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Abstract 

In this paper we employ ML-II ε-contaminated class of priors to study the sensitivity of 

Bayes Reliability measures for an Inverse Gaussian (IG) distribution and Lognormal 

(LN) distribution to misspecification in the prior. The numerical illustrations suggest that 

reliability measures of both the distributions are not sensitive to moderate amount of 

misspecification in prior distributions belonging to the class of   ML-II ε-contaminated. 

 

1. Introduction 

 

Bayes reliability methods utilize objective test data and investigator’s subjective 

information to evaluate new complex devices. An evolutionary system design depends 

heavily on subjectively held notions of reliability.  

 

Robust Bayesian viewpoint assumes only that subjective information can be quantified in 

terms of a class of possible distributions. Any analysis, therefore, based on a single 

convenient prior is questionable. A reasonable approach (see Berger [1984, 1985, 1990, 

1994]) is to consider a class of plausible priors that are in the neighborhood of a specific 

assessed approximation to the “true” prior and examine the robustness of the decision 

with respect to this class of prior distributions.  

 

Though the MCMC method freed the analysts from using the conjugate prior for 

mathematical convenience but the problem still remains; how to eliminate the 

subjectivity involved in choosing a prior distribution? 

 

The ε-contaminated class of prior distributions has attracted attention of a number of 

authors to model uncertainty in the prior distribution. Berger and Berliner (1986) used 

Type II maximum likelihood technique (cf. Good, 1965) to select a robust prior from ε-
contaminated class of prior distributions having the form: 

                                      { }( ) (1 )   ,  o q q Qπ θ ε π εΓ = = − + ∈  

Here, πo is the true assessed prior and q, being a contamination, belongs to the class Q  of 

all distributions. Q  determines the allowed contaminations that are mixed with πo, and ε∈[0,1] 

reflects the amount of uncertainty in the ‘true’ prior πo. ML-II technique would naturally 

select a prior with a large tail which would be robust against all plausible deviations. 

Sinha and Bansal (2008) used ε-contaminated class of prior for the problem of 

optimization of a regression nature in the decisive prediction framework. 

 



The selection of the maximum likelihood type-II technique requires a robust prior π in the 

class Γ of priors, which maximizes the marginal ( | )m t a
%

. For  
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can be maximized by maximizing it over Q . Let the maximum of ( | )m x q
%

be attained at 

unique .Qq∈
)

Thus an estimated ML-II prior ( )π θ)  is given by                                               
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The lognormal (LN) distribution is often useful in the analysis of economic, biological 

and life testing data. It can often be used to fit data that have large range of values. The 

lognormal distribution is commonly used for modeling asset prices, general reliability 

analysis, cycles-to-failure in fatigue, material strengths and loading variables in 

probabilistic design (see Aitchison and Brown (1957)). However, sometimes the 

lognormal distribution does not completely satisfy the fitting expectation in real situation, 

in such situations the use of generalized form of lognormal distribution is suggested. 

Martín and Pérez (2009) analyzed a generalized form of lognormal distribution from a 

Bayesian point of view. Martz and Waller (1982) and Blishke and Murthy (2000) present 

excellent theory and applications of reliability analysis. 

 

The two-parameter inverse Gaussian (IG) distribution, as a first passage time distribution 

in Brownian motion, found a variety of applications in the life testing, reliability and 

financial modeling problems. It has statistical properties analogous to normal distribution. 

Banerjee and Bhattacharyya (1976) applied the IG distribution to consumer panel data on 

toothpaste purchase incidence for the assessment of consumer heterogeneity. Whitemore 

(1976, 1986) discusses the potential applications of IG distribution in the management 

sciences and illustrates the advantages of IG distribution for right-skewed positive valued 

responses and its applicability in stochastic model for many real settings. Aase (2000) 

showed that IG distribution fits the economic indices remarkably well in empirical 

investigations. Nadarajah and Kotz (2007) gave the distribution of ratio of two economic 

indices each having IG distribution for comparing the consumer price indices of six 

major economies. 

 

Excellent monograph by Chhikara and Folks (1989) and Seshadri (1999) contain 

bibliographies and survey of the literature on IG distribution. Banerjee & Bhattacharyya 

(1979) considered the normal distribution, truncated at zero, as a natural conjugate prior 

for the parameter θ of IG(θ,λ), while exploring the Bayesian results for IG distribution.  

 

In the subsequent sections, we employ ML-II ε-contaminated class for the parameter θ of 

IG(θ,λ), shape parameter λ known, and ( , )LN θ ψ , ψ  known, to study sensitivity of Bayes 

reliability measures to misspecification in the prior distribution.  

 

 

 



2. Lognormal Distribution 

 
The probability density function (pdf) of lognormal distribution is expressed as 
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where ψ  is known and ln(t) is the natural log of  t, we designate equation (2.1) by ( , )LN θ ψ . 

Let 1 2,..., ) (t t t=
%

be n independent complete failure times from ( , )LN θ ψ . The likelihood 

function is given by 
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The reliability for a time period of time to is 
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( )Φ ⋅ denotes standard normal cdf. Suppose θ has a prior distribution belonging to ML-II 

ε-contaminated class of priors. Following Berger and Berliner (1986), we have πo(θ) as 

N(µ,τ) and ( )q θ)  as ( , ),  Uniform a a aµ µ− +
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where ( )φ ⋅  denotes standard normal pdf.    (2.5) 

Now we substitute  (2.5) and   in  n nz a aψ ψω µ ∗= − = and equate to zero. The equation 

becomes 
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Solving  (2.6) by standard fixed-point iteration, set  a ω∗ =  on the right-hand side, which gives 
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Following Berger and Sellke (1987), we make a
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 equal to zero when t  is close to µ. 
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where posterior distribution ( | , )t ψπ θ
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 of parameter θ with respect to prior π(θ) is given by 
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thus equation (2.7) becomes 
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where  (2.9) 
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We use numerical integration in order to evaluate the incomplete integral in equation (2.9).  

 

Lower one–sided Bayes Probability Interval (LBPI) Estimate  

 

Reliability analysts are sometimes interested in 100(1- α)% LBPI estimate * )r  o f   r ( t ο  

where α is chosen to be a small quantity. Bayesian estimate of  )r(tο  is easily constructed 

from the corresponding interval for θ as follows  
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Since r( ; , )tο θ ψ  is a monotonically non-decreasing function of θ, we have the LBPI 
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We evaluate *θ  using Matlab for a given α and substitute in (2.11) to obtain the required 

LBPI estimates for various levels of contamination in the prior. 

 

Reliable Life 

 

The reliable life is the time Rt  for which the reliability will be R. It may be considered as 

the time Rt  for which 100R% of population will survive. The determination of Rt  is same 

as computing the 100(1-R)th percentile of  the failure time distribution. For a ( , )LN θ ψ  

population  
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For known ,ψ  Rt  is the linear function of θ. The Bayes estimate of Rt  , under quadratic 

loss function, is the posterior expected value of Rt   
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3. Inverse Gaussian Distribution 

 
The probability density function (pdf) of IG distribution is expressed as 
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where m and λ are the mean and shape parameters respectively.  

 

Tweedie expressed equation (3.1) in terms of an alternative parameterization, making 1/ mθ = , as 
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we designate equation (3.2) by IG(θ,λ). 
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The reliability for a time period of time to is 
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Suppose θ has a prior distribution belonging to ML-II ε-contaminated class of priors, we 

have πo(θ) as N(µ,τ), truncated at zero, with pdf 
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where ( )φ ⋅  denotes standard normal pdf. (3.6) 
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the right hand side terms of equation (3.8) are evaluated as follows 
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The above two incomplete integrals in equation (3.9) are evaluated through numerical integration.  

 

Lower one–sided Bayes Probability Interval (LBPI) Estimate  

 

We construct 100(1- α)% LBPI estimate *r  of ( )r tο  where α is chosen to be a small 

quantity. Since ( ; , )r tο θ λ  is a monotonically non-decreasing function of θ for any fixed λ, 

we have the LBPI estimate of ( )r tο  as 
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We evaluate *θ  using Matlab for a given α and substitute in *r  to obtain the required 

LBPI for varying ∫. 
 

4. Illustration 

 
In order to study sensitivity of the Bayes reliability measure to the ML-II ∫ contaminated 

prior for lognormal distribution we consider two sets of data. Data-Set 1 is the failure 

times (in hours) of the air conditioning system of 30 different airplanes obtained from 

Linhardt and Zucchini (1986). The data on active repair time (hours) are 

 

Data-Set 1 

23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 

71, 11, 14, 11, 16, 90, 1, 16, 52, 95. 

 

Data-Set 2 is considered from Barlow, Toland and Freeman (1979). It represents the 

failure times on pressure vessels that were tested at 4300 psi. The complete ordered 

failure times were reported to be 

 

Data-Set 2 

2.2, 4, 4, 4.6, 6.1, 6.7, 7.9, 8.3, 8.5, 9.1, 10.2, 12.5, 13.3, 14, 14.6, 15, 18.7,  

22.1, 45.9, 55.4, 61.2, 87.5, 98.2, 101, 111.4, 144, 158.7, 243.9, 254.1, 444.4, 

590.4, 638.2, 755.2, 952.2, 1108.2, 1148.5, 1569.3, 1750.6, 1802.1. 

 

The precision ψ assumed known; we take its ML estimate as its true value. The 

subjective estimates of the parameters of the prior distribution are made on the basis of 

the above experiment. 

 

For the inverse Gaussian distribution we again consider two sets of data. Data-Set 3 is a 

simulated random sample of size n = 30 from IG population using algorithm given in 

Devrorye (1986, page 149). 

 

Data-Set 3 

0.45, 0.46, 0.66, 0.7, 0.94, 1.03, 1.29, 1.84, 1.89, 1.89, 1.91, 1.93, 1.93, 2.05, 

2.1, 2.19, 2.74, 2.75, 3.18, 3.89, 4.26, 4.52, 4.56, 4.57, 4.94, 5.63, 7.67, 7.7, 

26.78, 29.35 



 

Data-Set 4 is considered from Nadas (1973).Certain electronic device having thin film 

metal conductors fail due to mass depletion at a centre location on the conductor. The life 

time of such a device is the time elapsed until a critical amount of mass is depleted from 

the critical location. A sample of devices was tested under high stress conditions until all 

of them failed. There were n = 10 of them that were found to have failed due to mass 

depletion at the critical location. The corresponding lifetimes are summarized by the 

sufficient statistics t = 1.352 and 
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∑ = 0.948. 

The prior parameter µ has been taken to be approximately equal to the reciprocal of 

median of the IG(θ,λ) and precision τ equal to the reciprocal of the ML estimate of the 

variance. The value of known shape parameter λ is taken to be the ML estimate of  
1

1 1

1 r

n

n t t
λ

−
  

= −   −   

)

. 

The Kolmogorov-Smirnov test statistic for the above three data-sets and the graphs of 

empirical and the theoretical curves are given in Appendix 1. The results show that LN 

and IG is a good fit for all the above data-sets. 

 
Bayesian Results for Lognormal Distribution 

 

Data-Set 1 

 

Table 1  

n = 30, ψ = 0.5746, µ = 4, tο = 10 hrs 

Comparative values of Bayes reliability estimate for varying τ, ε 

 

 

 

 

 

 

 

 
 

Table 2  

Comparative values of Bayes LBPI (α = 0.05) estimate for varying τ, ε 

 

 

 

 

 

 

 
 

 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.784468 0.790316 0.795805 0.798426 0.799452 

0.5 0.788418 0.789431 0.792010 0.795732 0.798973 

0.9 0.791458 0.792068 0.793720 0.796390 0.799044 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.691529 0.717544 0.731520 0.736646 0.738472 

0.5 0.697696 0.704984 0.717890 0.729984 0.737472 

0.9 0.702446 0.708018 0.718791 0.729904 0.737421 



 

 

 

Table 3 

R=0.8 

Comparative values of Bayes Reliable Life estimate for varying τ, ε 

 

 

 

 

 

 

 

 
Data-Set 2 

 

Table 4  

n = 39, ψ = 0.2430, µ = 5, tο = 100 hrs 

Comparative values of Bayes reliability estimate for varying τ, ε 

 

 

 

 

 

 

 

 
Table 5  

Comparative values of Bayes LBPI (α = 0.05) estimate for varying τ, ε 

 

 

 

 

 

 

 
 

Table 6 

R=0.8 

Comparative values of Bayes Reliable Life estimate for varying τ, ε 

 

 

 

 

 

 

 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 9.749040  9.961537 10.161031 10.256270 10.293567 

0.5 9.915409 9.950159 10.038584 10.166237 10.277391 

0.9 10.046511 10.065425 10.116626 10.199404 10.281663 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.398877 0.403509 0.409064 0.412279 0.413661 

0.5 0.407347 0.407824 0.409125 0.411255 0.413407 

0.9 0.413704 0.413713 0.413741   0.413790 0.413843 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.214924 0.218005 0.224116 0.230643 0.235195 

0.5 0.310689 0.315118 0.324176 0.334029 0.340984 

0.9 0.318360 0.321578 0.328239 0.335787 0.341248 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 11.292092  11.527624 11.810116 11.973591 12.043886 

0.5 11.784220 11.803980 11.857837 11.946058 12.035160 

0.9 12.165426  12.158146 12.137635 12.101767 12.062352 



 

Tables 1-6 suggest that the Bayes reliability, LBPI and reliable life for lognormal 

distribution are not sensitive to contamination in the ML-II priors. We observe 

insignificant variation in the above Bayes reliability measures for both the data-sets 1 and 

2 for varying precision, τ, and contamination, ε.    

 
Bayesian Results for Inverse Gaussian Distribution 

 
Data-Set 3 

 

Table 7  

n = 30, µ = 2.1450, λ = 2.6339, tο = 5 

Comparative values of Bayes reliability estimate for varying τ, ε 

 

 

 

 

 

 

 

 
 

Table 8  

α = 0.05  

Comparative values of Bayes LBPI estimate for varying τ, ε 

 

 

 

 

 

 

 

 
Data-Set 4 

 

Table 9 

n = 10, µ = 0.5, λ = 4.8077, tο = 0.5 

Comparative values of Bayes reliability estimate for varying τ, ε 

 

 

 

 

 

 

 
 

 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.269713 0.264824 0.261595 0.260360 0.259918 

0.0284 0.269700 0.266013 0.262418 0.260654 0.259955 

0.5 0.269356 0.267964 0.265091 0.262088 0.260173 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.182376 0.181409 0.180798 0.180571 0.180491 

0.0284 0.182367 0.181636 0.180951 0.180624 0.180498 

0.5 0.182135 0.181882 0.181373 0.180854 0.180531 

           ε    

τ 
0 0.05   0.2 0.5 0.9 

0.01 0.958766 0.961729 0.964049 0.965030 0.965395 

0.05 0.958787 0.960600 0.963047 0.964623 0.965341 

0.5 0.959022 0.959815 0.961597 0.963698 0.965188 



 

 

 

Table 10 

α = 0.05 

Comparative values of Bayes LBPI estimate for varying τ, ε 

 

 

 

 

 

 

 

 

The Bayes reliability measures are insensitive to contaminations in the ML-II prior. 

Tables 7-10 suggest insignificant variation in Bayes reliability and LBPI for both the 

data-sets 3 and 4 for varying precision, τ, and contamination, ε, in the ML-II prior. 

 

5. Conclusion 

 

The numerical illustrations suggest that reasonable amount of misspecification in the 

prior distribution belonging to the class of ML-II ε-contaminated does not affect the 

Bayesian reliability measures for lognormal and inverse Gaussian distributions. The 

mathematical results obtained in Section 2 and 3 play down the effect of subjective 

choice of prior for the unknown parameters of both the distributions considered. 
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Kolmogorov – Smirnov 

Test and p sig. values 
Decision 

at 5% 
 

k-s p 0.05 

n=30 0.1047 0.8794 Data  fits LN 

n=39 0.1605 0.2450 Data  fits LN 

Kolmogorov – Smirnov 

Test and p sig. values 
Decision 

at 5% 
 

k-s p 0.05 

n=30 0.1535 0.4472 Data  fits IG 


