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1 Introduction

Recent developments in small-area estimation (SAe) respond to the increasing demand for

information about the regions, provinces or districts (subdomains, or areas) of a country (the

domain). Together with censuses and administrative registers, large-scale national surveys are

important sources of such information. The key methodological advance in SAe is borrowing

strength (Robbins, 1955; Efron and Morris, 1972; Fay and Herriot, 1979; and Ghosh and Rao,

1994), that is, exploiting the similarity of the areas, possibly after taking into account relevant

auxiliary information. The explicitly stated or implied goal of a typical problem in SAe is to

estimate a quantity associated with each area efficiently, with minimum mean squared error

(MSE), and to estimate the MSE of this estimator, preferablywithout bias (Hall and Maiti,

2006, and Slud and Maiti, 2006).

When implementing a policy in the areas of a country, estimates of the quantities associ-

ated with the areas are usually treated as if they were the underlying (target) quantities, some-

times with only cursory attention to their estimated precisions, standard errors or confidence

intervals. Problems arise when the estimates are subjectedto nonlinear or even discontinuous

transformations, such as ranking and comparing the estimates with a set threshold, because

efficiency is not retained by such transformations (Shen andLouis, 1998; Longford, 2005a).

We present a perspective in which different estimators are optimal, depending on the pur-

pose for which the estimates are to be used. We refer to this purpose as thepolicy. For example,

a national government department may wish to apply a particular course of action (a measure

or an intervention) to every districtm in which the unemployment rateθm exceeds the thresh-

old T = 0.20 (20%). Based on a set of recent estimatesθ̂m of the ratesθm , m = 1, . . . , M , the

plan may be to apply the measure in every district in whichθ̂m > T , in effect, regarding the

estimatêθm as if it were the population rateθm . We show that the established composite es-

timator (Longford, 1999), and by implication the empiricalBayes estimator (Ghosh and Rao,

1994, and Rao, 2003), which aim to minimise the mean squared error of the estimator, are not

useful in this context, and explore alternatives in which different shrinkage is applied.

A novel element of our approach is the incorporation of the negative utilities (losses) that

quantify the consequences of inappropriate action. This reflects the view that the ultimate role

of statistics is to contribute to making intelligent decisions (in the presence of uncertainty),
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and inferential statements, such as estimates of the relevant quantities, or the outcomes of

hypothesis tests about them (p-values), are at best an intermediate and sometimes an irrelevant

goal in this effort. We show that estimation of key quantities cannot be divorced from decision

making; the two activities have to be closely integrated forthe latter to be effective. We argue

by example that decision making is within the remit of statistics because it requires statistical

evaluations. These views are influenced by DeGroot (1970) and Lindley (1985 and 1992),

although we do not subscribe to the Bayesian paradigm.

The utilities are elicited from the policy maker (the expert, or sponsor of the analysis) in the

form of loss (negative-utility) functions. Suppose applying the intended measure in a district

with rateθm < T , for which the survey-based estimation yieldedθ̂m > T , that is, a false

positive, is associated with loss equal to(θ̂m − θm)2, and failure to apply it in a ‘deserving’

district (a false negative), with rateθm > T , but for whichθ̂m < T was obtained, is associated

with loss equal toR(θ̂m − θm)2, whereR ≥ 1 is a constant. In this setting, estimation with

minimum expected loss is desired. Note that even forR = 1 the loss function in this example

differs from the squared loss, defined as(θ̂m − θm)2 for all pairsθ̂m andθm , because positive

loss is incurred only when̂θm < T < θm or θ̂m > T > θm . The mean squared error

corresponds to the quadratic kernel withR = 1 andT set toθm . In a typical application, the

same thresholdT applies to all districts, but the development we consider isnot restricted to

this case, although the threshold has to be known;θm is not known.

We show that the empirical Bayes and the related composite estimators are suboptimal

solutions for this problem — the expected loss with them is higher than with some other

estimators. We search for alternatives among estimators that have the form

θ̃m = (1 − bm)θ̂m + bmFm , (1)

whereθ̂m is a direct (unbiased) estimator ofθm , which uses information only from the focal

district m and the variable concerned, andbm and Fm are constants, called the shrinkage

coefficient and the focus of shrinkage, respectively. Empirical Bayes estimators have this form

with Fm = θ̂ for all districts, wherêθ is an estimator of the mean of the district-level means (or

rates),θ = (θ1 + θ2 + · · ·+ θM)/M . We consider first the setting with no auxiliary variables.

That is, the sole information we have aboutθm is in the values of the focal variable,yim , on

subjectsi = 1, . . . , nm in districtsm = 1, . . . , M , and the corresponding sampling weights

wim . To avoid complexities that would dilute our focus, we assume thatθ̂m are linear statistics
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in yim andθ̂ is a linear combination of̂θ1 , . . . , θ̂M .

The next section gives formal definitions of the key conceptsand Section 3 derives an es-

timator which, setting aside some approximations and estimation, has smaller expected loss

than the established alternatives. Simulations in Section4 confirm the anticipated properties of

the new estimator. Section 5 extends the method to incorporating auxiliary information. Sec-

tion 6 explores adaptations necessary when the budget for implementing the policy is limited.

The paper is concluded with a discussion.

2 Policy and utility

A policy is formally defined as an algorithm for selecting oneof a given finite setA of courses

of action, based on the available information. When all the information is contained in the

estimatorθ̂m , the policy is defined asdm = D(θ̂m), m = 1, . . . , M , with actions inA as

its possible values. We refer tod∗
m = D(θm) as theideal versionof the policy. The inverse

images,Td = {η; D(η) = d} for d ∈ A, partition the parameter space into subspaces according

to the actions. We assume that the policy functionD is completely formulated by the policy

maker, and ifθm were available,d∗
m would be established immediately. That is, incomplete

information aboutθm is the (policy maker’s) sole problem.

We consider a policy that calls for one of two courses of action; A = (A, B). Action

A is appropriate in districtm if θm ∈ TA = T and action B is appropriate otherwise. The

setT is given. The two actions are exclusive (it is impossible to apply both of them) and

complementary (one of them has to be applied). In the examplein Section 1,T = (T, 100]

andT = 20%.

The loss function for an actiond is defined as a non-negative function of the estimate

and the target,Ld(θ̂m , θm). We drop the subscriptd when we refer to the actual policy; that

is, L(θ̂m , θm) = L
D(θ̂m)(θ̂m , θm). Action d is said to be appropriate for districtm if it is

associated with no loss. We assume that one of the two actionsis appropriate for every district,

and if θm were known this action, for whichLd(θm , θm) = 0, would be readily identified.

The assumption that one action is appropriate for each valueof θm is not restrictive, because

in practice only the differenceLA(θ̂m , θm) − LB(θ̂m , θm) matters. Further, we can associate

any pair of loss functionsLd(θ̂m , θm), d = A or B, with the class of equivalence defined by
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the functionsCLd , whereC > 0 is an arbitrary constant, common toLA andLB . If the loss

is expressed in a particular currency, such as $US, thenC is the conversion rate to another

currency.

By choosing actionD(θ̂m), treating the estimate as if it were the population quantity, two

kinds of error may be committed: choosing A when B is appropriate, whenθ̂m ∈ T and

θm /∈ T , and choosing B when A is appropriate, whenθ̂m /∈ T andθm ∈ T . Parallels can

be drawn with hypothesis testing, where we also have two kinds of error, but in our approach

the related probabilities are relevant only in some specialcases. Our point of departure from

hypothesis testing is that the losses we consider, interpretable as the consequences of making

the two kinds of bad decision, may depend on the magnitude of the error,| θ̂m−θm |, and some

estimation errors are associated with no loss. It is not appropriate to assess the magnitude of

the error by| θ̂m − T | or its increasing transformation, because the trivial estimatorθ̂m ≡ T

would then be optimal.

The loss functionsLA andLB should be elicited from the policy maker. This is an activity

similar to eliciting a (Bayes) prior, although we do not expect the elicitation process to con-

clude with a single pair of functions (or classes of equivalence)LA andLB . Instead, we work

with a set (range) of plausible pairs of loss functions, one for action A and the other for B in

each pair. We assume that there is an ideal loss function for each action, and that it is contained

in the set of plausible loss functions, but it cannot be identified. See Longford (2010) for a

similar approach to dealing with uncertainty about the (Bayes) prior and Garthwaite, Kadane

and O’Hagan (2005) for a comprehensive review of statistical issues in elicitation, although

their focus is on elicitation of prior distributions. We want the elicited set to be as small as

possible, but we do not want to generate any discomfort in theelicitation process by forcing

the choice of the set of loss functions to be too narrow, or even reduced to a single pair, which

might not include, or might differ from, the ideal pair of loss functions.

ForT = (T, +∞), we give three examples of (pairs of) loss functions

1. LA(θ̂m , θm) = R(θ̂m − θm)2 when θ̂m < T < θm , andLA(θ̂m , θm) = 0 otherwise;

LB(θ̂m , θm) = (θ̂m − θm)2 whenθ̂m > T > θm , andLB(θ̂m , θm) = 0 otherwise.

2. LA(θ̂m , θm) = R(θm − θ̂m) when θ̂m < T < θm , andLA(θ̂m , θm) = 0 otherwise;

LB(θ̂m , θm) = θ̂m − θm whenθ̂m > T > θm , andLB(θ̂m , θm) = 0 otherwise.
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3. LA(θ̂m , θm) = R whenθ̂m < T < θm , andLA(θ̂m , θm) = 0 otherwise;

LB(θ̂m , θm) = 1 whenθ̂m > T > θm , andLB(θ̂m , θm) = 0 otherwise.

We refer to these pairs of loss functions as having quadratic, linear and absolute kernel, re-

spectively, and to the constantR as thepenalty ratio. A pair of loss functions in 1 – 3 can be

expressed as a single function as

L(θ̂m , θm) = LA

(

θ̂m , θm

)

+ LB

(

θ̂m , θm

)

;

at most one of the contributions is positive for anyθ̂m andθm . The absolute kernel has some

afinity to hypothesis testing, in that the expected losses are related to probabilities. Unlike

in hypothesis testing, where we fix one (conditional) probability (the size of the test), and

maximise the other (the power), we aim with the absolute kernel loss for their magnitudes to

be in proportion1 : R. When the loss depends on the magnitude of the error, absolute kernel

has little to recommend.

Loss functions other than 1 – 3 can be defined, although these three cases are relatively

easy to handle. For example, the penalty ratio need not be constant and other kernels can be

defined; an example is given in Section 3. Different loss functions may be defined for distinct

subsets of districts by using different penalty ratios, or even different kernels. The functions

LA andLB do not have to be in the same class (e.g., both quadratic). Also, a few districts

(a region or the capital) may be singled out for an exceptional treatment, and the constants

involved (R andT ) may be district-specific. For instance,Rm may be a (linear) function of

the population size of the district. In any case, the development in the next section is focussed

on a single district.

3 Policy-related estimator

Suppose the sampling distribution ofθ̂m is normal with expectationγm and varianceν2
m , that

is, θ̂m ∼ N (γm , ν2
m). We do not assume thatγm = θm . Denote byφ the density of the

standard normal distributionN (0, 1) and byΦ its distribution function. With the quadratic

kernel, the expected loss with the policy applied to district m according to estimator̂θm is

(EA =) E
{

LA

(

θ̂m , θm

)}

=
R

νm

∫ T

−∞

(y − θm)2 φ

(

y − γm

νm

)

dy

(EB =) E
{

LB

(

θ̂m , θm

)}

=
1

νm

∫ +∞

T

(y − θm)2 φ

(

y − γm

νm

)

dy ,
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if θm > T or θm < T , respectively. Simple operations yield the identities

EA = Rν2
m

[(

1 + z2
†

)

{1 − Φ(z̃)} − (2z† − z̃)φ (z̃)
]

EB = ν2
m

{(

1 + z2
†

)

Φ(z̃) + (2z† − z̃) φ (z̃)
}

,

wherez̃ = (γm − T )/νm andz† = (γm − θm)/νm . We do not aspire to minimise these two

functions ofγm andνm directly, but seek estimatorŝθm which have the following two well

motivated properties:

• equilibrium condition— for a district withθm = T , the choice between actions A and

B is immaterial in expectation:

E
{

LA

(

θ̂m , T
)}

= E
{

LB

(

θ̂m , T
)}

;

• minimum averagedMSE.

Averaging in the second condition refers to marginalisation over the distribution estimated or

assumed to underlie the valuesθ1 , θ2 , . . . , θm , as applied in empirical Bayes analysis. Aver-

aging removes the dependence of the solution onθm .

For quadratic kernel loss, the equilibrium condition, whenz† = z̃, is equivalent to

(R + 1)
{(

1 + z̃2
)

Φ (z̃) + z̃ φ (z̃)
}

− R
(

1 + z̃2
)

= 0 . (2)

We refer to the left-hand side as the equilibrium function (of z̃). It has a single root for allR. To

prove this, we show that the function is increasing; its limits asz̃ → ±∞ are±∞, respectively.

Its first and second derivatives are2(R + 1){z̃Φ(z̃) + φ(z̃)} − 2Rz̃ and2(R + 1)Φ(z̃) − 2R,

respectively. The latter is increasing inz̃ and its root is̃z◦ = Φ−1{R/(R + 1)}. At this root,

the first derivative attains its minimum, equal to

2(R + 1)φ (z̃◦) > 0 .

Therefore, the first derivative is positive throughout. Theequilibrium valuez∗, the solution of

(2), is found by the Newton method.

The expectation and variance ofθ̃m in (1) are

E
(

θ̃m | θm

)

= (1 − bm) θm + bmFm

var
(

θ̃m | θm

)

= (1 − bm)2vm ,
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assuming that the direct estimatorθ̂m is unbiased with variancevm . In the arguments of E and

var we add conditioning on the value ofθm , to emphasise that we regard it as fixed (related to a

well-specified and labelled district), unlike in the usual treatment of (exchangeable) districts in

empirical Bayes analysis (Ghosh and Rao, 1994; and Rao, 2003). See Longford (2005b, Chap-

ter 6, and 2007) for related discussion. In the simulations in Section 4, the country’s districts

are also treated as fixed, constant across replications. Thesample selection (independently in

each district) is the sole source of variation.

The MSE ofθ̃m is

MSE
(

θ̃m ; θm

)

= (1 − bm)2 vm + b2
m (Fm − θm)2 .

The dependence onθm is avoided by averaging over the district-level distribution ofθm , m =

1, . . .M , which has meanθ and varianceσ2
B . The averaged MSE (aMSE) is

(1 − bm)2 vm + b2
m

{

σ2
B + (Fm − θ)2} ,

and its minimum is attained for

b∗m =
vm

vm + σ2
B + (Fm − θ)2 ; (3)

if we ignore the equilibrium condition, the shrinkage coefficient is always within the range

(0, 1).

The equilibrium condition implies that

Fm = T +
| 1 − bm |

bm

z∗
√

vm . (4)

The aMSE with this constraint is equal to

(1 − bm)2
(

1 + z∗2
)

vm + b2
mσ2

B + b2
m(T − θ)2 + 2bm |1 − bm| (T − θ)z∗

√
vm ,

and the coefficient that minimises this quantity has to satisfy the identity

bm =
vm

(

1 + z∗2
)

− sign(1 − bm) (T − θ) z∗
√

vm

vm + σ2
B +

{

z∗
√

vm − sign(1 − bm) (T − θ)
}2 , (5)

where the sign function is defined as sign(x) = 1 for x > 0, sign(x) = −1 for x < 0, and

sign(0) = 0. The aMSE is continuous and diverges to+∞ for bm → ±∞, so it has an odd

number of extremes. Equation (5) implies that it cannot havemore than two minima. Hence it

has a unique minimum, and it is its only extreme.
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The solutionb∗m may be outside(0, 1), and then it does not have the common interpretation

of a shrinkage coefficient. It exceeds unity when

(θ − T ) z∗
√

vm >
σ2

B + (θ − T )2

3
,

that is, for sufficiently largevm whenT < θ. It is negative when

√
vm <

z∗

1 + z∗2
(T − θ) ,

that is, for sufficiently smallvm whenT > θ. However,b∗m is not a monotone function ofvm .

No shrinkage is applied whenθm is known, andb∗m → 0 asvm → 0, but b∗m = 0 also

when
√

vm = (T − θ)z∗/(1 + z∗2). Forvm → +∞, b∗m → 1 andFm → T ; when we have no

information aboutθm , θ̃m = T is optimal, unlike in empirical Bayes estimation, whereθ̃m = θ̂

in such a case. Whenb∗m = 0, we have an anomaly because the corresponding value ofFm in

(4) is not defined. However, the productb∗mFm is well defined by its limit, equal toz∗
√

vm , so

the estimator in (1) is well defined.

Symmetric loss, withR = 1, corresponds toz∗ = 0 andFm = T for all districtsm.

The coefficientb∗m in (5) coincides with its empirical Bayes counterpart only whenR = 1

andT = θ. Without the averaging, such coincidence would arise in theunimplementable

conditionTm = θm (an unknown threshold, specific to each district), which is closer to the

intent of estimating with minimum MSE than with minimum aMSE.

For the linear kernel loss function, we have the equilibriumcondition

(R + 1) {z̃Φ (z̃) + φ (z̃)} = Rz̃ , (6)

and for the absolute kernel,

Φ(z̃) =
R

R + 1
. (7)

The former equation is solved by the Newton method; it has a unique solution for eachR > 0.

The equilibrium valuesz∗ as functions ofR are drawn in Figure 1 for the three kernels. When

θ̂m has a symmetric distribution, no generality is lost by assuming thatR ≥ 1, because we

could work with the outcomes−y, estimators−θ̂m and−θ̂, and penalty ratio1/R. For each

functionz∗G(R), G = A, L or Q, the subspace above the function corresponds to action A and

the subspace below to action B being preferable.

Comparisons of the functionsz∗A , z∗L andz∗Q are in general not meaningful. Nevertheless,

the (uniform) inequalityz∗A > z∗L > z∗Q can be interpreted as follows. For fixedR, we should be
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Figure 1: The roots of the equilibrium equations,z∗, as functions of the penalty ratioR for the
absolute (A), linear (L) and quadratic (Q) kernel loss functions, on the linear and log scales for
R.

disposed toward action A more favourably with the quadraticthan with the other two kernels.

After all, with action A we rule out false negatives which tend to be associated with relatively

high losses.

The equilibrium conditions (2), (6) and (7) involveγm andνm only throughz̃. This is not

the property of any easy-to-identify class of loss functions. For example, for the exponential

kernel, given by the functions

LA

(

θ̂m , θm

)

= R exp
(

θm − θ̂m

)

− R

LB

(

θ̂m , θm

)

= exp
(

θ̂m − θm

)

− 1 ,

for θ̂m < T < θm andθ̂m > T > θm , respectively, the expected losses are

EA = R exp

(

θm − γm +
ν2

m

2

)

{1 − Φ (z̃ − γm)} − R + RΦ(z̃)

EB = exp

(

γm − θm +
ν2

m

2

)

Φ (z̃ + νm) − Φ(z̃) ,

and the equilibrium solution is not a function solely ofz̃.

The optimal coefficientsb∗m and fociF ∗
m are drawn in Figure 2 as functions of the variance

vm of the direct estimator (1.0 ≤ vm ≤ 2.5) for the quadratic kernel loss and penalty ratios

ranging fromR = 10 to R = 100. The mean of the district-level means isθ = 16%, the
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Figure 2: The optimal shrinkage coefficients and foci of shrinkage for quadratic kernel loss
and penalty ratiosR = 10, 25, 50 and 100, indicated at the right margin;θ = 16, T = 20 and
σ2

B = 6.25. The coefficient and focus of the empirical Bayes estimator is drawn by dashes
(EB, θ).

district-level variance isσ2
B = 6.25 (%2), and the threshold is set toT = 20%. The shrinkage

coefficient of the empirical Bayes estimator (EB),vm/(vm + σ2
B), is drawn by dashes in the

left-hand panel. In the right-hand panel, the horizontal dashes indicate its focus,θ = 16%.

The diagram shows that radically different linear combinations of θ̂m and focusFm are

optimal than in empirical Bayes estimation. The focus of shrinkage is smaller thanθ and

decreases with the variancevm . However, the shrinkage isnegative, away from these foci.

We emphasise that we search for estimators that lead to the best implementation of a policy in

expectation, and do not insist on any appealing interpretation. We regard negative shrinkage

as acceptable, so long as the resulting policy is optimal or at least superior to the alternatives

we have, in the sense defined to reflect the policy maker’s assessment of the utilities.

4 Simulations

In the derivations in Section 3, we made several simplifyingassumptions, such as the knowl-

edge of the global parametersθ andσ2
B , and applied averaging to minimise aMSE atθm = T ,

instead of minimising the expected loss directly. Without this compromise, the problem would

be intractable. Note that we did not assume (superpopulation) normality of the district-level
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summariesθm . We assess the properties of the estimators derived in Section 3 by simulations

based on an imaginary country that comprisesM = 60 districts with labour force sizesNm

in the range 0.30 – 2.30 million. The labour force of the wholecountry is 58.90 million. The

focal variable is unemployment, a dichotomy, and the district-level (population) rates of unem-

ployment are in the range 7.9 – 26.3%. These rates are weakly associated with the population

size; more populous districts tend to have higher rates, although the most populous district,

which comprises the country’s capital, has an unemploymentrate well below average. The

correlation of the district-level population sizes and unemployment rates is 0.18, but when the

capital is removed, the correlation of the remaining 59 districts is 0.27. Twenty-two districts

have unemployment rates in excess of the threshold set atT = 20%; these districts account

for 23.23 million members of the labour force (39.4%). The population sizes and unemploy-

ment rates of the districts are plotted in Figure 3. The mean of the district-level unemployment

rates isθ = 16.8%, and the national unemployment rate isθ∗ = 17.3%. They are marked

in the diagram by horizontal dashes and dots, respectively.The variance of the district-level

unemployment rates isσ2
B = 27.05 (%2).

Suppose a national survey is conducted, with a stratified sampling design using the districts

as the strata, and simple random sampling design with a fixed sample size in each district.

The district-level sample sizesnm , indicated in Figure 3 by the size of the black disc, are in

the range 113 – 567, sufficiently large for the normal approximation to be satisfactory for all

the sample rateŝθm . The sample sizes are approximately proportional toN0.9
m , so that the

least populous districts tend to have higher sampling fractions. The overall sample size is

n = 17 500.

We assume the quadratic kernel loss function with plausiblepenalty ratio in the range

(5, 20). For motivation, suppose the ideal penalty ratio isR = 10, but the policy maker is not

sure about it. The elicitation started with a very wide rangeof penalty ratios, and after several

reductions it reached the point at which the expert was not willing to narrow the range down

any further.

For orientation, we discuss the results for a single replication of sampling and estimation.

Independent samples of fixed sizesnm are drawn within the districts from Bernoulli distri-

butions with respective probabilitiesθm , and the sample rateŝθm , composite estimates̃θm

(shrinkage toward̂θ), and the policy-related estimatesθ̃∗m (shrinkage toward̂F ∗
m) are evaluated,
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Figure 3: The population sizes and unemployment rates in thedistricts of a country. Computer-
generated data used for simulation. The area of the black disc is proportional to the sample
size of the district it represents.

based on the estimates ofθ andσ2
B . The latter variance is estimated by moment-matching; see

Longford (1999 and 2005b, Section 8.3.2). The loss (if any) is evaluated for each estimate and

district.

In a particular replication, the policy based on the obtained sample rates (henceforth esti-

mator S) would lead to the inappropriate action in five districts that have a total labour force of

4.47 million (7.6%), and are represented in the survey by 1349 subjects (7.7%). Four cases are

false negatives,̂θm < T < θm (θ̂m = 18.9% vs.θm = 21.0%, 17.9 vs. 21.6, 19.3 vs. 21.5 and

19.6 vs. 21.0) and one is a false positive,θ̂m > T > θm (21.4 vs. 19.7). It is not meaningful to

add up the lossesLA andLB , because they are not comparable across the districts. We evaluate

instead their weighted total, with the population sizesNm (in millions) as the weights. This

weighted total is equal to 194.2 for the four false negatives, and to only 1.2 for the one false

positive. The largest loss, 71.8, arises for a district (thecase 18.9 vs. 21.0) with labour force of

1.53 million, about 50% above average. The second largest district among those with losses,

with labour force of 1.35 million, is also a false negative (19.6 vs. 21.0), but the loss is only

12



27.0, because the estimation error is smaller.

The composite estimator̃θm with shrinkage toward the estimated average district-level rate

(estimator C) leads to a poorer policy, with total weighted loss of 364.4; inappropriate action is

taken in all five districts mentioned earlier, and in two others, both of them false negatives, by

narrow margins (19.1 vs. 22.6% and 19.5 vs. 21.2%). The sole false positive contributes to the

total loss by only 0.04, because its estimate is shrunk to 20.05%, very close to the threshold of

20% and to the target, 19.7%. In all other cases, shrinkage isin the direction in which the loss

is increased; shrinkage for the two new cases moves the estimates across the threshold.

With the policy-related composite estimator (estimator P), aimed to minimise the expected

loss (for each district), inappropriate action is taken in five districts, one false negative and four

false positives. Only two of these districts, the false negative and a false positive, contribute

to losses also with the other estimates. The weighted total loss is only 72.4. The reason for

this large reduction is that the shrinkage applied has eliminated all but one false negative (19.5

vs. 21.6%), and even for the latter the loss is greatly reduced. Simply, smaller loss is incurred

in total by erring on the side of overestimatingθm , even if some additional false positives are

created in the process. Table 1 displays the estimates and losses associated with the districts

discussed.

In the simulations, we replicate this process 10 000 times and accumulate the losses sepa-

rately for each district and the three estimators. The expected loss for each district is estimated

by the corresponding average loss. The results are summarised in Figure 4. The average losses

(not multiplied byNm), evaluated with the three estimators, are marked by the symbols C, P

and S, and are connected by vertical segments when the average losses differ by more than

2.5. When the average loss is smaller than 2.5, a black disc isdisplayed instead of the symbol.

The population rates of unemployment in the districts are marked by horizontal dashes. It is a

coincidence that the same scale is suitable for the rates andthe average losses.

The diagram shows that most of the losses are incurred by false negatives, for districts with

θm > T , and even among them the loss for one district dominates for estimators C and S. The

weighted total loss has expectations 439.2, 581.9 and 162.3for the respective estimators S,

C and P. The false positives contribute to these figures by only 19.6 (4.4%), 8.4 (1.4%) and

45.2 (27.9%), respectively. If we evaluated the losses withmuch smaller value ofR, such

as 2.0, using the same estimators (based onR = 10), the composite and direct estimators

13



Table 1: The districts associated with losses based on the sample ratêθm , the standard compos-
ite estimator̃θm and the policy-related composite estimatorθ̃∗m . Based on the first replication
of the simulation study.

Design Estimates Losses (×Nm)

m Nm nm θm θ̂m θ̃m θ̃∗m L(θ̂m) L(θ̃m) L(θ̂∗m)

2 0.572 175 22.62 20.00◦ 19.14 21.10 0.00 69.41 0.00

9 1.145 304 21.20 20.07 19.50 21.08 0.00 32.87 0.00

13 0.406 154 19.72 21.43 20.05 21.94 1.18 0.04 1.99

19 1.527 392 21.05 18.88 18.59 20.00+ 71.77 92.42 0.00

20 0.420 207 21.61 17.87 17.59 19.55 58.66 67.90 17.86

29 0.763 244 21.46 19.26 18.75 20.51 36.72 55.91 0.00

32 1.524 386 17.30 18.91 18.61 20.04 0.00 0.00 11.44

39 0.911 231 14.42 18.61 18.21 20.04 0.00 0.00 28.76

47 1.355 352 21.02 19.60 19.17 20.66 27.05 45.89 0.00

52 0.307 116 14.24 18.97 18.17 20.58 0.00 0.00 12.34

Totals 195.38 364.44 72.39

Notes:Nm — the size of the labour force in districtm (in millions); nm — the sample size for district
m; L — the loss, multiplied by the size of the labour force;+ — exact value greater than 20.00;◦ —
exactly equal to 20.00; no loss incurred.

would remain far inferior; the weighted total losses would have averages 103.6, 123.1 and

68.7. Estimators C and S are insensitive to the penalty ratioso the same estimates are obtained

when we setR = 2 for them, whereas for estimator P a smaller value of the expected loss,

65.4, is obtained. The expected losses with C and S have the form M + RU , whereM is the

expected loss for the false negatives andU the expected loss for the false positives, pro-rated

for unit penalty (R = 1).

Only one of the 22 deserving districts incurs small average losses with all three estimators,

and four other districts have small average losses only withestimator P. For every deserving

district, the average loss is the highest for estimator C, followed by S and P. This ordering

is not maintained for the 38 districts withθm < T ; in neither of the eight districts that have

non-trivial average losses, is estimator P associated withthe smallest average loss. However,

all these average losses are much smaller than for most of thedeserving districts.

In summary, the simulations show that the shrinkage appliedby the composition for min-

imising aMSE is counterproductive, and a substantially reduced expected weighted total loss

14
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Figure 4: The empirical expected (average) losses for the districts and estimators (direct — S;
composite — C; and policy-related — P), with penalty ratioR = 10. The districts are in the
ascending order of population size, within the two groups divided by the thresholdT = 20%.
The districts’ unemployment rates are marked by horizontalticks.

is obtained with the policy-related shrinkage scheme. We repeated the simulations withR = 5

andR = 20 to confirm that estimator P based onR = 10 is superior to C and S. The results

for penalty ratioR = 5 are summarised in Figure 5. They do not differ from the results for

R = 10 substantially when the expected losses for the deserving districts are doubled. Figure

6 compares the expected losses with the two penalty ratios more directly by plotting the aver-

age losses with estimator P for the two sets of districts, normal (θm < T , EB) and deserving

(θm > T , EA/R), in separate panels. The values plotted are pro-rated for unit loss (not mul-

tiplied by R), to make the two sets of expected losses comparable. The diagram shows that

the relative loss is greater withR = 5 for every deserving district and smaller for every nor-

mal district; with higher penalty ratio we are more averse tohaving false positives, even after

discounting the factorR. A mirror-image of this conclusion is drawn from the simulations for

R = 20, with the roles of the normal and deserving districts reversed; the details are omitted.

We conclude that there is considerable robustness of the expected losses with respect to the

specification of the penalty ratioR.

The policy-related estimator is not superior for every district. One reason for this is the

averaging applied to obtain a shrinkage coefficient that does not depend onθm . Averaging
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Figure 5: The empirical expected (average) losses for the districts and estimators (direct — S;
composite — C; and policy-related — P), with penalty ratioR = 5. The districts are in the
same order as in Figure 4.

introduces large errors for districts for which(θm − Fm)2 differs a lot fromσ2
B + (Fm − θ)2.

This happens for a few districts with the smallest unemployment rates, but the expected losses

for them are very small because their rates are distant also from the thresholdT , and the

inappropriate action for each of them has a small probability. In fact, losses due to false

positiveness are non-trivial only for eight districts (outof 38); P is not the minimum-loss

estimator for either of them.

We conclude this section by a summary of the simulations withthe quadratic, linear and

absolute kernel losses displayed in Table 2. The table of weighted totals of the (empirical)

expected losses shows that the policy-related estimator (P) has a distinct advantage over the

direct (S) and the established composite estimator (C) for higher penalty ratios. ForR = 1,

the advantage of estimator P is only slight for quadratic andlinear kernels, and for the absolute

kernel the direct estimator is preferable to both compositeestimators P and C. The expected

loss with estimator P increases withR much slower, and estimators C and S are inferior for

R very close to 1.0 even with the absolute kernel loss. Even though absolute kernel loss and

R = 1 are not a realistic combination of settings, the failure to outperform both estimators C

and S suggests that there may be some scope for improvement ofthe policy-related estimator.

Note that expected losses, or their totals, cannot be compared across the kernels, because
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Figure 6: The average losses incurred by the policy-relatedestimators withR = 10 (horizontal
axis) andR = 5 (vertical axis).

Table 2: The expected total losses, weighted by the population size, in simulations with
quadratic, linear and absolute kernels and penalty ratiosR = 1, 5, 10 and 20. Based on
10 000 replications. The estimators used are: P — policy-related; S — direct; C — composite
(empirical Bayes).

Quadratic loss Linear loss Absolute loss

R P S C P S C P S C

1 58.3 61.6 65.8 15.1 15.9 18.3 6.0 5.0 6.0

5 123.7 229.4 295.1 32.8 60.6 81.9 8.9 19.3 26.8

10 162.3 439.2 581.9 41.0 116.5 161.3 10.4 37.2 52.8

20 207.4 858.8 1155.4 50.2 228.4 320.3 12.0 73.0 104.7
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they regard the relative losses with small and large deviations| θ̂m − θm | differently.

5 Auxiliary information

We consider auxiliary information in the form of (column) vectors of district-level estimators

or exact quantitieŝξm for ξm . We put no restrictions onξm , although summaries inξm that

are highly correlated with (similar to)θm and elements of̂ξm with small sampling variances

are more useful. Common examples of elements ofξm are the direct estimates of the version

of θm in the past year(s), values of a quantity prima facie closelyrelated toθm obtained from an

administrative register, and the values of the same summaryasθm but estimated in a different

subpopulation; see Longford (2005b, Chapter 10) for examples.

We assume that the estimatorsξ̂m are unbiased for the respectiveξm . In practice,ξ̂m

comprise direct estimators or exact quantities; for the latter components,̂ξm = ξm . Denote

θm = (θm , ξ⊤
m)⊤ and θ̂m = (θ̂m , ξ̂

⊤

m)⊤, and letu = (1, 0, . . . , 0)⊤ be the indicator of the

first component, so thatθm = u⊤θm . We defineθ = (θ, ξ⊤)⊤ = (θ1 + · · · + θM)/M

and θ̂ as an unbiased estimator ofθ, linear in eacĥθm . Let Vm = var(θ̂m), V = var(θ̂),

Cm = cov(θ̂m , θ̂) andΣB = varm (θm). The latter variance matrix is for variation over the

districts, in parallel withσ2
B in Section 3; the other variances and covariances refer to sampling

(estimation). The covariance matrixCm is a linear function ofVm , and does not depend on

Vm′ for m′ 6= m.

The multivariate composite estimator (Longford, 1999 and 2005b, Chapter 8) is defined as

θ̃m = (u − bm)⊤ θ̂m + b⊤
mθ̂ .

The vector of coefficientsbm has the ideal version

b∗
m = Q−1

m Pm ,

whereQ = Vm + V + ΣB − Cm − C⊤
m andP = Vm − Cm . In practice,Qm andPm have

to be estimated, yielding the vectorb̂m = Q̂
−1

m P̂m and the estimator̃θm = θ̃m(b̂m). This is

a generalisation of the univariate composite estimator, which is obtained for emptyξm and

scalaru = 1. The variances inV are much smaller than inVm for all m, unless one district’s

sample or population size is a large fraction of the entire sample in one or several surveys on

which θ̂m are based. When there is no such ‘dominating’ district the matrix Cm can also be

ignored.
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The multivariate policy-related composite estimator is defined by shrinkage toward a (mul-

tivariate) focusFm , with the intent to minimise the expected loss E{L(θ̂m , θm)}:

θ̃∗m = (u − bm)⊤ θ̂m + b⊤
mFm .

We search for suitable vectorsbm andFm , the multivariate versions of the shrinkage coefficient

bm and focusFm , respectively, that satisfy the conditions of equilibriumfor θm = T and have

minimum aMSE. For the former, we have to specify an entire vector T = (T, ξ⊤
T)⊤. We set

the auxiliary part ofT, ξT , to its conditional expectation given the first component,

ξT = E(ξ | T ) =
T − θ

σ2
B,1

ΣB,−1,1

whereσ2
B,1 is the (1,1)-element ofΣB andΣB,−1,1 is the first column ofΣB , with its first

element removed.

The condition of equilibrium atT is

b⊤
m (Fm − T) = sz∗ , (8)

wheres =
√

(u − bm)⊤Vm(u − bm). The MSE of a multivariate composite estimatorθ̃m is

s2 + {b⊤
m(Fm − T)}2 and its aMSE, the expectation over the districts, is

s2(bm) + b⊤
m

{

ΣB + (Fm − θ) (Fm − θ)⊤
}

bm .

The argumentbm is added tos to indicate the dependence. By substituting the condition in (8)

we obtain the expression

aMSE(θ̃m ; θm |T) = b⊤
mΛbm − 2

(

1 + z∗2
)

b⊤
mVmu + u⊤Vmu

+ 2s (bm) z∗ b⊤
m (T − θ) , (9)

whereΛ = (1 + z∗2)Vm + ΣB + (T − θ)(T − θ)⊤. The minimum of this function, with

estimates substituted forVm , ΣB and the relevant components ofθ andT, is found by the

Newton-Raphson method. With the last term in (9) removed, the aMSE is a quadratic function

of bm , which attains its minimum for

b(◦)
m =

(

1 + z∗2
)

Λ
−1Vmu ;

it can be used as the initial solution for the Newton-Raphsoniterations.
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The first and second-order partial differentials of aMSE in (9) are

∂aMSE

∂bm

= 2

{

Λbm −
(

1 + z∗2
)

Vmu + sz∗(T − θ) − z∗

s
b⊤

m(T − θ)Vm(u − bm)

}

∂2aMSE

∂bm∂b⊤
m

= 2

{

Λ − z∗

s3
b⊤

m(T − θ)Vm(u − bm)(u − bm)⊤Vm

}

− 2
z∗

s

{

b⊤
m(T − θ)Vm − (T − θ)(u − bm)⊤Vm − Vm(u − bm)(T − θ)⊤

}

.

(10)

In each iterationt, this vector and matrix,ht andHt , are evaluated at the current (provisional)

solutionb̂
(t−1)

m , and the new solution is defined as

b̂
(t)

m = b̂
(t−1)

m − H−1
t ht .

The iterations are terminated when the Euclidean norm ofH−1
t ht is smaller than10−6. The

aMSE is evaluated at every iteration, and a warning is issuedwhenever its new value is higher

than its value in the previous iteration. The change in the successive values of aMSE can be

incorporated in the convergence criterion. The algorithm converges fast, rarely requiring more

than six and never more than twelve iterations in the simulations described next and in Section

6.

5.1 Example continued

We simulate the setting of Section 4 with one auxiliary variable, equal to the unemployment

status in the previous year. We generate the district-levelunemployment rates in the previous

year by a scaled perturbation of the current rates, the districts’ sample sizes in the past survey

by the same process as for the current survey (closely related to N0.9
m,past), and the population

sizes in the previous year are reduced from the current year by a random percentage in the

range 1.7 – 3.1%; the country’s labour force increased during the year from 57.4 to 58.9 mil-

lion. The district-level unemployment rates and sample sizes are plotted in Figure 7. Each

district is represented by a rectangle with its centre at thecurrent and past unemployment rates

and sides proportional to the sample sizes in the respectivesurveys. The two surveys, con-

ducted in the current and the previous year, are independent. The four highlighted districts are

discussed later in this section.

The results of the simulation with 2000 replications, usingquadratic kernel loss with

penalty ratioR = 10, as in Figure 4, are summarised in Figure 8. The direct estimator (S)
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Figure 8: The empirical expected losses with the direct estimator (S), bivariate composite
estimator (C, using information from the previous year) andbivariate policy-related estimator
(P); quadratic kernel loss and penalty ratioR = 10.

has the same distribution as in the simulation in Section 4, because it does not use any auxil-

iary information. Some small differences between the two sets of results are present, mainly

for the deserving districts (for whichθm > T ), because the resampling variation of the losses

for some districts is very large; the distribution for a deserving district is a mixture of (less

than 50%) zeros and some large values.

The composite estimator (C) is now associated with smaller average losses than the direct

estimator for most of the deserving districts. The reduction of aMSE attributable to the auxil-

iary information is accompanied by a substantial reductionof the expected losses for most of

these districts. However, they still exceed the average losses with the policy-related estimator,

both the univariate version applied in Section 4, and the bivariate version which exploits the

auxiliary information. The weighted-total of the average losses is 436.9 (= 20.0 + 416.9) for

estimator S, 400.0 (= 6.9 + 393.1) for C, and 123.9 (38.1 + 85.8) for P; the figures in paren-

theses are the respective contributions from the normal anddeserving districts. For estimator

C, the reduction that can be attributed to the auxiliary information is by 181.9 (31%). The

reduction for P, by 38.4 (24%), is more modest.

The reduction of the average loss with estimator C is not uniform among the deserving

districts. For four districts, auxiliary information brings about an increase of the expected loss.
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These districts are highlighted in Figure 7; one has small and the other three medium-to-large

sample sizes in both surveys. Their rates in the previous year are much lower than in the current

year, even after taking the national trend into account, so the auxiliary information is counter-

productive (distracting), especially for the small district, for which substantial shrinkage takes

place toward being a false negative. Some other districts also have rates in the previous year

that deviate from the trend, but this does not cause their average losses to increase. Auxiliary

information is counterproductive also for a few normal districts. However, the inflation of the

losses is very small in all these cases, for both estimators Cand P.

For linear and absolute kernels, estimator P remains far superior to C and S. Even though

C and S are insensitive to the loss function, we evaluate the expected loss on a scale different

from the quadratic kernel. With linear kernel loss andR = 10, the weighted-total loss for C

is 124.5 (2.0+122.5), greater than for S, 116.1 (4.8+111.3); for P the loss is 40.4 (8.9+31.5).

The figure for S differs from the corresponding entry in Table2, 116.5, because it is based on

a different set of replications.

For more complex auxiliary information, with several variables, the composite estimator

makes only small gains, in both the values of empirical MSE and expected loss, whereas

such information is detrimental to the policy-related estimator. However, the inflation of the

weighted-total expected loss is only slight, and the expected losses with the composite estima-

tor remain much higher.

6 Limited budget

Every responsible government and all its departments and programmes operate within limited

budgets. In contrast, the policy-related estimator imposes no limit on the extent to which

the intervention (action A) is applied. With a large penaltyratio, it prefers generating false

positives, so action A is applied liberally, to many districts, with no regard for the costs of its

implementation.

In the context of the previous sections, suppose a fixed overall amount of fundsF has been

allocated for action A in the selected districts. Suppose implementing action A in a district

with labour forceNm and estimated unemployment rateθ̂m would requireHNm (θ̂m − T )+

units of funds, whereH is a known constant and(x)+ = x if x > 0 and(x)+ = 0 otherwise.
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That is,H is the cost pro-rated for a member of the labour force above the threshold level

of unemployment,T , which should trigger action A. The units considered here (F andH),

related to the cost of implementation, are different from the units associated with the losses in

earlier sections, which quantify the consequences of inappropriate action (e.g., of ignoring the

problems of very high unemployment). No generality is lost by assuming thatH = 1.

If the funds are sufficient,

M
∑

m=1

Nm (θ̂m − T )+ ≤ F , (11)

then the programme is implemented as intended. Otherwise provisions have to be made, in

effect, to shortchange some or all the districts that were adjudged to be in need of action

A. Denote byG the funds required to implement the policy based on a set of estimatesθ̂m ,

m = 1, . . . , M . We may consider any of the following options:

1. share the shortfall equally among all the districts for which action A was selected;

2. cut the expenditure by the same percentage in each district for which action A was

selected;

3. raise the threshold fromT to the smallest valueT ′ for which the budget would be suffi-

cient;

4. withdraw action A from a minimum of districts necessary for the budget to be sufficient

for the rest.

Assuming known population ratesθm , provision 1 is obtained by minimising the weighted

total of the squared shortfalls,
∑

m Nm s2
m , subject to the condition of limited budget, that is,

∑

m Nm sm = (G − F )+ .

As soon as we contemplate provisions 1 – 4, we have to admit that the options are not

merely actions A and B, but a continuum of partial implementations of action A. Therefore, we

have to specify the loss associated with such an incomplete action. It is natural to associate the

award ofp% of the intended amountNm(θm − T )+ with the (quadratic kernel) lossRp2(θm −
T )2, but this choice should by no means be automatic, because even a small shortfall may

be associated with a loss that is out of proportion, and the losses may differ from district to
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district, not necessarily related to the district size. Establishing these factors requires another

round of elicitation.

We set these issues aside and assume that the losses are proportional to the shortfall. That

is, for a correctly identified positive (θ̂m > T andθm > T ), there is no loss if the amount

allocated to districtm, denoted byGm(θ̂m), exceedsNm (θm − T ); otherwise the loss with

action A implemented partially is

LA

(

θ̂m ; θm

)







1 −
Gm

(

θ̂m

)

Nm (θm − T )







2

.

If the funds are allocated inappropriately (to a false positive), the losses are reduced in the case

of a shortfall, although, of course, the allocated funds would have been better spent in some

deserving districts.

In the ideal implementation, action A would require a total of

G =

M
∑

m=1

Nm(θm − T )+ = 64.55

units. Suppose onlyF = 55.0 units are available, so the shortfall is 9.55. In simulations, we

apply all four provisions and use the auxiliary informationthroughout. We report the average

losses only with the bivariate estimator P and quadratic kernel loss. In a replication, a typical

shortfall is greater thanG−F = 9.55, because of the liberal nature of the estimator, preferring

to err on the side of false positives. The histogram of the amounts required for action A in 2000

replications with quadratic kernel andR = 10 is drawn in Figure 9. The vertical lines indicate

the amountF available (solid line) and the amountG that is necessary for the ideal version of

the policy (dashes). Only 30 values (1.5%) are smaller thanG and only one of them is smaller

thanF . The diagram represents one component of the cost of incomplete information; in

expectation, the implementation of action A based on the estimatesθ̂m would be much more

expensive than if allθm were known. The other component is due to misclassifying some

districts.

The results of the simulation with the quadratic kernel loss, penalty ratioR = 10 and

budgetB = 55.0 are plotted in Figure 10. The symbols 1 – 4 represent the four provisions

for implementing the budget constraint. We need to be concerned only with the deserving

districts, which account for most of the overall loss. Blackdiscs are drawn at height 0 for
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Figure 9: Empirical distribution of the total amountŝG required to implement action A fully
according to the policy-related estimator with quadratic kernel loss andR = 10.

districts that would have small expected losses if the budget were unlimited. The provisions 1 –

4 are associated with respective weighted-total average losses 510.3, 429.3, 527.2 and 772.5,

compared to 123.9 if the budget were not limited. Provision 2, which might seem to be the

most equitable, entails the lowest and provision 4, arguably the least equitable, the highest

expected loss for all but two deserving districts that have the highest unemployment rates,

26.3% and 24.5%, and, after the capital, the highest population sizes, around 1.8 million.

If more resources were available for implementing action A,the weighted-total expected

losses would be reduced. For example, with budgetF = 70.0, they would be 350.6, 286.4,

353.1 and 526.4, each smaller by about 32% than with the budget of F = 55.0 units.

Increasing the size of the survey may be a more effective alternative to increasing the

budget for implementing action A. If the sample sizes in the current survey were doubled

in every district, without altering the sample sizes in the past survey, the weighted-totals of

the expected losses would be 52.0 with no limit on the budget and 347.0, 293.2, 348.2 and

569.3 with the respective provisions 1 – 4. These values are similar to their counterparts with

the original survey design and higher budget, except for provision 4, which is even poorer in

relation to its alternatives. Thus, greater expenditure onthe survey can be converted to more

effective policy implementation.
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Figure 10: The empirical expected losses with the policy-related estimator with the quadratic
kernel loss and penalty ratioR = 10, subject to budget limited to 55.0 units; 2000 replications.

With the larger survey (n = 35 000), the expenditure on implementing action A has a

smaller expectation and dispersion, 86.9 and 9.0, respectively, compared to 92.1 and 13.8 with

n = 17 500. In principle, a compromise could be found between the costsof conducting the

survey and losses due to imperfect implemention of action A.In practice, this is often difficult

because both activities require long-term planning and dealing with the uncertainty about the

future costs and policies. Also, a typical national survey has a multitude of users (clients)

whose requirements have to be satisfied.

The direct and composite estimators are uncompetitive in all the settings discussed.

7 Discussion

The policy-related estimator developed in Sections 3 and 5 and its assessment by simulations

indicate that there is no single small-area estimator that is preferable to all others, because dif-

ferent estimators are optimal for different policies, or criteria. Shen and Louis (1998) highlight

a related problem, that a nonlinear transformation of an efficient small-area estimator is not

efficient for the same transformation of the target(s). Theydraw a similar conclusion about a

nonlinear summary, such as the standard deviation (ofθm , m = 1, . . . , M), estimated naively

from a set of efficient estimators̃θm . Evaluation of small-area estimators has so far almost
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exclusively focussed on the MSE criterion. We argue that this criterion should not be taken for

granted and alternatives that reflect the policy objectivesserved by the analysis be carefully

considered. Elicitation of the policy, or purpose, imposesan additional burden on the analyst

and the client (the policy maker), but its outcome, a range ofloss functions, enables them to

tailor the analysis closely to the needs, priorities and theperspective of the client.

The simulations confirm that composite (empirical Bayes) estimation is not conducive to

good policy implementation when the loss function used differs radically from the (symmet-

ric) quadratic loss. The policy-related estimator introduced in Section 3 is not the minimum

expected loss estimator, because in its derivation we made several compromises to maintain

tractability. First, we imposed the equilibrium condition, which has the flavour of unbiased-

ness, and then we minimised the (symmetric) averaged MSE instead of the expectation of the

specified loss function. However, the gains made over the established estimators are substan-

tial in a range of settings studied by simulations, some of them not reported here.

In the simulations, we focussed on the setting with a minority of ‘positives’, districts that

require intervention, and assumed higher loss for false negatives than for false positives. In

practice, it is unlikely that an intervention would be applied to a majority of the districts and at

the same time a failure to identify a district that requires intervention would have more serious

consequences than the inappropriate application of the intervention. Nevertheless, our results

can be extended to such a setting.

No simulations can be conclusive for all plausible scenarios. Our simulations, conducted

in R (R Development Core Team, 2009), can be easily adapted to othersettings. The principal

difficulty is in specifying a setting, the computer version of the country with its districts, that

faithfully reflects the studied problem. One set of 10 000 (univariate) replications in Section

4 takes about 140 seconds, and one set of 2000 (bivariate) replications in Section 5.1 or 6

about 400 seconds of CPU time, so a wide range of alternative scenarios and loss structures

can be explored in real time. We have found that the results are quite robust with respect to the

details of how the loss functions are defined, although all these details are very distant from

the mean squared loss used conventionally to assess efficiency. The direct and empirical Bayes

(composite) estimators have a higher expected weighted-total loss (as well as unweighted loss)

than the policy-related estimator in all the simulated scenarios, many of them not described

here.

28



These results can be broadly interpreted as a failure of an analysis conducted in stages

(stage 1 — estimation; stage 2 — assignment of action). Otherexamples of such failure are

summarising estimated quantities (stage 1 — estimation; stage 2 — summary of the estimates),

when the summary is a non-linear function, and search for a model followed by applying the

estimator based on the selected model. The EM algorithm (Dempster, Laird and Rubin, 1977)

explains this failure in its generality as follows. The second stage (the M-step in the EM

algorithm) has to use the linear sufficient statistics in themissing data; using efficient estimates

of the missing values is suboptimal. The two stages in our case are estimation and selective

application of intervention (action A) based on the estimates.

We have treated the districts as isolated units and assumed that there is no interference

among them. In practice, labour force as well as employers respond to government’s antici-

pated or applied interventions, especially when crossing borders (of districts, regions, or even

countries) entails little expense or inconvenience. Incorporating such a dynamic is beyond the

scope of our analysis.

Independence of national statistical institutes, discussed extensively in the recent years

(Royal Statistical Society, 2005), is often interpreted asa separation of the tasks of survey

design and analysis (conducted by the institute) and interpretation and action (done by the

sponsor or the client), and noninterference of the parties in their respective remits. Our de-

velopment suggests that this division may lead to poor practice, because there is no single

criterion for good quality of an estimator and the details ofthe intended policy have to inform

the construction of the estimator. Thus, a single data source (a survey) may yield two different

sets of high-quality estimates of the same set of targets, for two distinct purposes (clients). This

is not a problem with the estimators of most national quantities, because they have sampling

variation that can for most purposes be ignored. However, small-area estimators usually have

non-trivial sampling variation. Borrowing of strength by empirical Bayes and related methods

reduces it somewhat, but not always to the level at which it could be ignored. In fact, we have

found that such shrinkage is detrimental for the purpose and, in some cases, it has to be applied

in a different direction, and toward a different focus.
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