (ImQ0 ⊕ ImQ1 ⊕·· ·⊕ ImQi−1) ⊆ KerQi

and ImQi = KerEi. The constructed projectors, called as admissible projectors, satisfy
Q jQi = 0, j > i. Later we propose an algorithm to generate these admissible projectors
given a regular pencil with index µ .

3.A.1 Illustration for index 1

In this section we demonstrate the application of matrix projectors towards decoupling a
descriptor system. Consider the following regular index 1 descriptor system:

Eẋ(t) = Ax(t)+Bu(t), x(0) = x0. (3.21)

The matrix chain is given by E0 = E, A0 = A, Q0 = Q2
0, ImQ0 = KerE0, P0 = I −Q0,

E1 = E0+A0Q0 = E +AQ0 and E1 is non singular. We verify that E1P0 = EP0 +AQ0P0 =

EP0 → P0 = E−1
1 EP0 and E1Q0 = EQ0 +AQ0Q0 = AQ0 → Q0 = E−1

1 AQ0. Further, x(t)
can be decomposed as x(t) = Ix(t) = (P0 +Q0)x(t) = P0x(t)+Q0x(t) and we represent
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m(t) = P0x(t) and n(t) = Q0x(t). Now, pre-multiplying the above descriptor system with
E−1

1 leads to

E−1
1 Eẋ(t) = E−1

1 Ax(t)+E−1
1 Bu(t)

E−1
1 E(P0ẋ(t)+Q0ẋ(t)) = E−1

1 AP0x(t)+E−1
1 AQ0x(t)+E−1

1 Bu(t)

P0ẋ(t) = E−1
1 AP0x(t)+Q0x(t)+E−1

1 Bu(t).

Multiplying the above equation with P0 gives the inherent ODE

ṁ(t) = P0E−1
1 Am(t)+P0E−1

1 Bu(t), (3.22)

and with Q0 gives the algebraic constraint

0 = Q0E−1
1 Am(t)+n(t)+Q0E−1

1 Bu(t). (3.23)

The above decoupling is not complete as m(t) appears in (3.23). Let us define Q̃0 =

Q0E−1
1 A. To see Q̃0 as a valid projector onto KerE0, we note that Q̃0Q0 =Q0E−1

1 AQ0 =Q0

and Q0Q̃0 = Q0Q0E−1
1 A = Q̃0 which implies Q̃0 is a projector onto the same range as Q0.

Next, we discuss the canonicity 4 of Q̃0. Let Q01 and Q02 be two projectors with range
constrained to KerE, then Q01Q02 = Q02 and Q02Q01 = Q01 . Using this we can show
Q01P02 = −Q02P01 . We write E12 = E +AQ02 = E +AQ01Q02 = E +AQ01 −AQ01P02 =

E +AQ01 +AQ02P01 = (E +AQ01)(I +Q02P01) = E11(I +Q02P01). Thus we have E−1
12

=

(I −Q02P01)E
−1
11

. Now, Q̃02 = Q02E−1
12

A = Q02(I −Q02P01)E
−1
11

A = Q01E−1
11

A = Q̃01 . Q̃0

is called a canonical projector and it is unique, so we have that Q̃0 = Q̃0Ẽ−1
1 A, where

Ẽ1 = E +AQ̃0. Repeating the above decoupling procedure by replacing Q0 with Q̃0 we
arrive at the same decoupled equations (3.22, 3.23) as above, but the cross term disappears
in (3.23), i.e., n(t) =−Q0E−1

1 Bu(t), leading to a complete decoupling.

3.A.2 Canonical projectors
In the previous section we showed that an index 1 system can be decoupled completely
with the existence of a unique canonical projector Q̃0. For index µ > 1, by theorem 3.1
[73], the existence of canonical projectors is guaranteed for a regular descriptor system.
Furthermore, the canonical projectors are also admissible and satisfy:

Qi = QiPi+1 · · ·Pµ−1E−1
µ Ai, i = 0,1, · · · ,µ −2 (3.24)

Qµ−1 = Qµ−1E−1
µ Aµ−1, (3.25)

where Ai, Eµ are defined in (3.19a-3.19c). Collecting ideas discussed above we present
an algorithm to generate canonical projectors for an index µ regular matrix pair (E,A) as
follows:

4This discussion follows from [114] and we repeat it for the sake of completeness.
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Algorithm 3.A.1.

1. Start with E0 = E, A0 = A, Q0 = I −E†
0 E0, P0 = I −Q0 and V = KerE0.

2. (Admissible projectors) for i ∈ {1,2, µ −1}

(a) Ei = Ei−1 +Ai−1Qi−1, Ai = Ai−1Pi−1, U = KerEi

(b) Define R =
[
U V

]
(c) Qi = R

[
I

0

]
(R′R)−1 R′, Pi = I −Qi

(d) V =
[
V U

]
3. (Canonical projectors)

(a) Set for i = 0, · · · ,µ −1, Q(0)
i = Qi, E(0)

i = Ei, A(0)
i = Ai

(b) Make Q(0)
µ−1 canonical by Q(0)

µ−1 = Q(0)
µ−1

(
E(0)

µ

)−1
A(0)

µ−1

(c) for j = 0 to µ −1

i. Q( j)
µ−1 = Q( j−1)

µ−1

(
E( j−1)

µ

)−1
A

ii. Q( j)
i = Q( j−1)

i P( j−1)
i+1 · · ·P( j−1)

µ−1

(
E( j−1)

µ

)−1
A, i = 0,1, · · · ,µ −2

iii.
(

E( j)
µ

)−1
=
(

I −Q j
0P j−1

0 −Q j
1P j−1

1 −·· ·−Q j
µ−1P j−1

µ−1

)(
E( j−1)

µ

)−1

After obtaining the set of admissible projectors from step (2), canonical projectors are
obtained from step (3). For a discussion on the additional properties, such as admissibility
of the intermediate projector chains

(
Q( j)

i ,P( j)
i

)
, i = 0,1, · · · ,µ −1 and canonicity of the

resulting projectors Q(µ−1)
i , i = 0,1, · · · ,µ −1 refer to [113].

3.A.3 Illustration for index µ > 1
Similar to index 1 case, the canonical projectors completely decouple a regular descriptor
system with index µ > 1. For more details on the procedure refer [73]. We, however, give
few important steps. Firstly, canonical projectors satisfy the following identity:

x =P0x+Q0x = (P0P1)x+(P0Q1 +Q0)x = · · ·
· · ·=

(
P0 · · ·Pµ−1

)
x+
(
P0 · · ·Pµ−2Qµ−1 + · · ·+P0Q1 +Q0

)
x. (3.26)

We see x(t) can be projected into µ +1 subspaces. The first projection constitutes a vector
field that evolves invariantly in the subspace Im

(
P0 · · ·Pµ−1

)
and the remaining µ pro-

jections constitute algebraic constraints. The descriptor system (3.21) is decoupled com-
pletely as follows:(

P0 · · ·Pµ−1
)

ẋ =
(
P0 · · ·Pµ−1

)
E−1

µ A
(
P0 · · ·Pµ−1

)
x+
(
P0 · · ·Pµ−1

)
E−1

µ Bu
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
Q0 Q0P1 Q0P1P2 · · · Q0P1 · · ·Pµ−2

Q1 Q1P2 · · · Q1P2 · · ·Pµ−2
. . . ...

Qµ−3 Qµ−3Pµ−2

Qµ−2




Q1

Q2
...

Qµ−2

Qµ−1

 ẋ =−


Q0

Q1
...

Qµ−3

Qµ−2

x

−


Q0P1 · · ·Pµ−1

Q1P2 · · ·Pµ−1
...

Qµ−3Pµ−2Pµ−1

Qµ−2Pµ−1

E−1
µ Bu

0 = Qµ−1x+Qµ−1E−1
µ Bu.

The last two equations are written compactly as follows:

Q0

Q1
...

Qµ−3

Qµ−2

Qµ−1


x =−M





Q1

Q2
...

Qµ−2

Qµ−1

0


ẋ−



0
0
...
0
0
I


E−1

µ Bu


,

M =



Q0 Q0P1 P1P2 · · · Q0P1 · · ·Pµ−1

Q1 Q1P2 · · · Q1P2 · · ·Pµ−1
. . . ...

...
Qµ−3Pµ−2 Qµ−3Pµ−2Pµ−1

Qµ−2 Qµ−2Pµ−1

Qµ−1


.

By careful elimination of derivatives, of terms Q jx, 1 ≤ j ≤ µ −1, on the right hand side,
we have:

Q0

P0Q1
...

P0 · · ·Pµ−3Qµ−2

P0P1 · · ·Pµ−2Qµ−1

x =−


X X X · · · X −Q0P1 · · ·Pµ−1

X X · · · X −P0Q1P2 · · ·Pµ−1
. . . ...

...
X −P0 · · ·Pµ−3Qµ−2Pµ−1

−P0 · · ·Pµ−2Qµ−1




E−1

µ Buµ−1

E−1
µ Buµ−2

...
E−1

µ Bu1

E−1
µ Bu

 .

(3.27)

From property (3.26), representing m =
(
P0 · · ·Pµ−1

)
x and n =

(
P0 · · ·Pµ−2Qµ−1 + · · ·
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+P0Q1 +Q0
)
x = (I −P0 · · ·Pµ−1)x, the descriptor system can be decoupled as:

ṁ(t) = P0 · · ·Pµ−1E−1
µ Am(t)+P0 · · ·Pµ−1E−1

µ Bu(t), m(0) = P0 · · ·Pµ−1x0 (3.28a)

n(t) =−
µ−1

∑
i=0

NiE−1
µ Bui(t), (3.28b)

where Ni in (3.28b) are obtained by manipulation of terms in (3.27).
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CHAPTER 4

Lyapunov stochastic stability and control of robust
dynamic coalitional games with transferable utilities

4.1 Introduction
This chapter deals with robustness and dynamics in coalitional games with transferable
utility (TU), along the line of [13, 14]. Coalitional TU games, introduced first by von Neu-
mann and Morgenstern [80], have recently sparked much interest in the control and com-
munication engineering community [90]. In essence, coalitional TU games are constituted
by a set of players who can form coalitions and by a characteristic function associating a
real number with every coalition. The real number represents the value of the coalition and
can be thought of as a monetary value that can be divided among the members of the coali-
tion according to some appropriate fairness allocation rule. The value of a coalition also
reflects the monetary benefit demanded by a coalition to be a part of the grand coalition.

In the context of coalitional TU games, robustness and dynamics naturally arise in all
the situations where the coalitions values are uncertain and time-varying. We next discuss
each of the two aspects and try to connect them to the existing literature.

Robustness has to do with modeling coalitions’ values as unknown entities and this
is in spirit with some literature on stochastic coalitional games [103, 105]. However, we
deviate from these last works since we model coalitions values as Unknown But Bounded
(UBB) variables within an a priori known polytopic set [15]. It is worth to mention that
this formulation is in line with the recent literature on interval valued games [3], where
the authors use intervals to describe coalitions values similarly to what is done in this
chapter. The interval nature of coalitions’ values arises generally due to the optimistic
and pessimistic expectations of the coalitions [27] when cooperation is achieved from a
strategic form game. We also recognize some differences in that we focus more on the
time-varying nature of the coalitions values. In doing this, we also link the approach to
the set invariance theory [18] and stochastic stability theory [67] which provides us some
nice tools for stability analysis (see, e.g., the resort to a Lyapunov function in the proof of
theorem 4.4.1).

Dynamics enters in the form of a system state evolution. The state accounts for the
accumulated discrepancy between coalitions’ values and allocations up to the current time
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with the assumption that the game is played continuously over time. So, the state accounts
for the extra reward or excess that a coalition has received up to the current time. However,
this excess is different from the coalitional excess that appears commonly, e.g., in the
definition of nucleolus [92]. At each time, different coalitions’ values realize and these
values are undisclosed to the Game Designer (GD) who then adjusts allocations based
on the available information on the system state. Bringing dynamical aspects into the
framework of coalitional TU games is an element in common with other papers [43, 53,
60]. The main difference with those works is that the values of coalitions are realized
exogenously1 and no relation exists between consecutive samples.

This chapter is in spirit with a few other recent attempts to bring robustness and dy-
namics within the framework of coalitional TU games [11, 12, 13, 14]. In [13, 14] the
authors dealt with robust stabilizability of the excesses in a discrete time setting. Here, we
are more concerned with convergence almost surely of a function of the excesses and we
show that this translates into the long-run almost sure convergence of the average alloca-
tion to the core2 of the average game. We assume that the average value of the coalitons’
converges to a balanced game which the GD has access to. Convergence conditions to-
gether with the idea that allocation rules use a measure of the extra reward that a coalition
has received up to the current time by re-distributing the budget among the players are a
main issue in a number of other papers [4, 28, 50, 64, 96] as well. However, this chapter
departs from the aforementioned contributions mainly in that dynamics in those works is
captured by a bargaining mechanism with fixed coalitions’ values while we let the values
be time-varying and uncertain. This last element adds some robustness in our allocation
rule which has not been dealt with before.

The main contribution of this chapter is summarized by the following three results.
Firstly, we design an allocation rule based on full information on the extra reward so that
the average allocation can be driven to a specific point in the core of the average game.
Secondly, we design a new allocation rule based on partial information on the extra reward
so that convergence to the core can be still guaranteed but not to a specific point of the
core. Convergence of both allocation rules is proved via Lyapunov stochastic stability
theory. The third result highlights connections of the Lyapunov stochastic stability theory
to the approachability theory [17, 64].

A few minor contributions are present in this chapter as, for instance, the definition of
integral and average game whose role becomes fundamental when the coalitions’ values
variations are known with delay by the GD. Beside this, also the reformulation of the
problem as a network flow control problem3 where the allocation rule turns into a robust

1For endogenous formulations of coalitions’ values see section 9 of [77].
2A set of allocations is in the core when it is coalitionally rational. That is, the core consists of those

allocations for which no coalition would be better off if it would separate itself and get its coalitional worth.
Or, stated differently, a set of allocations belongs to the core if there is no incentive to any coalition to break
off from the grand coalition. See [77] for more details.

3See [16], for connections between network flow problems and bankruptcy games in a static context.
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control policy is a novel aspect. The importance of such a reformulation lies in the fact that
we can prove the convergence of the allocations using the strong tools of the Lyapunov
stochastic stability theory. We conclude this introduction by remarking the novelty of
the idea of turning a coalitional TU game set up into a control theoretic problem, which
represents, by far, the main characteristics of this work.

This chapter is organized as follows. In section 4.2, we formulate the problem. In
section 4.3, we present the basic idea of our solution approach. In section 4.4 we state the
three main results of this work and postpone the derivation of such results to section 4.5.
In section 4.6, we provide some numerical illustrations. Finally, in section 4.7, we draw
some concluding remarks.

4.2 Problem formulation
In this section, we formulate the problem in its generic form and elaborate on the role of
information. Consider a set of players N = {1, . . . ,n} and all possible nonempty coalitions
S ⊆ N arising among these players. Introduce a time-varying characteristic function vS(t)
which assigns a real value to each coalition S at time t ≥ 0:

vS(t) : S×R+ → R,

where R+ denotes the set of nonnegative real numbers. We also denote by m = 2n − 1,
the number of possible coalitions except the empty coalition (indicated by /0) and view the
characteristic function vS(t) as returning a vector in the m-dimensional space:

v(t) = [vS(t)]S⊆N ∈ Rm, ∀t ≥ 0.

We make use of the above time-varying characteristic function to define the following
dynamic coalitional games.

Definition 4.2.1. (dynamic TU game) For each time t ≥ 0, the instantaneous, integral and
average dynamic games are defined as:

• (instantaneous game) < N,v(t)>, with v(t) ∈ Rm

• (integral game) < N, ṽ(t)>, with ṽ(t) =
∫ t

0 v(τ)dτ

• (average game) < N, v̄(t)>, with v̄(t) = ṽ(t)
t .

The motivation of formalizing the above dynamic TU games is in that such games are
suitable to model scenarios where the coalitions’ values vary with time. In this perspec-
tive, while the instantaneous game accounts for the instantaneous variations of the values,
the integral game describes the accumulated values over time whereas the average game
describes the mean of the coalitions values over time. The importance of the average game
increases in those situations where v(t) is known with a certain delay. In these cases, be-
cause of its smooth variations, an average game based on past values represents a better
approximation than any past instantaneous game. We consider the following example,
taken from [13], to motivate the problem formulation.
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Example 4.2.1. Consider a single-period one-warehouse multi-retailer inventory system. A
warehouse W serving three retailers R1, R2 and R3. Each retailer faces a demand bounded
by a minimum and a maximum value. For instance Ri faces a demand di in the interval
[d−

i , d+
i ]. After demands di are realized, each retailer Ri must choose whether to fulfill the

demand or not. The retailers do not hold any private inventory. Therefore, if they wish to
fulfill their demands, they must reorder goods at the central warehouse. The retailers may
share the total transportation cost K. Before demands are realized, the warehouse holder
decides how to allocate the transportation costs among the retailers. This decision is only
based on the knowledge of the minimum demand d−

i and maximum demand d+
i . This

allocation problem can be reformulated as a TU game. However, the value of a coalition
is interval valued due to interval uncertainty. To see the dynamic aspect of the application,
consider a situation where the discussed scenario occurs repeatedly in time, i.e., at each
time (day, week), and the warehouse manager allocates the costs and demands are realized.
Now, the warehouse manager can design allocation rules based on past allocations and
excesses of coalitions so that the retailers can reorder jointly.

Remark 4.2.1. Since a TU game represented in characteristic function form suppresses the
strategic aspect, i.e., players influencing the evolution of the game using strategies, this
chapter deviates from the other chapters. Introducing time aspects to a static TU game
opens the possibility for modeling aspects such as intertemporal transfers, patience and
expectations of players/coalitions. A generic dynamic coalitional game description should
capture these features. This chapter addresses modeling a class of problems of the type
given in example 4.2.1.

In line with the above preamble, the underlying assumption throughout this chapter is
that v(t) is unknown to the game designer (GD) or central planner but confined within a
convex set V 4 at any time. We also assume that v(t) is a mean ergodic stochastic pro-
cess. The limitations due to our choice of modeling the coalitions values as a stationary
stochastic process are justified by an increased simplicity in the analysis and efficacy of
the obtained results.

Assumption 4.2.1. (UBB and mean ergodic) Signal v(t) is UBB within a given convex set
V , i.e., v(t) ∈ V ∈ Rm. Furthermore, the expected value of v(t) coincides with the long
term average limt→∞ v̄(t).

From the Bondareva-Shapley theorem, see [98], it follows that the core of a TU game
is non empty if and only if the game is balanced. One interpretation of balancedness in a
TU game is that the players can distribute one unit of working time to any coalition and in
doing so cannot generate more value than the grand coalition. We do not make assumptions
regarding the balancedness of the instantaneous games which is the case with [13]. Under
the above assumption, the core of the instantaneous game can be empty at some time t,
i.e., the instantaneous games are, in general, not balanced. We, however, assume that the

4The interval nature of the uncertainty naturally leads to convexity of V .
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core of the average game is nonempty in the long run in order to make the problem more
tractable. Before introducing the assumption, denote vnom = limt→∞ v̄(t) and let C(vnom)

be the core of the average game. Hereafter, we will also call vnom the (long run) average
coalitions’ values. This is a reasonable assumption since only in principle one could rely
on infinite budgets.

Assumption 4.2.2. (balancedness) The core of the average game is nonempty in the limit:
C(vnom) 6= /0.

We can view the above assumption as introducing some steady-state (average) con-
ditions on a game scenario subject to instantaneous fluctuations. Now, assume that the
GD can take actions in terms of instantaneous allocations denoted by a(t) ∈ Rn with the
following budget constraints.

Assumption 4.2.3. (bounded allocation) The instantaneous allocation is bounded within
a hyperbox in Rn

a(t) ∈ A = {a ∈ Rn : amin ≤ a ≤ amax},

with a priori given lower and upper bounds amin, amax ∈ Rn.

A first assumption about the information available to the GD is that he knows the long
run average coalitions’ values. Under this assumption, as we see in the following sections,
the GD can design allocation rules that can converge to the core of the average game.

Assumption 4.2.4. (on available information) The GD knows vnom.

In spirit with a number of other papers [4, 28, 50, 64, 96], we aim at finding allocation
rules that use a measure of the extra reward that a coalition has received up to the current
time by re-distributing the budget among the players. To do this, a first step is to define
excesses for the coalitions. For any coalition S ⊆ N, we define excess (extra reward) at
time t ≥ 0 as the excess at time t = 0 plus the difference between the total integral reward,
given to it, and the integral value of the coalition itself, i.e.,

εS(t) = ∑
i∈S

ãi(t)− ṽS(t)+ εS(0).

Furthermore, assume without loss of generality εS(0) = 0, we say that S is in excess at
time t ≥ 0 if the excess is nonnegative, i.e., ∑i∈S ãi(t) ≥ ṽS(t). To summarize, coalitions
in excess are those with respect to which the grand coalition of the integral game is sta-
ble against deviations. Let ε(t) represent the vector of accumulated coalitions’ excesses
formally given as:

ε(t) = {εS(t)}N⊇S 6= /0 .

We are interested in answering three questions for this class of games.

• Question 1: Are there allocation rules such that the average allocation converges?
If yes, let us denote by A0 the set where the average of allocations converge to.



66 Robust allocation schemes in dynamic coalitional games

• Question 2: If the average allocation converges, can we make it converge to the core
of the average game A0 ⊆C(vnom)?

• Question 3: Furthermore, can we guarantee the convergence to a specific point of
the core that we have a priori selected?

To motivate the above questions let us think of a situation where the objective of the GD
is to maintain stability of the grand coalition in an average sense, in which case one would
expect A0 ⊆ C(vnom). We are now in the position to formally state the problem in its the
generic form. Henceforth, we use the symbol w.p.1 to mean “with probability one”.

Problem 4.2.1. Find an allocation rule f : Rm →A ∈Rn, such that if a(t) = f (ε(t)) then
limt→∞ ā(t) ∈ A0 ⊆C(vnom) w.p.1.

Observe that because of the random nature of the coalitions’ values v(t), both the ex-
cesses ε(t) and the allocations a(t) are random and as such we look at the convergence
of ā(t) w.p.1. Essentially, we require that the probability of ā(t) converging in the limit
to A0 ⊆ C(vnom) is 1. This type of convergence is also known in the literature as almost
sure convergence [67]. To include the above questions 2 and 3 in the problem statement
(problem 4.2.1), we need to make different assumptions on A0.

i) A0 is a specific point in the core a priori selected, call it nominal allocation and
denote it as anom, i.e.,

A0 = anom ∈C(vnom),

ii) A0 is the whole average core C(vnom), namely

A0 =C(vnom).

We will show that solving the first case requires the exact knowledge of the excesses ε(t)
at time t on the part of the GD. Conversely, in the second case it suffices that the GD has
a partial knowledge about ε(t). This is in line with our intuition about the fact that case i)
requiring convergence to a specific point of the core appears as a more constrained version
of problem ii) where convergence is required to any point of the core.

4.3 Flow transformation based dynamics
The basic idea of our solution approach is to recast the problem into a flow control one. To
do this, consider the hyper-graph H with vertex set V and edge set E as:

H = {V,E}, V = {v1, . . . ,vm}, E = {e1, . . . ,en}.

The vertex set V has one vertex per each coalition whereas the edge set E has one edge
per each player. A generic edge i is incident to a vertex v j if the player i is in the coalition
associated to v j. So, incidence relations are described by matrix BH whose rows are the
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characteristic vectors cS ∈ Rn. We recall that the components of a characteristic vector
cS

i = 1 if i ∈ S and cS
i = 0 if i /∈ S. So, for a 3 player situation we have coalitions {1}, {2},

{3}, {1,2}, {1,3}, {2,3} and {1,2,3} associated with vertices v1, v2, v3, v4, v5, v6 and v7
respectively. The matrix incidence BH for a 3 player case is given as:

BH =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1


.

The edge ei corresponds to the player i. The first column of BH says that player 1 is
present in the coalitions {1}, {1,2}, {1,3} and {1,2,3}. The flow control reformulation
arises naturally if we view allocation ai(t) as the flow on edge ei and the coalition value
vS(t) of a generic coalition S as the demand d j(t) in the corresponding vertex v j, namely
vS(t) = d j(t). In view of this, allocation in the core translates into over-satisfying the
demand at the vertices. Specifically,

a(t) ∈C(v(t)) ⇔ BH a(t)≥ d(t), (4.1)

with the last inequality satisfied with the equal sign due to the efficiency condition of the
core, i.e, ∑i=1 ai(t) = dm(t), where dm(t) denotes the mth component of d(t) and is equal
to the grand coalition value vN(t). Now, since d(t) is unknown at time t, we need to
introduce some error dynamics which accounts for the derivatives of the excesses. Since,
ε(t) represents the accumulated coalition excess we have:

ε̇(t) = BH a(t)−d(t), d(t) ∈ V . (4.2)

From (4.1) and averaging and taking the limit in (4.2), we can reformulate problem 4.2.1
as a flow control problem where a controller wishes to drive the quantity limt→∞

ε(t)−ε(0)
t

to the target set below w.p.1 :

T = {τ ∈ Rm : τm = 0,τ j ≥ 0, ∀ j = 1, . . . ,m−1}.

Note, τm = 0 due to efficiency of allocations.

Remark 4.3.1. Driving the average allocations to a particular point anom ∈ A0 ⊆ C(vnom)

results in reaching a specific point in the target set T . To see this, note that when
limt→∞ ā(t) = anom we have T 3 BH anom − vnom ≥ 0 due to the property of the core.
Thus, we also have that limt→∞

ε(t)−ε(0)
t is driven to the point BH anom − vnom ∈ T .

The inequality condition in (4.1) is transformed into equality type by introducing, from
standard LP techniques, m−1 slack variables (one per each coalition other than the grand
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coalition). This increases the control space of the GD from m to n+m−1 and the dynamics
(4.2) can be rewritten as follows:

ẋ(t) = Bu(t)−d(t), d(t) ∈ V , (4.3)

where B =

[
BH

∣∣∣ −Im−1

0

]
∈ Rm×n+m−1. Variable x(t) represents the state of the system

and captures deviation from the balanced system, i.e., the system characterized by anom

and vnom. We introduce the set of feasible controls as:

U =
{

u(t) ∈ Rn+m−1 : u(t) = [aT (t) sT (t)]T , a(t) ∈ A , s(t)≥ 0
}
. (4.4)

In preparation to the reformulation of the problem as a stochastic stabilizability one, we
introduce the following preliminary result.

Lemma 4.3.1. The following two statements are equivalent:

i) the average allocations converge to the core of the average game,

lim
t→∞

ā(t) ∈C(vnom), w.p.1, (4.5)

ii) the new variable x(t)−x(0)
t is asymptotically stable almost surely, i.e.,

lim
t→∞

x(t)− x(0)
t

= 0,w.p.1.

Proof. Since by assumption the average game is balanced the core is nonempty. To see
why i) implies ii) first observe that

ā(t) ∈C(v̄(t))⇐⇒ Bū(t) = v̄(t). (4.6)

To see why (4.6) holds true, note that ā(t) ∈ C(v(t)) means that there exists a feasible
allocation ā(t) such that BH ā(t)− v̄(t)≥ 0. Now, since the surplus variables are under the
control of the GD, it is always possible to set s̄(t) = BH ā(t)− v̄(t) so that we can obtain
Bū(t) = v̄(t) w.p.1 and this proves condition (4.6). On the other hand, by integrating (2),
we also have that

x(t)− x(0)
t

= Bū(t)− v̄(t).

Now, from (4.5), (4.6) and Assumption 2 we infer that limt→∞ Bū(t)− v̄(t) = 0 w.p.1,
which in turn means limt→∞

x(t)−x(0)
t = 0 w.p.1. So, we can conclude ii).

To see why ii) implies i), note that, limt→∞
x(t)−x(0)

t = 0 w.p.1 implies limt→∞ Bū(t)−
v̄(t) = 0 w.p.1. Since from (3) we also have that limt→∞ s̄(t) > 0, then we can rewrite
limt→∞ Bū(t) = vnom w.p.1, as s̄(t) = BH ā(t)− v̄(t) and vnom is balanced by Assumption
2. Thus we have limt→∞ ā(t) ∈C(vnom) w.p.1.
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It is worth noting that condition (4.5) is part of problem 4.2.1. In other words when
solving problem 4.2.1 we always guarantee (4.5). If this is clear then, we can use the
above lemma to rephrase problem 4.2.1. In doing this we need to make a partial distinction
between case i) and ii). More specifically, the case ii) where A0 =C(vnom) can be restated
as follows:

Find u(t) = φ(x(t)) ∈U s.t lim
t→∞

x(t)− x(0)
t

= 0 w.p.1. (4.7)

Note that we can alternatively look at condition (4.5) as a constraint that requires x(t) to
remain bounded for all t. Actually any control φ(x(t)) so that x(t) is bounded w.p.1 implies
that the numerator x(t)− x(0) is bounded as well and taking the limit for t → ∞ then the
fraction goes to zero. With this in mind, let us anticipate here that the problem that we will
solve is a stricter one where x(t) not only remains bounded but also approaches zero w.p.1.
A strict reformulation of the above problem is given as:

Find u(t) = φ(x(t)) ∈U s.t lim
t→∞

x(t) = 0 w.p.1. (4.8)

Remark 4.3.2. If V ⊆ int{BU}, then from [10] we can drive x(t) to zero asymptotically
in a deterministic sense, i.e., limt→∞ x(t) = 0, and as a result also condition (5) is satisfied.
This approach was carried out in [13] to analyze the convergence of allocations to a specific
point in the core, in a discrete time setting. In this chapter, we relax the assumption V ∈
int{BU} in favor of the weaker condition vnom ∈ int{V ∩BU}. We will still be able to
prove that limt→∞ x(t) = 0 w.p.1 (in stochastic sense).

As regards problem 4.2.1 case i), we need to make an additional comment. Actually,
it turns out that if we wish to reach a specific point anom then the condition (4.5) is only
necessary. So, the problem we will solve is a stricter version of (4.8).

4.4 Main results
In this section we present the three main results of this work. The first one relates to the
case where the GD has full information on x(t) in which case the average allocation can be
driven to a specific point in the core of the average game. The second result applies to the
case where the GD has partial information on x(t), and convergence to the core can be still
guaranteed but not to a specific point of the core. The third result highlights connections
of the implemented solution approach to the approachability principle [17, 64].

4.4.1 Full information case
In this section we solve problem 4.2.1 with A0 = anom and under the assumption that
the GD has complete information regarding excesses ε(t) and therefore x(t) as well. We
recall that inferring x(t) from ε(t) is possible as the surplus s(t) are selected by the GD.
As we have said before, the problem that we solve is a stricter version of (4.8). This
version derives from augmenting the state of dynamics (4.3) as explained in the rest of this
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section. Before introducing the augmentation technique let us start by assuming that the
fluctuations of the coalitions’ values around the mean vnom are independent of the state
x(t). We formalize this in the next assumption where we denote by ∆d(t) = d(t)− vnom

the above fluctuations.

Assumption 4.4.1. The state x(t) and the coalitions’ values fluctuations ∆d(t) are uncorre-
lated.

Introducing the fluctuations ∆d(t) allows us to rewrite dynamics (4.3) in a more convenient
way. To do this, note first that, as u = [aT sT ]T , if anom is fixed then unom is also fixed as
Bunom = vnom. Let us denote ∆u(t) = u(t)−unom. The dynamics (4.3) can be rewritten as
follows:

ẋ(t) = Bu(t)−d(t) = Bu(t)− (vnom +(d(t)− vnom)) = Bu(t)− vnom −∆d(t)

= B(u(t)−unom)−∆d(t) = B∆u(t)−∆d(t).

We said before that we will focus on a stricter version of (4.8). We do this by augmenting
the state as shown next. First, denote by B† a generic pseudo inverse matrix of B and com-
plete matrices B and B† with matrices C and F such that

[
B
C

] [
B† F

]
= I. (4.9)

Then, building upon the new square matrix
[

B
C

]
, let us consider the augmented system

ẋ(t) = B∆u(t)−∆d(t)
ẏ(t) = C∆u(t).

(4.10)

Here y(t) plays the role of a compensator5 and we assume that d(t) is uncorrelated to y(t)
as well. After integrating the above system (see (4.11), right) we define a new variable z(t)
as follows:

z(t) =
[

B† F
] [ x(t)

y(t)

]
,

[
x(t)
y(t)

]
=

[
B
C

]
z(t). (4.11)

It turns out that to drive x(t) to zero w.p.1, and obtain unom as average allocation on the
long run, we can rely on a simple function φ̂(.), which depends on z(t). Before introducing
this function, for future purposes observe that the dynamics for z(t) satisfies the first-order

5The additional dynamic variable y(t) has the goal of keeping track of the load unbalancing with respect
to the desired average 0.
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differential equation:

ż(t) =
[

B† F
] [ ẋ(t)

ẏ(t)

]
=

[
B† F

] [ B
C

]
∆u(t)−

[
B† F

][ ∆d(t)
0

]
= ∆u(t)−B†∆d(t).

(4.12)

Let ∆umin and ∆umax be the minimal and maximal values of ∆u(t) for the following con-
straints to hold true: u(t) = unom +∆u(t) ∈U . Then, let us formally define φ̂(z(t)) as:

φ̂(z(t)) = unom +∆u(t) ∈U, ∆u(t) = sat[∆umin, ∆umax](−z(t)), (4.13)

where with sat[a,b](ξ ) we denote the saturated function that, given a generic vector ξ and
lower and upper bounds a and b of same dimensions as ξ , returns

sat[a,b](ξ ) =


bi for all i ξi > bi

ai for all i ξi < ai

ξi for all i ai ≤ ξi ≤ bi.

Now, taking the control u(t) = φ̂(z(t)), we obtain the dynamic system ż(t) = Bφ̂(z(t))−
d(t). With the above preamble in mind, we are ready to state the following convergence
property.

Theorem 4.4.1. Using the controller φ̂(z(t)), as in (4.13), we have limt→∞ z(t) = 0 w.p.1
and therefore limt→∞ ū(t) = unom.

In the next corollary, we use the previous result to provide an answer to problem 4.2.1.

Corollary 4.4.1. The state x(t) is driven to zero w.p.1 as expressed in (4.8) and the average
allocation converges to the nominal allocation i.e., limt→∞ ā(t) = anom.

Proof. This is a direct consequence of the result proved in the previous theorem. From
(4.11), and [B† F ] being a non singular matrix, we have limt→∞ x(t) = 0 w.p.1. From the
previous theorem we also have limt→∞ ū(t) = unom. Since u(t) = [aT (t) sT (t)]T , we have
that limt→∞ ā(t) = anom.

To summarize, in the full information case, the controller u(t) defined by (4.13) induces
an allocation sequence a(t) such that the average ā(t) converges to A0 = anom and the
average excess of coalitions are driven to snom ∈ T .
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4.4.2 Partial information case
In the previous section we observed that if the GD has complete knowledge of the excesses
and therefore of x(t) then he can design an allocation rule so that the average allocations
are driven to anom. In this section we solve problem 4.2.1 with A0 = C(vnom) and under
the assumption that the GD has partial information about x(t). In particular, we assume
that the GD knows the sign of x(t). An information structure based on the sign of x(t) has
an oracle-based interpretation which we discuss in detail in Subsection 4.4.2.1.

Similarly to the previous section, suppose that we know a particular allocation anom in
the core C(vnom), and let us study the convergence properties of the average allocations.
In particular, using an allocation rule u(t) = φ(x(t)), we require that x(t) satisfying the
dynamics ẋ(t) = Bφ(x(t))−d(t), converge to zero in probability. In this section, we state
the second main result of this work which proposes a solution to problem 4.2.1 with partial
information structure. To do this, let us denote again by B† a generic pseudo inverse matrix
of B and take a feasible allocation unom such that

Bunom = vnom = lim
t→∞

v̄(t), unom ∈U.

Also, for future purposes, define a function φ̂(.), which depends only on the sign of x(t),
as follows:

φ̂(sign(x(t))) = unom +∆u(t) ∈U, ∆u(t) =−δB†sign(x(t)). (4.14)

Now, taking the control u(t) = φ̂(sign(x(t))), we obtain the dynamic system ẋ(t) = B
φ̂(sign(x(t)))−d(t). Now, we state the following convergence property.

Theorem 4.4.2. Using the controller u(t)= φ̂(sign(x(t))) as in (4.14) we have limt→∞ x(t)=
0 w.p.1.

Corollary 4.4.2. The average allocation converges to the core of the average game:

lim
t→∞

ā(t) ∈C(vnom), w.p.1.

Proof. From theorem 4.4.2, we know that limt→∞ x(t) = 0 w.p.1. This last result in turn
implies that limt→∞

x(t)−x(0)
t = 0 w.p.1 and thus, invoking lemma 4.3.1, we also have that

limt→∞ ā(t) ∈C(vnom), w.p.1.

Remark 4.4.1. In both cases, i.e., with full and partial information on x(t) the GD could
drive limt→∞ x(t) to zero w.p.1. As a result we have limt→∞

x(t)−x(0)
t = 0 and by lemma

4.3.1 convergence of allocations to the core C(vnom) is guaranteed. With full information
on x(t) a particular allocation anom can be achieved i.e., A0 = anom on average whereas
in the partial information case, the average of the allocations converge to the core of the
average game, i.e., A0 = limt→∞C(v̄(t)).
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4.4.2.1 Oracle based interpretation

In this subsection we elaborate more on the partial information structure. In particular,
we highlight how the feedback on state x(t) can be reviewed as the result of an oracle-
based procedure. To see this, assume that the GD knows the sign of x(t). Since x(t) =
(ε(t)− s̃(t))−(ε(0)− x(0)), sign(x(t)) reflects over-satisfaction of coalitions with respect
to the threshold s̃(t). In particular, take without loss of generality ε(0),x(0) = 0, then with
reference to component j, the sign of x j(t) yields:

sign
(
x j(t)

)
=


1 ε j(t)> s̃ j(t)
0 ε j(t) = s̃ j(t)
−1 ε j(t)< s̃ j(t).

(4.15)

To summarize, we can think of a situation where the GD approaches an oracle that tells
him the sign of x(t). Since s(t) is chosen by the GD for every t, the accumulated surplus,
s̃(t), is given as an input to the oracle. The oracle returns “yes” if the actual accumulated
excess is greater than s̃(t) and “no” otherwise. The use of oracles is an element in common
with the ellipsoid method in optimization and with a large literature [79] on cutting planes.

Recall that nonnegativeness of the threshold has its roots in the feasibility condition
u(t) ∈ U for all t ≥ 0 with feasible set U as in (4.4). Nonnegativeness of the threshold
provides us with a further comment on the information available to the GD. Actually,
from the first condition in (4.15), we can conclude that coalitions associated to a positive
state x(t) are certainly in excess. This is clear if we observe that sign

(
x j(t)

)
= 1 implies

ε j(t) > s̃ j(t) ≥ 0. We can then summarize the information content available to the GD as
follows, let S be the generic coalition associated to component j:

sign
(
x j(t)

)
=

{
1 then coalition S in excess

−1,0 nothing can be said.

Trivially, the development in the full information case in Section 4.4.1, which is all
based on control strategy (4.13), fits remarkably well with the case where x(t) is revealed
completely as abundantly elaborated in [14]. In this last case, the fact that the GD knows
x(t) implies that he knows ε(t) as well. Also, it is intuitive to infer that in this last set
up, exact knowledge of x(t) can only influence positively the GD in terms of speed of
convergence of allocations to the core of the average game.

Remark 4.4.2. As the GD knows a priori the nominal game and a corresponding nominal
allocation vector a natural question that arises is why one has to design an allocation rule
as given by (4.13) and (4.14) instead of a stationary rule φ̂(.) = unom. The rules given by
(4.13) and (4.14) intuitively translate to meeting the instantaneous needs of coalitions in an
average sense which involves redistribution of excesses in some optimal way. This feature
provides an incentive for players to stay in grand coalition.
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4.4.3 Connections to approachability
Approachability theory was developed by Blackwell as early as 1956 [17] and culminates
to the well known Blackwell’s theorem. Along the lines of Section 3.2 in [64], we recall
next the geometric (approachability) principle that lies behind the Blackwell’s theorem.
The contribution of this section is to show that such a geometric principle shares striking
similarities with the solution approach used in the previous sections.

To introduce the approachability principle, let Φ be a closed and convex set in Rm and
let P(y) denote the projection of any point y ∈ Rm (closest point to y in Φ). Also denote

by ȳk the average of y1 . . . ,yk, i.e., ȳk =
∑k

t=0 yt
k and let dist(ȳk,Φ) the Euclidean distance

between point ȳk and set Φ.

Lemma 4.4.1. (Approachability principle [64]) Suppose that a sequence of uniformly
bounded vectors yk in Rm satisfies condition (4.16), then limk→∞ dist(ȳk,Φ) = 0:

[ȳk −P(ȳk)]
T [yk+1 −P(ȳk)]≤ 0. (4.16)

Now, to make use of the above principle in our set up, let us consider the discrete time
analog of the excess dynamics (4.3):

xk+1 = xk +B∆uk −∆dk,

and define a new variable yk = xk − xk−1 so that we can look at the sequence of yk in Rm.
Likewise, consider the discrete time version of control (4.14) as displayed below:

φ̂(sign(xk)) = unom +∆uk ∈U, ∆uk =−δB†sign(xk − x0). (4.17)

We are now in the position of stating the main result of this section.

Theorem 4.4.3. Using the controller uk = φ̂(sign(xk − x0)) as in (4.17) we have equiva-
lently that

i) the average allocations converge to the core of the average game,

lim
k→∞

āk ∈C(vnom), w.p.1 (4.18)

ii) the vector 0 is approachable by the sequence ȳk,

lim
k→∞

ȳk = 0, w.p.1. (4.19)

The strength of the above result is in that it sheds light on how the convergence problem
dealt with in this work has a stochastic stability interpretation as well as an approachability
one.
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4.5 Derivation of the main results

4.5.1 Proof of theorem 4.4.1

This proof is derived in the context of Lyapunov stochastic stability theory [67]. We start
by observing that using u(t) = φ̂(z(t)) we have:

ż(t) = Bφ̂(z(t))−d(t). (4.20)

Consider a candidate Lyapunov function V (z(t)) = 1
2zT (t)z(t). The idea is to inspect that

E[V̇ (z(t))] < 0 6 for all t ≥ 0. Actually, the theory establishes that if the last condition
holds true, then V (z(t)) is a supermartingale and therefore by the martingale convergence
theorem limt→∞V (z(t)) = 0 w.p.1 (almost surely). To see that E[V̇ (z(t))] < 0 is true,
observe that from (4.12) we have

E[V̇ (z(t))] = E[zT (t)ż(t)]

= E[zT (t)∆u(t)]−E[zT (t)B†∆d(t)]

= E[zT (t)sat(−z(t))]< 0,

where condition E[zT (t)B†∆d(t)] = 0 is a direct consequence 7 of the assumption that
∆d(t) is uncorrelated with x(t) and y(t). But the above condition implies that limt→∞V (z(t))
is equal to 0 w.p.1 and therefore we have limt→∞ z(t) = 0 w.p.1. So far we have proved the
first part of the statement, i.e., that the dynamic system (4.20) converges to zero w.p.1. For
the second part, after integrating dynamics (4.12), we have

lim
t→∞

∫ t
0[∆u(τ)−B†∆d(τ)]dτ

t
= lim

t→∞

z(t)− z(0)
t

= 0.

This last condition together with the assumption vnom = limt→∞ v̄(t) yields

lim
t→∞

∫ t
0 B†∆d(τ)dτ

t
= lim

t→∞

∫ t
0 ∆u(τ)dτ

t
= 0,

from which we can conclude limt→∞ ū(t) = limt→∞

∫ t
0 unom+∆u(τ)dτ

t = unom as claimed in the
statement.

6Stochastic stability involves time derivative of the expectation of V (x(t)). However, since V (.) is non-
negative and smooth, the limit (due to derivative) and expectation can be interchanged by using the dominated
convergence theorem [111].

7If ∆d(t) is uncorrelated with x(t) and y(t) then C∆d(t) is uncorrelated with z(t) = Ax(t)+By(t).
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4.5.2 Proof of theorem 4.4.2

Consider a candidate Lyapunov function V (x(t)) = 1
2xT (t)x(t). The idea is to inspect that

E[V̇ (x(t))]< 0 for all t ≥ 0. For this to be true, it must be

E[V̇ (x(t))] = E[xT (t)ẋ(t)]

= E[xT (t)Bu(t)]−E[xT (t)d(t)]

= E[xT (t)Bunom]+E[xT (t)B∆u(t)]−E[xT (t)vnom]−E[xT (t)∆d(t)]︸ ︷︷ ︸
=0

= E[xT (t)B∆u(t)]< 0,

where condition E[xT (t)∆d(t)] = 0 is a direct consequence of Assumption 4.4.1. But the
above condition E[xT (t)B∆u(t)] < 0 is satisfied since B∆u(t) = −δ sign(x), which in turn
implies

E[xT (t)B∆u(t)] = E[−δ‖x(t)‖1]< 0.

Then we derive that limt→∞V (x(t)) = 0 w.p.1 and therefore also limt→∞ x(t) = 0 w.p.1 and
this concludes the proof.

4.5.3 Proof of theorem 4.4.3
We first prove the equivalence between (4.18) and (4.19). Invoking the discrete time re-
formulation of lemma 4.3.1, we can infer that condition (4.18) is equivalent to driving
ȳk =

1
k ∑k yk to zero as k → ∞ w.p.1. Actually, lemma 4.3.1 in discrete time establishes

that limk→∞ āk ∈ C(vnom), w.p.1 is equivalent to limk→∞
xk−x0

k = 0 w.p.1. Observing that
ȳk =

xk−x0
k then we have that limk→∞ āk ∈ C(vnom), w.p.1 is equivalent to limk→∞ ȳk = 0

w.p.1.
We now prove that using the controller uk = φ̂(sign(xk)) as in (4.17) then (4.19) holds

true. To see this, let us invoke the approachability principle in lemma 4.4.1 and observe
that a sufficient condition for approachability of ȳk to 0 is ȳT

k yk+1 ≤ 0 for all k. This is
evident if we take set Φ including only the zero vector, Φ = {0}, and thus P(ȳk) = 0 in
(4.16). For the present case, using the definition of yk, condition ȳT

k yk+1 ≤ 0 would be
1
k (xk − x0)

T (xk+1 − xk) ≤ 0, which implies (xk − x0)
T B∆uk − (xk − x0)

T ∆dk ≤ 0 for all k.
Taking the expectation, from Assumption 4.4.1 we know that E[(xk −x0)

T ∆dk] = 0 and so
we can write

E[(xk − x0)
T B∆uk − (xk − x0)

T ∆dk] = E[(xk − x0)
T B∆uk]

= E[(xk − x0)
T B(−δB†sign(xk − x0))]≤ 0.

From the above condition we derive that ȳT
k yk+1 ≤ 0 w.p.1 for all k and this concludes our

proof.
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4.6 Numerical illustrations
Consider a 3 player coalitional TU game, so m = 7, with values of coalitions in the follow-
ing intervals:

v({1}) ∈ [0,4], v({2}) ∈ [0,4], v({3}) ∈ [0,4]

v({1,2}) ∈ [0,4], v({1,3}) ∈ [0,6]

v({2,3}) ∈ [0,7], v({1,2,3}) ∈ [0,12].

The convex set V is then a hyperbox characterized by the above intervals. From Assump-
tion 4.2.4, the GD knows the long run average game, i.e., limt→∞ v̄(t) = vnom. Without loss
of generality we take the balanced nominal game be as vnom = [1 2 3 4 5 6 10]T . In other
words, during the simulations we randomize the instantaneous games v(t) ∈ V so that it
satisfies the average behavior given by:

lim
t→∞

1
t

∫ t

0
v(τ)dτ = vnom. (4.21)

Next, we describe an algorithm to generate v(t) ∈ V such that the above condition holds
true.

Algorithm 4.6.1.

1. Generate m random points, ri ∈ V ⊂ Rm, i = 1,2, · · · ,m.

2. Solve R.p = vnom, with R = [r1, r2, · · · rm].

3. If p ≥ 0 and 1T p > 0, then go to 4 else go to 1.

4. Rescale R as R =
(
1T p

)
R and p as p = p

(1T p) .

5. If ri ∈ V , i = 1,2, · · · ,m, then go to 6 else go to 1.

6. STOP.

By construction, vnom is in the relative interior of the convex hull generated by the
columns of the matrix R. If an instance of the game v(t) is chosen as ri with probability pi

from the pair (R, p), Assumption 4.2.4 is satisfied. For simulations we ran the algorithm
10 times to generate 10 (R, p) pairs in V . Further, from each pair (R, p) we take 100,000
random selections (using Matlab randsrc function) to realize v(t). The step size is set to
∆ = 0.05. The results are averaged over the 10 pairs. The nominal choice of allocations
and surplus is taken as unom = [2.5 3 4.5 1.5 1 1.5 1.5 2 1.5]T . It can be verified that
Bunom = vnom.

Full information case: The saturation thresholds ∆umin and ∆umax are chosen so as to
ensure u(t) ∈U . This condition translates into Umin ≤ unom + sat[∆umin, ∆umax] ≤Umax. De-
note 1 as a vector with all entries equal to 1. For the instantaneous game a negative allo-
cation/surplus is not allowed, so Umin ≥ 0 · 1. Further, an allocation/surplus greater than
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the value of grand coalition is not allowed, so Umax ≤ vnom(N) · 1. For the given game
parameters, we see that the lower and upper thresholds for the saturation function are −1
and 5.5 respectively. Next, we present the performance results of the robust control law
given by equation (4.13). From theorem 4.4.1, limt→∞ z(t) converges to zero w.p.1 and as
a result limt→∞

x(t)−x(0)
t converges to zero. Fig. 4.1(a) illustrates this behavior for the first

component of coalition {1,2}. Further, by corollary 4.4.1, the same control law ensures
that the average allocations converge to the nominal allocations in the long run, in other
words limt→∞ ā(t) = anom and Fig. 4.1(b) illustrates this behavior.
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Figure 4.1 – Performance of the control law given by (4.13).

Partial information case: The choice of δ is crucial so as to ensure u(t) ∈U . This condi-
tion translates to Umin ≤ unom+δB†sign(x)≤Umax. We observe −∑ j |B†

i j| ≤
(
B†sign(x)

)
i ≤

∑ j |B†
i j|. A conservative estimate of δ is obtained as Umin ≤ unom ± δ maxi{∑ j |B†

i j|} ≤
Umax. For m = 7, we have maxi{∑ j |B†

i j|} = 2.11. For the instantaneous game a negative
allocation/surplus is not allowed, so Umin ≥ 0.1. Furthermore, an allocation/surplus greater
than the value of grand coalition is not allowed, so Umax ≤ vnom(N).1. We chose δ = 1,
which satisfies the above stated requirements. Next, we present performance results of the
robust control law given by equation (4.14). From theorem 4.4.2, x(t) converges to zero in
probability with a specific choice of control law and as a result limt→∞

x(t)−x(0)
t converges

to zero. Fig. 4.2(a) illustrates this behavior for the first component of coalition {1,2}. Fur-
ther, by Corollary 4.4.2, the same control law ensures that the average allocations converge
to the core C(vnom) and from equation (4.14) it is clear that the instantaneous allocations
lie in a neighborhood of nominal allocations. As a result there is an uncertainty in the
convergence of average allocations towards nominal allocations on the long run and Fig.
4.2(b) illustrates this behavior.
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Figure 4.2 – Performance of the control law given by (4.14).

4.7 Conclusions
In this chapter we study dynamic cooperative games where at each instant of time the
value of each coalition of players is unknown but varies within a bounded polyhedron.
With the assumption that the average value of each coalition in the long run is known
with certainty we present robust allocations schemes, which converge to the core, under
two informational settings. We proved the convergence of both allocation rules using
Lyapunov stochastic stability theory. Furthermore, we highlight the connections between
Lyapunov theory and approachability theory in a discrete time setting. The control laws
or allocation schemes are derived on the premise that the GD knows a priori, the nominal
allocation vector. If this information is not available then the problem can be treated as
a learning process where the GD is trying to learn the (balanced) nominal game from the
instantaneous games. The allocation rules designed in this chapter assure stability of the
coalitions in average, and as a result capture patience and expectations of the players in an
integral sense. The modeling aspects of generic dynamic coalitional games, as mentioned
in the remark 4.2.1, are open questions at this point of time.
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CHAPTER 5

Optimal Management and Differential Games in the
Presence of Threshold Effects - The Shallow Lake Model

5.1 Introduction
Most of the optimal decision making problems studied in economics and ecology are com-
plex in nature. These complexities generally arise while modeling the inherent behavior
of the dynamic environment, which includes agents interacting with the system. Modeling
with hybrid systems [47, 106] capture some of these complex situations. The behavior
of such systems is described by the integration of continuous and discrete dynamics. An
abrupt change in the discrete state of the system is called a switch. If a decision maker
influences a switch then it is said to be controlled/external, whereas an internal switch
generally results when the continuous state variable satisfies some constraints. Thresh-
old effects are autonomous switches that happen when the continuous state variable hits a
boundary. Some examples in this direction are, a firm going bankrupt when its equity is
negative and regime shifts in ecology [91] etc. Optimal control of hybrid systems received
considerable interest in control engineering, see for instance [112, 104, 21, 97, 89, 94].
These works include formulation of different variations of the necessary conditions. For
computational issues related to optimal control of hybrid systems, see [62, 20, 97].

In this chapter, we study optimal management and differential games in a pollution
control model called the shallow lake problem, see [70, 59, 108, 23]. The production func-
tion of this model is non linear, convex-concave in particular. As a result, the optimal
vector field displays several interesting qualitative behaviors such as existence of multiple
steady states, Skiba points1 [100] and bifurcations due to parameter variations. A com-
plete bifurcation analysis of this vector field is provided, recently, in [58]. The inflection
point of this convex-concave function acts as a soft threshold. In this chapter, we approx-
imate this nonlinear effect with simple and hysteresis switching, by using deterministic
hard thresholds, and study optimal management and open loop Nash equilibrium policies.
Some literature incorporating threshold effects include [78], [81] and references cited in
those papers. Though in [78], the author uses necessary conditions, in the line of [94], the

1Starting from such a point the optimal control problem has more than one optimal solution, and as a
result the decision maker is indifferent to a particular solution.
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objective function is quadratic and the state variable admits jumps, whereas, the present
chapter deals with discontinuous dynamics. Recently, in [81] the authors consider an op-
timal management problem, with probabilistic thresholds and simple dynamics, and use
dynamic programming to derive optimal policies.

In this chapter we do not attempt to solve the optimal controls or equilibrium strategies
for a generic class of (hybrid) differential games. Instead, we study the shallow lake prob-
lem with switching approximation and highlight the key differences with the smooth case,
the classical shallow lake model. This chapter is organized as follows. In section 5.2, we
review optimal control of a specific class of hybrid systems, known as switched systems.
In section 5.3, we introduce a class of differential games, that arise in pollution control,
with threshold effects. We study optimal management and open loop Nash equilibrium
policies related to the shallow lake model in section 5.4. Finally, section 5.5 concludes.

5.2 Optimal control of switched systems
In this section we review necessary conditions to solve optimal control for a specific
switched system. The switching system that we have in mind has the following descrip-
tion:

Definition 5.2.1 (Switched System). A switched system is a triple S = (I ,F ,E ) where

• I is a finite set, called the set of discrete states representing the vertices of a graph.
• F = { fi : Rn ×Rm → Rn, i ∈ I } is a collection of vector fields. We denote ẋ(t) =

fi(x(t),u(t)) to be the vector field at location i ∈ I .
• E is a finite set of edges called transitions. A transition (i, j) ∈ E is triggered by

events (internal or external) resulting in abrupt change in dynamics from fi to f j.

In this chapter we consider internal switchings i.e., transitions from vertex i to j happen

when certain state constraints, say φi j(x(t)) = 0, are satisfied. Let Φi j ,
{

x ∈ Rn : φi j(x)

= 0
}

be the switching surface associated with transition i to j and Φ , ∪Φi j. Now, we

introduce a class of discounted autonomous infinite horizon optimal control problems with
internal switching dynamics, described by S = (I ,F ,Φ), as follows.

maxJ, J =
∫ ∞

0
e−rtg(x(t),u(t))dt (5.1)

ẋ(t) = fi(x(t),u(t)), i ∈ I , fi ∈ F , Φ = ∪Φi j (5.2)

x(0) = x0 ∈ Rn,u(.) ∈ U . (5.3)

Assumption 5.2.1. The real valued functions fi(.), i ∈ I and g(.) are continuous, ∂ fi(.)
∂ x

and ∂ g(.)
∂x exist and are continuous. The control space U consists of piecewise continuous

functions with u(t) ∈U , where U is a bounded set included in Rm. Further, we assume the
left- and right-hand limits for u(.) exist and x(.) is continuous and piecewise continuously
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differentiable, which satisfies (5.2) for all points t where u(.) is continuous. The initial
state satisfies x0 /∈ Φ. The velocity vector satisfies ẋ(τ) 6= 0 during a transition where τ is
the switching instant.

We call a pair (x(.),u(.)) admissible for the problem (5.1-5.3) if assumption 5.2.1 is
satisfied. Let k(.) represent the switching sequence associated with S , i.e., when the
system is in mode i at time t we have k(t) = i. Since, the switchings happen internally
we see that u(.) induces a switching sequence k(.). The necessary condition for a pair
(x∗(.),u∗(.)) to be optimal for the problem (5.1-5.3) is given by the following theorem
2, see theorem 2.3 of [89] or theorem 1 of [88] or theorem 3 of [94] or theorem 2.2 and
theorem 2.3 of [97] for more details.

Theorem 5.2.1. If (x∗(t), u∗(t)) represent an optimal admissible pair for the problem
(5.1-5.3) , there exists a piecewise absolutely continuous function λk∗(.)(.) and a constant
λ0 ≥ 0,

(
λ0,λk(t)

)
6= 0 on [0,∞) such that:

a) let Hamiltonian be defined as Hk(t)(t,x(t),u(t),λk(t)(t),λ0) , λ0e−rtg(x(t),u(t))+
λ ′

k(t) fk(t)(x(t),u(t)) then for a given (λk∗(t)(t),λ0,x∗(t)) at a given time t, except at
the switching instants, the following maximum condition holds

Hk∗(t)(t,x
∗(t),u∗(t),λk∗(t)(t),λ0)≥ Hk∗(t)(t,x

∗(t),v,λk∗(t)(t),λ0) ∀ v ∈U, (5.4)

and if u∗(t) is an interior solution then
∂Hk(.)(.)

∂u

∣∣
u(t)=u∗(t)= 0.

b) the adjoint process λk∗(t)(t) satisfies λ̇k∗(t)(t)=−∂Hk(.)(.)

∂x

∣∣
x(t)=x∗(t) for all t ≥ 0 except

at the switching instants.

c) if τ is a switching instant then the following conditions hold true:

1. x(τ) ∈ Φ, τ ∈ [0,∞)

2. (adjoint jump condition)
there exists a β ∈ R such that λk∗(τ−) = λk∗(τ+)+β

(
φk∗(τ−)k∗(τ+)(x(τ))

)
x

3. (Hamiltonian continuity)

Hk∗(τ−)(τ−,x∗(τ−),u∗(τ−),λ (τ−),λ 0) = Hk∗(τ+)(τ+,x∗(τ+),u∗(τ+),λ (τ+),λ 0).

The natural transversality condition limt→∞ λk∗(t)(t) = 0 is not guaranteed except with
some additional conditions. The above necessary conditions, when solved, generally give
a large number of candidates and the optimal solution is obtained by comparing the ob-
jective evaluated along the candidate trajectories. The non-switched analog of problem

2There exist several variations of the theorem in a more general setting, for instance refer [97, 94, 89,
104]. Here, we consider a specific system S where switchings happen internally.
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(5.1-5.3) is the classical discounted autonomous infinite horizon optimal control problem,
a well studied problem in economics literature. For this class of problems, when necessary
conditions hold true in normal form, i.e., λ0 = 1, the objective evaluated along a candi-
date trajectory is given by 1

r H(0,x∗(0),u∗(0),λ (0),1), see proposition 3.75 of [48] for a
proof3. We show in the next lemma, for the problem (5.1-5.3), that the objective evaluated
along the optimal candidates with a finite number of switchings also satisfies this property
when λ0 = 1. The proof of the lemma, given in the appendix, hinges upon the Hamiltonian
continuity property.

Lemma 5.2.1. Let (x∗(.),u∗(.)) be an optimal admissible candidate pair with a finite num-
ber of switchings for the problem (5.1-5.3), then the objective evaluated along the candi-
date trajectory is given by 1

r Hk∗(0)
(
0,x∗(0),u∗(0),λk∗(0)(0),1

)
.

5.3 A class of differential games with threshold effects
In this section we discuss briefly a differential game model in pollution control, taken from
[59], and modify the dynamics to include threshold effects. Assume a situation where N
economic agents, sharing a natural system, take actions ai(t), i = 1,2, · · · ,N at time t, and
as a result affect the state x(t) of a natural system. The economic agents could be societies,
dealing with eutrophication of a lake that they manage, or countries, worried about climate
change. The stock of pollutant in the natural system admits a dynamics described by:

ẋ(t) = f (x(t),a1(t),a2(t), · · · ,aN(t)) =
N

∑
i=1

ai(t)−bx(t)+h(x(t)), x(0) = x0 ≥ 0. (5.5)

The state variable x(t) could be interpreted as accumulated greenhouse gases or accumu-
lated phosphorous in a lake. Besides the activity of economic agents, the sources that
promote x(t) are the nonlinear internal dynamics captured by the term h(x(t)). The sinks
that contribute to the reduction of x(t) are abstracted as the linear decay rate b > 0. The
second part of the model deals with economic analysis of the agents. An agent i, with
action ai, generates benefits according to a strictly increasing and concave utility func-
tion B(ai). The stock of pollutants x(t) causes damage to the natural system according
to a strictly increasing and convex damage function D(x), sometimes referred as disutil-
ity of agents. The net profit that an agent i receives at a point of time t is then given by
B(ai(t))−D(x(t)). Each agent uses a strategy ai(.) to maximize the present value of net
benefits over an infinite time horizon, i.e.,

max
ai(.)

∫ ∞

0
e−rt (B(ai(t))−D(x(t)))dt, i = 1,2, · · · ,N, (5.6)

subject to (5.5), where r > 0 is a discount rate. Here, the quantities B(.), D(.) and r are
assumed to be the same for all the agents. In this chapter, h(x) is assumed to be a convex-
concave function; that is for lower stocks of x(t) there is relatively low marginal return to

3This result follows from the additional necessary condition that limit of the maximized Hamiltonian,
along the candidate trajectory, is zero when t goes to infinity, see [75].
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the system, whereas for the higher stocks this marginal return increases. When the max-
imal feedback rate is greater than the decay rate, i.e., max(h′(x)) > b, the system (5.5)
exhibits three equilibria for a certain values of inputs a = ∑i ai. There will be two stable
steady states, one corresponding to low x ‘clear state’ which is highly valued by concerned
users of the natural system4, but also a relatively high x ‘polluted state’ which is valued by
the agents due to economic interest. This nonlinear positive feedback effect is a potential
source for complex qualitative behaviors in optimal solutions in the model (5.5-5.6). The
region of stock near the inflection point of h(x) acts as a soft threshold distinguishing the
clear and polluted regions. A piecewise approximation of the non linearity in h(x) results
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Figure 5.1 – Approximation of h(x) with hard thresholds

in a dynamics with discontinuous right hand side; that is when the amount of stock reaches
a pre-specified threshold the dynamics changes abruptly. In this chapter we consider two
approximations of h(x), firstly with simple switching and later with ideal hysteresis switch-
ing. Hereafter, we address ‘clean state’ as mode 1 and ‘polluted state’ as mode 2. Let a(t)
denote total agents’ activities i.e., a(t), ∑i ai(t).

5.3.1 Simple switching
Figure 5.1(a) illustrates the situation when h(x) is approximated with a Heaviside step
function. Thus, the dynamics of the system (5.5) is given by:

S = {I ,F ,E } where

I = {1,2}, F = { f1(x,a) = a−bx, f2(a,x) = a−bx+1}
E = {φ12(x(t)) = φ21(x(t)) = x(t)−∆ = 0}
ẋ(t) = a(t)−bx(t), for x(t)< ∆
ẋ(t) = a(t)−bx(t)+1, for x(t)> ∆.

For certain values of a the above system exhibits two steady states, one each in mode 1
and mode 2. If the decay rate, b, is larger than 1

∆ it is possible to reach the steady state in

4Could be people using a lake for recreation etc.
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mode 1, from mode 2, by lowering the external loading a. So, if b∆ < 1 a steady state in
mode 1 cannot be reached from mode 2 even by setting a = 0.

5.3.2 Hysteresis switching

Figure 5.1(b) illustrates the situation when h(x) is approximated with ideal hysteresis5.
The dynamics of the system (5.5) is given by:

S = {I ,F ,E } where

I = {1,2}, F = { f1(x,a) = a−bx, f2(a,x) = a−bx+1}
E = {φ12(x(t)) = x(t)−∆2 = 0, φ21(x(t)) = ∆1 − x(t) = 0, ∆2 > ∆1}
ẋ(t) = a(t)−bx(t), for x(t)< ∆2

ẋ(t) = a(t)−bx(t)+1, for x(t)> ∆1.

Here, the dynamics admit history dependence. Again, if b∆1 < 1, we see that a transition
from mode 2 to mode 1 is not possible even when a is set to zero.

The above models, with threshold effects, can be useful in analyzing several problems
that arise in pollution management. In the next section, we consider a particular exam-
ple, the shallow lake model, and analyze the optimal management and open loop Nash
equilibrium policies.

5.4 The shallow lake model
The shallow lake model has received considerable interest over the last two decades. The
essential dynamics [70] of the eutrophication process can be modeled by the differential
equation

ẋ(t) = a(t)−bx(t)+
x2(t)

x2(t)+1
, x(0) = x0,

where x(t) is the amount of phosphorus in the lake at time t, a(t) is the total input of phos-
phorus washed into the lake due to farming activities, b is the rate of loss of phosphorus due
to sedimentation, and the last term captures internal biological processes for the produc-
tion of phosphorus. An agent i receives benefits, by an action ai(t), as B(ai(t)) = lnai(t)6

and incurs a cost, towards cleaning, as D(x(t)) = cx2(t). Here, the parameter c models
the relative cost of pollution. Next, we study the above canonical model with threshold
effects by approximating the non-linearity with simple switching and with hysteresis. We
first consider the optimal management problem with simple switching.

5Hysteresis effects can be modeled using smooth nonlinear functions, for instance, in [8], the author
formulates dynamic programming methods for some optimal control problems with hysteresis.

6Notice that since B(ai(t)) = lnai(t) we implicitly assume ai(t)> 0 for all t.
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5.4.1 Optimal management

The necessary conditions for (x∗(t),a∗1(t), · · · ,a∗N(t)) to be optimal for the optimal man-
agement problem with simple switching are given as follows:

mode 1 H1(.) = λ0e−rt

(
∑

i
lnai(t)−Ncx2(t)

)
+λ1(t)

(
∑

i
ai(t)−bx(t)

)
∂H1(.)

∂ai
|ai=a∗i = 0 gives λ0e−rt 1

a∗i (t)
+λ1(t) = 0, i = 1,2, · · · ,N

ẋ∗(t) = ∑
i

a∗i (t)−bx∗(t), x∗(0) = x0

λ̇1(t) =−∂H1(.)

∂x
|x=x∗ = bλ1(t)+2cNλ0e−rtx∗(t)

(λ0,λ1(t)) 6= 0,∀t ≥ 0

mode 2 H2(.) = λ0e−rt

(
∑

i
lnai(t)−Ncx2(t)

)
+λ2(t)

(
∑

i
ai(t)−bx(t)+1

)
∂H2(.)

∂ai
|ai=a∗i = 0 gives λ0e−rt 1

a∗i (t)
+λ2(t) = 0, i = 1,2, · · · ,N

ẋ∗(t) = ∑
i

a∗i (t)−bx∗(t)+1, x∗(0) = x0

λ̇2(t) =−∂H2(.)

∂x
|x=x∗ = bλ2(t)+2cNλ0e−rtx∗(t)

(λ0,λ2(t)) 6= 0,∀t ≥ 0.

If λ0 = 0 we see that λi(t) = 0, i = 1,2, ∀t ≥ 0 in the above necessary conditions. So,
necessary conditions hold in normal form, i.e., λ0 = 1. We still cannot assume the natural
transversality condition to hold true. During a switching instant τ > 0 we have x∗(τ) = ∆
and the adjoint jump condition given by λi(τ−) = λ j(τ+)+ β , i 6= j, i, j = 1,2, β ∈ R
holds true. Further, if k∗(τ−) = i and k∗(τ+) = j, i.e., during a transition from mode i to
mode j, we have Hi

(
τ−,x∗(τ−),a∗1(τ

−), · · · ,a∗N(τ−),λi(τ−))=H j
(
τ+,x∗(τ+),a∗1(τ

+), · · ·
,a∗N(τ+),λ j(τ+)

)
. So, the Hamiltonian continuity conditions are given by:

H1(τ−,∆,a∗1(τ
−), · · · ,a∗N(τ−),λ1(τ−)) = H2(τ+,∆,a∗1(τ

+), · · · ,a∗N(τ+),λ2(τ+)) (5.7)

H2(τ−,∆,a∗1(τ
−), · · · ,a∗N(τ−),λ2(τ−)) = H1(τ+,∆,a∗1(τ

+), · · · ,a∗N(τ+),λ1(τ+)). (5.8)

The above optimality equations, excepting equations (5.7) and (5.8), remain unaltered even
for ideal hysteresis approximation. For the latter case, the parameter ∆ in (5.7) and (5.8)
should be replaced with ∆2 and ∆1 respectively. The above necessary conditions can
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be reformulated in the current value form by defining the current value Hamiltonian as
Hc

k∗(t)(.) = ertHk∗(t)(.) and the current value adjoint variable as λ c
k∗(t)(t) = ertλk∗(t)(t). Fur-

ther, the obtained optimal dynamics and switching conditions in (x∗(t),λc(t)) space are
transformed in (x∗(t),a∗1(t), · · · ,a∗N(t)) space as follows:

ẋ∗(t) = ∑
i

a∗i (t)−bx∗(t)+α , x∗(0) = x0, α =

{
0 x∗(t)< ∆
1 x∗(t)> ∆

ȧ∗i (t) =−(r+b)a∗i (t)+2Nca∗i
2(t)x∗(t), i = 1, · · · ,N (except at the switching instants).

During the switching instant t = τ , we have x∗(τ) = ∆ and the Hamiltonian continuity
conditions given by (5.7) and (5.8) are satisfied. The above necessary conditions lead to
an N + 1 dimensional optimal vector field. In order to analyze the optimal dynamics we
consider symmetric strategies, i.e., a∗i (t) = a∗(t)/N. The symmetry assumption results in
a 2 dimensional vector field which can be analyzed using the phase plane diagram. The
necessary conditions with symmetry are now given as:

ẋ∗(t) = a∗(t)−bx∗(t)+α , x∗(0) = x0, α =

{
0 x∗(t)< ∆
1 x∗(t)> ∆

(5.9)

ȧ∗(t) =−(r+b)a∗(t)+2ca∗2(t)x∗(t) (except at the switching instants). (5.10)

Again, during the switching instant t = τ the Hamiltonian continuity conditions lead to the
following equations.

If k∗(τ−) = 1 and k∗(τ+) = 2, then lna∗(τ−)+
b∆

a∗(τ−)
= lna∗(τ+)+

b∆−1
a∗(τ+)

(5.11)

If k∗(τ−) = 2 and k∗(τ+) = 1, then lna∗(τ−)+
b∆−1
a∗(τ−)

= lna∗(τ+)+
b∆

a∗(τ+)
. (5.12)

The equations (5.9-5.12) constitute the optimal vector field of the shallow lake model with
simple switching. Due to symmetry, we have the following observation (see appendix for
the proof):

Lemma 5.4.1. The symmetric open loop Nash equilibrium problem can be solved as a
symmetric optimal management problem with c replaced by c

N .

Due to lemma 5.4.1, the symmetric open loop Nash equilibrium problem can be solved
from the necessary conditions of the symmetric optimal management problem with param-
eter c replaced by c

N . So, the symmetric open loop Nash equilibrium problem is a potential
game 7. In the following discussion we study the optimal management problem in detail.

7A potential game [76] facilitates to compute Nash equilibria as an optimization problem instead of a
fixed point problem.
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Figure 5.2 – Phase plane analysis

5.4.1.1 Phase plane analysis

The equilibrium points of the optimal vector field are:

mode 1
(
xeq,aeq

)
=

{
(0,0),

(√
r+b
2cb

,

√
b(r+b)

2c

)
,

(
−
√

r+b
2cb

,−
√

b(r+b)
2c

)}

mode 2
(
xeq,aeq

)
=

{(
1
b
,0
)
,

(
1

2b
+

√
1

4b2 +
r+b
2cb

,

√
1
4
+

b(r+b)
2c

− 1
2

)
,(

− 1
2b

−
√

1
4b2 +

r+b
2cb

,−
√

1
4
+

b(r+b)
2c

+
1
2

)}
.

Here, it should be noted that the presence of equilibrium points in the above optimal vector
field depends on the location of the threshold. We discuss these issues related to bifurca-
tions in section 5.4.1.3.

Since the cost term involves ln(a), the nutrient loading should satisfy a(t) > 0. So,
only the second equilibrium point is chosen for each of the modes. Let x1

eq and x2
eq denote

these equilibrium points. Then we have, 0 < x1
eq < x2

eq and x2
eq >

1
b . The eigenvalues of the

Jacobian matrix, for the linearized dynamics near the equilibrium points, are:

mode 1
r
2
±

√
8b2 +8br+ r2

2

mode 2
r
2
±
√

r2 +8b2 +8br+4c−4
√

c2 +2brc+2b2c
2

.

By inspection, the equilibrium point in mode 1 is clearly a saddle point. Now we have:
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ẋ = 0
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8b2 +8br+4c−4
√

c2 +2bcr+2b2c = 4
(

c+2b(r+b)−
√

c(c+2b(r+b))
)

= 4
√

c+2b(r+b)
(√

c+2b(r+b)−
√

c
)
> 0.

So, the equilibrium point in mode 2 is also a saddle point. Figures 5.2(a), 5.2(b) and 5.3(a)
illustrate the phase portrait of the optimal dynamics in mode 1 mode 2 and with simple
switching respectively. The chosen parameters are b = 0.6, c = 0.5, r = 0.03 and ∆ = 1.5.
Any trajectory approaching the surface at x = ∆ undergoes a switching according to the
rules (5.11) and (5.12). Next, we analyze these switching rules in detail.

5.4.1.2 Switching analysis

Before proceeding with the actual switching analysis we discuss solvability of the equation

s(x,m) = ln(x)+
m
x
= n, m,n ∈ R,x > 0. (5.13)

If m = 0 then x = en. We consider the case m 6= 0. After rearranging terms the above
equation can be written as yey = l, y = −m

x , l = −me−n. Solution of the reformulated
equation is given by y = W (l). where W (.) is the Lambert W function [31]. Here, W (z)
is single valued for {z ≥ 0}∪{−1

e}, multiple valued for −1
e < z < 0, and not defined for

z <−1
e . Figure 5.4(a) shows two branches of W (z) namely, W0(z) and W−1(z). Thus, the

solution of (5.13) is given by x =− m
W (−me−n) .
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Figure 5.4 – Switching analysis

mode 1 to mode 2: When the optimal system switches from mode 1 to mode 2, following
(5.11), the jump in the control satisfies:

s(a−,b∆) = s(a+,b∆−1).

Here, s(.,b∆) : (0, ∞)→
[
lnb∆+1, ∞

)
. If b∆ = 1, then a+ = e−s(a−,b∆). If b∆ 6= 1, then

a+ = − b∆−1
W (−(b∆−1)e−s(a−,b∆))

. For b∆ < 1, we have −(b∆− 1)e−s(a−,b∆) > 0. So, a jump

results in a+ in the interval
[
a12, ∞

)
, a12 =

1−b∆
W0(( 1

b∆−1) 1
e)

. Here, W (z) increases for z > 0.

For b∆ > 1, we have −(b∆− 1)e−s(a−,b∆) < 0. So, a jump results in a+l in the interval(
0, al

12
]

and a+h in the interval
[
ah

12, ∞
)

al
12 =

1−b∆
W0(( 1

b∆−1) 1
e)

and ah
12 =

1−b∆
W−1(( 1

b∆−1) 1
e)

. Here,

W (z) decreases for z < 0. Superscripts l and h denote the lower and higher values which
are computed at different branches of W (z) for −1

e < z < 0.

mode 2 to mode 1: When the optimal system switches from mode 2 to mode 1, following
(5.12), the jump in the control satisfies:

s(a−,b∆−1) = s(a+,b∆).

Then, a+ = b∆
W (−b∆e−s(a−,b∆−1))

. We know a+ is well defined only if 0 < b∆e−s(a−,b∆−1) ≤ 1
e

which implies s(a−,b∆− 1) ≥ lnb∆+ 1. Further, for b∆es(a−,b∆−1) = 1
e which implies

s(a−,b∆− 1) = lnb∆+ 1. So, a− should satisfy s(a−,b∆− 1) ≥ lnb∆+ 1 for a jump to
happen from mode 2 to mode 1. In such a case, a jump results in two points, namely
a+l ∈ (0,b∆] and a+h ∈ [b∆,∞).
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A graphical illustration of the switchings is given in figure 5.4(b). Here, a− is called a
predecessor of a+, so a+ is a successor of a−. All switchings happen on the surface x = ∆.
Notice, there always exists a successor during transitions from mode 1 to mode 2, whereas
some points on the switching surface may not have predecessors in mode 1. Further, in
some cases there exist more than one successor or predecessor. These characteristics of
the optimal vector field should be considered while analyzing the optimal candidates. We
discuss these issues in the next section.

5.4.1.3 Analysis of optimal control

In this subsection we use the results from subsections 5.4.1.1 and 5.4.1.2 to analyze the
optimal system (5.9-5.12) and arrive at conclusions regarding the optimal candidates and
control actions. First, we notice that a solution trajectory, say γ(t), of the optimal system
(5.9-5.12) starting at a point (x0,a0), with x0 > 0 and a0 > 0, either

1. converge to the equilibrium points as t → ∞, or

2. leads to a control a∗(t) that goes to infinity, or

3. leads to a closed orbit.

A) Solutions approaching stable equilibrium points
First, we notice that a trajectory γ(t) approaching any equilibrium point admits a finite

number of switchings. So, the truncated candidate trajectory in the last interval satis-
fies necessary conditions similar to a classical problem8. So, the transversality condition,
given by limt→∞−Ne−rt

a∗(t) = 0, holds true. Next, we show that the trajectory γ(t) approaching

the stable equilibrium points (0,0) and
(1

b ,0
)

fails to satisfy the transversality condition.
First, consider a linearization around stable equilibrium point (0,0). The eigenvectors

associated with the eigenvalues are
[

1
0

]
and

[
1
−r

]
. Thus, the trajectory γ(t) approach-

ing the stable equilibrium points can be approximated as γ(t) =
[

x∗(t)
a∗(t)

]
= c1e−bt

[
1
0

]
+

c2e−(r+b)t
[

1
−r

]
+

[
o(e−bt)

o(e−(r+b)t)

]
. We see that the transversality condition is violated for

trajectories approaching stable equilibrium points, i.e., limt→∞− e−rt

−c2re−(r+b)t+o(e−(r+b)t)
=

limt→∞
ebt

c2r−o(1) 6= 0. Following the same reasoning it can be shown that trajectories ap-
proaching the other stable equilibrium point also fail to satisfy the transversality condition.

B) Solutions going to infinity9

We show that it is not possible for a trajectory γ(t) to grow unbounded while x∗(t)
remains bounded. If the latter condition holds, then we have x∗(t) < M for t > 0, which

8We used a similar argument in the proof of lemma 5.2.1.
9The analysis presented here is similar to [108].
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implies ẋ∗ = a∗− bx∗ > a− bM for dynamics in mode 1 and ẋ∗ = a∗− bx∗+ 1 > a∗−
bM + 1 for dynamics in mode 2. However, since (x∗(t),a∗(t)) → ∞, there exists T0 > 0
such that a∗(t)> bM+2 for all t > T0. So, for T = T0 +M, x∗(T )≥ M, which contradicts
the assumption x∗(t)< M for all t.

The transversality condition allows for solutions that go to infinity where a∗(t) grows
at a rate greater than −r. Since, a∗(t) goes to zero only at a rate −(r+b), we see that only
positive growth rates are possible. It is possible that these diverging paths can be more
beneficial than a path that approaches an equilibrium. We discard these candidates as the
control set is bounded, see assumption 5.2.1. So, we are left with candidates that approach
saddle node equilibria and closed orbits. The divergence of the non-switched analogue of
the optimal system, in state-adjoint coordinates, is equal to r > 0. So, using Poincaré -
Bendixson criterion the existence of closed orbits is ruled out, see [108]. In a switched
system, however, it is unclear as to how the notion of divergence should be defined. We
show later, with a numerical simulation, that in this study closed orbits may not exist. So,
we have the following assumption.

Assumption 5.4.1. We only consider optimal candidates that reach saddle node equilibria
as t → ∞.

C) Optimal candidates and objective
Let Eu

i and Es
i denote the unstable and stable manifolds in the mode i. If x0 ∈ R+

is the initial state of the lake then the optimal candidates are obtained by first tracing
the trajectories backwards starting at the equilibrium points. Let γ(t) ∈ R2

+ be one such
candidate, then the initial nutrient loading, i.e., a(0) = a0, is obtained as the intersection
of γ(t) with the line x = x0, and as a result multiple candidates, starting at x0, are possible.
Due to assumption 5.4.1, these candidates undergo only a finite number of switchings
and as a result lemma 5.2.1 can be used to compare the objectives along the candidate
trajectories.

The optimal vector field of the classical shallow lake problem with smooth nonlin-
earities admits complex qualitative behaviors such as multiple steady states, existence of
indifference or Skiba points and bifurcations due to variations in the parameters b, c and
r, refer [58] for a complete analysis. In the present model with deterministic thresholds,
we consider bifurcations due to variations in the switching surface. Further, we make the
following assumption.

Assumption 5.4.2. The switching surface does not coincide with the equilibrium points,
i.e., ∆ /∈

{
0, 1

b ,x
1
eq,x

2
eq
}

.

D) Bifurcations due to switching surface
The qualitative behavior of the optimal dynamics depends upon the position of the

switching surface. Let Si and Ui be points where the stable and unstable manifolds in
mode i touch the switching surface. As described in section 5.3, the critical decay rate
b = 1

∆ plays a crucial role. We consider the following situations:
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Figure 5.5 – Bifurcation analysis for b∆ < 1

b∆ < 1 : First, we notice that if b∆ < 1 any trajectory approaching the switching surface
from mode 1, after entering mode 2 satisfies ẋ = a−bx+1. Near the switching surface in
mode 2 we have ẋ(τ+) = a− (b∆−1)> 0. So, the trajectory never returns to mode 1, i.e.,
if the lake switches to turbid state it can never return to clear state.

(a) Consider the case with ∆ < x1
eq and the related phase diagram in figure 5.5(a). For

any x0 < ∆, the optimal candidate is the one that switches to the point S2 from mode
1. If S2 does not have a predecessor in mode 1 then there is no optimal solution 10.
If x0 > ∆, then the optimal candidate is the trajectory starting at (x0,Es

2(x0)). So, the
admissible candidates converge to the steady state in mode 2.

(b) Next, we consider the case ∆ > x1
eq and the related phase diagram in figure 5.5(b).

Following the discussion in 5.4.1.3B there always exists a closed region Ω such that
a trajectory originating in Ω leaves Ω in a finite time. A detailed analysis includes
finding the predecessors of the point S2. The optimal candidates can reach the steady
states either in mode 1 or in mode 2. However, starting in mode 2 the steady state
in mode 1 cannot be reached, whereas the steady state in mode 2 can be reached
starting in mode 1.

b∆ > 1 : The following observations can be made about the optimal candidates if b∆> 1.
The economic agents, by lowering the nutrient loading, can reverse the lake to mode 1 from
mode 2, i.e., ẋ(τ+)< 0 near the switching surface. We have the following three cases.

(c) Consider the case with ∆ < x1
eq and the related phase diagram in figure 5.6(a). A

trajectory starting in mode 1 either switches to mode 2 or approaches the origin.

10Transversality condition allows for trajectories with a(t) going to ∞.
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Figure 5.6 – Bifurcation analysis for b∆ > 1

Trajectories reaching the equilibrium point in mode 2 are optimal. The existence
of the closed region Ω2 follows from the discussion in section 5.4.1.3A. A detailed
analysis includes tracing the predecessors for the point S2 on the surface x = ∆ at
τ−.

(d) Consider the case with x1
eq < ∆ < x2

eq and the related phase diagram in figure 5.6(b).
The optimal candidates can reach either of the steady states in mode 1 and mode 2
by first reaching the points S1 and S2. So, the optimal candidates are obtained by
finding the predecessors of these points using the switching rules devised in section
5.4.1.2.

(e) Consider the case with ∆ > x2
eq and the related phase diagram in figure 5.6(c). Opti-

mal candidates reaching the steady state in mode 1 are optimal and these are obtained
by using the switching rules for finding the predecessors.

Next, we demonstrate the subtleties in finding the optimal candidates for a specific choice
of the above mentioned possibilities. We consider the case 5.4.1.3D.(e), i.e, when b∆ > 1
and ∆ > x2

eq, and explain in detail about the optimal candidates for all initial states x0.
Towards that end, we have the following algorithm/procedure to generate points on the
switching surface which eventually reach the steady state in mode 1.

Algorithm 5.4.1. Construct sequences dk, ek, gk, hk, k = 0,1,2, · · · using the following
steps:

1. For k = 0, set d0 = S1 and obtain e0, g0, h0 by solving the equation (follows from
section 5.4.1.2)

s(d0,b∆) = s(e0,b∆) = s(g0,b∆−1) = s(h0,b∆−1)

s.t d0 < b∆ < e0, g0 < al
12 < b∆−1 < ah

12 < h0.
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Figure 5.7 – Graphical illustration of algorithm 5.4.1.

2. If e0 <U1 go to step 3 else STOP.

3. For, k ≥ 1, solve the boundary value problem to obtain a(0) (solution exists due to
the property of the region Ω)

ẋ = a−bx, ȧ =−(r+b)a+2ca2x, x(0) = ∆, x(τ) = ∆, a(τ) = ek−1.

Set dk = a(0)

4. Solve s(dk,b∆) = s(ek,b∆) = s(gk,b∆−1) = s(hk,b∆−1), dk < b∆< ek, gk < al
12 <

b∆−1 < ah
12 < hk.

5. Set k = k+1 and go to step 3.

We notice, that the above procedure generates sequences that satisfy the following condi-
tion:

g0 < g1 < g2 < · · ·< gk < · · ·< al
12 < b∆−1 < ah

12 < · · ·< hk < · · ·< h2 < h1 < h0

and d0 < d1 < d2 < · · ·< dk < · · ·< b∆ < · · ·< ek < · · ·< e2 < e1 < e0.
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A graphical illustration of the algorithm is given by figure 5.7. Any trajectory starting
at (∆,dk), (∆,ek) and (∆,gk) will eventually reach the steady state in mode 1. Now, we
consider the three situations w.r.t. choice of initial state x0 and find the optimal candidates
for each one of them.

• First, if x0 > ∆, i.e., starting in mode 2, let (x0,ak
0) denote the initial state of the

trajectory which reaches the point (∆,gk) (shown as dotted lines in figure 5.7). Then
a candidate trajectory starting at (x0,ak

0) will undergo k cycles, that spiral out, be-
fore reaching the stable manifold Es

1 starting at d0. So, we have countably infinite
candidates that satisfy the necessary conditions. The objective along each path can
be calculated using lemma 5.2.1.

• x1
eq < x0 < ∆. If e0 >U1, then there may exist two candidates that approach steady

state in mode 1. The first one is the stable manifold. The other one may lie above
the unstable manifold Eu

1 which approaches e0, then switches to mode 2 at g0 and
switches back to mode 1 at d0. For e0 < U1, there always exists one candidate that
lies on the stable manifold Es

1. Further, we observe that trajectories starting at dk−1

and ending at ek intersect the line x = x0 at two points or at one point (tangential
intersection). So, depending upon the location of x0 we have either 2L or 2L+ 1
candidates, where L represents the number of paths that intersect the section x = x0.

• For x0 < x1
eq, if e0 < U1 then there exists one candidate that lies on the stable man-

ifold Es
1. Further, if e0 >U1 there may exist an additional candidate that reaches e0

switches to mode 2 at g0 and returns to mode 1 at d0.
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Figure 5.8 – Optimal candidates for various initial states. Thick gray lines indicate
stable and unstable manifolds, dashed line indicates the switching surface. Thick dark
lines indicate the optimal candidates.
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Initial State Candidate Objective
starting at (x0, a0) # of cycles reaches N = 4

steady state optimal
in mode # management

0.50 (0.50, 1.1425) i 0 1 -65.5150

1.06 (1.06, 0.8733) ii 0 1 -66.0710
(1.06, 0.9420) iii 1 1 -66.4980
(1.06, 1.1998) iv 1 1 -66.4940

2.50 (2.50, 0.2844) v 0 1 -70.6235
(2.50, 0.2851) 1 1 -71.0171
(2.50, 0.2859) 2 1 -71.3826
...

...
...

...
(2.50, 0.3003) 38 1 -78.1329
(2.50, 0.3005) vi 39 1 -78.2385
...

...
...

...

Table 5.1 – Numerical analysis of optimal candidates for the parameters b = 1, c =

0.6, r = 0.03 and ∆ = 1.6.

Figure 5.8(a) illustrates the phase plane of the optimal vector field (5.9-5.12) for the choice
of parameters b = 1, c = 0.6, r = 0.03, ∆ = 1.6 and N = 4. For this choice of parameters,
we have b∆= 1.6> 1, U1 = 5.03493 and e0 = 4.9259. The optimal candidates are obtained
by following the previous discussion. Optimal candidates starting at various initial states
are illustrated, in small roman letters, and the benefit of each player along these trajectories
is calculated according to equations (5.15), in cooperation, and (5.17), in noncooperation.
First, we consider the optimal management case and the results are given in table 5.1 and
illustrated in figure 5.8(a). For initial state x0 = 1.06, we obtain three candidates labeled
as (ii), (iii) and (iv). When following the paths (iii) and (iv), the agents increase the level
of nutrient loading till the lake switches to mode 2 and instantaneously drop the levels to
be able to switch back to mode 1 along the stable manifold Es

1. When the agents start in
mode 2, i.e., x0 > 1.6, there exist countably infinite candidates each undergoing a finite
number of cycles before reaching the steady state in mode 1. For instance, on path (vi)
the agents can alter the nutrient levels, i.e., a decrease and increase cycle, 39 times before
reaching the steady state in mode 1. The results can alter once the costs associated with
switchings are considered. For the open loop Nash equilibrium, following lemma 5.4.1,
we analyze the optimal field with c = 0.6 replaced with c

N = 0.15. The phase plane for
the optimal vector field with c = 0.15, ceteris paribus, is illustrated in figure 5.8(b). We
notice that only steady state in mode 2 can be achieved by the agents. So, the trajectory
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(vii) corresponds to the open loop Nash equilibrium path with x0 = 2.5 and the welfare
parameter set to c = 0.6. We notice that the mode of play induces a bifurcation in the
optimal vector field; that is when players play cooperatively steady state in mode 1 is
attained whereas a noncooperative behavior leads to the steady state in mode 2. Further, it
is clear from the tables 5.1 and 5.2 that each player receives greater benefits in cooperation.
Now, consider the effect of reducing the c from 0.6 to 0.15 on optimal management. Since,
in the later case the players incur less costs, towards cleaning activities, there is an incentive
for increasing the nutrients and as a result the optimal vector field results in the steady state
in mode 2.

Initial Candidate Objective
State starting at (x0, a0) # of reaches mode # N = 4 N = 4

cycles steady state optimal ONLE
in mode # management for c = 0.6

0.50 (0.50, 3.500000) - - -11.167611

1.70 (1.70, 1.635331) 0 2 -63.3300

2.50 (2.50, 1.398072) vii 0 2 -63.8598 -150.3192

Table 5.2 – Numerical analysis of optimal candidates for the parameters b = 1, c =

0.15, r = 0.03 and ∆ = 1.6

5.4.2 Hysteresis
In the previous section we notice that some candidates undergo multiple switches before
reaching a steady state in mode 1. During each cycle, a candidate leaving mode 1 reenters
the same mode instantaneously following the switching sequence ek → gk → dk, k ≥ 0.
These control actions are still admissible in the class U . The successors of gk, in figure
5.7, are ek and dk. If we consider the path gk → ek instead of gk → dk we obtain a limit
cycle · · ·gk → ek → gk → ek · · · . However, all these multiple (indefinite) switchings happen
simultaneously at the switching instant τ and these (ill posed) candidates are not consid-
ered in our analysis. These candidates, though remain on the switching surface, are a result
of switching rules obtained from the necessary conditions. The conditions formulated in
theorem 5.2.1 do not include Filippov type solutions [44] due to assumption 5.2.1. A hys-
teresis approximation, as given in section 5.3, would be useful to avoid the simultaneous
multiple switchings. Sometimes, a hysteresis behavior could be inherent to the economic
or ecosystem dynamics (5.5), see [32] and [91]. The analysis of the optimal vector field

11The candidate starting at (0.5, 3.5) switches to mode 2 at time t = 0.4732 and the system (5.9-5.12) has
a finite escape time at t = 0.7844. So, the objective is computed in the interval [0, 0.7844). We discard this
candidate as assumption 5.2.1 is violated, i.e., the control policy along this candidate is unbounded.
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remains unaltered except for the switching rules where ∆ in (5.11) and (5.12) should be
replaced with ∆2 and ∆1 respectively. For initial states in the range ∆1 < x0 < ∆2, the
objective along a particular candidate depends upon whether x0 is in mode 1 or mode 2.

Next, we discuss the issue of existence of closed orbits in the optimal dynamics with
hysteresis. Poincaré - Bendixson criterion is generally used to analyze the existence of
closed orbits in a smooth vector field, and it involves computation of divergence. At
present, it is unclear as to how the notion of divergence of a switching vector field 12

can be defined. Firstly, a closed orbit cannot occur within either of the modes 1 and 2 as
the divergence of the optimal vector field, in state-adjoint coordinates, is equal to r > 0.
So, a closed orbit may occur during mode transitions. Let us denote the map ϕi(.) to be
an orbit of the vector field in mode i. Let the adjoint jump and Hamiltonian continuity
properties, see item (c) of theorem 5.2.1, be abstracted as a switching map Swi j(.) during
a transition from mode i to mode j. To see if there exists a closed orbit, we construct the
forward and backward maps as n = Sw12 (ϕ1(m)) and m = Sw21 (ϕ2(n)) and look for in-
tersection points in the (m,n) plane. Figure 5.9(b) shows one such instance for parameter
values b = 1, c = 0.15, r = 0.03, ∆1 = 2.1 and ∆2 = 2.2. The forward and backward maps
never intersect hinting that there may not be a closed orbit. At this point we do not have
conclusive evidence, however.

∆2∆1

ϕ1(.)

ϕ2(.)

Sw12(.)Sw21(.)

(a)

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
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0.464
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(b)

Figure 5.9 – Forward and backward maps to analyze closed orbits

5.5 Conclusions
In this chapter we analyze the shallow lake model in the presence of threshold effects.
We approximate the nonlinearities in the shallow lake dynamics with simple and hystere-
sis switching. Assuming symmetry in agents’ actions, we solve the associated optimal
management problem using relevant necessary conditions, which resulted in an optimal

12See [74] for some work in this direction.
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switching vector field. We observe that the variation of switching surface induces bifur-
cations in this vector field. Further, we notice, that agents’ mode of play can also induce
bifurcations; that is, cooperation can lead to ‘clean’ steady state and noncooperation can
lead to ‘turbid’ steady state. These observations, though incomplete, do agree with previ-
ous studies on the classical shallow lake model.

The main objective of this chapter was to highlight, with an example, the key ob-
servations when smooth nonlinear models are approximated with simple discontinuous
functions. This approximation leads to simple optimal dynamics within each mode and a
complex jump rule near the switching surface. Further, the analysis may lead to many op-
timal candidates depending upon the initial state. An attempt towards a complete analysis
raises several interesting questions. It was shown in [108], that existence of Skiba points
is closely related to heteroclinic connections13 in the optimal vector field. A piecewise
approximation of the convex-concave production function [100] also results in multiple
steady states, then to see whether such points exist in the optimal switching dynamics
would be interesting. A closed orbit, if it exists, would result in policies where players
increase and decrease the nutrient levels in a sustainable way. So, to characterize the
switched optimal control problems, of the type (5.1-5.3), that admit closed orbits as an op-
timal solution would be insightful. For noncooperation, the present analysis is restricted to
symmetric open loop Nash equilibrium policies. Using feedback policies for the optimal
management problem may involve some computational burden, for instance, see [25].

5.A Appendix

Proof of Lemma 5.2.1:. Since (x∗(.),u∗(.)) is an optimal admissible pair, it satisfies the
necessary conditions given in theorem 5.2.1. As the number of switchings is finite, say
M, there exists a sequence of switching instants associated with k∗(.), which we denote as
τ1,τ2, · · · ,τ j, · · ·τM. Taking the total derivative of the Hamiltonian Hk∗(t)(.) in the interval
t ∈
(
τ+j ,τ

−
j+1
)

we have:

dHk∗(t)

dt
=

∂Hk∗(t)

∂ t
+

∂Hk∗(t)

∂x∗
ẋ∗+

∂Hk∗(t)

∂λk∗
λ̇k∗ +

∂Hk∗(t)

∂u∗
u∗

=
∂Hk∗(t)

∂ t
(last three terms vanish due to necessary conditions)

= −re−rtg(x∗(t),u∗(t))

Hk∗(τ−j+1)
−Hk∗(τ+j )

= −r
∫ τ−j+1

τ+j
e−rtg(x∗(t),u∗(t))dt.

13This happens when a branch of an unstable manifold of an equilibrium point coincides with a branch of
a stable manifold of a different equilibrium point.
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Again from the necessary conditions we notice that in the last interval, i.e., t ∈ [τ+M,∞),
(x∗(t),u∗(t)) maximizes the objective

∫ ∞
τ+M

e−rtg(x(t),u(t))dt. The truncated trajectory

(x∗(t),u∗(t)), t ∈ [τ+M,∞) is an optimal admissible pair for the classical discounted infi-
nite horizon optimal control problem

max
∫ ∞

τ+M
e−rtg(x(t),u(t))dt

ẋ(t) = fk∗(τ+M)
(x(t),u(t)), x(τ+M) = x∗(τ+M)

u(t) ∈U, t ∈ [τ+M, ∞).

The objective along the truncated trajectory is given by 1
r Hk∗(τ+M)

(
τ+M,x∗(τ+M),u∗(τ+M),

λk∗(τ+M)
(τ+M)

)
14. The objective along (x∗(t),u∗(t)), t ∈ [0,∞) is then given by:

∫ ∞

0
e−rtg(x∗(t),u∗(t))dt =

∫ τ−1

0
e−rtg(x∗(t),u∗(t))dt +

M−1

∑
j=1

∫ τ−j+1

τ+j
e−rtg(x∗(t),u∗(t))dt

+
∫ ∞

τ+M
e−rtg(x∗(t),u∗(t))dt

=
1
r

(
Hk∗(0)(.)−Hk∗(τ−1 )(.)+Hk∗(τ+1 )(.) · · ·−Hk∗(τ−M)(.)+Hk∗(τ+M)(.)

)
=

1
r

Hk∗(0)(.).

In the above result the costs associated with switching are assumed to be zero.

Proof of Lemma 5.4.1:. Optimal management involves solving the following optimization
problem

ẋ(t) = ∑
i

ai(t)−bx(t)+α , α =

{
0 x(t)< ∆
1 x(t)> ∆

, x(0) = x0,

max
a1,a2,··· ,aN

J, J =
∫ ∞

0
e−rt

(
∑

i
lnai(t)−Ncx2(t)

)
dt.

The necessary conditions in the current value form are given by:

mode j H j(.) =

(
∑

i
ln(ai)−Ncx2

)
+λ j

(
∑

i
ai −bx+ j−1

)

14Follows from the observation; the truncated candidate in the last interval satisfies the additional neces-
sary condition that maximized Hamiltonian is zero when t goes to infinity, see footnote 3.
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1
a∗i

+λ j = 0, i = 1,2, · · · ,N (follows from maximum condition)

λ̇ j(t) = (r+b)λ j +2cNx∗

ȧ∗i =−(r+b)a∗i +2cNa∗i
2x∗.

Assuming symmetry, i.e., a∗i =
a∗
N , i = 1,2, · · · ,N, the optimal system is given by

mode j ẋ∗ = a∗−bx∗+ j−1 (5.14a)

ȧ∗ =−(r+b)a∗+2ca∗2x∗, (5.14b)

and the optimal cost for a candidate starting at (x0,a0), with x0 in mode j, is given by:

J =
1
r

H j(a0,x0) = ∑
i

ln
(a0

N

)
−Ncx2

0 +

(
− N

a0

)
(a0 −bx0 + j−1)

=
1
r

(
N ln

(a0

N

)
−Ncx2

0 +N
bx0 − j+1

a0
−N

)
.

So, each player receives a benefit of Jopt
i given by:

Jopt
i =

J
N

=
1
r

(
ln
(a0

N

)
+

bx0 − j+1
a0

− cx2
0 −1

)
. (5.15)

Let (a∗1,a
∗
2, · · · ,a∗N) denote the open loop Nash equilibrium, then agent i solves the follow-

ing optimization problem:

ẋ(t) = ai +∑
k 6=i

a∗k(t)−bx(t)+α, α =

{
0 x(t)< ∆
1 x(t)> ∆

, x(0) = x0

max
ai

Ji, Ji =
∫ ∞

0
e−rt (lnai(t)− cx2(t)

)
dt

mode j H i
j(.) = lnai − cx2 +λ i

j

(
ai +∑

k 6=i
a∗k −bx+ j−1

)
1
a∗i

+λ i
j = 0, i = 1,2, · · · ,N (follows from maximum condition)

λ̇ i
j = (r+b)λ i

j +2cx∗

ȧ∗i =−(r+b)a∗i +2ca∗i
2x∗.
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Again, assuming symmetry we have a∗i = a∗/N, i = 1,2, · · · ,N. So, the optimal system is
given by

mode j ẋ∗ = a∗−bx∗+ j−1 (5.16a)

ȧ∗ =−(r+b)a∗+2
( c

N

)
a∗2x∗, (5.16b)

and the benefit for the candidate, at equilibrium, starting at (x0,a0), with x0 in mode j, is
given by

Jonle
i =

1
r

H i
j(a0,x0) =

1
r

(
ln
(a0

N

)
+

bx0 − j+1
a0
N

− cx2
0 −N

)
. (5.17)
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