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1 Introduction

How much are consumers willing to pay for increased product quality? What wage premium

do workers require to compensate them for an increase in on-the-job fatality risk? How

much are homeowners willing to pay to avoid moving one mile further from work? What

will be the e¤ect of new clean air legislation on real estate prices? Hedonic models provide

information that helps to narrow the range of possible answers to these questions. In an

hedonic market, the price function for a good or service decomposed into its attributes

measures the equilibrium relationship between attributes of the good and the price at which

buyers and sellers are willing to trade. It is the price that equates supply and demand in

the space of hedonic attributes. It provides an exact measure of the marginal willingness to

pay and willingness to accept for equilibrium transactions in a market. However, in general,

the equilibrium price function does not identify the willingness to pay for counterfactual

transactions that might occur in markets characterized by di¤erent endowments, technology

and preferences. Due to unobserved heterogeneity, there is a selection problem.1 To take a

labor market example, workers who choose to work in jobs with a low fatality risk are likely

to have low unobserved tolerance for risk. As a result, the compensation they require to

accept more risk is likely to be higher than the equilibrium wage premium for risky jobs.

To identify willingness to pay and willingness to accept for counterfactual transactions, one

needs to identify the structural parameters of buyers and sellers.

Knowledge of the hedonic price function alone is not enough to analyze general equi-

librium e¤ects of policy changes in hedonic markets. When supply or demand conditions

change, buyers and sellers will in general alter how they sort in hedonic markets. Hence,

to analyze general equilibrium changes in hedonic markets, it is necessary to identify the

structural parameters.2

Observed and unobserved heterogeneity play key roles in hedonic equilibrium sorting

models. In particular their distributions and the underlying utility and production functions

of the agents shape equilibrium sorting outcomes and shape how a hedonic economy will

react to changes in the economic environment. Previous studies of hedonic markets have an-

alyzed either parametric or restrictive nonparametric utility and production functions, where

the unobserved heterogeneity is speci�ed as a term added to marginal utility or marginal

product functions.3 Ekeland, Heckman and Nesheim (2004) analyze nonparametric hedonic

1See, e.g., Rosen (1974).
2See, e.g., Hurwicz (1962) or, for a more modern statement, Heckman and Vytlacil (2007).
3For analysis of identi�cation of parametric hedonic models, see Brown and Rosen (1982), Brown (1983),
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models with additive marginal utility and additive marginal product functions. They show

that hedonic models with additivity restrictions are nonparametrically identi�ed with single

market data and present two methods for recovering the structural functions in such models.

The additivity assumptions used to establish identi�cation in Ekeland, Heckman, and

Nesheim (2004) are strong. No heterogeneity in the curvature of production and preference

functions is allowed. In addition, these restrictions are over-identifying.

In contrast, this paper establishes nonparametric identi�cation of structural functions and

distributions in general hedonic models without imposing additivity. We allow the curvature

of the marginal utility for the product attribute, as well as the distribution of the marginal

utilities, to vary in general ways across agents with di¤erent observed characteristics. We

allow an analogous property to hold for nonadditive unobserved heterogeneity in marginal

product functions on the supply side of the market.

We �rst analyze what can be identi�ed in an unrestricted model �t using data from

a single market that satis�es standard economic regularity conditions and additional mild

statistical regularity conditions. We then restrict the functional structure of the marginal

utilities and marginal product functions, obtaining nonparametric generalizations of random

coe¢ cient and household scale models. We show that in these cases, the marginal utility and

marginal product functions, as well as the distribution of the unobserved characteristics of the

agents, are identi�ed. Our proofs of identi�cation are constructive and suggest nonparametric

estimation strategies whose properties we examine in a web appendix.4

We go on to show that models that cannot be identi�ed in a single cross section are

identi�ed using data from multiple markets. This follows from the economics of the hedonic

model. In general, variation in the distributions of observed variables across markets induces

cross-market variation in price functions. This part of our analysis formalizes and extends

discussions in Rosen (1974), Brown and Rosen (1982), Epple (1987) and Kahn and Lang

(1988).

To focus on the key identi�cation problems that arise in a setup where marginal utilities

are nonadditive in unobserved heterogeneity, we concentrate on an hedonic model with a

single product characteristic. Our main results can be extended to hedonic models with

multiple characteristics captured by an index structure, as in Epple and Sieg (1999) and

Sieg, Smith, Banzhaf, and Walsh (2004). Our methodology extends the two stage method of

Rosen (1974) to a nonparametric setting. The �rst stage estimates the hedonic function and

Epple (1987), Bajari and Benkard (2005), or Berry and Pakes (2007).
4See Web Appendices D and F at http://jenni.uchicago.edu/nonpara_hedonic
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its derivatives. Using the estimated price function together with the �rst order conditions of

the agents identi�es production and utility functions.

This paper proceeds in the following way. Section 2 describes the hedonic model for a

product with a single attribute. Section 3 studies the identi�cation of nonadditive marginal

utility and nonadditive marginal product functions. Section 4 analyzes identi�cation in

multiple markets. Analog estimators are discussed in Section 5. Their properties are derived

in the web appendix (see http://jenni.uchicago.edu/nonpara_hedonic) for this paper.

The web appendix also presents a limited Monte Carlo analysis. Section 6 summarizes and

discusses possible extensions.

2 The Competitive Hedonic Equilibrium Model

The model analyzed in this paper applies to a spot market in which products are di¤eren-

tiated by their attributes, prices are set competitively and participating buyers and sellers

each trade a single type of product chosen from a set of feasible products. Our analysis of

demand in this section, and in Section 3, applies equally to hedonic demand estimation prob-

lems in imperfectly competitive markets where consumers are fully informed price takers.

The multi-market analysis in Section 4 can readily be adapted to study demand in imper-

fectly competitive markets as long as there is su¢ cient cross-market variation in market

structure to induce price variation. We focus on competitive markets for ease of exposition.

To �x ideas, we consider a labor market setting in which jobs are characterized by their

attributes. Workers (sellers) match to single employee �rms (buyers) and supply job services

indexed by a scalar z where z 2 eZ:5 We assume that eZ � R is compact. The space eZ is
the space of technologically feasible job attributes. The variable z denotes a job attribute

assumed to be a disamenity for the workers and an input for the �rms. For example, z could

measure the probability of injury on the job as in Kniesner and Leeth (1995) or Leeth and

Ruser (2003), so eZ = [0; 1] : Let P (z) be a twice continuously di¤erentiable price function
de�ned on eZ. The value of P (z) is the wage paid at a job characterized by attribute z:
Each worker has quasilinear utility function P (z) � U(z; x; ") where x is a vector of
5If jobs are characterized by a vector of attributes a 2 eA � Rn; we assume that preferences and costs

depend on a only through the scalar index z = g (a). We discuss identi�cation of a single index model in
Section 3. Alternatively, if utility is quasilinear and both utility and production functions are additively
separable functions of z and other attributes, the price function will be as well and the market for z can be
analysed independently of the other attributes.
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observed characteristics of dimension nx and " is a scalar unobserved heterogeneity term.6

Observe that U (�) is a disutility. " is statistically independent of x: In the risk of injury
example, " is interpreted as the component of unobserved preference for risk that is inde-

pendent of observables such as age, education, gender, race, etc. Note that since " is allowed

to enter marginal utility Uz in a nonadditive way, the independence assumption is much

weaker than it would be if " entered additively. In particular, the nonadditive speci�cation

is consistent with a model where Uz is a function of an unobserved � = m(x; "), whose dis-

tribution depends on the vector of observed characteristics, x, of the agent. The population

of workers is described by the pair of density functions fx and f", which are assumed to be

strictly positive on the compact sets eX � Rnx and eE � R, respectively. Each worker may
choose not to trade, in which case they obtain reservation utility V0.

Each �rm has a production function �(z; y; �) where y is a vector of observed charac-

teristics of the �rm of dimension ny and � is a scalar unobserved heterogeneity term. We

assume that � is statistically independent of y, and that (y; �) is independent of (x; "). The

population of �rms is described by the pair of density functions fy and f� that are strictly

positive on the compact sets eY � Rny and eH � R, respectively. If a �rm opts out of the

market, it earns reservation pro�ts �0.

Both U and � are assumed to be twice continuously di¤erentiable with respect to all

arguments.7 Additionally, we assume that, given the equilibrium price function, each worker

and �rm that participates has a unique interior optimum. A su¢ cient condition for this

to hold is a Spence-Mirrlees type single-crossing condition, requiring that Uzz � �zz > 0;

Uz" < 0, and �z� >, for all (x; "; y; �), be satis�ed.8 For simplicity, we assume that these

conditions are satis�ed.

Each worker chooses z 2 eZ; a job type or a location in the space of job attributes, to
maximize

P (z)� U (z; x; ") :

From uniqueness of the optimum, it follows from Gale and Nikaido (1965) that there exists

6When utility is not quasilinear, we can identify the ratio of the marginal utility of z to the marginal
utility of income (See Web Appendix B.).

7The equilibrium analysis can be extended to cases in which z is a vector, the arguments of the functions
are discrete, the measures on characteristics are not absolutely continuous with respect to Lebesgue, or the
functions are not di¤erentiable. See Ekeland (2005) or Chiappori, McCann, and Nesheim (2008) for details.

8See Chiappori, McCann, and Nesheim (2008) for details.
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a supply function z = s(x; ") such that

Pz(s(x; "))� Uz(s(x; "); x; ") = 0: (2.1)

By the Implicit Function Theorem,

@s(x; ")

@"
=

Uz"(s(x; "); x; ")

Pzz(s(x; "))� Uzz(s(x; "); x; ")
(2.2)

so that @s(x;")
@"

> 0 since Uz" < 0 and the denominator is negative from the assumption of an

interior optimum. Our assumptions imply that s(x; ") is strictly monotonic in " and that its

inverse with respect to " exists. We denote the inverse supply function by " = es (z; x).
A parallel analysis can be performed for the demand side of the market. Each �rm

chooses z 2 eZ to maximize the pro�t function
�(z; y; �)� P (z):

The resulting demand function z = d(y; �) satis�es

�z(d(y; �); y; �)� Pz(d(y; �)) = 0;

and
@d(y; �)

@�
=

�z�(d(y; �); y; �)

Pzz(d(y; �))� �zz(d(y; �); y; �)

so that @d(y;�)
@�

> 0 since �z� > 0 and the denominator is positive. We denote the inverse

demand function � = ed (z; y) :
The inverse supply and demand functions characterize equilibrium.9 Let

Zs =
n
z 2 eZ ���z = s (x; ") for some (x; ") 2 eX � eEo

be the range of the mapping s (x; ") : Using a standard change of variables formula, the

density of supply implied by the inverse supply function isZ
eX f" (es (z; x)) fx(x)@es (z; x)@z

dx (2.3)

9See Ekeland, Heckman, and Nesheim (2004).
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for z 2 Zs: For z 2 eZ n Zs; the density of supply is zero.
Analogously, let

Zd =
n
z 2 eZ ���z = d (y; �) for some (y; �) 2 eY � eHo

be the range of the mapping d (y; �) : The density of the demanded z is

Z
eY f�

�ed (z; y)� fy(y)@ ed (z; y)
@z

dy (2.4)

for z 2 Zd: For z 2 eZ n Zd; the density of demand is zero. Both inverse supply and inverse
demand depend on P (z) although the dependence is implicit.

Among the set of smooth price functions that yield unique interior optima, an equilibrium

price function must satisfy the condition that the density of supply equals the density of

demand for all values of z 2 eZ. Making explicit the dependence of the supply and demand
densities on P , this condition requires that Zs = Zd and thatZ

eX f" (es (z; x;P (z))) fx(x)@es (z; x;P (z))@z
dx =

Z
eY f�

�ed (z; y;P (z))� fy(y)@ ed (z; y;P (z))
@z

dy

(2.5)

for all z 2 Zs \ Zd, where P (z) is the price function. The equilibrium price function solves

this equation.

2.1 Properties of Equilibrium

Ekeland (2005) and Chiappori, McCann, and Nesheim (2008) show that an equilibrium exists

in the hedonic model under very general conditions which include those given in the previous

section. They also show that the single-crossing property presented in the previous section

is su¢ cient for equilibrium to be unique and pure in the sense that each worker matches

to a single �rm and each pair chooses a single job type z: This implies, in particular, that

counterfactual policy analysis using this model provides unambiguous answers.

A key implication of the model is that cross-market variation in the price function is

determined by cross-market variation in the functions (fx; f") and (fy; f�). To see this more

6



clearly, substitute for @es(z;x)
@z

and @ ed(z;y)
@z

and rewrite (2:5) as

Pzz (z) =

ReY f�fy �zz�z�
dy �

R eX f"fx UzzUz"
dxReY f�fy

�z�
dy �

R eX f"fx
Uz"
dx

(2.6)

where the arguments of the functions are suppressed. This second order di¤erential equation

depends on the objects (U;�), (fx; f") and (fy; f�) : If the parameters (U;�) and (f"; f�) are

�xed while (fx; fy) vary across markets, the equilibrium price will vary across markets. We

exploit the variation induced by these changes in Section 4 to show identi�cation of the

structural parameters using multimarket data.

Finally, our assumptions imply that the joint distribution of observables (z; x; y) implied

by the model will be continuous. Since the distributions of (x; ") and (y; �) are continuous,

the joint distribution of (z; x; y)will be continuous if almost all agents do not bunch at a

single point in eZ. Given a point zb 2 eZ; it is possible that a positive measure of agents will
bunch at zb; only if the set

B = f(x; ") ; (y; �) j �z (zb; y; �) = Uz (zb; x; ")g :

has positive measure. When (x; ") and (y; �) are continuously distributed, this set cannot

have positive measure if �z� > 0 and Uz" < 0. Our assumed single-crossing condition

rules out bunching and implies that (z; x; y) are continuously distributed on their respective

domains.10

3 Identi�cation in a Single Market

This section discusses identi�cation of supply function s (x; ") ; the marginal utility function

Uz (z; x; ") and the distribution of " in a single market. We do not discuss the demand side

of the market because the analysis for that case is analytically similar. Our analysis assumes

that the equilibrium price function P (z) and the distribution of (z; x) are known where

z denotes the observed hedonic location choice of an individual and x denotes the vector

of observed worker characteristics. Estimation of P (z) does not a¤ect the identi�cation

analysis. In Section 5, we discuss how it impacts the estimation analysis. (See Web Appendix

10Examples with bunching can be generated either by allowing for mass points in the distributions or
worker or �rm types or by relaxing the single-crossing condition. Further analysis of bunching is available
in Web Appendix C.
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A.)

We conduct the analysis for the case where z 2 R. The analysis applies equally to the
case where z = g (a) 2 R and a 2 Rn subject to a normalization on g: For example, if

z = � � a and �1 = 1, then the vector of parameters for � can be estimated from the price

function since the equilibrium price has the form p = P (� � a). Under these conditions
dP
daj
dP
da1

= �j: Once � has been identi�ed, the analysis in this paper can be applied to z = � �a:11

In nonadditive hedonic models, supply function s (x; ") is a nonseparable function of a

vector of observables x and a scalar unobservable ". While we assume that " is independent

of x, nonetheless, the nonadditive structure allows for arbitrary interactions between x and

" in producing outcomes. Furthermore, the theoretical structure of Section 2 implies that s

is a strictly increasing function of ". The function s (x; ") can then be identi�ed using results

from Matzkin (1999) and Matzkin (2003), where it is shown that, using the independence

between " and x; and the strict monotonicity of s in "; one has that for all values x of X

and all values "0 of ";

F" ("
0) = Pr (" � "0)
= Pr (" � "0jx)
= Pr (s (X; ") � s (x; "0) jX = x)

= FZjX=x (s (x; "
0)) :

The conditional distribution function, FZjX=x; of Z given X = x; is strictly increasing when

the density of " is everywhere positive. In this case,

s (x; "0) = F�1ZjX=x (F" ("
0)) :

Note that s (x; ") is a reduced form. It depends on the structural utility function and on the

equilibrium price P (z). Nevertheless, it can be used to predict partial equilibrium impacts

of changes in x or " on equilibrium outcomes. Moreover, identi�cation of s (x; ") is a �rst

step required for identi�cation of Uz.

Identi�cation of s (x; ") requires either a normalization of the function (e.g., �xing its

values at a particular value of X) or of the distribution of the unobserved " (e.g., assuming

that the distribution F" ("0) is known). If, for example, we normalize s so that at a value x

11Epple and Sieg (1999) and Sieg, Smith, Banzhaf, and Walsh (2004) assume this index structure in
their analysis of parametric hedonic models.
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of X; and all "0;

s (x; "0) = "0

then one gets from the above equations that for all "0

F" ("
0) = FZjX=x (s (x; "

0))

and for all x

s (x; "0) = F�1ZjX=x
�
FZjX=x ("

0)
�
:

See Matzkin (1999) or Matzkin (2003) for details.

Certain features of the function s, such as @s (x; "0) =@x; the partial derivative of s with

respect to x, or z1 � z0 = s (x1; ")� s (x0; ") ; the change in z due to a change in x from x0

to x1; leaving the value of " �xed, are invariant to the choice of a normalization. These can

be expressed as
@s (x; "0)

@x
= �

�
@FZjX=x (z)

@z

��1�@FZjX=x (z)
@x

�
where z = s (x; "0) and as

s (x1; ")� s (x0; ")
= F�1ZjX=x1

�
FZjX=x0 (z0)

�
� z0:

See Matzkin (2007) for details. We next consider assumptions under which Uz is identi�ed.

We start with a nonidenti�cation result that motivates our identi�cation analysis.

3.1 A Nonidenti�cation Result

Given s (x; ") and P (z), we seek to identify the marginal utility function Uz: In equilibrium,

this function satis�es the �rst order condition

Uz (s(x; "); x; ") = Pz (s(x; ")) : (3.1)

Note that the marginal utility function is identi�ed for those values of (z; x; ") that lie on

the surface f(z; x; ") : z = s (x; ")g : On this surface, the value of the marginal utility Uz is
known, since it must equal the value of the marginal price function.

However, it is clear from this expression that without further restrictions, it is not possible

9



to identify the function Uz for all values of (z; x; ") using data from a single market. For any

arbitrary values of x and "; the value s (x; ") ; the �rst argument of the function, is uniquely

determined. Thus, even if we could observe "; we could not independently vary (z; x; ") and

trace out the function on its nx + 2 dimensional domain.12

We o¤er three responses to this fundamental nonidenti�cation problem: 1) Focus atten-

tion on features of Uz that are identi�ed; 2) Impose functional restrictions on Uz that enable

analysts to overcome the exact functional dependence between z; x; and " that is implied

by economic theory; or 3) Obtain data from equilibria in di¤erent markets and make use of

independent variation in hedonic equilibrium prices across markets. We pursue the �rst two

approaches in the remainder of this section and develop the third approach in Section 4.

3.2 What is Identi�ed without Further Structure

Even though Uz is not identi�ed using data from a single market, some features of the

function Uz can be identi�ed. A revealed preference argument shows that the hedonic price

function provides a bound on Uz. If a worker (x0; "0) chooses z0 and not z1 where z0 > z1,

then it must be the case that

P (z0)� P (z1) � U (z0; x0; "0)� U (z1; x0; "0)

=

z0Z
z1

Uz (s; x0; "0) ds

Di¤erences in hedonic prices for z0 and z1 in general overestimate the change in welfare

between z1 and z0.13

Other features of Uz are point identi�ed. For example, if x contains two variables, x1
and x2, the ratio of the partial derivatives of Uz with respect to x1 and x2 is identi�ed. To

see this, note that one can totally di¤erentiate equation (3:1) with respect to x1 and x2 to

obtain

Uzz(z; x1; x2; ")
@s(x1; x2; ")

@x1
+ Uzx1(z; x1; x2; ") = Pzz(s(x1; x2; "))

@s(x1; x2; ")

@x1

12This is the nonparametric generalization of the nonidenti�cation result reported in Brown and Rosen
(1982).
13See Scotchmer (1985), Kanemoto (1988), and Gri¢ th and Nesheim (2008).
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and

Uzz (z; x1; x2; ")
@s(x1; x2; ")

@x2
+ Uzx2 (z; x1; x2; ") = Pzz (s(x1; x2; "))

@s(x1; x2; ")

@x2
:

Hence, from the assumed properties of U , and the additional assumption that Uzz � Pzz is
non-zero,

Uzx1(z; x1; x2; ")

Uzx2(z; x1; x2; ")
=

@s(x1;x2;")
@x1

@s(x1;x2;")
@x2

js(x1;x2;")=z : (3.2)

Since s (x; ") is identi�ed, the ratios of partial derivatives in (3:2) are identi�ed without any

further restrictions. The ratio on the left side of (3:2) measures the e¤ect on Uz of changing

x1 relative to changing x2: Since Uz is the marginal willingness to accept (WTA) for the

worker who chooses z; this ratio measures the relative impact on WTA of x1 and x2: For

example, when z is injury risk and x1 and x2 are education and experience respectively, the

ratio measures the relative impacts on WTA of education and experience. This identi�cation

result requires no further restrictions on the set of admissible Uz functions other than what

has been assured thus far. It does not require any normalization of the s function.

Alternatively, if x is scalar and one assumes that the distribution of " is known, the same

arguments can be used to show that the ratio of partial derivatives

Uzx(z; x; ")

Uz"(z; x; ")
=

@s(x;")
@x

@s(x;")
@"

js(x;")=z (3.3)

is identi�ed without any further restrictions on Uz. In this case, (3:3) can be used to evaluate

the relative impacts on Uz of observable x and unobservable " for di¤erent values of x and

at di¤erent quantiles of the distribution of ": In the job injury example, this ratio could be

used to study the impact of education on WTA for injury risk at di¤erent quantiles of the

distribution.

3.3 Identi�cation Assuming Further Information about the Struc-

ture of Preferences and Technology

A second way to deal with the fundamental nonidenti�cation problem is to assume additional

restrictions on the set of admissible Uz functions. For example, Ekeland, Heckman, and

Nesheim (2004) overcome the nonidenti�cation problem by imposing an additive structure

11



on Uz. In their leading example, they assume that

Uz (z; x; ") = u0 (z)� u1 (x)� ":

This assumption implies that heterogeneity shifts the marginal utility of z but has no e¤ect

on higher order derivatives. All workers have the same curvature in the utility function.

Under this restriction (and similar restrictions discussed in Ekeland, Heckman, and

Nesheim (2004)), equation (3:1) reduces to

u0 (s (x; "))� u1 (x)� " = Pz (s (x; ")) :

The additive restriction reduces the dimension of the identi�cation problem by one. Ekeland,

Heckman, and Nesheim (2004) show that this implies that u0, u1 and the distribution of "

are identi�ed up to scale and location parameters.

However, the additive structure may be too strong for certain economic environments.

From an economic perspective it minimizes the role of heterogeneity in hedonic models.

Moreover, it imposes testable restrictions on observable data. Under the additive model

restriction, the ratios in (3:2) reduce to

@u1
@x1
(x1; x2)

@u1
@x2
(x1; x2)

=

@s(x1;x2;")
@x1

@s(x1;x2;")
@x2

js(x1;x2;")=z :

The rate of trade-o¤ between x1 and x2 must be the same for all quantiles of the z distrib-

ution. This is a testable restriction. In the case of scalar x; we have

@u1 (x)

@x
=

@s(x;")
@x

@s(x;")
@"

js(x;")=z :

The impact of x on z must be the same for all ":

The additive model structure is over-identifying. It is desirable to investigate weaker

conditions for identi�cation that are just identifying. Proceeding along these lines, we de-

velop three theorems. Each introduces a di¤erent assumption on marginal utility, but all

have the e¤ect of reducing the number of arguments of Uz by at least one to overcome the

nonidenti�cation result of Section 3.1. We emphasize that all are weaker than assumptions

imposed in parametric hedonic models or in Ekeland, Heckman, and Nesheim (2004). All

impose some separability structure on the utility or production functions and some sort of

12



scale normalization. The types of restrictions required are similar in spirit to either those

required to identify household equivalence scales in classical demand theory or to restrictions

used in random coe¢ cients models. See Lewbel (1989) or Lewbel (1997) for related results

on identi�cation of household equivalence scales and a survey of that literature.

3.3.1 Observable Scales

For our �rst theorem, we assume that Uz is a weakly separable function of the pair (z; x), i.e.,

for some functions m : R2 ! R; and q : R2 ! R; Uz (z; x; ") = m (q(z; x); ") : Moreover,

we assume that the function, q; which aggregates the e¤ect of z and x on Uz is known. In

the job risk example, q (z; x) can be interpreted as the observable scale or quality of the

job-worker match while " is unobserved heterogeneity in marginal utility. Note that when

q(z; x) = z=x; our speci�cation is consistent with Barten�s (1964) scale model for utility.

Since m is nonadditive in "; a normalization on either m or the distribution of " is also

needed. In the next theorem, we assume that the distribution of " is speci�ed a priori.14

Theorem 3.1 Suppose that for some unknown di¤erentiable function m : R2 ! R; which is

strictly decreasing in its second argument, and some known di¤erentiable function q : R2 !
R; the marginal utility function can be written

Uz(z ; x ; ") = m (q(z; x); ") : (3.4)

Further, assume that F" is known and let (ql("); qu(")) denote the support of q(s(x; "); x) for

any " 2 eE: Then, for all " and all x such that q(s(x; "); x) 2 (ql("); qu(")); Uz(z; x; ") is
identi�ed:

Proof. See Appendix A.
The intuition for this result is that for a given value of ", identi�cation of s (x; ") allows

one to �nd all pairs of (z; x) that are consistent with that value of ". The separability

restriction on Uz allows one to select from among these pairs the one that produces a given

value of q (z; x). Combining these two results allows one to identify Uz at any arbitrary

point.

Theorem 3.1 uses a separability restriction and a normalization of the distribution of ".

An alternative approach is to invoke separability, but to normalize the function Uz; instead

14For example, since " is not observed, a natural choice is to specify that " is uniformly distributed. Thus
" can be interpreted as the quantile in the unobserved heterogeneity distribution.
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of the distribution of "; by assuming that its value is known at a point. Along these lines,

we obtain the following theorem.

Theorem 3.2 Let x 2 R: Suppose that for some unknown, di¤erentiable function m : R2 !
R; which is strictly decreasing in its last argument, and some known, di¤erentiable, function

q : R2 ! R,

Uz(z ; x ; ") = m (q(z; x); ") :

Use the function Pz to �x the value of the unknown function Uz at one value x of x; and on

the 45 degree line on the (z; ") space, by requiring that for all t;

Uz(t; x; t) = Pz(t): (3.5)

Let " be given. Let q 2 (ql("); qu(")); the support of q(s(x; "); x): Then, for x such that

q(s(x; "); x) 2 (ql("); qu(")), Uz(z ;x;") is identi�ed:

Proof. See Appendix A.

3.3.2 Random Coe¢ cients

Results analogous to Theorems 3.1 and 3.2 can be obtained if, instead of requiring that Uz
be separable in (z; x), one assumes that Uz is separable in (z; "): In other words, one can

assume that for some unknown function m : R2 ! R; which is strictly increasing in its �rst

argument, and some known function q : R2 ! R; which is strictly decreasing in its second

argument

Uz(z; x; ") = m (q(z; "); x) : (3.6)

This speci�cation is a generalization of a linear random coe¢ cients model. When q(z; ") =

" � z; this speci�cation is consistent with a linear random coe¢ cients model for the marginal
utility.15

A result analogous to that of Theorem 3.1 can be obtained when F" is known. For any

x; let (ql(x); qu(x)) denote the support of q(s(x; "); "). Following an argument similar to

that used in the proof of Theorem 3.1, it is easy to show that for all x and all " such that

q(s(x; "); ") 2 (ql(x); qu(x)); Uz(z; x; ") is identi�ed. The result that corresponds to Theorem
15The scalar version of the parametric demand model analyzed in Bajari and Benkard (2005) is a special

case of this model. They assume that m is parametric.
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3.2 is obtained by �xing the values of m when x = x; a speci�ed value of x; as

m (q (t; t) ; x) = Pz(t):

3.3.3 Multiple Observed Scales

When x is a vector, alternative restrictions can be used to achieve identi�cation. As an

example, when x is a two-dimensional vector (x1; x2) ; we can impose the restriction that

Uz is weakly separable into two known functions, q1 (z; x1) and q2 (x2; ") : The next theorem

establishes that this restriction, along with a normalization on Uz; which is weaker than what

is required in the case where x is a scalar, allows one to identify Uz:

Theorem 3.3 Let x = (x1; x2) 2 R2: Suppose that for some unknown di¤erentiable func-

tion m : R2 ! R; which is strictly increasing in its second argument, and some known

di¤erentiable functions q1 : R2 ! R and q2 : R2 ! R

Uz(z; x1; x2; ") = m (q1(z; x1); q2(x2; ")) (3.7)

where q2 is strictly decreasing in its second argument. Let
�
ql2; q

u
2

�
denote the support of

q2(x2; "): Assume that the function m is known at one point (z; x1; �) where � 2
�
ql2; q

u
2

�
; so

that

m (q1(z; x1); �)= P z (z) : (3.8)

For any t2 2
�
ql2; q

u
2

�
; let [ql1(t2); q

u
1 (t2)] denote the support of q1 (s(x1; x2; "); x1) conditional

on q2(x2; ") = t2: Then, for any (z; x1; x2; ") such that q2(x2; ") 2
�
ql2; q

u
2

�
and q1(z; x1) 2

[ql1(t2); q
u
1 (t2)], Uz(z; x1; x2; ") is identi�ed.

Proof. See Appendix A.
Identi�cation of Uz is obtained from a sequence of arguments. First, equation (3.7)

implies that the supply function s(x1; x2; ") is a weakly separable function of x1 and q2(x2; "):

Equation (3.8) implies that the supply function is known at one point. Further, the strict

monotonicity of m and q2 in their second arguments implies that the supply function is

strictly increasing in ": These implications guarantee that the supply function s and the

distribution of " are identi�ed. Next, to identify the value of m(t1; t2) at an arbitrary

point (t1; t2) on the relevant domain, we �rst �nd values x�1; x
�
2; and "

� such that when

z = s(x�1; x
�
2; "

�); q1(z; x
�
1) = t1 and q2(x

�
2; "

�) = t2: Finally, since such a z satis�es the FOC,

it follows that m(t1; t2) = Pz(z) = Pz (s(x�1; x
�
2; "

�)) : Thus, independent variation in x1 and
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x2; the assumed dependence of Uz on only two arguments, and knowledge of the functions

q1 and q2; allow one to trace out Uz as a function of its two arguments.

The statement and proof of Theorem 3.3 can easily be modi�ed to show that the function

Uz is also identi�ed when it can be expressed as a function m(t1; x1); where t1 = q1(z; t2) and

t2 = q2(x2; "): To see this, suppose that for some unknown function m : R2 ! R and some

known functions q1 : R2 ! R and q2 : R2 ! R; such that m is strictly increasing in its �rst

argument, q1 is strictly increasing in its second argument, and q2 is strictly decreasing in its

second argument

Uz(z; x1; x2; ") = m (q1(z; q2(x2; ")); x1) : (3.9)

Assume that the function m is known at one point (z; x1; �) so that

m (q1(z; �); x1) = Pz (z) : (3.10)

Then, as in the proof of Theorem 3.3, it can be shown by using (3.9) that the supply function,

s(x1; x2; ") is weakly separable in q2(x2; "). By (3.10), the value of s is �xed at one point.

By the monotonicity of m and q1; s is strictly increasing in q2: These properties guarantee

identi�cation of s and of the distribution of " using the analysis of Matzkin (1999) and

Matzkin (2003): To identify the value of m(t1; t2) at an arbitrary vector (t1; t2); let x�1 = t2;

and �nd x�2; and "
� such that when z = s(x�1; x

�
2; "

�); q1(z; q2(x
�
2; "

�)) = t1: Then, as in the

previous argument, m(t1; t2) = Pz(z) = Pz (s(x�1; x
�
2; "

�)) :

3.3.4 Economic Implications of the Restrictions

Consider the economic implications of some of the restrictions that we have invoked. We

focus on the restrictions used in Theorems 3.1 and 3.2. Consider the alternative speci�cations

Uz (z; x; ") = m1 (zx; ") (3.11)

and

Uz (z; x; ") = m2 (z"; x) : (3.12)

These models make di¤erent assumptions about how heterogeneity impacts marginal util-

ity. Model (3.11) imposes the requirement that Uzz
Uzx

= x
z
while model (3.12) imposes the

requirement that Uzz
Uz"

= "
z
: The former condition might be appropriate when the researcher

has prior information about the marginal rate of substitution between z and observable x
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and but has no information about how unobserved heterogeneity a¤ects marginal utility.

The latter might be appropriate if the researcher is willing to impose a random coe¢ cients

structure but has no prior information about the e¤ects of observables.

4 Identi�cation in Multiple Markets

The possibilities for identi�cation of Uz (z; x; ") in a single market are limited because all

workers face the same price schedule. Across multiple markets, the marginal price function

Pz (z) will typically vary depending on underlying market conditions. For example, assuming

that the marginal utility function, Uz (z; x; "), does not vary across markets, the marginal

price function (and the supply function s (x; ")) will, in general, vary across markets when the

distributions of worker or �rm attributes vary across markets. When data are available from

multiple markets and cross-market variation in the distributions of observables causes cross-

market variation in Pz (z) and s (x; "), such variation can be used to identify the function

Uz (z; x; ") without invoking the conditions of Section 3.

Our analysis provides a general approach to identi�cation of Uz under weaker conditions

than are required when using data from a single cross-section. Use of multimarket data to

identify hedonic models is proposed in Brown and Rosen (1982), Brown (1983) and Epple

(1987). Our analysis is more general than theirs because we consider the nonseparable case

whereas their analyses assume linearity of supply and price equations. Also, our approach

makes explicit that the equilibrium price and the supply function depend on the distributions

of observable characteristics of �rms and workers.

Suppose that the distributions of " and � are the same in all markets. Further assume

that the distributions of x and y with densities denoted by (fx; fy) 2 F
� eX� � F �eY � �

L2

� eX;�x� � L2 �eY ; �y� vary across markets. Here, �x and �y are Lebesgue measure oneX and eY respectively and L2 represents the space of square integrable functions. Suppose

that a multimarket sample exists from M markets with Nm observations on (z; y; x) from

each market m: The marginal price and supply functions in each market will depend on�
fmx ; f

m
y

�
; the densities of observed x and y in each market. Dropping superscripts, write

these functions as Pz (z; fx; fy) and s (x; "; fx; fy).

The functions (fx; fy) and the functional Pz (z; fx; fy) are identi�ed in a multimarket

sample satisfying these conditions. Using results in Matzkin (1999, 2003), the functional

s (x; "; fx; fy) is nonparametrically identi�ed. Hence, multimarket data allow one to identify
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the distributions of the observables and the dependence of the marginal price and the supply

function on these distributions. We use this information to identify the marginal utility

function Uz (z; x; ") in the following way.

From the workers��rst order condition:

Uz (s(x; "; fx; fy); x; ") = Pz (s(x; "; fx; fy); fx; fy) :

We have made explicit the dependence of Pz and s on fx and fy: In a single cross section,

the price function and the supply function are �xed and we cannot independently vary the

three arguments of Uz: With multimarket data, both Pz and s vary for each (x; ") provided

that fx, fy, or both, vary across markets.

Before stating and proving Theorem 4.1, we need to introduce some new notation. Given�
fmx ; f

m
y

�
� F

� eX� � F �eY �, let sm (x; ") and Pm (z) be, respectively, the supply function
and price function implied by equilibrium condition (2:5). Further, let

S =
n
(z; x; ") : z = sm (x; ") for some

�
fmx ; f

m
y

�
� F

� eX��F �eY � o : (4.1)

Similarly, let dm (y; �) be the equilibrium demand function and

D =
n
(z; y; �) : z = dm (y; �) for some

�
fmx ; f

m
y

�
� F

� eX��F �eY � o : (4.2)

The sets S and D are the sets of matches that could occur in a feasible equilibria.

Theorem 4.1 Let S and D be de�ned as in (4:1) and (4:2) : Assume that (f"; f�) are known

and are the same across markets, then Uz (z; x; ") is identi�ed for all (z; x; ") 2 S and

�z (z; y; �) is identi�ed for all (z; y; �) 2 D:

Proof. Let (z; x; ") 2 S: Then z = sm (x; ") for some market m with
�
fmx ; f

m
y

�
� F

� eX��
F
�eY � and Uz (z; x; ") = Pmz (s

m (x; ")) where Pmz (z) is the marginal price in market m.

Thus, Uz is identi�ed at all points (z; x; ") such that z is an equilibrium choice for (x; ") in

some feasible equilibrium. By an identical argument, �z (z; y; � ) is identi�ed for all (z; y; �) 2
D:

Theorem 4.1 exploits the variation in price and supply functions induced by cross-market

variation in the distributions of observables. Given a �xed pair
�
f 0x ; f

0
y

�
; under the conditions

stated in section 2, equation (2:5) will have a unique solution P 0 (z). This solution will imply

a pair of supply and demand functions s0 (x; ") and d0 (y; �). Perturbing the underlying
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distributions to
�
f 1x ; f

1
y

�
will result in a new equilibrium price function P 1 (z) and new

supply and demand functions s1 (x; ") and d1 (y; �) : In general, if the dependence of utility

and production functions on y and x is not degenerate, it will be true that P 1 (z) 6= P 0 (z),
s1 (x; ") 6= s0 (x; ") and d1 (y; �) 6= d0 (y; �).

5 Estimation

Since our identi�cation results are constructive, they suggest estimators for the marginal

utility (resp. production) functions and their distributions, based on estimators for the

derivative of the price function and the supply (resp. demand) function. The derivative of

the price function can be estimated as the derivative of the kernel regression of price on z:

The demand and supply functions, and the distributions of the unobservable variables, can

be estimated also using kernel methods, as described in Matzkin (2003).

The innovation in this paper over previous research is the estimation of the marginal

utility and marginal product functions. Following our proofs of identi�cation, we can con-

struct estimators for either the supply or demand side. Consider, for example, a variant of

the speci�cation of the marginal utility in Theorem 3.3. Suppose that for some unknown

function m and known functions q1and q2;

Uz(z; x1; x2; x3; ") = m (q1(z; x1); q2(x2; "); x3) :

The vector, x3; of additional observable individual characteristics, is included here to allow

for the possibility that the dimension of x is larger than 2. Note, however, that x3 is

not needed for our main identi�cation results. The supply function resulting from this

speci�cation is separable in q2 (x2; ") : An estimator for such supply function, denoted bybs (x1; q2 (x2; ") ; x3) ; can be derived following Matzkin (2003). Let bPz (z) denote the kernel
estimator for the derivative of the price function, and let t1; t2 be arbitrary values. It follows

from the proof of Theorem 3.3 that

bm (t1; t2; x3) = bPz (bs (bx�1; t2; x3)) ; (5.1)

where bx�1 is the value of x1 that solves the equation
q1(bs (x1; t2; x3) ; x1) = t1: (5.2)
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Equation (5:1) with the estimated bPz and bs plugged in is our estimator of the marginal utility
function in this model.

Let x�1 denote the value of x1 that satis�es

q1(s (x
�
1; t2; x3) ; x

�
1) = t1:

We demonstrate inWeb Appendix D that, under standard conditions, the rate of convergence

of bx�1 to x�1 is the same as that of bs to s: We develop the results using the Implicit Function
Theorem in Banach spaces of Hildebrandt and Graves (1927), to derive a �rst order Taylor

type approximation for the functional that maps the estimated distribution of the observable

variables into the value of bx�1. Note that because q1 is known and (t1; t2) is given, equation
(5.2) implies that bs (bx�1; t2; x3) is a deterministic function of bx�1: Hence, the asymptotic be-
havior of bs (bx�1; t2; x3) can be derived from that of bx�1 using well known techniques. Also note
that, when the dimension of the vector (x1; x2; x3) is larger than the dimension of z plus

2; we may assume for the purpose of analyzing the asymptotic behavior of bPz (bs (bx�1; t2; x3))
that Pz is known. Hence, under standard regularity conditions, bm (t1; t2; x3) will converge
to m (t1; t2; x3) at the same rate that bs converges to s; with an asymptotic variance that
can be calculated by that of bx�1 using the standard Delta method. See Web Appendix D for
additional detail and Web Appendix E for some simulations that suggest that the method

is practical and works well in practice.

6 Conclusions

This paper develops methods for identifying the deep structural parameters of hedonic equi-

librium models where both the marginal utility of workers and the marginal product of �rms

are nonadditive functions of attributes and a random vector of individual characteristics,

which are di¤erent for the workers and �rms. We develop su¢ cient conditions to identify

the marginal utility and marginal product functions using both single market and multimar-

ket data. In the single market case, we develop nonparametric estimators for these functions

and show in Web Appendix D that they are consistent and asymptotically normal. Limited

Monte Carlo evidence presented in Web Appendix E suggests that the methods work well

in practice.

Our analysis is for a hedonic model with a single attribute. However, as discussed in

Sections 2 and 3, these results apply equally to a model in which the hedonic attribute is a
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single index with some known structure in terms of a vector of characteristics. We also note

that our methods allow one to deal with unobserved product attributes, as long as these

can be identi�ed from the price function, as in Bajari and Benkard (2005), since in such a

case one can treat them as observed. In contrast to their analysis, our analysis allows for

a nonparametric utility function. More generally, the �rst order conditions in unrestricted

multiple attribute hedonic models are systems of simultaneous equations. General conditions

for nonparametric identi�cation of systems of equations are given in Matzkin (2008). Further

work is required to investigate which types of restrictions developed in Matzkin (2008) are

most appropriate for hedonic applications.

A Proofs

Proof of Theorem 3.1. Since model (3:4) satis�es the conditions in section 2; s(x; ")

satis�es (2:1) and (2:2) : Thus, s is a nonadditive function in " which is strictly increasing in

": Since " is independent of X; it follows by Matzkin (1999) and Matzkin (2003) that

s (x; ") = F�1ZjX (F"(")) :

Since F" is given, s is identi�ed. Let (t1; t2) be such that t1 2 (ql(t2); qu(t2)). Find x� such
that

q (s(x�; t2); x
�) = t1:

Then,

m(t1; t2) = Pz (s(x
�; t2)) :

Proof of Theorem 3.2. As in Theorem 3.1, s is a nonadditive function in " which is

strictly increasing in ": Further, it follows from equation (3:5) that the supply function,

s(x; "); satis�es

s(x; ") = ":

Then, by Matzkin (1999)

F"(") = FZjX=x(")

and

s(x; ") = F�1ZjX=x(FZjX=x(")):
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To establish that the function m is identi�ed, let x� denote the solution to

q (s(x�; t2); x
�) = t1:

Hence,

m(t1; t2) = m (q (s(x�; t2); x
�) ; t2)

= Pz (s(x
�; t2)) :

Proof of Theorem 3.3. Since Uz is weakly separable in q2(x2; "); the function z =

s(x1; x2; ") is also weakly separable in q2(x2; "): Hence, for some unknown function v

s(x1; x2; ") = v(x1; q2(x2; ")):

Further, since all of the conditions in section 2 are satis�ed and since q2 is strictly increasing

in both x2 and "; v is strictly increasing in its second argument.

Let x2 and " be such that q2(x2; ") = �: Then, by separability and condition (3.8) in the

statement of the theorem

Uz(z; x1; q2 (x2; ")) = Pz(z)

where z satis�es the FOC (2:1) when x1 = x1 and q2(x2; ") = �: It follows that

s (x1; x2; ") = v(x1; q2 (x2; ")) = z:

It then follows from the analysis of Matzkin (2003) that the function v and the distribution

of " are identi�ed from the conditional distribution of Z given X = (X1; X2).

To show that the function m is identi�ed, let (t1; t2) be any vector such that t2 2
�
ql2; q

u
2

�
and t1 2 [ql1(t2); qu1 (t2)]: Let x�1 denote a solution to

q1(v(x
�
1; t2); x

�
1) = t1:

Since q1 is a known function and v can be recovered from the conditional cdf of z given

(x1; x2); the only unknown in the expression is x�1: Since t2 2
�
ql2; q

u
2

�
and t1 2 [ql1(t2); qu1 (t2)];
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x�1 exists. Since v(x
�
1; t2) satis�es the FOC (2:1),

m(t1; t2) = m (q1 (v(x
�
1; t2); x

�
1) ; t2) (A.1)

= Pz (v(x
�
1; t2))

= Pz (s(x
�
1; x

�
2; "

�))

for any x�2 and "
� such that q2(x�2; "

�) = t2: In (A.1), the �rst equality follows because

q(v(x�1; t2); x
�
1) = t1: The second equality follows because the value of the marginal utility

function m equals the value of the marginal price function at the particular value of z

that satis�es the �rst order conditions. The third equality follows by the restriction on the

function s: Since the function Pz is known and the function s can be recovered without

knowledge of m; (A:1) implies that m is identi�ed.
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