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1 Introduction

When risk-averse workers cannot insure themselves against unemployment and the search efforts

of jobseekers cannot be monitored, the government faces a trade-off between providing insur-

ance against unemployment and providing incentives to search for a job. Most models that study

this trade-off assume that unemployment depends solely on individual search efforts [Baily, 1978;

Chetty, 2006a; Hopenhayn and Nicolini, 1997; Shavell and Weiss, 1979]. Yet the reality is more

complex. During the Great Depression, unemployed workers queued for jobs at factory gates. In

a queue, a jobseeker does increase his job-finding probability by searching more and pushing his

way up the queue; but those in front of him in the queue fall behind and face a lower job-finding

probability because the number of jobs available is limited. In the aggregate, unemployment de-

pends not only on individual search efforts but also on the number of workers that firms choose

to hire. Moreover the relationship between search efforts and unemployment evolves over the

business cycle because firms are more reluctant to hire workers in recessions than in expansions.

By modeling how unemployed workers search for jobs and how firms hire workers, one can un-

derstand more rigorously and more generally how the trade-off between insurance and incentives

evolves over the business cycle. In this paper, we adopt the equilibrium unemployment frame-

work of Pissarides [2000] to analyze the optimal unemployment insurance (UI) over the business

cycle. The framework offers an appealing description of the labor market: unemployed workers

receive benefits funded by a labor tax whose incidence falls on workers; when workers become

unemployed, they decide how much to search for a job based on the generosity of UI; firms decide

how many vacancies to post based on the state of the economy; not all workers find a job because

frictions impede matching of jobseekers with vacancies.

Our analysis rests on a new representation of the labor market equilibrium in a labor supply-

labor demand diagram. Because search costs are sunk when a worker and a firm meet, a surplus

arises from their match. Any wage sharing the surplus could be an equilibrium wage. Hence

wages cannot equalize labor supply to labor demand. Instead labor market tightness—the ratio of

vacancies to aggregate search effort—equalizes supply and demand. This property allows us to

represent the equilibrium in a labor supply-labor demand diagram in which labor market tightness

acts as a price, as depicted in Figure 1(a). The representation is quite general. If labor demand

1



is perfectly elastic, unemployment depends solely on search efforts as in Baily [1978] and Chetty

[2006a]. At the polar opposite if labor demand is perfectly inelastic, unemployment is completely

independent of search efforts as in a rat race. These two special cases are depicted in Figure 1(b).

We begin in Section 2 by deriving a formula for the optimal replacement rate—the generosity of

unemployed benefits as a fraction of the income of employed workers— in a static equilibrium un-

employment model. The formula, expressed in sufficient statistics, does not require much structure

on the primitives of the model. As in the Baily [1978]-Chetty [2006a] formula, a first term captures

the trade-off between the need for insurance, measured by a coefficient of risk aversion, and the

need for incentives to search, measured by an elasticity of unemployment with respect to UI. But

we replace the micro-elasticity used in the Baily-Chetty formula by a macro-elasticity to measure

the budgetary costs of UI in an equilibrium unemployment framework. The micro-elasticity εm is

the elasticity of the probability of unemployment for a worker whose individual benefits change,

and the macro-elasticity εM is the elasticity of aggregate unemployment when benefits changes

for all workers. Formally εm takes labor market tightness as given, whereas εM accounts for the

equilibrium adjustment in tightness following a change in UI. Moreover our formula adds to the

Baily-Chetty formula a second term proportional to the wedge εm/εM − 1. This wedge captures

the welfare effects of the employment change arising from the equilibrium adjustment in tightness

after a change in UI. At the end of Section 2, we extend the formula to a model in which workers

partially insure themselves against unemployment, and to a model in which wages respond to UI.

In Section 3, we characterize the optimal replacement rate over the business cycle by applying

our formula to the equilibrium unemployment model of Michaillat [2012]. The model captures

two critical elements of the business cycle: (a) unemployment fluctuations, and (b) job rationing—

the property that the labor market does not converge to full employment in recessions even when

search efforts are arbitrarily large. Feature (a) arises from technology shocks and real wage rigidity.

Feature (b) arises from the combination of wage rigidity and diminishing marginal returns to labor.

Because of feature (a), the model accommodates periods of high unemployment and periods of

low unemployment. Because of feature (b), the model is consistent with the fact that unemployed

workers queue for jobs in recessions.1

1Michaillat [2012] shows that standard models of equilibrium unemployment do not have job rationing. These
models always converge to full employment when job-search efforts are arbitrarily large, even in recessions.
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We first prove that the macro-elasticity is lower than the micro-elasticity, creating a wedge

εm/εM−1 > 0. The wedge arises because when the number of jobs available is limited, searching

more to increase one’s probability of finding a job mechanically decreases others’ probability of

finding one of the few jobs available. Because of this wedge, our formula calls for a higher re-

placement rate than the Baily-Chetty formula. As jobseekers search taking the job-finding rate as

given, without internalizing their influence on the job-finding rate of others, they impose a negative

rat-race externality. A higher replacement rate corrects the externality by discouraging job search.

Next, we prove that the wedge εm/εM − 1 is countercyclical and the macro-elasticity εM pro-

cyclical. Recessions are periods of acute job shortage during which job search and matching

frictions have little influence on labor market outcomes. The search efforts of jobseekers have

little influence on aggregate unemployment and the rat-race externality is exacerbated. Thus the

macro-elasticity is small and the wedge between micro-elasticity and macro-elasticity is large.

Finally, we use our formula to prove that the optimal replacement rate is countercyclical. In

recessions the macro-elasticity εM falls. A higher UI only increases unemployment negligibly.

Hence the marginal budgetary cost of UI is small. In recessions the wedge εm/εM − 1, which

measures the welfare cost of the rat-race externality, increases. Hence the marginal benefit of UI

from correcting the externality is high.2 At the end of Section 3, we show that optimal UI is also

countercyclical in a model in which aggregate demand shocks drive fluctuations, and in a model in

which the government provides a wage subsidy to employers to attenuate employment fluctuations.

In Section 4 we calibrate and simulate a dynamic model to quantify the cyclical fluctuations

of optimal UI. Workers insure themselves partially against unemployment using home production.

When the government balances its budget each period and unemployment benefits never expire,

the optimal replacement rate is strongly countercyclical: it increases from 50% when the unem-

ployment rate is 4% to 70% when the unemployment rate reaches 10%. When the government can

borrow and save, the government provides higher consumption to all workers in recessions and

the optimal replacement rate increases more sharply after an adverse shock. When the government

2In this paper we analyze how the classical trade-off between insurance and incentives to search evolves over the
business cycle. Additional mechanisms could justify raising UI in recessions. For instance, if unemployed workers
were more likely to exhaust their precautionary savings in recessions, the consumption-smoothing benefits of UI would
increase and it would be optimal to raise UI further [Kroft and Notowidigdo, 2011].
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adjusts the duration of unemployment benefits, as in the US, the optimal duration is strongly coun-

tercyclical: it increases from less than 10 weeks when unemployment is 4%; to 26 weeks when

unemployment is 5.9%; and to over 100 weeks when unemployment reaches 8%.

The property that εm/εM > 1 distinguishes our model from standard models of equilibrium

unemployment: εm/εM < 1 in the canonical model with Nash bargaining; and εm/εM = 1 if bar-

gaining is replaced by rigid wages. In Section 5, we discuss empirical evidence by Crépon et al.

[2012] that εm/εM > 1, in support of our model. We also discuss how εm and εM can be estimated

to implement our UI formula. Proofs, derivations, and extensions are collected in the Appendix.

2 Formula for Optimal Unemployment Insurance

In this section we use a static model of equilibrium unemployment to derive a formula expressing

the optimal level of UI in terms of sufficient statistics: curvature of the utility function, micro- and

macro-elasticity of unemployment with respect to UI. We also propose two extensions of the for-

mula. One accounts for the ability of workers to insure themselves partially against unemployment.

The other accounts for the response of wages to UI, through bargaining or labor tax incidence.

2.1 The static model

Labor market. There is a unit mass of workers. Initially, u ∈ (0,1) workers are unemployed

and search for a job with effort e, while 1− u workers are employed. Firms post o vacancies

to recruit unemployed workers. The number of matches h made is given by a constant-returns

matching function h = h(e ·u,o) of aggregate search effort e ·u and vacancies o, differentiable and

increasing in both arguments, with the restriction that h(e · u,o) ≤ min{u,o}. Conditions on the

labor market are summarized by labor market tightness θ ≡ o/(e ·u). A jobseeker finds a job at a

rate f (θ) ≡ h(e · u,o)/(e · u) = h(1,θ) per unit of search effort; a jobseeker searching with effort

e finds a job with probability e · f (θ). A vacancy is filled with probability q(θ) ≡ h(e · u,o)/o =

h(1/θ,1). When θ is high, it is easy for jobseekers to find jobs— f (θ) is high—and difficult for

firms to hire—q(θ) is low. To capture the influence of tightness on these probabilities, we define

the tightness elasticities of f (θ) and q(θ): 1−η≡ θ · f ′(θ)/ f (θ)> 0 and−η≡ θ ·q′(θ)/q(θ)< 0.
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A fraction e · f (θ) of the u unemployed workers finds a job during matching. The h = u ·e · f (θ)

new hires join 1−u incumbents in firms and the employment level after matching is

n∗(e,θ) = (1−u)+u · e · f (θ). (1)

Employment n∗(e,θ) increases mechanically with effort e and tightness θ, as f (·) is increasing.

Workers. A worker’s utility is v(c)− k(e), where v(·) is an increasing and concave function of

consumption c and k(·) is an increasing and convex function of effort e. The curvature of the utility

functions is measured by ρ≡−ce ·v′′(ce)/v′(ce), the coefficient of relative risk aversion evaluated

at ce, and κ ≡ e · k′′(e)/k′(e), the elasticity of the marginal disutility of effort. Firms pay a wage

w. To finance unemployment benefits b ·w the government imposes a labor tax t. As in the public

finance literature we assume that the incidence of the tax is entirely on the worker’s side. We

also abstract from possible bargaining effects. Hence the wage w responds neither to the benefit

rate b not to the tax rate t. Workers neither borrow nor save, so consumption is ce = w · (1− t)

when employed and cu = b ·w when unemployed. Let ∆c ≡ ce− cu and ∆v ≡ v(ce)− v(cu) be

the consumption and utility gains from work. Given labor market tightness θ and consumptions

{ce,cu}, a jobseeker chooses effort e to maximize expected utility

v(cu)+ e · f (θ) ·∆v− k(e).

The optimal effort is a function e∗(θ,∆v) implicitly defined by the first-order condition

k′(e) = f (θ) ·∆v. (2)

As the disutility k(·) from effort is convex and the job-finding rate f (·) is increasing, the optimal

effort e∗(θ,∆v) increases with tightness θ and with the utility gain from work ∆v.
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Budget constraint. Since the government finances unemployment benefits with a labor tax, its

budget constraint is (1−n) ·b ·w = n · t ·w. In terms of consumptions the constraint is

n · ce +(1−n) · cu = n ·w. (3)

As in optimal income tax theory we consider that the government chooses the consumption gain

from work ∆c, which determines cu = n · (w−∆c) and ce = cu +∆c through the budget constraint.

Equilibrium. The equilibrium is parameterized by ∆c, which characterizes the generosity of

UI. It is useful to represent the equilibrium in a labor demand-labor supply framework. Let

es(θ,∆c)≡ e∗(θ,∆v(∆c)) be the effort supply. The labor supply ns(θ,∆c)≡ n∗(es(θ,∆c),θ) gives

the employment rate after matching when jobseekers search optimally for a given labor market

tightness θ. It increases with θ because both es(θ,∆c) and n∗(e,θ) increase with θ. It is concave

in θ if and only if (1−η) · (1+κ)/κ < 1.3 Let nd(θ) summarize the firm’s demand for labor as a

function of θ. In presence of matching frictions the equilibrium wage cannot equalize labor supply

to labor demand. Instead, θ acts as a price equilibrating labor supply and labor demand:

ns(θ,∆c) = nd(θ). (4)

This equilibrium condition is represented in Figure 1(a). Equilibrium employment n(∆c) is given

by the intersection of the upward-sloping labor supply curve ns(θ,∆c) with a generic downward-

sloping labor demand curve nd(θ). Tightness θ equalizes supply and demand. If labor supply is

above labor demand, a reduction in θ increases labor demand; it reduces labor supply by reducing

the job-finding rate as well as optimal search effort; until labor supply and labor demand are

equalized. In Section 3, we impose more structure and derive a downward-sloping labor demand.

Our framework is quite general. It nests the Baily-Chetty model as a special case. In the Baily-

Chetty model, employment is solely driven by search efforts. It is a partial-equilibrium model of

unemployment in the sense that it fixes labor market tightness θ and job-finding rate f (θ). As

showed in Figure 1(b), the Baily-Chetty model can be represented with a perfectly elastic labor

3Lemma A3 in the Appendix proves the concavity of the labor supply. If jobseekers exert a constant search effort
irrespective of labor market tightness (κ =+∞), then the labor supply is concave for any parameter values.
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demand, which determines θ independently of UI. At the polar opposite, our framework also nests

the rat-race model as a special case. In the rat-race model, the number of jobs is fixed. As showed

in Figure 1(b), the rat-race mode can be represented with a perfectly inelastic labor demand, which

determines n independently of UI.

Government. The government chooses the consumption gain from work ∆c to maximize welfare

n · v(ce)+ [1−n] · v(cu)−u · k(e). (5)

Equilibrium effort e and equilibrium employment n are read off the effort supply and labor supply

curves: e = es(θ,∆c), n = ns(θ,∆c), where equilibrium tightness θ satisfies condition (4). Con-

sumptions ce and cu satisfy the government’s budget constraint (3) and ce = cu +∆c.

2.2 Elasticities and optimal unemployment insurance formula

To solve the government’s problem we need to characterize the individual response of jobseekers

(through a change in effort) and the aggregate response of the labor market (through the response

of both jobseekers and firms) to a change in UI. To this end, we define two elasticities:

DEFINITION 1. The micro-elasticity of unemployment with respect to consumption gain from

work is

ε
m ≡ ∆c

1−n
· ∂ns

∂∆c

∣∣∣∣
θ

=
∆c

1−n
· ∂n∗

∂e

∣∣∣∣
θ

· ∂es

∂∆c

∣∣∣∣
θ

. (6)

The macro-elasticity of unemployment with respect to consumption gain from work is

ε
M ≡ ∆c

1−n
· dn

d∆c
= ε

m +
∆c

1−n
·
(

∂n∗

∂θ

∣∣∣∣
e
+

∂n∗

∂e

∣∣∣∣
θ

· ∂es

∂θ

∣∣∣∣
∆c

)
· dθ

d∆c
. (7)

If labor demand is perfectly elastic, θ is determined by firms independently of UI and εM = εm.

Both elasticities are normalized to be positive and are depicted for various models in Fig-

ure 1(c)–1(f). The micro-elasticity measures the percentage increase in unemployment 1−n when

the net reward from work ∆c decreases by 1%, taking into account the jobseekers’ reduction in
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search effort e but ignoring the equilibrium adjustment of labor market tightness θ. It can be es-

timated by measuring the reduction in the job-finding probability of an individual unemployed

worker whose unemployment benefits are increased, keeping the benefits of all other workers con-

stant. The macro-elasticity measures the percentage increase in unemployment when the net re-

ward from work decreases by 1%, assuming that both search effort and tightness adjust. It can be

estimated by measuring the increase in aggregate unemployment following a general increase in

unemployment benefits.

The two elasticities differ in models of equilibrium unemployment as long as labor demand

is not perfectly elastic. A rat-race model illustrates the difference. u jobseekers queue in front

of o < u vacant jobs. Workers searching more move up the queue and increase their probability

of finding a job. Formally, the unconditional probability n∗ to be employed after the matching

process increases with search effort e: n∗(e, f ) = (1−u)+u · e · f , where f is the equilibrium job-

finding rate. Searching harder increases the employment probability n∗, so the micro-elasticity εm

is positive. But when a jobseeker moves up the queue by searching more, the jobseekers in front of

him in the queue fall behind and face a lower probability of finding a job. Formally, the equilibrium

job-finding rate f = o/(u · e) falls when aggregate search effort e rises to equilibrate labor supply

n∗(e, f ) with the fixed labor demand 1−u+o. As a result of the job shortage, the macro-elasticity

εM is smaller than the micro-elasticity εm. In fact equilibrium employment n = 1− u+ o < 1 is

fixed, independent of aggregate search effort. Therefore εM = 0 even though εm > 0.

To solve the government’s problem we use the envelope theorem as workers choose effort e

optimally.4 The first-order condition of the government’s problem (5) with respect to ∆c is

n · v′(ce)+ v̄′ · dcu

d∆c
+∆v · ∂n∗

∂θ

∣∣∣∣
e
· dθ

d∆c
= 0, (8)

where v̄′ ≡ n · v′(ce)+(1−n) · v′(cu) denotes the average marginal utility.

We now provide some intuition for (8), and we explain how (8) can be expressed in terms of

sufficient statistics. Consider a small increase d∆c > 0 in the consumption gain from work—

equivalent to a cut in unemployment benefits. The first term in (8) captures the utility gain of

4To apply the envelope theorem, note that social welfare (5) is (1−u) · v(ce)+u · [v(cu)+ e · f (θ) ·∆v− k(e)].
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the n employed workers, whose consumption ce = cu +∆c increases by d∆c: dS1 = n · v′(ce) ·

d∆c. To satisfy the budget constraint, increasing ∆c requires cutting unemployment benefits cu =

n · (w−∆c), which reduces by dcu the consumption of all workers, including the employed as

ce = cu +∆c. The second term in (8) captures the associated utility loss dS2 = −v̄′ · dcu. Since

dcu =−n ·d∆c+(w−∆c) ·dn =−
{

n− (1−n) · [(w−∆c)/∆c] · εM} ·d∆c, we can rewrite dS2 =

−v̄′ ·
{

n− (1−n) · [(w−∆c)/∆c] · εM} ·d∆c. The macro-elasticity εM appears in dS2 to capture the

budgetary cost of the increase in unemployment caused by higher UI.

The job-finding rate f (θ) depends on labor market tightness θ, which is determined in equi-

librium by (4) as the intersection of labor demand and labor supply as depicted in Figure 1. The

change d∆c > 0 increases the incentive to search, shifts labor supply ns(θ,∆c) outwards, and leads

to a small equilibrium adjustment dθ of labor market tightness. The change dθ in turn leads to

a small change dnθ in employment through two channels: (a) a change (∂n∗/∂e) · (∂es/∂θ) · dθ

in employment through a reduction in search effort—this reduction, however, does not have any

welfare effect by the envelope theorem as workers choose effort to maximize expected utility; and

(b) a change (∂n∗/∂θ) ·dθ in employment through a change in job-finding rate f (θ). Each new job

created through (b) generates a first-order utility gain ∆v > 0 as finding a job discretely increases

consumption. The third term in (8) captures the welfare change from the equilibrium adjustment

dθ. Lemma 1 establishes the relationship between the change (∂n∗/∂θ) ·dθ in employment, which

is the only relevant change from a welfare perspective, and the wedge εm− εM:

LEMMA 1. The derivative of equilibrium labor market tightness satisfies:

∆c
θ
· dθ

d∆c
=

κ

κ+1
· 1

1−η
· 1−n

h
·
[
ε

M− ε
m] ,

∆c
1−n

· ∂n∗

∂θ

∣∣∣∣
e
· dθ

d∆c
=

κ

κ+1
·
[
ε

M− ε
m] .

Using the lemma we rewrite dS3 ≡ ∆v ·(∂n∗/∂θ) ·dθ = ∆v · [κ/(1+κ)] · [(1−n)/∆c] · [εM−εm] ·

d∆c. At the optimum the sum dS1 +dS2 +dS3 is zero, allowing to rewrite (8) as follows.
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PROPOSITION 1. The optimal replacement rate τ≡ cu/ce satisfies

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(cu)

v′(ce)

]−1

·
{

n
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce) ·∆c

· κ

κ+1
·
[

εm

εM −1
]}

. (9)

If n≈ 1, and if the third and higher order terms of v(·) are small, the optimal formula simplifies to

τ

1− τ
≈ ρ

εM · (1− τ)+

[
εm

εM −1
]
· κ

1+κ
·
[
1+

ρ

2
· (1− τ)

]
. (10)

If labor demand is perfectly elastic, εm = εM, the second term in the right-hand side of (9) and (10)

vanishes, and the formulas reduce to those in Baily [1978] and Chetty [2006a].

The proposition provides a formula for the optimal replacement rate, defined as the amount

transferred to unemployed workers expressed as a fraction of the income of employed workers.

The replacement rate measures the generosity of the UI system. Equation (9) provides an exact

formula while equation (10) provides a simpler formula using the approximation method of Chetty

[2006a]. The approximated formula (10) is expressed in sufficient statistics, which means that

the formula is robust to changes in the primitives of the model. Indeed the formula is valid for

any utility over consumption with coefficient of relative risk aversion ρ; any marginal disutility of

effort with elasticity κ and associated micro-elasticity εm; any labor demand, function only of labor

market tightness and an exogenous shock, yielding a macro-elasticity εM; and any constant-returns

matching function. Since the four statistics are estimable, the formula can be used to assess the

current UI system.5 Admittedly the statistics are endogenous functions of the replacement rate, so

we cannot infer directly the optimal replacement rate from estimates of the statistics. Nevertheless,

we can infer that increasing the replacement rate τ is desirable if the current τ/(1−τ) is lower than

the right-hand side of formula (10) evaluated using current estimates of the four statistics.

The first term in the optimal replacement rate (10) increases with the coefficient of relative

risk aversion ρ, which measures the value of insurance. If micro- and macro-elasticity are equal

(εm = εM), our formulas reduce to the Baily-Chetty formula. For instance the approximated for-

5Section 5 discusses how to estimate micro- and macro-elasticity. Appendix E.4 explains how to estimate κ from
the micro-elasticity of the hazard rate out of unemployment with respect to benefits estimated by Meyer [1990]. Many
studies estimate the coefficient of relative risk aversion [for example, Chetty, 2006b].
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mula (10) becomes τ/(1− τ) ≈ (ρ/εm) · (1− τ). In the formula the trade-off between the need

for insurance (captured by the coefficient of relative risk aversion ρ) and the need for incentives

to search (captured by the micro-elasticity εm) appears transparently. In a model of equilibrium

unemployment micro- and macro-elasticity generally differ (εm 6= εM), and our formula presents

two departures from the Baily-Chetty formula.

The first term in the right-hand side of formulas (9) and (10) involves the macro-elasticity εM

and not the micro-elasticity εm, conventionally used to calibrate optimal benefits [Chetty, 2008;

Gruber, 1997]. What matters for the government is the budgetary cost of UI from higher aggregate

unemployment and higher outlays of unemployment benefits, and only εM captures this cost in an

equilibrium unemployment framework. The optimal replacement rate naturally decreases with εM.

A second term, increasing with the ratio εm/εM, also appears in the right-hand side of formu-

las (9) and (10) when εm 6= εM. The term is a correction that accounts for the first-order welfare

effects of the adjustment of employment that arises from the equilibrium adjustment of labor mar-

ket tightness after a change in UI. Even in the absence of any concern for insurance—if workers

are risk neutral—some unemployment insurance should be provided as long as the correction term

is positive (εm/εM > 1).

2.3 Extensions

Self-insurance. We extend the model to include partial self-insurance by workers. Chetty [2006a]

shows that the Baily formula carries over to models with savings, borrowing constraints, private

insurance, or leisure benefits of unemployment. Similarly, formulas (9) and (10) carry over with

minor modifications. Introducing self-insurance through borrowing and saving would require a

dynamic model. Instead, we consider the simpler case of self-insurance through home produc-

tion. In addition to unemployment benefits cu received from the government, unemployed workers

consume an amount y of good produced at home at a utility cost m(y), increasing, convex, and

normalized so that m(0) = 0. Jobseekers choose effort e and home production y to maximize

[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e).
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Home production y is chosen so that v′(cu + y) = m′(y). It provides additional insurance that is

partially crowded out by UI, as y decreases with cu. The government chooses ∆c to maximize

n · v(ce)+ [1−n] · [v(cu + y)−m(y)]−u · k(e),

where e and y are chosen optimally by individuals, subject to the same constraints as in our orig-

inal problem. Let ch ≡ cu + y be the total consumption when unemployed and ∆vh ≡ v(ce)−

[v(cu + y)−m(y)] be the utility gain from work. Appendix B derives the optimal UI formula

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(ch)

v′(ce)

]−1

·
{

n
εM ·

[
v′(ch)

v′(ce)
−1
]
+

∆vh

v′(ce) ·∆c
· κ

κ+1
·
[

εm

εM −1
]}

.

Clearly, formula (9) carries over by replacing v′(cu) by v′(ch) and ∆v by ∆vh.

Although the structure of the formula does not change, the consumption smoothing benefit[
v′(ch)/v′(ce)−1

]
of UI is smaller if individuals can partially self-insure using home production,

because ch ≥ cu. The welfare effect of the equilibrium adjustment of θ is also smaller because

maxy [v(cu + y)−m(y)]≥ v(cu) so ∆vh = v(ce)− [v(cu + y)−m(y)]≤ ∆v = v(ce)−v(cu). If work-

ers can partially smooth consumption on their own, the optimal replacement rate τ is lower than in

our original model without self-insurance. As shown in Section 4.2, the extended formula can be

implemented using estimates of the consumption-smoothing benefit of UI from Gruber [1997].

Wage response to UI. In the baseline model we assume that wages paid by firms do not respond

to UI . But UI may affect the outside options of workers and influence the wage through bargaining.

Or the incidence of the labor tax financing UI may fall partly on employers. In this section we show

that formula (9) carries over with a minor modification when wages depend on UI.

As UI is parameterized by the consumption gain from work ∆c, we assume that the wage is a

function w(∆c). In that case, a change d∆c in the generosity of UI affects the government budget’s

constraint not only through a change dn in employment, but also through a change dw in wages.

The optimal UI formula (9) becomes

1
n
· τ

1− τ
+

1
εM ·

n
1−n

· dw
d∆c

=

[
n+(1−n)

v′(cu)

v′(ce)

]−1{ n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

κ

κ+1

(
εm

εM −1
)}

.
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A new term appears on the right-hand side of the formula. The term is negative if dw/d∆c < 0, as

lower benefits reduce the outside option of workers and the UI payroll tax leading to lower wages

through both bargaining and employer tax incidence channels. At the same time when wages

respond to UI in that way, the macro-elasticity εM is likely to be higher than in our basic model

because higher benefits increase wages, depress labor demand, which increases unemployment

further. Overall optimal UI is likely to be lower, despite the additional negative term.6

3 Unemployment Insurance in Presence of Job Rationing

In this section we specialize the model to obtain the properties that unemployment is high and jobs

are rationed in recessions—periods of low technology. We use formula (9) to prove that optimal

UI is countercyclical. At the end of the section we show that the result is quite general. It holds

in a model in which aggregate demand, instead of technology, drives fluctuations. It also holds in

a model in which the government provides, in addition to UI, a wage subsidy to firms to attenuate

unemployment fluctuations. We provide intuitions with the equilibrium diagram of Figure 1.

3.1 Firms

The representative firm takes labor n as input to produce a consumption good according to the

production function a ·g(n) = a ·nα. α > 0 measures marginal returns to labor. a > 0 is the level

of technology, which proxies for the position in the business cycle.

ASSUMPTION 1. The production function has diminishing marginal returns to labor: α < 1.

The assumption yields a downward-sloping labor demand curve in a price θ-quantity n diagram,

which has important macroeconomic implications. The assumption is motivated by the observation

that, at business cycle frequency, some production inputs are slow to adjust.

Wages are set once worker and firm have matched. Since the costs of search are sunk at the time

of matching, a surplus arise from each worker-firm match. Any wage sharing this surplus could
6In Appendix B we assume that a fraction ψ of the tax burden falls on firms and a fraction 1−ψ falls on workers.

The wage w becomes an increasing function of the labor tax rate t. We apply the formula in that case and obtain a
formula similar to (9), except that each of the three terms in (9) is corrected with the incidence parameter ψ.
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be an equilibrium wage [Hall, 2005]. Given the indeterminacy of wages we use the simple wage

schedule of Blanchard and Galı́ [2010]:

ASSUMPTION 2. The wage schedule is rigid: w = ω ·aγ, γ < 1.

ω is a parameter. The parameter γ captures the rigidity of wages over the business cycle. If

γ = 0, wages do not respond to technology and are completely fixed over the cycle. If γ = 1, wages

are proportional to technology and are fully flexible over the cycle. We assume that wages are

rigid in the sense that (a) they only partially adjust to a change in technology, and (b) they do

not respond to a change in UI. Rigidity (a) generates unemployment fluctuations over the cycle

[Hall, 2005]. Rigidity (b) makes labor demand independent of UI and allows us to focus on the

classical trade-off between insurance and incentive to search. Both assumptions are empirically

grounded. Many historical, ethnographic, and empirical studies document and explain wage rigid-

ity [for example, Bewley, 1999; Jacoby, 1984; Kramarz, 2001]. Empirical studies consistently find

that re-employment wages do not respond to changes in unemployment benefits [Card et al., 2007].

As in Pissarides [2000], it costs r · a to post a vacancy. The parameter r > 0 measures the

resources spent on recruiting. We assume away randomness at the firm level: a worker is hired

with certainty by opening 1/q(θ) vacancies and spending r · a/q(θ). When the labor market is

tighter, a firm posts more vacancies to fill a job, and recruiting is more costly.

The firm takes prices as given. It starts with 1− u workers. Given labor market tightness θ,

technology a, and wage w, it decides how many workers to hire such that employment n maximizes

real profit:7

π = a ·g(n)−w(a) ·n− r ·a
q(θ)

· [n− (1−u)] .

The first-order condition implicitly defines labor demand nd(θ,a), which satisfies

g′(n) =
w
a
+

r
q(θ)

. (11)

Under Assumption 1, g′(·) decreases with n. q(·) decreases with θ. Thus labor demand nd(θ,a)

decreases with θ. When the labor market is tight, it is expensive for firms to recruit, depressing
7We assume that technology is high enough such that it is optimal for the firm to choose positive hiring: h =

n− (1−u)> 0. The assumption requires a > (ω/α) · (1−u)(1−α)/(1−γ).
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labor demand. Under Assumption 2, w/a decreases with a so nd(θ,a) increases with a. When

technology is high, wages are relatively low, stimulating labor demand.

The equilibrium in the labor market is depicted in Figure 1 in a price θ-quantity n plan. The

figure plots labor demand curves for high and low technology (panel (c) and panel (d)). It plots

labor supply for low and high consumption gains from work ∆c (dotted line and solid line). Jobs

are rationed in recessions in the sense that the labor market does not clear and some unemployment

remains even as unemployed workers exert an arbitrarily large search effort. The mechanism

creating a job shortage is quite simple. After a negative technology shock the marginal product of

labor falls but rigid wages adjust downwards only partially, so that the labor demand shifts inward

(from panel (c) to panel (d)). If the adverse shock is sufficiently large, the marginal product of

the least productive workers falls below the wage. It becomes unprofitable for firms to hire these

workers even if recruiting is costless at θ = 0: labor demand cuts the x-axis at nR < 1 on the right

panel. Even if workers searched infinitely hard, shifting labor supply outwards such that θ→ 0,

firms would never hire more than nR < 1 workers: there is a job shortage. When the shortage is

acute in recessions, the social returns to search are small because an increase in search efforts only

leads to a negligible increase in employment.

3.2 Elasticity wedge

Formula (9) adds to the Baily-Chetty formula a second term proportional to the wedge εm/εM−1.

Proposition 2 establishes that εm/εM > 1 in our model with job rationing in which wages are rigid

(Assumption 2) and the labor demand is downward sloping (Assumption 1):

PROPOSITION 2. Under Assumption 2, the wedge εm/εM admits a simple expression:

εm

εM = 1+χ ·q(θ) · h
n
·nα−1,

where χ≡ α · (1−α) · [(1−η)/η] · [(1+κ)/κ] · (1/r). Under Assumption 1, εm/εM > 1.

Proposition 2, combined with formula 9, justifies public provision of UI. If εm/εM > 1, small

private insurers would underprovide UI because they maximize profits by using the Baily-Chetty
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formula to determine how much insurance to provide to their clients. Small insurers solely take

into account the micro-elasticity of unemployment, and do not internalize search externalities. In

that case, the government would improve welfare by complementing the private provision of UI.

To understand why the micro-elasticity εm is larger than the macro-elasticity εM, consider the

cut in unemployment benefits d∆c > 0 depicted in Figure 1(c). The change creates variations in

all variables d∆c, dn, dθ, and de, so that all equilibrium conditions continue to be satisfied. The

change in effort can be decomposed as de = de∆c +deθ, where de∆c = (∂es/∂∆c)d∆c is a partial-

equilibrium variation in response to the change in UI, and deθ is a general-equilibrium adjustment

following the change dθ in labor market tightness. Using the labor supply equation (1) we have

dn = dne+dnθ where dne = (∂n∗/∂e)de∆c and dnθ = [∂n∗/∂θ+(∂n∗/∂e)(∂es/∂θ)]dθ. Following

a cut in benefits an individual jobseeker increases his search effort, increasing his own probability

of finding a job by dne > 0. From the jobseeker’s perspective, labor market tightness θ remains

constant. The interval A–C in Figure 1(c) represents dne. When the jobseeker finds a job, how-

ever, he reduces the profitability of the marginal jobs left vacant because (a) the productivity of

these jobs falls by diminishing returns to labor, and (b) the prevailing wage does not adjust to the

drop in marginal productivity . Thus the firm reduces the number of vacancies posted to fill these

less profitable jobs. Labor market tightness falls by dθ < 0, reducing the job-finding rate f (θ) of

jobseekers who are still unemployed. dnθ < 0 is the corresponding reduction in employment, rep-

resented by interval C–B in Figure 1(c). As a consequence the equilibrium increase in employment

dn following an increase in aggregate search efforts is smaller than the increase dne in the individ-

ual probability to find a job following an increase in individual search efforts. The interval A–B in

Figure 1(c) represents dn < dne. The difference between micro-effect dne and macro-effect dn is

dnθ < 0. Equation (7) says that εM = εm +[∆c/(1−n)] ·dnθ/d∆c. Since dnθ < 0, εM < εm.

3.3 Optimal replacement rate

Our previous results do not require any assumptions on the functional forms of the utility functions

and matching function. They only involve the local elasticities η, ρ, and κ. But to characterize the

cyclicality of the micro-elasticity, the macro-elasticity, and the optimal replacement rate, we must

control how the local elasticities fluctuate over the business cycle:
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ASSUMPTION 3. The utility functions are isoelastic: v(c) = ln(c), k(e) = ωk ·e1+κ/(1+κ). The

matching function is Cobb-Douglas: h(e ·u,o) = ωh · (e ·u)η ·o1−η.

The parameters ωk > 0 and ωh > 0 measure the cost of search and the effectiveness of matching.

To determine how the elasticities and the optimal replacement rate vary over the business cycle,

we must also specify the initial unemployment u associated with each technology level a:

ASSUMPTION 4. For any a, u is such that in equilibrium h = n− (1−u) = s ·n, s ∈ (0,1).

The equilibrium is determined given initial unemployment u and technology a. Assumption 4

ensures that in equilibrium, the fraction h/n of new hires in the workforce remains constant over

the cycle. The assumption replicates in our static model a feature of dynamic equilibrium unem-

ployment models that assumes a constant job-destruction rate s, independent of technology.8

Proposition 3 establishes that the wedge εm/εM is countercyclical and the macro-elasticity εM

is procyclical in a model with job rationing in recessions (Assumptions 1 and 2):

PROPOSITION 3. Under Assumptions 1, 2, 3, and 4,

∂
(
εm/εM)

∂a

∣∣∣∣
τ

< 0 and
∂εM

∂a

∣∣∣∣
τ

> 0.

The proposition says that the macro-elasticity is large in expansions but small in recessions, as

illustrated by comparing Figure 1(c) to Figure 1(d). This is because in recessions, jobs are acutely

rationed and search efforts have little influence on aggregate unemployment. The proposition

also says that the wedge between micro- and macro-elasticity is small in expansions but large in

recessions. This is because when jobs are acutely rationed, searching more mechanically increases

one’s job-finding probability but it decreases others’ job-finding probability as in a rat race.

Proposition 4 establishes that the optimal replacement rate τ is countercyclical in a model with

job rationing in recessions (Assumptions 1 and 2):

8Pissarides [2000] and many others assume a constant job-destruction rate s and balanced labor market flows.
When flows are balanced, firms hire each period as many workers as they lose. Therefore the fraction of new hires in
the workforce is constant over the cycle.
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PROPOSITION 4. Assume that formula (9) implicitly defines a unique function τ(a) ∈ (0,1),

continuous and differentiable. Under Assumptions 1, 2, 3, and 4, if n > 1/2 and (α/η) · s · (1−η) ·

(κ+1)/κ≤ 1, then dτ/da < 0.

The proposition says that the optimal replacement rate is more generous in recessions than in

expansions. The formal proof, relegated in the Appendix, exploits formula (9). But we can sketch

the proof informally using the approximated formula (10) and Proposition 3. In recessions the

macro-elasticity εM falls and the first term in formula (10) increases. In recessions the marginal

budgetary cost of UI is small because a higher UI only increases unemployment negligibly. More-

over in recessions the wedge εm/εM increases and the second term in formula (10) increases. The

wedge measures the welfare cost of a negative rat-race externality imposed by unemployed work-

ers on others. The externality arises because unemployed workers search taking the job-finding

rate as given, and do not internalize their influence on the job-finding rate of others. UI corrects

the externality by discouraging job search. In recessions the externality is acute so the marginal

benefits of UI are high. Since both terms in formula (10) increase, τ must increase.

The formal proof is more complex because n enters the exact formula (9). The results of Propo-

sition 3 are not sufficient to prove the proposition. We need to prove that εM is sufficiently pro-

cyclical and that εm/εM is sufficiently countercyclical to compensate the fluctuations in n. To do

so, we need two additional assumptions. The assumption n > 1/2 is needed because if tech-

nology a is so low that most workers become unemployed, it becomes optimal to reduce the

replacement rate τ. Suppose all workers are unemployed (n = 0, θ = 0). Providing more con-

sumption to employed workers has no budgetary cost but it provides incentives for unemployed

workers to search more, which could raise employment. Clearly, it is optimal to reduce the gen-

erosity of UI. In fact Lemma A9 in the Appendix establishes that when a→ 0 then n→ 0 and

τ→ 0. This result implies that for very low levels of technology and very low levels of employ-

ment, the optimal replacement rate is bound to increase with technology. The assumption that

(α/η) · s · (1−η) · (κ+1)/κ ≤ 1 is needed to ensure that the labor supply is convex enough. As

shown by comparing Figures 1(c) and 1(d), the convexity of labor supply in the (n,θ) plan drives

the cyclicality of elasticities. The assumption is easily satisfied for any reasonable calibration

because s, which captures the job-destruction rate, is very small. In the calibration in Table 1,
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(α/η) · s · (1−η) · (κ+1)/κ = 0.008� 1.

3.4 Relation to the Hosios [1990] condition

To relate our work to the classical efficiency result in Hosios [1990], we confine the analysis to

the canonical model of equilibrium unemployment.9 The canonical model is characterized by two

assumptions that replace Assumptions 1 and 2 in the model with job rationing:10

ASSUMPTION 5. The production function has constant marginal returns to labor: α = 1.

ASSUMPTION 6. The wage w is determined using the generalized Nash solution to the bargain-

ing problem faced by firm-worker pairs. The bargaining power of workers is β ∈ (0,1).

The Nash bargaining solution allocates a fraction β of the surplus of the match to the worker and

the rest to the firm. If the utility function has constant relative risk aversion: v(c)=
(
c1−ρ−1

)
/(1−

ρ), the bargained wage is

w
a
=− β

1−β
· 1

v(τ)
· r

q(θ)
.

Substituting the wage w in the firm’s profit-maximization condition (11) yields

r
q(θ)

=

[
1− β

1−β
· 1

v(τ)

]−1

. (12)

Equilibrium labor market tightness θ, determined by (12), does not depend on technology a. There-

fore, keeping the replacement rate τ constant, there are no fluctuations in tightness over the busi-

ness cycle.11 As tightness is strongly procyclical in the data, the Nash bargaining solution cannot

account for the labor market fluctuations observed over the business cycle.

To make our analysis comparable to the efficiency result in Hosios [1990], we assume that

the government assigns a welfare weight equals to the average marginal consumption utility v′ to

profits, as if firm ownership was equally distributed. We then extend formula (9) to a class of model

9The results presented in this section are derived formally in Appendix C.
10See Pissarides [2000] for a complete treatment of the canonical model of equilibrium unemployment.
11Blanchard and Galı́ [2010] and others have proved similar theoretical results in a variety of settings.

20



in which Assumption 5 holds and the wage is a function w(∆c) of the consumption gain from work

∆c, as under Assumption 6. In this class of models, with valuation of profits, the formula becomes

1
n

τ

1− τ
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1{ n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

κ

κ+1

(
εm

εM −1
)[

1− v′

∆v
η

1−η

ra
q(θ)

]}
.

The valuation of profits and the response of wages appear simply as a multiplicative correction

to the externality term of formula (9).12 We can apply the formula to the canonical model. If

workers are risk neutral and the bargaining power matches the elasticity of the matching function

with respect to effort (β = η), the optimal replacement rate implied by the formula is τ = 0. Risk

neutrality implies that the first term in the right-hand-side numerator is zero. With β = η and τ = 0

the bargained wage is w = η/(1−η) · (r ·a)/q(θ) = ∆v, so the second term in the right-hand-side

numerator is zero. Therefore, our formula conforms to the Hosios [1990] condition for efficiency.

3.5 Robustness

Aggregate demand shocks. A limitation that the model shares with most equilibrium unem-

ployment models is that business cycles are generated by technology shocks only. This is not

plausible. For instance, aggregate demand shocks likely contribute to labor market fluctuations.

To study optimal UI in a demand-generated business cycle, Appendix F.1 builds a basic model in

which recessions are driven by aggregate demand shocks amplified by nominal wage rigidity.

Jobs are rationed in this model as well, albeit through a different mechanism. Firms face a

downward-sloping aggregate demand curve in the goods market. The larger the quantity produced

by workers, the lower the market price for goods. When aggregate demand is low enough, the

production of workers would sell at a price below the nominal wage if all workers were employed.

In this situation, firms would not hire all workers in the labor force even if recruiting were costless.

Some unemployment would remain if jobseekers searched infinitely hard.

We represent the labor market equilibrium with our labor supply-labor demand diagram in Fig-

12In this class of models, profits are π = (1− u) · (r ·a)/q(θ) and wages are w = a− (r ·a)/q(θ). Therefore the
response of π and w to a change in UI solely depend on the response of labor market tightness θ. Since the response
of θ to a change in UI is captured by the externality term, the response of π and w only enters as a multiplicative
correction to the externality term in the formula.
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ure A1 in the Appendix. The labor supply is the same, and the labor demand retains the same

properties, as in the model of technology-generated business cycle. The labor demand curve is

downward sloping in a price θ–quantity n plan because higher employment n implies more pro-

duction, lower prices in the goods market, higher real wages because of nominal wage rigidity, and

requires a lower tightness θ for firms to be willing to hire. When aggregate demand falls, prices

fall and real wages rise, so the labor demand shifts inwards.

Given the similarity of the structures of the labor market equilibrium in the two models, it

comes as no surprise that all the results derived in the model with technology-generated business

cycle also apply in the model with demand-generated business cycles. We prove that the results

on the cyclicality of the wedge εm/εM and the macro-elasticity εM (Proposition 3), as well as the

cyclicality of the optimal replacement rate (Proposition 4) remain valid once derivatives are taken

with respect to aggregate demand instead of technology. Hence, the generosity of the optimal UI

also increases in recessions caused by low aggregate demand.13

Wage subsidies. Because of real wage rigidity, wages are high relative to technology in reces-

sions, which raises unemployment. The government cannot correct wages under our assumption

that the incidence of a labor tax is fully on workers. While the assumption is standard in public

finance and justified in the long run, the wage rigidity observed in micro-data suggests that chang-

ing the payroll tax imposed on employers is likely to change the wages effectively paid by firms

in the short run. In this section we explain why our results remain valid when the government can

attenuate unemployment fluctuations using wage subsidies. The formal proof is in Appendix D.

The government chooses a rate b of unemployment benefits, a tax rate t imposed on the salary

w∗ received by employees, and a subsidy rate σ imposed on the salary w∗ paid by employers.

Firms pay a wage w = (1−σ) ·w∗, employed workers consume ce = (1− t) ·w∗, and unemployed

workers consume cu = b ·w∗. Equivalently, we consider that the government chooses directly

the wage w and consumptions ce, and cu. The government is subject to the budget constraint

13To showcase the range of applications of our framework, we entertain another possible source of business cycles
in Appendix F.2. We assume that business cycles are generated by a preference shock that affects workers’ disutility
from job search. In recessions it is unpleasant for unemployed workers to search. Jobseekers reduce their effort,
reducing labor supply and increasing unemployment. Simulations suggest that the optimal UI is procyclical in this
model. But the model is unrealistic: it has the counterfactual property that labor market tightness is countercyclical.
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(1− n) · b ·w∗+ n ·σ ·w∗ = t · n ·w∗, but this constraint can be rewritten exactly as the baseline

budget constraint (3) that relates w, ce, and cu.

If the government could control wages at no cost using wage subsidies, it would be optimal to

eliminate unemployment fluctuations and keep UI at a constant level. However, it is improbable

that the government could implement a wage subsidy at no cost. Various sources of cost come

to mind. First, informational frictions may require the government to collect vast amount of data

to devise a subsidy that would eliminate unemployment fluctuations. Second, political constraints

may impose a cost on the government to enact the desired subsidy: for instance, trade unions may

resist the reduction of the cost of labor incurred by firms. Third, aggregate demand may be low

in recessions and firms may be constrained to sell a fixed low quantity of goods. Reducing the

marginal cost of labor with a subsidy would not lead firms to hire workers in the short run; it

would only be a transfer from the government to firm owners. Since firm ownership is usually con-

centrated, the marginal propensity to consume of wealthy firm owners is much lower than that of

workers, and a subsidy could depress aggregate demand further. Formally, we represent these costs

as an increasing convex cost function C (σ) included in the objective function of the government.

In that case, it is not optimal to eliminate entirely cyclical fluctuations in unemployment because

of the cost C (σ). Let w be the optimal wage chosen by the government given the cost of a subsidy.

Given w the government chooses ∆c to maximize social welfare (5) subject to the budget con-

straint (3). This is exactly the problem faced by the government in the baseline model. There-

fore the optimal UI formula (9) remains valid. Let w̃ ≡ w/a be the optimal wage w normalized

by technology a. w̃ is the only source of fluctuations in the economy through the firm’s profit-

maximization condition (11). Since the government cannot stabilize unemployment completely,

w̃ must fluctuate. Once we replace the derivatives with respect to a by derivatives with respect to

w̃, the results on the cyclicality of the elasticities εm and εM (Proposition 3) and the result on the

cyclicality of the optimal replacement rate (Proposition 4) remain valid. The sign of the deriva-

tives naturally changes because an increase in w̃ has the same effect as a decrease in a: it raises

unemployment and reduces labor market tightness.

To conclude, the properties of optimal UI are robust to the presence of a wage subsidy that

attenuates unemployment fluctuations. Wage subsidies may be a powerful tool to stimulate em-
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ployment in recessions. One could model the costs and benefits of wage subsidies to design an

optimal wage subsidy over the business cycle that would complement our optimal UI.

4 Simulations

In this section we enrich the static model used for the theoretical analysis to make it more realistic:

the static model is cast into a dynamic environment; workers use home production to insure them-

selves partially against unemployment; and profits enter the budget constraint of the government

to capture either ownership of firms by workers or direct taxation of profits by the government. We

calibrate the model with US data and solve it numerically to quantify how optimal UI varies over

the business cycle. We study various institutional arrangements for the administration of UI that

could not be studied in a static environment, such as the adjustment of the duration of unemploy-

ment benefits and the recourse to deficit spending in recessions.

4.1 The dynamic model

This section provides an overview of the dynamic model. The solution to the worker’s, firm’s, and

government’s problems, as well as the definition of the equilibrium are presented in Appendix E.

Technology follows a stochastic process {at}+∞

t=0. The labor market is similar to that in the static

model. The only difference is that at the end of period t − 1, a fraction s of the nt−1 existing

worker-job matches is exogenously destroyed. Workers who lose their job become unemployed,

and start searching for a new job at the beginning of period t. At the beginning of period t,

ut = 1− (1− s) ·nt−1 unemployed workers look for a job.

The government fully taxes profits, taxes or subsidizes labor income, and provides unemployed

benefits. Its budget must be balanced each period. It is as if, given technology {at}+∞

t=0, the gov-

ernment directly chose consumption {cu
t }

+∞

t=0 of unemployed workers and consumption {ce
t }

+∞

t=0 of

employed workers to maximize social welfare subject, each period, to the resource constraint

at ·g(nt)−
r ·at

q(θt)
· [nt− (1− s) ·nt−1] = nt · ce

t +(1−nt) · cu
t . (13)
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Given government policy {ce
t ,c

u
t }

+∞

t=0 and labor market tightness {θt}+∞

t=0 the representative

worker chooses job-search effort and home production {et ,yt}+∞

t=0 to maximize the expected utility

E0

+∞

∑
t=0

δ
t ·
{
(1−ns

t ) · [v(cu
t + yt)−m(yt)]+ns

t · v(ce
t )−

[
1− (1− s) ·ns

t−1
]
· k(et)

}
,

subject to the law of motion of the employment probability in period t,

ns
t = (1− s) ·ns

t−1 +
[
1− (1− s) ·ns

t−1
]
· et · f (θt).

E0 is the mathematical expectation conditioned on time-0 information, δ < 1 is the discount factor.

The representative firm is owned by risk-neutral entrepreneurs. Given labor market tightness

and technology {θt ,at}+∞

t=0 the firm chooses employment
{

nd
t
}+∞

t=0 to maximize expected profit

E0

+∞

∑
t=0

δ
t ·
{

at ·g(nd
t )−wt ·nd

t −
r ·at

q(θt)
·
[
nd

t − (1− s) ·nd
t−1

]}
,

where nd
t − (1− s) ·nd

t−1 ≥ 0 is the number of hires in period t.

Wages follow an exogenous process {wt}+∞

t=0. Labor market tightness {θt}+∞

t=0 equalizes labor

demand
{

nd
t
}+∞

t=0 to labor supply {ns
t}

+∞

t=0: nt ≡ nd
t = ns

t .

4.2 Calibration

We calibrate all parameters of the model at a weekly frequency as shown in Table 1.14 We calibrate

as many parameters as possible directly from micro-evidence and macro-data for the US for the

December 2000–June 2010 period. Following Michaillat [2012] we set δ = 0.999, s = 0.0094,

r = 0.32 ·ω. We use a Cobb-Douglas matching function h(u,o) = ωh · uη · o1−η and set η = 0.7,

in line with empirical evidence [Petrongolo and Pissarides, 2001]. We choose a coefficient of

relative risk aversion ρ = 1, on the low side of available estimates [Chetty, 2006b]. We calibrate

the wage flexibility γ based on estimates obtained in micro-data. It is mostly the flexibility of

14This exercise is only illustrative of the magnitudes of the optimal policy, because our model abstracts from a
number of relevant issues and there remains considerable uncertainty about the calibration of some parameters, such
as the coefficient of relative risk aversion.
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wages in newly created jobs, not in existing jobs, that drives job creation. The best estimate of

this flexibility using US data is provided by Haefke et al. [2008]. Using panel data following

production and supervisory workers over the 1984–2006 period, they estimate an elasticity of total

earnings of job movers with respect to productivity of 0.7. If the composition of jobs accepted by

workers improves in expansions, 0.7 is an upper bound on the elasticity of wages in newly created

jobs. A lower bound on this elasticity is the elasticity of wages in existing jobs, estimated in the

0.1–0.45 range with US data [Pissarides, 2009]. We set γ = 0.5, in the range of plausible values.

We calibrate the remaining parameters by matching the steady-state value of the variables in

the model to the average of their empirical counterpart. We normalize average technology â = 1

and average effort ê = 1. We compute average labor market tightness and unemployment using

seasonally-adjusted, monthly series for the vacancy level (collected by the Bureau of Labor Statis-

tics (BLS) in the Job Openings and Labor Turnover Survey (JOLTS)) and the unemployment level

(computed by the BLS from the Current Population Survey (CPS)) over the 2000–2010 period. We

find θ̂ = v̂/û = 0.47 and û = 5.9%, which implies n̂ = 0.950. In the US, weekly unemployment

benefits replace between 50% and 70% of the last weekly pre-tax earnings of a worker [Pavoni

and Violante, 2007]. Following Chetty [2008] we set the benefit rate to 50%. Since earnings are

subject to a 7.65% payroll tax, we set the replacement rate to τ̂ = 0.5/(1−0.0765) = 54%.

To calibrate the matching efficiency ωh we exploit the steady-state relationship u · e · f (θ) =

s ·n= s ·(1−u)/(1−s). We find ωh = s/(1−s) ·(1− û)/û · θ̂η−1 = 0.19. We target the conventional

labor share of l̂s≡ (ŵ · n̂)/ŷ = 0.66. The firm’s profit-maximization condition (equation (A24) in

the Appendix) implies α = l̂s ·
(
[1−δ · (1− s)] ·0.32/q(θ̂)+1

)
= 0.67. The condition also allows

us to recover ω = 0.70, and r = 0.32 ·ω = 0.23.

We calibrate the parameters of the home-production cost function m(y) = ωm · y1+µ/(1+µ).15

As showed in Appendix E.4 the convexity µ is related to two statistics: ε2 and ξ, that have been

estimated empirically. The ratio ξ≡ ch/ce = (cu + y)/ce captures the consumption drop upon un-

employment. The statistics ε2 is the marginal consumption change dch/dcu, which captures the in-

15We introduce home production to model partial self-insurance by unemployed workers. If self-insurance arises
not only from home production but also from saving and borrowing, self-insurance may be less available in recessions,
for instance with savings depletion or credit market collapse. Kroft and Notowidigdo [2011] find, however, that the
consumption-smoothing benefit of UI is acyclical, which suggests that self-insurance remains available in recessions.
Accordingly, we assume a stable home-production technology over the business cycle.
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crease in total consumption dch = dcu+dy> 0 for an unemployed worker who receives a marginal

increase dcu > 0 in benefits. For food consumption f , Gruber [1997] estimates d f h/dcu = 0.27

and
[

f h− f e]/ f e = −0.068. As emphasized by Browning and Crossley [2001], however, total

consumption is more elastic than food to a change in income. Using the estimates of Hamermesh

[1982], we find that the aggregate income elasticity of food consumption for unemployed workers

is 0.36, including both food consumed at home and away from home.16 Accordingly we expect

that dch = d f h/0.36 and
[
ch− ce]/ce =

([
f h− f e]/ f e)/0.36. Setting ε2 = 0.27./0.36 = 0.75

and ξ = 1− (0.068/0.36) = 0.81 imply µ = 1.01. In addition the resource constraint (13) yields

ĉh = 0.79 and ŷ = 0.26. We set ωm = 4.84 such that the worker’s optimal choice of home produc-

tion (equation (A27) in the Appendix) holds for ĉh and ŷ.

We calibrate the parameters of the disutility from search k(e) =ωk ·e1+κ/(1+κ). Appendix E.4

shows that the convexity κ is related to a statistics ε1 that has been estimated empirically. The

statistics ε1 ≡ (cu/ξ) · (∂ξ/∂cu) captures the reduction in the hazard rate ξ ≡ e · f (θ) out of un-

employment when an unemployed worker receives an increase dcu > 0 in benefits, keeping labor

market tightness θ constant. Meyer [1990] estimates ε1 = 0.9, which yields κ = 0.97. We also ob-

tain ωk = 0.58 to match ê = 1 with the worker’s optimal choice of effort (specified in Appendix E).

4.3 Optimal replacement rate

To describe how the optimal replace rate varies over the business cycle, we compare steady states

parameterized by different technology levels.17 The results are displayed in Figure 2. Panel (a)

gives the unemployment rate for the different steady states: unemployment is high in steady states

with low technology. Panel (b) is a Beveridge curve, which shows that labor market tightness

decreases with unemployment. Panel (c) finds that optimal UI is strongly countercyclical: the

optimal replacement rate increases from 51% to 71% when the unemployment rate increases from

16Hamermesh [1982] estimates that for unemployed workers the permanent-income elasticity of food consumption
at home is 0.24 while that of food consumption away from home is 0.82. He also finds that in the consumption basket
of an unemployed worker, the share of food consumption at home is 0.164 while that of food consumption away from
home is 0.041. Therefore the aggregate income elasticity of food consumption is 0.24× [0.164/(0.164+0.41)] +
0.82× [0.041/(0.164+0.41)] = 0.36.

17In steady state, technology remains constant over time: at = a for all t. The impulse response function of the
optimal replacement rate to a negative technology shock is presented in Figure 3 and discussed in Section 4.4.
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Table 1: Steady-state targets and parameter values used in simulations (weekly frequency)

Steady-state target Value Source

â Technology 1 Normalization
ê Effort 1 Normalization
l̂s Labor share 0.66 Convention
û Unemployment 5.9% JOLTS, 2000–2010
θ̂ Labor market tightness 0.47 JOLTS, 2000–2010
τ Replacement rate cu/ce 54% Pavoni and Violante [2007], Chetty [2008]
ξ Consumption drop ch/ce 81% Hamermesh [1982], Gruber [1997]
ε2 Marginal consumption change dch/dcu 0.75 Hamermesh [1982], Gruber [1997]
ε1 Elasticity of unemployment hazard rate 0.90 Meyer [1990]

Parameter Value Source

δ Discount factor 0.999 Corresponds to 5% annually
ρ Relative risk aversion 1 Chetty [2006b]
η Effort-elasticity of matching 0.7 Petrongolo and Pissarides [2001]
γ Real wage flexibility 0.5 Pissarides [2009], Haefke et al. [2008]
r Recruiting cost 0.21 Barron et al. [1997], Silva and Toledo [2009]
s Separation rate 0.94% JOLTS, 2000–2010
ωh Effectiveness of matching 0.19 Matches steady-state targets
α Marginal returns to labor 0.67 Matches steady-state targets
ω Steady-state real wage 0.70 Matches steady-state targets
κ Convexity of disutility of effort 0.97 Matches steady-state targets
ωk Steady-state disutility of effort 0.58 Matches steady-state targets
ωm Steady-state disutility of home production 4.84 Matches steady-state targets
µ Convexity of disutility of home production 1.01 Matches steady-state targets

4% to 10%. This result is critical because it confirms that the result of Proposition 4 also holds

in a realistic calibrated model. Panel (c) shows that it is optimal to increase the consumption of

unemployed workers relative to that of employed workers in recessions. Panel (d) goes one step

further. It shows that it is optimal to increase the consumption of unemployed workers in absolute

terms in recessions. The gap between benefits and the consumption of unemployed workers in

panel (d) corresponds to home production. Panel (e) shows that home production decreases in

recessions, when unemployment benefits become more generous. Panel (f) shows that search

efforts decrease in recessions, when UI becomes more generous and the job-finding rate falls.

28



0.96 0.98 1 1.02 1.04 1.06
0.02

0.04

0.06

0.08

0.1

0.12

Technology

U
n

e
m

p
lo

y
m

e
n

t 
ra

te

(a) Unemployment rate u

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

Unemployment rate

L
a

b
o

r 
m

a
rk

e
t 

ti
g

h
tn

e
s
s

(b) Labor market tightness θ

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

Unemployment rate

R
e

p
la

c
e

m
e

n
t 

ra
te

(c) Optimal replacement rate τ

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Unemployment rate

C
o

n
s
u

m
p

ti
o

n

 

 

Benefits

Unemployed

Employed

(d) Optimal consumption levels cu, ch, and ce

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.2

0.22

0.24

0.26

0.28

Unemployment rate

H
o

m
e

 p
ro

d
u

c
ti
o

n

(e) Home production y

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

Unemployment rate

S
e

a
rc

h
 e

ff
o

rt

(f) Search effort e

Figure 2: Optimal unemployment insurance over the business cycle

Notes: The simulations, described in the Appendix, are based on the dynamic model calibrated in Table 1.
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4.4 Alternative institutional arrangements

This section studies numerically various institutional arrangements for the administration of UI

that could not be studied in the static model, such as the adjustment of the duration of benefits

(instead of their level), and deficit spending (instead of budget balance).

Deficit spending. In the baseline model, the government must balance its budget each period. It

cannot use deficit spending to shift resources intertemporally from expansions to recessions and

smooth the consumption of workers. This assumption allows us to focus on the trade-off between

insurance and incentives within each period. But in practice the government is able to borrow and

save. In this section we assume that the government has access to a complete market for Arrow-

Debreu securities, in which it faces risk-neutral investors with discount factor δ. An Arrow-Debreu

security pays one unit of consumption good after history at . Its price is δt · p(at), where p(at) is

the probability of history at based on time-0 information. The government trades securities at time

0 to finance UI in all histories. It faces a single intertemporal budget constraint:

0 = E0

+∞

∑
t=0

δ
t ·
{

at ·g(nt)−
r ·at

q(θt)
· [nt− (1− s) ·nt−1]− [nt · ce

t +(1−nt) · cu
t ]

}
. (14)

We solve the government’s problem by log-linearization in Appendix E.5. To obtain the co-

movements of technology with the optimal replacement rate in a stochastic environment, we com-

pute impulse response functions. Figure 3 depicts the responses to a negative technology shock

in two cases: the blue solid lines are responses in the baseline case in which the government is

constrained by (13) to balance his budget each period; and the red dashed lines are responses

when the government is subject to a single intertemporal budget constraint (14). Unemployment

responds similarly in both cases: it builds slowly and peaks after 20 weeks more than 10% above

its steady-state value. The response of the optimal replacement rate to an adverse economic shock

is qualitatively identical in both cases. But quantitatively the replacement rate increases by 5.6%

at the peak under budget balance, whereas it increases by 8.2% under deficit spending. Under

budget balance the replacement rate increases because the level of benefits increases by 4.4% and

the consumption of employed workers falls by 1.2%. This fall is necessary to finance more gen-
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Figure 3: Impulse response of optimal unemployment insurance to a negative technology shock
Notes: The figure displays impulse response functions (IRFs), which represent the percentage-deviation from steady
state for each variable. We assume that the log-deviation of technology ǎt ≡ d ln(at) follows an AR(1) process:
ǎt+1 = ν · ǎt + zt+1 where zt ∼ N(0,σ2) is an innovation to technology. Michaillat [2012] estimates the AR(1) process
using BLS data for 1964:Q1–2010:Q2 and finds ν = 0.991 and σ = 0.0026 at weekly frequency. IRFs are obtained by
imposing an unexpected negative technology shock z1 =−0.01 to the log-linear dynamic model. The blue solid IRFs
are responses of the optimal equilibrium when the government is constrained by (13) to balance its budget each period.
The red dashed IRFs are responses of the optimal equilibrium when the government is subject to a single intertemporal
budget constraint (14). Log-linear systems and computations are described in the Appendix.
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Figure 4: Optimal duration of unemployment insurance over the business cycle
Notes: Panels obtained with the dynamic model in which unemployment benefits have finite duration. The model is
calibrated according to Table 1. The Appendix describes the numerical simulations.

erous benefits to a larger number of unemployed workers. Under deficit spending the government

smoothes consumption of employed workers almost perfectly, and the benefit level increases by

8.2%. As unemployed workers reduce home production when they receive more generous bene-

fits, the consumption of unemployed workers does not increase as much as unemployment benefits:

it increases only by 2.5% under budget balance and 4.5% under deficit spending, because home

production falls by 2.4% under budget balance and 4.4% under deficit spending. When the gov-

ernment is able to borrow and save, consumption of both employed and unemployed workers is

higher because the government provides additional consumption smoothing in recessions. The

budget deficit—benefit outlays minus tax revenue in the period—increases by 1.2% at the peak.

Duration of unemployment benefits. In the baseline model, unemployed workers receive un-

employment benefits independent of the length of their unemployment spell. The government

adjusts the level of the benefits over the cycle. But in practice benefits have finite duration, and

the government modulates the duration of benefits over the cycle.18 In this section, we assume

18US unemployment benefits have a maximum duration of 26 weeks in normal times. But under the Extended
Benefits program, duration is automatically extended by 13 weeks in states where unemployment is above 6.5% and
by 20 weeks in states where unemployment is above 8%. Often duration is further extended by the government
in severe recessions. For example, the Emergency Unemployment Compensation program enacted in 2008 extends
durations by an additional 53 weeks when state unemployment is above 8.5%.
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that unemployment benefits have finite duration, which the government adjusts over the cycle.19

We follow Fredriksson and Holmlund [2001] and assume that eligible unemployed workers ex-

haust their unemployment benefits cu
t with probability λt at the end of each period t. Ineligible

unemployed workers receive consumption ca
t < cu

t from social assistance until they find a job.

The replacement rates τu,e = cu
t /ce

t of unemployment benefits and τa,e = ca
t /ce

t of social as-

sistance are constant over time. The government chooses the rate λt at which eligible workers

become ineligible to maximize social welfare subject to a budget constraint similar to (13). We

solve the model numerically using the calibration in Table 1. We set the replacement rates at

τu,e = 0.65/(1−0.0765) = 70% and τa,e = 0.52 · τu,e = 36% such that an expected duration of 26

weeks is optimal when the unemployment rate is at its average level of 5.9%.20 The left panel in

Figure 4 shows how unemployment and its composition varies with technology. When technol-

ogy increases, total unemployment falls, the number of eligible jobseekers falls, but the number of

ineligible jobseekers increases because arrival rate of ineligibility increases drastically. The right

panel shows that the optimal arrival rate of ineligibility λ is strongly procyclical. Accordingly

the optimal expected duration of unemployment benefits 1/λ is strongly countercyclical. When

unemployment is 4% the optimal arrival rate of ineligibility is 21%, corresponding to an expected

benefits duration of less than 5 weeks. When unemployment reaches 5.9% the optimal arrival

rate falls to 3.9%, corresponding to an expected benefits duration of 26 weeks. When unemploy-

ment reaches 7.0%, the optimal arrival rate drops to 2.0%, corresponding to an expected benefits

duration of 50 weeks. The optimal arrival rate is virtually nil when unemployment is above 9%.

5 Empirical Evidence

In this section we present recent empirical evidence that supports our theoretical work. We also

discuss how the current UI system could be assessed using formula (10) and empirical estimates

19This section only provides an overview of the model, whose formal description and analysis is in Appendix E.6.
20We assume that when workers lose their entitlements to unemployment benefits, social assistance provides food

stamps. Pavoni and Violante [2007] compute that the median monthly allotment of food stamps for a family of
four was $397 per month in 1996. They also find that the median monthly wage for a worker with at most a high-
school diploma, eligible to welfare, is $1,540. Thus the rate of social assistance is 397/1,540 = 26%. As the rate of
unemployment benefits is 50%, τa,e/τu,e = 0.26/0.5 = 0.52.
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of the micro-elasticity εm and macro-elasticity εM.

Proposition 2 shows that the micro-elasticity is always greater than the macro-elasticity in our

model with job rationing (characterized by Assumptions 1 and 2): εm/εM > 1. This result is a

testable implication that distinguishes our model from standard models of equilibrium unemploy-

ment. In the canonical model (characterized by Assumptions 5 and 6), εm/εM < 1.21 Figure 1(f)

provides some intuition. When UI falls, jobseekers search more. The labor supply shifts outwards,

which increases employment by εm. In addition when UI falls, jobseekers face a worse outside op-

tion. The wage obtained by Nash bargaining falls, which raises labor demand and equilibrium labor

market tightness. Employment rises further, and the total increase in employment is measured by

εM. Clearly, εM > εm. In the canonical model with rigid wages (characterized by Assumptions 5

and 2), εm/εM = 1.22 This property is illustrated in Figure 1(e). It arises because labor demand is

perfectly elastic and independent of UI, such that equilibrium tightness is independent of UI.

To test the validity of these models, we need an empirical estimate of εm/εM. Crépon et al.

[2012] provide such an estimate by analyzing a large randomized field experiment in France in

which some young educated jobseekers are treated by receiving job placement assistance. The

experiment has a double-randomization design: some areas are treated and some are not, and

within treated areas some jobseekers are treated and some are not. We interpret the treatment as

an increase in search effort from eC for control jobseekers to eT > eC for treated jobseekers. We

present the results for male workers. Compared to control jobseekers in the same area, treated

jobseekers face a higher job-finding probability:
[
eT − eC] · f (θT ) = 11.3%. But compared to

control jobseekers in control areas, control jobseekers in treated areas face a lower job-finding

probability: eC ·
[

f (θT )− f (θC)
]
= −3.9%. Therefore the increase in the job-finding probabil-

ity of treated jobseekers in treated areas compared to control jobseekers in control areas is only[
eT · f (θT )

]
−
[
eC · f (θC)

]
= 11.3−3.9 = 7.4%.23 By definition, the micro-elasticity εm is propor-

tional to
[
eT − eC] · f (θT ) and the macro-elasticity εM is proportional

[
eT · f (θT )

]
−
[
eC · f (θC)

]
.

These empirical results imply a wedge εm/εM = 11.3/7.4 = 1.53. The wedge εm/εM > 1 is evi-

dence of a negative rat-race externality: in the short run, treated jobseekers displace control job-

21Proposition A1 in the Appendix establishes the result formally under log utility.
22The property derives from Proposition 2 applied to the case α = 1.
23See Table 9, column 5 in Crépon et al. [2012].
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seekers in queues for jobs. This compelling randomized experiment suggests that our model with

job rationing provides a good description of the labor market at business cycle frequency.24

Crépon et al. [2012] find additional evidence supporting our model. Consistent with Proposi-

tion 3 they find that the wedge εm/εM is larger when the labor market is more slack, in geographical

areas or time periods with higher unemployment. For example, the wedge is small in the years pre-

ceding the 2008–2009 recession: εm/εM = 11.1/(11.1−1.4) = 1.14, while it is much larger during

the recession: εm/εM = 11.0/(11.0−7.5) = 3.14.25

We can also use empirical estimates of εm/εM and εM to implement formula (10) and assess

the UI system in the labor market of interest over the business cycle. The method of Crépon et al.

[2012] could provide estimates of εm/εM over the business cycle. The ideal experiment to estimate

εM is to offer higher unemployment benefits to all individuals in a randomly selected subset of

labor markets and compare unemployment durations across treated and control labor markets. But

estimating the macro-elasticity εM is inherently more difficult than estimating a micro-elasticity εm

because it necessitates exogenous variations in benefits across comparable labor markets, instead

of exogenous variations across comparable individuals within a single labor market.26

To circumvent the difficulty of directly estimating εM, one could combine estimates of εm with

estimates of εm/εM and recover estimates of εM. The ideal experiment to estimate εm is to compare

individuals with different benefits in the same labor market at a given time, while controlling for

individual characteristics. Two different methods have been recently designed to implement this

approach. Schmieder et al. [2012] use sharp variations in the potential duration of unemployment

benefits by age in Germany, population-wide administrative data, and a regression discontinuity

method to identify the micro-elasticity of unemployment duration with respect to the potential

duration of benefit entitlement. Their estimates are broadly constant over the business cycle (Table

4, column 7).27 Landais [2012] exploits kinks in the level and duration schedules of unemployment

24In the long run bargaining effects may raise the macro-elasticity by raising wages. As long as such effects are
constant over the cycle, bargaining effects would affect the optimal level but not the optimal cyclicality of UI.

25See Table 10, Panel A, column 2 in Crépon et al. [2012].
26Kroft and Notowidigdo [2011] propose to estimate the macro-elasticity by using variations in average benefits

within US states over time, controlling for state fixed effects. With this method they find that the elasticity of unem-
ployment duration with respect to benefits is smaller when state unemployment is higher, consistent with the result of
Proposition 3 in presence of job rationing (Table 2, columns 1 and 2).

27Schmieder et al. [2012] estimate the effect of potential duration on the duration of both covered unemployment and
total non-employment. They find that the elasticity of total non-employment is constant over the business cycle (Table
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benefits to conduct a regression kink design. He uses administrative data from the Continuous

Wage and Benefit History (CWBH) recording employment and unemployment histories for the

universe of workers in 5 US states from 1976 to 1983. He estimates the micro-elasticities of

paid unemployment and non-employment durations with respect to both benefit level and potential

duration. He finds that micro-elasticities with respect to benefit level and potential duration are

broadly constant over the business cycle (Tables 6 and 8).
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Appendix — NOT FOR PUBLICATION

A Proofs

We begin by deriving a few preliminary results.

LEMMA A1. The derivatives of effort supplies e∗(θ,∆v) and es(θ,∆c) satisfy:

θ

e∗
· ∂e∗

∂θ
=

θ

es ·
∂es

∂θ
=

1−η

κ

∆v
e∗
· ∂e∗

∂∆v
=

1
κ
.

Proof. The worker’s optimal choice of effort (2) gives k′(e∗) = f (θ) ·∆v. Differentiating with
respect to θ, keeping ∆v fixed:

k′′(e∗) · ∂e∗

∂θ
= (1−η) · k

′(e∗)
θ

θ

e∗
· ∂e∗

∂θ
=

1−η

κ
,

which yields the first results. We obtain the second result by differentiating the optimal choice of
effort (2) with respect to ∆v, keeping θ fixed.

LEMMA A2. The derivatives of labor supply n∗(e,θ) satisfy

∂n∗

∂θ
= (1−η) · n

∗− (1−u)
θ

∂n∗

∂e
=

n∗− (1−u)
e

∂n∗

∂e
· ∂es

∂θ
=

∂n∗

∂e
· ∂e∗

∂θ
=

1
κ
· ∂n∗

∂θ
.

Proof. Obvious using Lemma A1 and equation (1): n∗(e,θ) = (1−u)+u · e · f (θ).

LEMMA A3. The labor supply ns(θ,∆c) is concave in θ if and only if (1−η) · (1+κ)/κ < 1.

Proof. We prove that ∂2ns/∂θ2 < 0. By definition, ns(θ,∆c) = n∗(es(θ,∆c),θ). Lemmas A1
and A2 imply

∂ns

∂θ
=

∂n∗

∂e
· ∂es

∂θ
+

∂n∗

∂θ
=

1+κ

κ
· ∂n∗

∂θ
=

1+κ

κ
· (1−η) · n

∗− (1−u)
θ

∂2ns

∂θ2 =
1+κ

κ
· (1−η) · n

∗− (1−u)
θ2 ·

[
1+κ

κ
· (1−η)−1

]
.
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A.1 Proof of Lemma 1

According to the Definition 1 of the elasticities εm and εM,

1−n
∆c

(
ε

M− ε
m)= dn

d∆c
− ∂n∗

∂e
· ∂es

∂∆c
.

Taking the derivative of the equilibrium condition n = ns(θ,∆c) with respect to ∆c,

dn
d∆c

=
∂n∗

∂e
·
(

∂es

∂θ
· dθ

d∆c
+

∂es

∂∆c

)
+

∂n∗

∂θ
· dθ

d∆c
dn

d∆c
− ∂n∗

∂e
· ∂es

∂∆c
=

(
∂n∗

∂e
· ∂es

∂θ
+

∂n∗

∂θ

)
· dθ

d∆c
.

Combining both results we obtain

1−n
∆c

(
ε

M− ε
m)= (∂n∗

∂e
· ∂es

∂θ
+

∂n∗

∂θ

)
· dθ

d∆c
. (A1)

Using Lemma A2 and equation (A1) we obtain

1−n
∆c

(
ε

M− ε
m)= 1+κ

κ
· ∂n∗

∂θ
· dθ

d∆c

∆c · ∂n∗

∂θ
· dθ

d∆c
=

κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

ε
θ
∆c ≡

∆c
θ
· dθ

d∆c
=

κ

κ+1
· 1

1−η
· 1−n

h
·
(
ε

M− ε
m) ,

which is the first result in the lemma. The second result in the lemma is obtained by combining the
first result with the result of Lemma A2.

A.2 Proof of Proposition 1

The government chooses ∆c to maximize

(1−u) · v(ce)+u · [v(cu)+ e · f (θ) ·∆v− k(e)] = n∗(e,θ) · v(cu +∆c)+(1−n∗(e,θ)) · v(cu)−u · k(e)

Using the envelope theorem (as workers choose search effort e to maximize v(cu)+ e · f (θ) ·∆v−
k(e)) the first-order condition becomes

0 =
[
n · v′(ce)+(1−n)v′(cu)

]
· dcu

d∆c
+n · v′(ce)+∆v · ∂n∗

∂θ
· dθ

d∆c

0 = v′ · dcu

d∆c
+n · v′(ce)+∆v · ∂n∗

∂θ
· dθ

d∆c
(A2)
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where we define v′ ≡ [n · v′(ce)+(1−n) · v′(cu)].

First step. Lemma 1 allows us to write

∆v · ∂n∗

∂θ
· dθ

d∆c
=

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m) . (A3)

Second step.

LEMMA A4.
dcu

d∆c
=

1−n
n
· τ

1− τ
· εM−n

Proof. We start from the budget constraint cu = n · [w−∆c] and differentiate it.

dcu

d∆c
=

1−n
∆c
· [w−∆c] · εM−n

dcu

d∆c
=

1−n
n
· cu

∆c
· εM−n

dcu

d∆c
=

1−n
n
· τ

1− τ
· εM−n.

Third step. We come back to the formula, using Lemma A4 and the relationship (A3),

0 = v′
[

1−n
n
· τ

1− τ
ε

M−n
]
+n · v′(ce)+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′
[

1−n
n
· τ

1− τ
ε

M
]
+n ·

[
v′(ce)− v′

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′
[

1−n
n
· τ

1− τ
ε

M
]
+n(1−n)

[
v′(ce)− v′(cu)

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m) .

Dividing the equation by (1−n) · εM · v′ yields

1
n
· τ

1− τ
=

n
εM ·

1
v′
·
[
v′(cu)− v′(ce)

]
+

∆v
v′∆c
· κ

κ+1
·
(

εm

εM −1
)

1
n
· τ

1− τ
=

v′(ce)

v′

[
n

εM ·
{

v′(cu)

v′(ce)
−1
}
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)]

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(cu)

v′(ce)

]−1

·
[

n
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)]

.
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Approximation. Assuming n≈ 1 allows us to simplify the optimal formula to

τ

1− τ
=

1
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce) ·∆c

· κ

κ+1
·
(

εm

εM −1
)
.

If the third and higher order terms of v(·) are small (v′′′(c)≈ 0), we approximate

∆v
v′(ce) ·∆c

≈ 1− 1
2
· v
′′(ce)

v′(ce)
· c

e

ce · [c
e− cu] = 1+

1
2
·ρ · (1− τ)

v′(cu)

v′(ce)
≈

v′(ce)− v′′(ce) · ce · ∆c
ce

v′(ce)
= 1+ρ(1− τ).

ρ is the coefficient of relative risk aversion measured at ce. The optimal UI formula becomes

τ

1− τ
=

1
εM ·ρ · [1− τ]+

κ

κ+1
·
[

εm

εM −1
]
·
[
1+

ρ

2
· (1− τ)

]
.

A.3 Proof of Proposition 2

We differentiate the firm’s profit-maximization condition (11) with respect to ∆c.

(α−1) · g
′(n)
n
· dn

d∆c
= η · r

q(θ)
· 1

θ
· dθ

d∆c
.

Using Lemma 1 and the Definition 1 of elasticity εM,

(α−1) ·g′(n) · 1−n
n
· εM =

r
q(θ)

· κ

κ+1
· 1−n

h
· η

1−η
·
(
ε

M− ε
m)

−(1−α) ·g′(n) = r
q(θ)

· κ

κ+1
· n

h
· η

1−η
·
(

1− εm

εM

)
εm

εM = 1+
[
(1−α) ·α · κ+1

κ
· 1

r
· 1−η

η

]
·q(θ) ·

(
h
n

)
·nα−1. (A4)

Since θ > 0, h > 0, η ∈ (0,1), κ > 0: εm/εM > 1 if and only if α ∈ (0,1).

A.4 Some comparative statics

From now on, we focus on the case with log utility: v(c) = ln(c). In this case, ∆v = ln(1/τ), and
it becomes natural to parameterize the equilibrium with (a,τ) instead of (a,∆c). a captures the
position of the economy in the business cycle and τ captures the generosity of UI. This parame-
terization is convenient because when τ remains constant, the supply curve remains in place (as
∆v remains constant). All equilibrium variables in the next proofs (such as effort e, tightness θ, or
employment n) are implicit functions of (a,τ).
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LEMMA A5. Under Assumptions 1 and 2, if v(c) = ln(c), we have the following comparative
statics for equilibrium variables:

∂θ

∂a

∣∣∣∣
τ

> 0,
∂e
∂a

∣∣∣∣
τ

> 0,
∂n
∂a

∣∣∣∣
τ

> 0.

Proof. We know that ∂e∗/∂θ > 0, ∂n∗/∂θ > 0, ∂n∗/∂e > 0. We also know that under Assump-
tions 1 and 2, ∂nd/∂θ < 0, ∂nd/∂a > 0. We differentiate equilibrium condition (4) with respect to
a , keeping τ (and ∆v) constant.[

∂n∗

∂e
· ∂e∗

∂θ
+

∂n∗

∂θ

]
· ∂θ

∂a
=

∂nd

∂a
+

∂nd

∂θ
· ∂θ

∂a

∂θ

∂a
=

∂nd

∂a︸︷︷︸
+

·




∂n∗

∂e︸︷︷︸
+

· ∂e∗

∂θ︸︷︷︸
+

+
∂n∗

∂θ︸︷︷︸
+

−
∂nd

∂θ︸︷︷︸
−


−1

.

So ∂θ/∂a> 0. We conclude using e(a,τ) = e∗(θ(a,τ),∆v(τ)) and n(a,τ) = n∗(e(a,τ),θ(a,τ)).

A.5 Proof of Proposition 3

Under Assumption 2 we can apply Proposition 2. Under Assumptions 3, 4, and 1, Proposition 2
implies that εm/εM = 1+ s ·χ · q(θ) · nα−1, where s > 0 and χ > 0 are constant. Under Assump-
tions 2 and 1, Lemma A5 implies that ∂θ/∂a|τ > 0 and ∂n/∂a|τ > 0. Since q′(θ) < 0 and α ≤ 1,
we infer that ∂

[
εm/εM]/∂a|τ < 0, which is the first result in the proposition.

We focus on the second result in the proposition: the cyclicality of εM. First, we express εm as a
function of the the elasticity ε∆v

∆c ≡ (∆c/∆v) · (∂∆v/∂∆c). The worker’s supply of effort es(θ,∆c,a)
satisfies the optimal choice of effort (2): k′(e) = f (θ) ·∆v(∆c,a). Differentiating this condition,

κ · ∆c
e
· ∂es

∂∆c
= ε

∆v
∆c

ε
m =

∆c
1−n

· ∂n∗

∂e
· ∂es

∂∆c
=

s
κ
· n

1−n
· ε∆v

∆c, (A5)

where we used the Definition 1 of εm, Lemma A2, and Assumption 4. Next, we derive an expres-
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sion for ε∆v
∆c. Using Lemma A4 and the assumption that v(c) = ln(c),

∂∆v
∂∆c

=
1
ce +

[
1
ce −

1
cu

]
· ∂cu

∂∆c
∂∆v
∂∆c

=

[
(1−n) · 1

ce +n · 1
cu

]
+

[
1
ce −

1
cu

]
· 1−n

n
· τ

1− τ
· εM

ε
∆v
∆c =

1− τ

ln(1/τ)
·
{[

(1−n)+
n
τ

]
+

(
1− 1

τ

)
· 1−n

n
· τ

1− τ
· εM
}
.

Combining this result with (A5) we obtain

κ

s
· εm =

1− τ

ln(1/τ)
·
[

n+
n2

1−n
1
τ

]
− 1− τ

ln(1/τ)
· εM

ε
M =

[
n+

n2

1−n
· 1

τ

]
·
[

κ

s
· εm

εM ·
ln(1/τ)

1− τ
+1
]−1

. (A6)

Under Assumption 3 the elasticity κ is constant. According to Lemma A5, valid under Assump-
tions 1 and 3, ∂n/∂a|τ > 0. We showed that ∂

[
εm/εM]/∂a|τ < 0. We conclude that ∂εM/∂a|τ > 0

because, keeping τ fixed, the first factor increases with n and therefore with a, and the second
factor decreases with εm/εM and therefore increases with a.

A.6 Proof of Proposition 4

The proof requires using elasticities of unemployment “in utility” instead of the elasticities of
unemployment “in consumption” used in the text.

DEFINITION A1. The micro-elasticity εm
v and macro-elasticity εM

v of unemployment with respect
to utility gain from work ∆v are

ε
m
v ≡

∆v
1−n

· ∂n∗

∂e

∣∣∣∣
θ

· ∂e∗

∂∆v

∣∣∣∣
θ

(A7)

ε
M
v ≡

∆v
1−n

· dn
d∆v

. (A8)

We re-derive our optimal UI formula (9) using the elasticities εm
v ,ε

M
v .

LEMMA A6. The optimal replacement rate τ satisfies

1
n
· τ

1− τ
=

∆v
v′(ce) ·∆c

·
{

n
εM

v
·
[

1− v′(ce)

v′(cu)

]
+

[
(1−n) · v

′(ce)

v′(cu)
+n
]
· κ

κ+1
·
(

εm
v

εM
v
−1
)}

. (A9)

Proof.
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First step. The government chooses ∆v to maximize v(cu)+n ·∆v−u ·k(e). Using the envelope
theorem the first-order condition becomes

0 = v′(cu) · dcu

d∆v
+n+∆v · ∂n∗

∂θ
· dθ

d∆v
.

Second step. We use the budget constraint ce + cu · (1−n)/n = w to rewrite ∆v.

∆v = v(w− 1−n
n
· cu)− v(cu)

1 = v′(ce) ·
[
−1−n

n
· dcu

d∆v
+

1
n2 · c

u dn
d∆v

]
− v′(cu) · dcu

d∆v

v′(ce) · 1
n2 · c

u · dn
d∆v
−1 =

[
v′(ce) · 1−n

n
+ v′(cu)

]
· dcu

d∆v

v′(ce) · 1−n
n
· cu

∆v
· εM

v −n =

[
(1−n) · v

′(ce)

v′(cu)
+n
]

v′(cu) · dcu

d∆v
.

Third step. We come back to the formula and use Lemma 1, which also applies to εm
v and εM

v .

0 =

[
(1−n)

v′(ce)

v′(cu)
+n
]

v′(cu)
dcu

d∆v
+n
[
(1−n)

v′(ce)

v′(cu)
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]
+
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(1−n)

v′(ce)

v′(cu)
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]
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∂θ

dθ

d∆v

0 = v′(ce)
1−n

n
cu

∆v
ε

M
v −n+n

[
(1−n)

v′(ce)

v′(cu)
+n
]
+
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(1−n)
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v′(cu)
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]

κ

κ+1
(1−n)

(
ε

M
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m
v
)

0 = v′(ce)
1−n
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cu

∆v
ε
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v +n(1−n)

[
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v′(cu)
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]
+
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(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1
(1−n)

(
ε

M
v − ε

m
v
)

Dividing by (1−n) · v′(ce) · εM
v :

1
n

cu

∆v
=

1
v′(ce)

n
εM

v

[
1− v′(ce)

v′(cu)

]
+

1
v′(ce)
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v′(ce)

v′(cu)
+n
]

κ

κ+1

(
εm

v
εM

v
−1
)

1
n

cu

∆c
=

∆v
∆c

1
v′(ce)

n
εM

v

[
1− v′(ce)

v′(cu)

]
+

∆v
∆c

1
v′(ce)

[
(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1

(
εm

v
εM

v
−1
)

Note that cu/∆c = τ/(1− τ) since τ = cu/ce. Thus we obtain the exact optimal UI formula in
sufficient statistics (A9).

Under Assumption 3 the formula becomes

τ

ln(1/τ)
=

n2

εM
v
· (1− τ)+ [(1−n) · τ+n] · κ

κ+1
·n ·
(

εm
v

εM
v
−1
)
. (A10)

Next, we need to express
(
εm

v /εM
v −1

)
and εM

v as a function of equilibrium variables.
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LEMMA A7. Under Assumptions 1, 2, 3 and 4 there exists Z0(τ)> 0 such that in equilibrium,

Z(n,τ)≡ εm
v

εM
v
−1 = Z0(τ) ·n−Ω > 0, (A11)

where the constant Ω is defined by

Ω = (1−α)+
κ

κ+1
· η

1−η
· 1

s
> 0.

Proof. Under Assumptions 1 and 2 we can use the result from Proposition 2, which remains valid
for the ratio of elasticities in utility. Under Assumption 4,

εm
v

εM
v
−1 = (1−α) ·α · κ+1

κ
· s

r
· 1−η

η
·q(θ) ·nα−1. (A12)

Using the results from Lemma A1 and Lemma A2 under Assumption 4,

∂n
∂θ

∣∣∣∣
τ

=
∂n∗

∂θ

∣∣∣∣
e
+

∂n∗

∂e

∣∣∣∣
θ

· ∂e∗

∂θ

∣∣∣∣
τ

=
κ+1

κ
· ∂n∗

∂θ

∣∣∣∣
e
=

κ+1
κ
· (1−η) · h

θ

θ

n
· ∂n

∂θ

∣∣∣∣
τ

=
κ+1

κ
· (1−η) · s

ε
θ
n ≡

n
θ
· ∂θ

∂n

∣∣∣∣
τ

=
κ

κ+1
· 1

1−η
· 1

s
,

Using the relationship (A12),

∂ ln
(
εm

v /εM
v −1

)
∂ ln(n)

∣∣∣∣
τ

=−
[
(1−α)+η · εθ

n

]
=−

[
(1−α)+

κ

κ+1
· η

1−η
· 1

s

]
≡−Ω,

where Ω > 0 is constant under Assumption 3. Solving the differential equation yields (A11).

LEMMA A8. Under Assumption 4 the micro-elasticity “in utility” satisfies

ε
m
v =

n
1−n

· s
κ
.

Proof. The definition (A7) of εm
v and the results from Lemma A1 and Lemma A2 imply

ε
m
v =

(
∆v

1−n

)
·
(

h
e

)
·
(

e
∆v
· 1

κ

)
=

h
1−n

· 1
κ
.

We conclude by using the property that under Assumption 4, h = s ·n.
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Using Lemmas A7 and A8, we obtain

1
εM

v
=

1
εm

v
·
[

1+
(

εm
v

εM
v
−1
)]

=
1−n

n
· κ

s
· [1+Z(n,τ)] . (A13)

Let S≡ s/(κ+1) ∈ (0,1). Using Lemma A7 and (A13), we can now rewrite formula (A10) as

τ

ln(1/τ)
= n · (1−n) · κ

s
· [1+Z(n,τ)] · (1− τ)+ [(1−n) · τ+n] · κ

κ+1
·n ·Z(n,τ)

s
κ
· τ

ln(1/τ)
= n · (1−n) · (1− τ)+n ·Z(n,τ) · [(1−n) · (1− τ)+ [(1−n) · τ+n] ·S]

s
κ
· τ

ln(1/τ)
= n · (1−n) · (1− τ)+n ·Z(n,τ) · {[τ ·S+(1− τ)]−n · (1− τ) · (1−S)} . (A14)

Let us define

F(τ)≡ s
κ
· τ

ln(1/τ)

G(n,τ)≡ n · (1−n) · (1− τ)+n ·Z(n,τ) · [τ ·S+(1− τ)−n · (1− τ) · (1−S)] .

Furthermore, we define Q(τ,a) ≡ G(n(τ,a),τ). We rewrite the optimal UI formula as F(τ) =
Q(τ,a). We assume that for any a > 0, F(τ) and Q(τ,a) cross only once at τ(a) ∈ (0,1). The
implicit function τ(a) characterizes the optimal replacement rate for technology a.

LEMMA A9. Under Assumptions 1 and 2, lima→0 n(a,τ(a)) = 0 and lima→0 τ(a) = 0.

Proof. Under Assumptions 1 and 2, the firm’s profit-maximization condition (11) implies that for
any a > 0, α · n(a,τ(a))α−1 ≥ ω · aγ−1 and 0 ≤ n(a,τ(a)) ≤ N(a) ≡

[
(α/ω) ·a1−γ

]1/(1−α). Since
γ < 1 and 0 < α < 1, lima→0 N(a) = 0. The squeeze theorem implies that lima→0 n(a,τ(a)) = 0.

By definition, q(θ)≤ 1. Therefore for any n and any τ,

n ·Z(n,τ) = (1−α) ·α · κ+1
κ
· s

r
· 1−η

η
·q(θ) ·nα ≤ (1−α) ·α · κ+1

κ
· s

r
· 1−η

η
·nα.

Using the optimal UI formula F(τ(a)) = Q(τ(a),a) and the definition of Q(·, ·),

F(τ(a))≤ n(a,τ(a)) · [1−n(a,τ(a))]+(1−α) ·α · κ+1
κ
· s

r
· 1−η

η
·n(a,τ(a))α.

We showed that lima→0 n(a,τ(a)) = 0. So there exists a0 > 0 such that for all a < a0, n(a,τ(a))<
1/2. For any a > 0, 0≤ n(a,τ(a))≤ N(a). Thus for any a < a0,

0≤ F(τ(a))≤ N(a) · [1−N(a)]+(1−α) ·α · κ+1
κ
· s

r
· 1−η

η
·N(a)α.

Under Assumptions 1 and 2, the limit of the right-hand-side term when a → 0 is 0 because
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lima→0 N(a) = 0. Using the squeeze theorem, we infer that lima→0 F(τ(a)) = 0. We conclude
that lima→0 τ(a) = 0 using the continuity of F(·) on (0,1).

Lemma A9 establishes that when employment converges to 0 because technology decreases to
0, then the optimal replacement rate converges to 0. This result implies that for very low levels of
technology, and very low levels of employment, the optimal replacement rate is bound to increase
with technology.

LEMMA A10. If n > 1/2 and Ω≥ 1 then ∂G/∂n < 0.

Proof. We differentiate G(n,τ) with respect to n, keeping τ constant.

∂G
∂n

=−{(2 ·n−1) · (1− τ)+Z(n,τ) · [(2−Ω) · (1−S) · (1− τ) ·n− (1−Ω) · [τ ·S+(1− τ)]]} .

If n> 1/2, the first term (2 ·n−1) ·(1−τ)> 0 since τ< 1. If Ω≥ 1, the second term is nonnegative.
To see this, note that (1−S) ·n < 1 and rewrite the second term as

Z(n,τ) · [(Ω−1) · [τ ·S+(1− τ) · {1− (1−S) ·n}]+ (1−S) · (1− τ) ·n]≥ 0.

If Ω ∈ [0,1), the second term may be negative.

At technology a, the optimal replacement rate τ(a) satisfies F(τ(a)) = Q(τ(a),a). We consider
a marginal change in technology from a to a∗> a. Using Lemma A5 under Assumption 3, we know
that n(τ(a),a∗)> n(τ(a),a). Using Lemma A10 for n > 1/2 and τ ∈ (0,1), G(n(τ(a),a∗),τ(a))<
G(n(τ(a),a),τ(a)) such that Q(τ(a),a∗) < Q(τ(a),a) = F(τ(a)). Since F(τ) and Q(τ,a) cross
only once for τ ∈ (0,1), limτ→0 F(τ) = 0, and limτ→0 Q(τ,a) > 0, it must be that F(τ) crosses
Q(τ,a) “from below”. Thus is must be that τ(a)> τ(a∗) and dτ/da < 0.

B Extensions of the Optimal UI Formula

In this section, we derive the results presented in Section 2.3, in which we describe extensions of
our optimal UI formula to various settings. We also present some additional results, especially
approximations of the optimal UI formulas.

B.1 Self-insurance

Unemployed workers choose effort e and home production y to maximize

[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e)

The first-order condition with respect to home production y yields

m′(y) = v′(cu + y), (A15)
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which implicitly defines optimal home production y(cu). The first-order condition with respect to
search effort e yields k′(e) = f (θ) ·∆vh, where we denote ∆vh = v(ce)− [v(cu + y(cu))−m(y(cu))]
the utility difference between being employed and unemployed. The condition implicitly defines
optimal effort e(θ,∆vh).

The government chooses ∆c to maximize expected utility

n∗(e,θ) · v(cu +∆c)+ [1−n∗(e,θ)] · [v(cu + y)−m(y)]−u · k(e)

Using the envelope theorem, as workers choose search effort e and home production y to maximize
expected utility, the first-order condition becomes

0 =
[
n · v′(ce)+(1−n) · v′(ch)

]
· dcu

d∆c
+n · v′(ce)+∆vh · ∂n∗

∂θ
· dθ

d∆c
.

As in the case without self-insurance, we derive the optimal UI formula in three steps. The first
two steps remain the same because Lemma 1 carries over. Therefore the formula becomes

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(ch)

v′(ce)

]−1

·
{

n
εM ·

[
v′(ch)

v′(ce)
−1
]
+

∆vh

v′(ce) ·∆c
· κ

κ+1
·
(

εm

εM −1
)}

.

B.2 Wage response to UI

Optimal UI formula. In equilibrium, the wage paid by firms responds to ∆c: w = w(∆c). It is
likely that w′(∆c)< 0: for instance with bargaining, higher ∆c lowers the outside option of work-
ers and reduces wages. If UI influences wages, labor demand is a function of UI: nd = nd(θ,∆c),
which reflects the influence of UI on firm’s recruiting decision through wages. Labor market tight-
ness θ(∆c) is now characterized by the equilibrium condition nd(θ,∆c) = ns(θ,∆c). The macro-
elasticity captures the influence of UI on employment and labor market tightness through all chan-
nels, including possibly wages.

We amend the budget constraint of the government because the wage w(∆c) is now a func-
tion of ∆c. We modify the second and third steps in the proof of Proposition 1 accordingly. We
differentiate the budget constraint cu = n · [w(∆c)−∆c].

dcu

d∆c
=

1−n
n
· τ

1− τ
· εM−n+n · dw

d∆c
.

We come back to the formula (A2) and use (A3).

0 = v′ ·
[

1−n
n
· τ

1− τ
· εM−n+n · dw

d∆c

]
+n · v′(ce)+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′ · 1−n
n
· τ

1− τ
· εM + v′ ·n · dw

d∆c
+n · (1−n) ·

[
v′(ce)− v′(cu)

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m) .
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Dividing the equation by (1−n) · εM · v′ and rearranging the terms yields

1
n

τ

1− τ
+

1
εM

n
1−n

dw
d∆c

=

[
n+(1−n)

v′(cu)

v′(ce)

]−1[ n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

κ

κ+1

(
εm

εM −1
)]

. (A16)

A special form of incidence. The core of the analysis uses the standard assumption that the
incidence of the labor tax falls fully on workers. In this section, we consider the nonstandard
assumption that the tax burden w− ce = t ·w—the wedge between wages paid by firms and post-
tax earnings received by workers, is shared between firms and workers. We assume that firms cover
a constant fraction of the burden:

w = w∗+ψ · t ·w
ce = w∗− (1−ψ) · t ·w,

where ψ and w∗ are parameters. Using the budget constraint n · t ·w = (1−n) ·b ·w, we express w
as a function of w∗.

t ·w =
1−n

n
· cu = (1−n) · (w−∆c)

w = w∗+ψ · (1−n) · (w−∆c)

w =
w∗

1−ψ · (1−n)
− ψ · (1−n)

1−ψ · (1−n)
·∆c.

To simplify the derivations, let X ≡ ψ · (1−n).

w =
w∗

1−X
− X

1−X
·∆c

dw
d∆c

=
w∗

(1−X)2 ·
dX
d∆c
− ∆c

(1−X)2 ·
dX
d∆c
− X

1−X
=

w∗−∆c
(1−X)2 ·

dX
d∆c
− X

1−X
.

Notice that

dX
d∆c

=−ψ · 1−n
∆c
· εM =− X

∆c
· εM

(w−∆c) = (w∗−∆c)+ψ · (1−n) · (w−∆c) =
w∗−∆c
1−X

.

Therefore,

dw
d∆c

=
−X

1−X
·
[

w−∆c
∆c

· εM +1
]
.
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The assumption on tax incidence yields a simple expression for the response of wages to ∆c:

dw
d∆c

=
−ψ · (1−n)

1−ψ · (1−n)
·
[

τ

1− τ
· 1

n
· εM +1

]
.

Using the budget constraint (3),

w−∆c
∆c

=
1
n
· cu

∆c
=

1
n
· τ

1− τ
.

We conclude that

dw
d∆c

=
−ψ · (1−n)

1−ψ · (1−n)
·
[

τ

1− τ
· 1

n
· εM +1

]
1

εM ·
n

1−n
· dw

d∆c
=

−ψ ·n
(1−ψ)+ψ ·n

·
[

τ

1− τ
· 1

n
+

1
εM

]
.

Combining this result with formula (A16) yields

1
n
· τ

1− τ
· 1−ψ

(1−ψ)+ψ ·n
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1

·{
n

εM ·
[

v′(cu)

v′(ce)
−1+

ψ

(1−ψ)+ψ ·n
·
[

n+(1−n)
v′(cu)

v′(ce)

]]
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)}

.

The formula becomes

1−ψ

n
τ

1− τ
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1{ n
εM

[
v′(cu)

v′(ce)
− (1−ψ)

]
+

∆v
v′(ce)∆c

[(1−ψ)+ψ ·n] κ

κ+1

(
εm

εM −1
)}

.

The structure of our optimal UI formula remains the same. We only adjust each of the three terms
with functions of the incidence parameter ψ. The formula gives optimal UI taking into account
the insurance value of unemployment benefits, the moral-hazard cost of UI, and the employment
cost of financing benefits by taxing firms more. In addition to reducing jobseekers’ effort, UI
also reduces firms’ hiring by increasing the marginal cost of labor through higher wages. The
effect on labor demand arises because of the assumption on tax incidence. The effect does not
appear directly in the formula but appears indirectly through the macro-elasticity εM. In recessions,
they are two competing effects: a lower cost of UI because of lower labor supply (through the
reduction in search effort caused by higher UI), which lowers εM, and a higher cost of UI because
of lower labor demand (through the increase in labor tax imposed on firms), which raises εM. Only
simulations can guide the design of UI in that case.
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C The Canonical Equilibrium Unemployment Model

This section studies the canonical model of Pissarides [2000], characterized by Assumptions 5
and 6. We assume that utility has constant relative risk aversion ρ: v(c) =

(
c1−ρ−1

)
/(1−ρ).

C.1 The Nash bargaining solution

We determine the outcome of the bargaining problem faced by a firm-worker pair. E denotes the
value of being employed, and U the value of being unemployed. Both values are evaluated after
the matching process. They satisfy

E = v((1− t) ·w)
U = v(b ·w) .

Combining both conditions yields the worker’s surplus W from a relationship with a firm.

W = E −U = [v((1− t) ·w)− v(b ·w)] . (A17)

When worker and firm bargain, they take the tax rate t and unemployment benefits b ·w as given.
In the term b ·w of W , w is the equilibrium wage that is taken as given by worker and firm. In
the term (1− t) ·w of W , w is the outcome of the wage bargaining between the firm and the
worker. Therefore when the worker evaluates the marginal utility dW of an increase dw in the
wage bargained with the firm, he only considers the marginal change of the post-tax earnings
(1− t) ·w. Accordingly,

dW
dw

= (1− t) · v′ ((1− t) ·w) = (1− t)1−ρ · v′ (w) .

In equilibrium the firm’s surplus from an established relationship is simply given by the hiring
cost since a firm can immediately replace a worker at that cost during the matching period: F =
r ·a/q(θ). Since the firm’s utility is simply its profits, a wage w brings a utility −w to the firm (or
its owners) and dF /dw =−1.

The generalized Nash solution to the bargaining problem faced by a firm-worker pair is the
wage w that maximizes

W (w)β ·F (w)1−β,

where β is the worker’s bargaining power. The first-order condition of the maximization problem
implies that the worker’s surplus each period is related to the firm’s surplus by

β

1−β
· dW

dw
·F = W .

Substituting the relationship into equation (A17) for the worker’s surplus W , and using the ex-
pressions for F and dW /dw, we obtain the relationship between equilibrium variables imposed
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by Nash bargaining over wages.

β

1−β
· r ·a

q(θ)
· (1− t)1−ρ · v′ (w) = [v((1− t) ·w)− v(b ·w)]

r ·a
q(θ)

·w−ρ ==
1−β

β
·
[
1− τ

1−ρ
]
· w

1−ρ

1−ρ[
1− τ

1−ρ
]
· w

1−ρ
=

β

1−β
·a · r

q(θ)
w
a
=− β

1−β
· 1

v(τ)
· r

q(θ)
. (A18)

Absence of fluctuations with Nash bargaining. Combining the expression for w/a with the
firm’s profit-maximization condition (11) yields an expression for tightness θ as a function of the
parameters of the model only. Keeping τ constant there are no fluctuations in labor market tightness
because θ does not depend on technology a. Indeed equilibrium tightness is described by

r
q(θ)

=

[
1− β

1−β
· 1

v(τ)

]−1

. (A19)

C.2 An optimal UI formula

This section derives an optimal UI formula in a class of models in which wages may respond to UI,
and the production function satisfies Assumption 5. By choosing ∆c the government maximizes

n · v(ce)+(1−n) · v(cu)−u · k(e)+ζ ·π.

ζ is the social welfare weight placed by the government on the firm’s profits π. ζ is taken as
given by the government. Combining the firm’s profit-maximization condition, the government’s
constraint, and the resource constraint, we find that aggregate profits are

π = (1−u) · r ·a
q(θ)

.

We also assume that the wage w(∆c) may respond to ∆c.
As in the proof of Proposition 1, the envelope theorem yields the first-order condition

0 = v′ · dcu

d∆c
+n · v′(ce)+

[
∆v · ∂n∗

∂θ
+ζ ·η · r ·a

q(θ)
· 1−u

θ

]
· dθ

d∆c
,

where we define v′ ≡ [n · v′(ce)+(1−n) · v′(cu)].
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First step. Lemma 1 in the text allows us to write

∆v · ∂n∗

∂θ
· dθ

d∆c
=

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

η · 1−u
θ
· dθ

d∆c
=

1
∆c
· κ

κ+1
· η

1−η
· (1−u) · (1−n)

h
·
(
ε

M− ε
m) .

Second step. We differentiate the budget constraint cu(∆c) = n(∆c) · [w(∆c)−∆c] .

dcu

d∆c
=

1−n
∆c
· [w−∆c] · εM−n · (− dw

d∆c
+1)

dcu

d∆c
=

1−n
n
· τ

1− τ
· εM−n+n · dw

d∆c
.

Third step. The firm’s profit-maximization condition (11) allows us to link wage to labor market
tightness θ: w = a− r ·a/q(θ). In turn, the condition allows us to express wage changes imposed
by UI to labor market tightness changes imposed by UI. The link between w(∆c) and θ(∆c) is

dw
d∆c

=−η · r ·a
q(θ)

· 1
θ
· ∂θ

∂∆c
dw
d∆c

=− r ·a
q(θ)

· 1
∆c
· κ

κ+1
· η

1−η
· (1−n)

h
·
(
ε

M− ε
m) ,

where we used once more the result from Lemma 1 to express dθ/d∆c.

Fourth step. We come back to the formula.

0 = v′ · 1−n
n
· τ

1− τ
· εM +n · (1−n)

[
v′(ce)− v′(cu)

]
+

1
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m) ·[∆v+

η

1−η
· 1

h
·
(
ζ · (1−u)−n · v′

)
· r ·a

q(θ)

]
.

We set ζ = v′ (the welfare weight is arbitrary). Since h = n− (1− u), dividing the equation by
(1−n) · εM · v′ yields an optimal UI formula with endogenous wages and valuation of profits:

1
n

τ

1− τ
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1{ n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

κ

κ+1

[
εm

εM −1
][

1− v′

∆v
η

1−η

ra
q(θ)

]}
. (A20)

The formula naturally applies to the canonical model of Pissarides [2000].
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C.3 Elasticity wedge

This section derives the pendant of Proposition 2 for the canonical model. Proposition A1 estab-
lishes that in the canonical model, under log utility, the macro-elasticity εM is greater than the
micro-elasticity εm:

PROPOSITION A1. Under Assumptions 5 and 6, and if ρ = 1, then εm/εM < 1.

Proof. The equilibrium condition (A19), obtained under Assumptions 5 and 6, implies that dθ/dτ<
0. If ρ = 1, v(c) = ln(c), ∆v = − ln(τ), and dθ/d∆v > 0. Lemma 1 is also valid if (a) we replace
the elasticities “in consumption” εm and εM defined by Definition 1 with the elasticities “in utility”
εm

v and εM
v defined by Definition A1, and (b) we replace the derivative dθ/d∆c by dθ/∆v. Since

dθ/d∆v > 0, Lemma 1 implies that εM
v > εm

v > 0 (see Lemma A8 for an expression of εm
v ). There-

fore εm
v /εM

v < 1. Comparing Definition 1 for εm and εM with Definition A1 for εm
v and εM

v it is clear
that εm

v /εM
v = εm/εM. Thus εm/εM < 1.

C.4 Deriving an Hosios [1990] condition

If workers are risk neutral, the social planner does not care about ce and cu independently but cares
about aggregate consumption c ≡ n · ce +(1− n) · cu. Given initial unemployment u the planner
chooses consumption, effort, labor market tightness, and number of hires {c,e,θ,h} to maximize
social welfare c−u · k(e), subject to the matching process

h = e · f (θ) ·u (A21)

and the resource constraint
c = a ·g(1−u+h)− r ·a

q(θ)
·h. (A22)

The Lagrangian is

L = c−u · k(e)+A · [e · f (θ) ·u−h]+B ·
[

a ·g(1−u+h)− r ·a
q(θ)

·h− c
]
,

where A, B are Lagrange multipliers. The first-order conditions with respect to c,e,θ,h are

1 = B
k′(e) = A · f (θ)

0 = A · e ·u · f (θ)
θ
· (1−η)−B ·η · r ·a

q(θ)
· 1

θ
·h

A = B ·
[

a ·g′(n)− r ·a
q(θ)

]
.
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The ratio of Lagrange multiplier is
A
B
=

η

1−η
· r ·a

q(θ)
.

Therefore, optimal effort, hiring, tightness, and consumption {e,h,θ,c} are completely described
by 4 relationships: constraint (A21), constraint (A22), and the first-order conditions

k′(e) = f (θ) ·
[

η

1−η
· r ·a

q(θ)

]
g′(n)− r

q(θ)
=

η

1−η
· r

q(θ)
.

We compare the conditions with equilibrium conditions (2) and (11) for the canonical model.
Assume a Cobb-Douglas matching function, such that η is a constant, and risk-neutral workers.
The equilibrium wage is the Nash bargained wage (A18). To replicate the efficient allocation in
the canonical model, it suffices that β = η and τ = 0, which is the Hosios [1990] condition.

D Optimal Unemployment Insurance and Wage Subsidies

We start by describing the labor market equilibrium under technology a, when the replacement rate
is τ = ce/cu and the normalized wage is w̃ = w/a.

Under Assumption 3, v(c) = ln(c). Equation (2) implicitly defines a function e∗(θ,τ), which
gives the optimal search effort for tightness θ and replacement rate τ. The law of motion of em-
ployment n∗(e,θ) is defined by (1). We define the labor supply by ns(θ,τ) ≡ n∗(e∗(θ,τ),θ). The
firm’s profit-maximization condition (11) can be rewritten as

g′(n) = w̃+
r

q(θ)
,

which implicitly defines a labor demand nd(θ, w̃) under Assumption 1. The equilibrium condi-
tion (4) can be rewritten as

ns(θ,τ) = nd(θ, w̃),

which implicitly defines equilibrium labor market tightness θ(τ, w̃). Furthermore, we define equi-
librium employment n(τ, w̃)≡ ns(θ(τ, w̃),τ) and equilibrium effort e(τ, w̃)≡ e∗(θ(τ, w̃),τ). Lemma A11
establishes how equilibrium variables respond to a change in the wage w̃:

LEMMA A11. Under Assumptions 1 and 2, if v(c) = ln(c), we have the following comparative
statics for equilibrium variables:

∂θ

∂w̃

∣∣∣∣
τ

< 0,
∂e
∂w̃

∣∣∣∣
τ

< 0,
∂n
∂w̃

∣∣∣∣
τ

< 0.

Proof. Similar to the proof of Lemma A5.
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The government chooses a rate b of unemployment benefits, a tax rate t imposed on the salary
w∗ received by employees, and a subsidy rate σ imposed on the salary w∗ paid by employers.
Effectively, firms pay a wage w = (1−σ) ·w∗, employed workers consume ce = (1− t) ·w∗, and
unemployed workers consume cu = b ·w∗. The government is subject to the budget constraint

(1−n) ·b ·w∗+n ·σ ·w∗ = t ·n ·w∗

(1−n) ·b ·w∗+n ·w∗−n · t ·w∗ = n ·w∗−n ·σ ·w∗

(1−n) · cu +n · ce = n ·w.

The budget constraint remains the same as in the baseline model even though the labor tax is
collected from workers and partly redistributed to firms as a wage subsidy. The budget constraint
defines a function that gives the consumption of employed workers in equilibrium: ce(τ, w̃,a) ≡
a · c̃e(τ, w̃) where

c̃e(τ, w̃)≡ n(τ, w̃)
n+[1−n(τ, w̃)] · τ

· w̃.

In equilibrium, the expected utility of a worker is

ln(ce(τ, w̃,a))+ [1−n(τ, w̃)] · ln(τ)−u · k (e(τ, w̃)) = ln(a)+SW (τ, w̃) ,

where we define the function

SW (τ, w̃)≡ ln(c̃e(τ, w̃))+ [1−n(τ, w̃)] · ln(τ)−u · k (e(τ, w̃)) .

In Section 3, we maximized SW (τ, w̃) over τ∈ (0,1) for w̃ = w̃(a)≡ω ·aγ−1 (because we made
Assumption 2). The result from Proposition 4 in Section 3 tell us something about the properties
of SW . Let τ∗ (w̃) be the function implicitly defined by

∂SW (τ, w̃)
∂τ

= 0.

Furthermore, we define the replacement rate τ(a) ≡ τ∗ (w̃(a)). Under some conditions, Proposi-
tion 4 shows that dτ/da < 0. Since dw̃/da < 0 and

dτ

da
=

dτ∗

dw̃
· dw̃

da
,

we infer that dτ∗/dw̃ > 0 (under the assumptions of Proposition 4).
Let us consider the problem of the government when the government chooses optimally both the

wage w̃ and the replacement rate τ. To capture the various costs of implementing a wage subsidy
discussed in Section 3.5, we assume that setting a wage w̃ when the technology is a imposes a
welfare cost C (w̃,a)> 0. If the salary is a function w∗(a) of a, a possible welfare cost could be an
increasing convex function C (σ) of the subsidy rate σ. The reason is that σ= [w−w∗(a)]/w∗(a) =
[a · w̃−w∗(a)]/w∗(a) so σ is only a function of w̃ and a. A critical assumption is that the welfare

56



cost C does not depend on the replacement rate τ. The government chooses jointly τ and w̃ to
maximize

ln(a)+SW (τ, w̃)−C (w̃,a) .

The first-order condition with respect to τ is

∂SW (τ, w̃)
∂τ

∣∣∣∣
w̃=w̃†

= 0

where w̃† is the optimal wage. Therefore the optimal replacement rate is τ† = τ∗(w̃†), where τ∗(·)
is the function defined above. Our study of the government problem in Section 3 tell us that τ∗(w̃)
has the property that dτ∗/dw̃ > 0.

Note that the the optimal wage w̃†(a) is defined implicitly by the first-order condition

∂SW (τ, w̃)
∂w̃

∣∣∣∣
τ=τ∗(w̃)

− ∂C
∂w̃

∣∣∣∣
a
= 0.

Assume that the replacement rate τ† is fixed. There is a technology shock from a to a′ such that
employment decreases after the optimal wage is adjusted from w̃†(a) to w̃†(a′). Lemma A11
implies that w̃†(a)< w̃†(a′). Since the optimal replacement rate is solely a function of the optimal
wage: τ† = τ∗(w̃†) with dτ∗/dw̃ > 0, τ† must increase. Therefore after an adverse shock that
increases unemployment, the optimal replacement rate increases. The substantive conclusion of
Proposition 4 is robust to the presence of wage subsidies: optimal UI is more generous when
unemployment is high.

E The Dynamic Model

This section describes in detail and studies the dynamic model of Section 4. We assume that the
disutility of effort is isoelastic: k(e) = ωk · e1+κ/(1+κ); the disutility of home production is isoe-
lastic: m(y) = ωm · y1+µ/(1+µ); firm’s production function satisfies Assumption 1; and the wage
satisfies Assumption 2. To simplify notations, we denote by ch

t ≡ cu
t + yt the total consumption

of unemployed workers, including consumption of both market good and home-produced good.
We denote ∆vh

t ≡ v(ce
t )− [v(cu

t )−m(yt)] the utility gain from work. We denote unemployment
ut = 1− (1− s) ·nt−1 and number of hires ht = nt− (1− s) ·nt−1.

We assume that technology follows a stochastic process {at}+∞

t=0. Together with initial employ-
ment n−1 in the representative firm, the history of technology realizations at ≡ (a0,a1, . . . ,at) fully
describes the state of the economy in period t. The time-t element of the worker’s choice, firm’s
choice, and government policy must be measurable with respect to (at ,n−1).
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E.1 Equilibrium

Government’s budget. The government fully taxes profits, taxes or subsidizes labor income,
and subsidizes unemployed workers. The government must balance its budget each period, so it
chooses consumptions {cu

t ,c
e
t }

+∞

t=0 subject to the resource constraint

at ·g(nt)−
r ·at

q(θt)
· [nt− (1− s) ·nt−1] = nt · ce

t +(1−nt) · cu
t . (A23)

Firm’s problem. Given labor market tightness and technology {θt ,at}+∞

t=0 the firm chooses em-
ployment

{
nd

t
}+∞

t=0 to maximize expected profit

E0

+∞

∑
t=0

δ
t ·
{

at ·g(nd
t )−wt ·nd

t −
r ·at

q(θt)
·
[
nd

t − (1− s) ·nd
t−1

]}
.

The first-order condition with respect to nd
t implies

at ·g′(nd
t ) =wt +

r ·at

q(θt)
−δ · (1− s) ·Et

[
r ·at+1

q(θt+1)

]
. (A24)

Worker’s problem. Given government policy {ce
t ,c

u
t }

+∞

t=0 and labor market tightness {θt}+∞

t=0 the
representative worker chooses job-search effort and home production {et ,yt}+∞

t=0 to maximize the
expected utility

E0

+∞

∑
t=0

δ
t ·
{
(1−ns

t ) · [v(cu
t + yt)−m(yt)]+ns

t · v(ce
t )−

[
1− (1− s) ·ns

t−1
]
· k(et)

}
, (A25)

subject to the law of motion of the employment probability in period t,

ns
t = (1− s) ·ns

t−1 +
[
1− (1− s) ·ns

t−1
]
· et · f (θt). (A26)

The Lagrangian of the worker’s problem is

L = E0

+∞

∑
t=0

δ
t ·
{
−
[
1− (1− s) ·ns

t−1
]
· k(et)+(1−ns

t ) · [v(cu
t + yt)−m(yt)]+ns

t · v(ce
t )

+At ·
[[

1− (1− s) ·ns
t−1
]
· et · f (θt)+(1− s) ·ns

t−1−ns
t
]}

,

where {At(at), ∀at}+∞

t=0 is a sequence of Lagrange multipliers. The first-order condition with re-
spect to home production yt is

m′(yt) = v′(ch
t ). (A27)
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The first-order condition with respect to effort et is

k′(et) = f (θt) ·At .

The first-order condition with respect to employment probability ns
t is

At = ∆vh
t +δ · (1− s) ·Et [k(et+1)]+δ · (1− s) ·Et [At+1 · (1− et+1 · f (θt+1))] .

Using the isoelasticity of k(·), the optimal effort satisfies[
k′(et)

f (θt)
−δ · (1− s) · k

′(et+1)

f (θt+1)

]
+κ ·δ · (1− s) · k(et+1) = ∆vh

t . (A28)

Labor market equilibrium. Wages follow an exogenous stochastic process and cannot equalize
labor supply and demand. As in Hall [2005], we only require that wages should neither interfere
with the formation of an employment match that generates a positive bilateral surplus, nor cause
the destruction of such a match. Since wages cannot equalize labor supply and labor demand, labor
market tightness {θt}+∞

t=0 equalizes labor demand
{

nd
t
}+∞

t=0 to labor supply {ns
t}

+∞

t=0, which defines
employment {nt}+∞

t=0:
nd

t = ns
t ≡ nt . (A29)

Equilibrium definition. An equilibrium with unemployment insurance is a collection of stochas-
tic processes {ce

t , cu
t ,yt , et , nt , θt}+∞

t=0 that satisfy equations (A23), (A24), (A26), (A27), and (A28).
The unemployment insurance program is fully contingent on the history of realizations of shocks,
and is taken as given by firms and workers. We assume that the government can fully commit to the
policy plan. The government’s problem is to choose a government policy {cu

t ,c
e
t }

+∞

t=0 to maximize
social welfare (A25) over all equilibria with unemployment insurance. An optimal equilibrium is
an equilibrium with unemployment insurance that attains the maximum of (A25).
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E.2 Optimal equilibrium

Government’s problem. The maximization of the government is over a collection of sequences
{ce

t (a
t), cu

t (a
t), yt(at), et(at), nt(at), θt(at), ∀at}+∞

t=0. We form a Lagrangian

L =E0

+∞

∑
t=0

δ
t ·
{
(1−nt) ·

[
v(ch

t )−m(yt)
]
+nt · v(ce

t )− [1− (1− s)nt−1] · k(et)

+At

[
at ·g(nt)−

r ·at

q(θt)
· [nt− (1− s) ·nt−1]−nt · ce

t − (1−nt) · cu
t

]
+Bt

[[
v(ce

t )−
[
v(ch

t )−m(yt)
]]
− k′(et)

f (θt)

]
+Bt−1 · (1− s)

[
k′(et)

f (θt)
−κ · k(et)

]
+Qt

[
m′(yt)− v′(ch

t )
]
+Ct

[
at ·g′(nt)−wt−

r ·at

q(θt)

]
+Ct−1 · (1− s)

[
r ·at

q(θt)

]
+Dt [(1− (1− s) ·nt−1) · et · f (θt)+(1− s) ·nt−1−nt ]

}
where {At(at),Bt(at),Qt(at),Ct(at),Dt(at), ∀at}+∞

t=0 are sequences of Lagrange multipliers. We
define B−1 ≡ 0 and C−1 ≡ 0. The first-order conditions with respect to yt(at) for t ≥ 0 are

0 = (1−nt) ·
[
v′(ch

t )−m′(yt)
]
−Bt ·

[
v′(ch

t )−m′(yt)
]
+Qt ·

[
m′′(yt)− v′′(ch

t )
]

Using the optimal home production condition (A27), we obtain 0 = Qt ·
[
m′′(yt)− v′′(ch

t )
]
. Since

m′′(·)> 0 and v′′(·)< 0:

0 = Qt . (A30)

The first-order conditions with respect to ce
t (a

t) for t ≥ 0 are

At = v′(ce
t ) ·
(

1+
Bt

nt

)
. (A31)

Using (A30) the first-order conditions with respect to cu
t (a

t) for t ≥ 0 are

0 =−(1−nt) ·At +(1−nt) · v′(ch
t )−Bt · v′(ch

t )−Qt · v′′(ch
t )

At = v′(ch
t ) ·
[

1− Bt

(1−nt)

]
. (A32)
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The first-order conditions with respect to et(at) for t ≥ 0 are

0 =−ut · k′(et)−Bt ·
k′′(et)

f (θt)
+(1− s) ·Bt−1

k′′(et)

f (θt)
−κ · (1− s) ·Bt−1 · k′(et)+Dt ·ut · f (θt)

0 = [ut +κ · (1− s) ·Bt−1] · k′(et)+
k′′(et)

f (θt)
· [Bt− (1− s) ·Bt−1]−Dt ·

ht

et

0 = ut +κ · (1− s) ·Bt−1 +
κ

et · f (θt)
· [Bt− (1− s) ·Bt−1]−

1
1+κ

· Dt ·ht

k(et)
. (A33)

The first-order conditions with respect to θt(at) for t ≥ 0 are

0 =−At ·η ·
r ·at

f (θt)
·ht +(1−η) ·Bt ·

k′(et)

θt · f (θt)
− (1−η) · (1− s) ·Bt−1 ·

k′(et)

θt · f (θt)

−Ct ·η ·
r ·at

f (θt)
+Ct−1 · (1− s) ·η · r ·at

f (θt)
+Dt ·ut · (1−η) · et ·q(θt)

0 =
1−η

η

k′(et)

f (θt)
[Bt− (1− s)Bt−1]−

rat

q(θt)
[Ct− (1− s)Ct−1]+Dt

1−η

η
utet f (θt)−At

rat

q(θt)
ht

0 =
1−η

η
q(θt)

[
ht ·Dt +

k′(et)

f (θt)
[Bt− (1− s) ·Bt−1]

]
− r ·at · [Ct− (1− s) ·Ct−1 +At ·ht ] . (A34)

The first-order conditions with respect to nt(at) for t ≥ 0 are

0 = v(ce
t )−

[
v(ch

t )−m(yt)
]
+δ · (1− s) ·Et [k(et+1)]−Dt +(1− s) ·Et [Dt+1 · (1− et+1 · f (θt+1)]

+Ct ·at ·g′′(nt)+At ·
[

at ·g′(nt)−
r ·at

q(θt)
− (ce

t − cu
t )

]
+(1− s) ·δ ·Et

[
At+1 ·

r ·at+1

q(θt+1)

]
Dt = v(ce

t )−
[
v(ch

t )−m(yt)
]
+δ · (1− s) ·Et [k(et+1)]+(1− s) ·Et [Dt+1 · (1− et+1 · f (θt+1)]

+Ct ·at ·g′′(nt)+At ·
[

at ·g′(nt)−
r ·at

q(θt)
− (ce

t − cu
t )

]
+(1− s) ·δ ·Et

[
At+1 ·

r ·at+1

q(θt+1)

]
Dt = v(ce

t )−
[
v(ch

t )−m(yt)
]
+δ · (1− s) ·Et [k(et+1)]+(1− s) ·Et [Dt+1 · (1− et+1 · f (θt+1)]

+Ct ·at ·g′′(nt)+At · [w(at)− (ce
t − cu

t )]+(1− s) ·δ ·Et

[
(At+1−At) ·

r ·at+1

q(θt+1)

]
, (A35)

where we used the firm’s profit-maximization condition (A24).

Equilibrium characterization. The optimal equilibrium is a collection of 11 stochastic pro-
cesses {ce

t , cu
t ,yt , et , nt , θt ,At ,Bt ,Ct ,Dt ,Qt}+∞

t=0 that satisfy 11 equations {(A23), (A24), (A26),
(A27), (A28), (A30), (A31), (A32), (A33), (A34), (A35)}.
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Steady state. In steady state there are no aggregate shocks: at = a for all t. The optimal equilib-
rium is constant, and is characterized by a collection of 11 variables {ce,cu,y,n,θ,e,A,B,C,D,Q}
characterized by 11 equations {(A23), (A24), (A26), (A27), (A28), (A30), (A31), (A32), (A33),
(A34), (A35)}. It is useful to combine together a few of the first-order conditions and constraints
of the government’s problem to re-express some Lagrange multipliers in a simpler form. These
relationships are useful to solve steady-state optimal equilibria numerically. Combining (A31)
and (A32), we obtain expressions for the Lagrange multipliers A and B as a function of equilib-
rium variables:

A =

[
n

v′(ce)
+

1−n
v′(ch)

]−1

B = n · (1−n) ·
[

1
v′(ce)

− 1
v′(ch)

]
·A.

Using the fact that e/h = 1/(u · f (θ)) in steady state, (A33) becomes:

D =
k′(e)

f (θ) ·u
· [u+κ · (1− s) ·B]+ k′′(e) · e

f (θ)
· s

h
·B

D =
k′(e)
f (θ)
·
[

1+
B
n
· κ

u

]
.

Using this expression, equation (A34) becomes:

0 =
1−η

η
·q(θ)

[
h ·D+

k′(e)
f (θ)
· s ·B

]
− r ·a · s · [C+A ·n]

C =
1−η

η
· k′(e)

r ·a ·θ
·
[
n+B ·

(
κ

u
+1
)]
−A ·n.

E.3 Log-linearization

x and x̌t ≡ d ln(xt) denote steady-state value and logarithmic deviation of variable xt . In steady state
the 6 variables

{
ce,cu,y,n,θ,e

}
describing the optimal equilibrium and the 5 associated Lagrange

multipliers
{

A,B,Q,C,D
}

are characterized by the system of 11 equations {(A23), (A24), (A26),
(A27), (A28), (A30), (A31), (A32), (A33), (A34), (A35)} for technology a = a = 1.

To simplify notations, we denote h = s · n, u = 1− (1− s) · n, ch = cu + y, and ∆vh
= v(ce)−

v(ch)+m(y). By definition the log-deviations
{

ǔt , ȟt , čh
t , ∆̌v

h
t

}
satisfy: (1−s) · ňt−1+s · ȟt− ňt = 0;

ǔt +o1 · ňt−1 = 0 where o1 = (1−u)/u; m0 · y̌t +m1 · ču
t − čh

t = 0, where m0 = y/ch and m1 = 1−m0;
and s1 · εe · če

t + s2 · εh · čh
t + s3 · (1+ µ) · y̌t − ∆̌v

h
t = 0 where s1 = v(ce)/∆vh, s2 = −v(ch)/∆vh,

s3 = 1− s1− s2, and εi = d ln(v(x))/d ln(x)|x=ci is the elasticity of the utility function at ci.
The logarithmic deviations of the 6 variables

{
če, ču, y̌, ň, θ̌, ě

}
and 5 Lagrange multipliers{

Ǎ, B̌, Q̌,Č, Ď
}

describing the optimal equilibrium are characterized by the following system of
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11 log-linear equations. The budget constraint (A23) is

ǎt +α · ňt−q0 ·
[
ȟt +η · θ̌t + ǎt

]
−q1 · [p1 · (ňt + če

t )+ p2 · (−p3 · ňt + ču
t )] = 0,

with p3 = n/(1− n), p1 = 1/(1+(cu/ce) · (1−n)/n), p2 = 1− p1, q0 =
[
r/q(θ)

]
·
[
h/nα

]
, and

q1 = 1−q0. Worker’s optimal job search (A28) is

− t2
1−δ(1− s)

[[
κět− (1−η)θ̌t

]
−δ(1− s)Et

[
κět+1− (1−η)θ̌t+1

]]
− t1 · (1+κ)Et [ět+1]+ ∆̌v

h
t = 0,

where t1 = κ ·δ · (1− s) · k(e)/∆vh and t2 = 1− t1. Worker’s optimal home production (A27) is

µ · y̌t +ρ · čh
t = 0.

Firm’s optimal hiring (A24) is

−ǎt +(1−α) · ňt + r1 · γ · ǎt + r2 ·
(
η · θ̌t + ǎt

)
+ r3 ·Et

[
η · θ̌t+1 + ǎt+1

]
= 0,

with r1 = ω/
[
α ·nα−1], r2 =

[
r/q(θ)

]
/
[
α ·nα−1], and r3 = 1− r1− r2. The law of motion of

employment (A26) is
ǔt + ět +(1−η) · θ̌t− ȟt = 0.

Equation (A30) imposes Q̌t = 0. Multipliers At and Bt satisfy (A31) and (A32):

Ǎt +ρ · če
t +u1 ·

(
ňt− B̌t

)
= 0

Ǎt +ρ · čh
t +u2 ·

(
u3 · ňt + B̌t

)
= 0,

where u1 = B/
(
n+B

)
, u2 = B/

(
1−n−B

)
, and u3 = n/(1−n). Multiplier Dt satisfies (A33):

Ďt + ȟt +(1+κ) · ět−w2 · ǔt−w3 · B̌t−1−w4

[
−(1−η) · θ̌t− ět +

(
1
s
· B̌t−

1− s
s
· B̌t−1

)]
= 0,

where w1 =
[
D ·h

]
/ [(1+κ) · k(e)], and w2 = u/w1, w3 = κ · (1− s) ·B/w1, w4 = 1−w2−w3.

Multiplier Ct satisfies (A34):

ȟt−η · θ̌t + Ďt− x8
[
ǎt + ȟt + Ǎt

]
− x6

[
−θ̌t +κ · ět +

1
s

B̌t−
1− s

s
B̌t−1

]
− x7

[
ǎt +

1
s
Čt−

1− s
s

Čt−1

]
= 0,

where x1 = h ·q(θ) ·D · (1−η)/η, x8 = r ·h ·A/x1, x7 = r · s ·C/x1, and x6 = 1− x7− x8. The last
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first-order condition (A35) of the government’s problem is

Ďt−
{

y1 · ∆̌v
h
t + y2 · (1+κ) ·Et [ět+1]+ y3 ·Et

[
Ďt+1− z4 ·

[
ět+1 +(1−η) · θ̌t+1

]]
+ y4 ·

[
Čt + ǎt +(α−2) · ňt

]
+ y5 ·

[
Ǎt +(z1 · γ · ǎt + z2 · če

t + z3 · ču
t )
]
+ y6 ·Et

[
Ǎt+1− Ǎt

]}
= 0,

where y1 = ∆vh
/D, y2 = δ · (1− s) · k(e)/D, y3 = (1− s) ·

(
1− e · f (θ)

)
, y4 =−α · (1−α) ·nα−2 ·

C/D, y5 = 1−y1−y2−y3−y4, z1 = ω/ [ω− (ce− cu)], z2 =−ce/ [ω− (ce− cu)], z3 = 1−z2−z3,
z4 = e · f (θ)/

[
1− e · f (θ)

]
, and y6 = (1− s) ·δ ·

[
A/D

]
·
[
r/q(θ)

]
.

In addition we assume that the log-deviation of technology ǎt follows an AR(1) process: ǎt =
ν · ǎt−1 + zt , where zt ∼ N(0,σ2) is the innovation to technology driving fluctuations in the log-
linear model. We compute the unique stationary rational expectations solution to the log-linear
system using the standard method.28 The solution allows us to compute the IRFs of variables to
unexpected technology shocks, as in Figure 3.

E.4 Calibration

This section derives the relationships between the convexity µ and κ of the disutility from home
production and from job search, and statistics estimated in the literature.The relationships are used
to calibrate the dynamic model of Section 4.

Disutility from home production. We estimate the convexity µ of the disutility m(y) = ωm ·
y1+µ/(1+ µ) of home production y. The ratio ξ ≡ ch/ce = (cu + y)/ce captures the consumption
drop upon unemployment. Consider a worker who receives a marginal decrease dcu < 0 in benefits,
which decreases his total consumption by dch = dcu +dy < 0. The marginal consumption drop is
ε2 ≡ dch/dcu. We relate the statistics ε2 and ξ to µ. Then we use empirical estimates of ε2 and ξ

to calibrate µ. Differentiating the optimal choice of home production (A15),

ε2 =
dch

dcu =
1

1− v′′(ch)
m′′(y)

.

Using the isoelasticity of m(·) and the identity y = ch− cu = ch · (1− τ/ξ),

m′′(y) = µ · m
′(y)
y

=
µ

1− τ/ξ
· v
′(ch)

ch =− µ
1− τ/ξ

· 1
ρ
· v′′(ch).

28See Anderson, Gary and George Moore, “A Linear Algebraic Procedure for Solving Linear Perfect Foresight
Models,” Economics Letters, 1985, 17(3), 247–252.
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Combining these two equations gives us an expression for µ as a function of ξ and ε2:

µ = ρ ·
(

1− τ

ξ

)
· ε2

1− ε2
.

Disutility from job search. We estimate the convexity κ of the disutility k(e) =ωk ·e1+κ/(1+κ)
from search. Let ξ ≡ e · f (θ) be the hazard rate out of unemployment. Assume that the worker
receives an increase dcu > 0 in benefits, reduces home production by dy < 0, and reduces search
effort by de < 0, which leads to a reduction dξ = f (θ) · de < 0 in the hazard rate (we consider a
change in benefits for one worker only, so labor market tightness θ is not affected by the policy
experiment). The reduction in hazard rate is captured by the elasticity ε1 ≡ (cu/ξ) · (dξ/dcu). We
first show how ε1 relates to κ. Then we use empirical estimates of ε1 to calibrate κ.

LEMMA A12. Let e∗(θ,∆vh) be the effort supply implicitly defined by the worker’s utility-maximization
condition (A28) in steady state:

[1−δ · (1− s)] · k′(e)
f (θt)

+κ ·δ · (1− s) · k(e) = ∆vh. (A36)

Assume that δ≈ 1. Then the partial derivative of the effort supply e∗(θ,∆vh) satisfy:

∆vh

es ·
∂e∗

∂∆vh =
1
κ
· u+κ

1+κ
.

Proof. Assume that δ≈ 1. From the worker’s optimality condition (A36):

∆vh = s · k
′(e)

f (θ)
+(1− s) ·κ · e

1+κ
k′(e)

∆vh = k′(e) ·
[

s
f (θ)

+(1− s) · κ

1+κ
· e
]

∆vh = e · k′(e) ·
[

u
n
+(1− s) · κ

1+κ

]
∆vh = e · k′(e) ·

[
u · (1+κ)+(1−u) ·κ

n · (1+κ)

]
k′(e) = ∆vh · n

e
· 1+κ

u+κ
.

Since k(e) = e · k′(e)/(1+κ) and s/ f (θ) = u · e/n in steady state, we get tow relationships:

k(e) = ∆vh · n
u+κ

s · k
′(e)

f (θ)
= ∆vh ·

[
u · 1+κ

u+κ

]
.
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Assuming that δ ≈ 1, we differentiate the optimality condition (A36) with respect to ∆vh keeping
θ fixed. The log-deviations of e∗ and ∆vh satisfy

∆̌vh = κ · ě∗ · s · k
′(e)/ f (θ)
∆vh +(1+κ) · ě∗ · κ · (1− s) · k(e)

∆vh

∆̌vh = κ · ě∗ ·
[

u · 1+κ

u+κ

]
+(1+κ) · ě∗ ·κ · (1− s) · n

u+κ

∆̌vh = κ · 1+κ

u+κ
· ě∗ · [u+(1− s) ·n]

ě∗

∆̌vh
=

u+κ

κ · (1+κ)
.

Let û be steady-state unemployment. Using Lemma A12,

∂ ln(ξ)
∂ ln(∆vh)

∣∣∣∣
θ

=
∂ ln(e∗)

∂ ln(∆vh)

∣∣∣∣
θ

=
1
κ
· û+κ

1+κ
. (A37)

Since ce is fixed and the provision of home production is optimal,

d∆vh =−v′(ch) · [dcu +dy]+m′(y) ·dy =−v′(ch) ·dcu.

In addition, if the second and higher order terms of v(·) are small,

∆vh ≈ v′(ch) · (ce− ch)+m(y).

Using the isoelasticity of m(·) and the optimality condition (A27),

m(y) = y · m
′(y)

1+µ
=

ch− cu

1+µ
· v′(ch)

∆vh ≈ v′(ch) · ce ·
[
(1−ξ)+

ξ− τ

1+µ

]
d ln(∆vh) =

d∆vh

∆vh ≈−
dcu

cu ·
τ

(1−ξ)+ ξ−τ

1+µ

.

Combining this result with (A37) implies

−dξ

ξ
· cu

dcu ·
(1−ξ)+ ξ−τ

1+µ

τ
=

1
κ
· û+κ

1+κ
.
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We conclude that κ is related to ε1 by

−ε1

τ
·
[
(1−ξ)+

ξ− τ

1+µ

]
=

1
κ
· û+κ

1+κ
.

E.5 Deficit spending

In this section, we assume that the government has access to a complete market for Arrow-Debreu
securities, instead of being constrained to balance its budget each period. In the government’s
problem, we remove the period-by-period budget constraint (13) for each at and each t and replace
it by a unique intertemporal budget constraint (14).

In the characterization of the optimal equilibrium, we replace the sequence of Lagrange multi-
pliers {At(at), ∀at}+∞

t=0 that we placed on the period-by-period budget constraint (13) by a unique
Lagrange multiplier A placed on the unique intertemporal budget constraint (14). The Lagrangian
of the government’s problem remains exactly the same, except that the multipliers At on the period-
by-period budget constraint are replaced by the multiplier A, constant over time t and across histo-
ries at . The first-order conditions of the government’s problem simplify accordingly. In particular
the steady state of the model, in which the government faces the unique budget constraint (14),
is the same as the steady state of the baseline dynamic model, in which the government faces a
sequence of budget constraints (13). We also obtain the log-linear system describing the optimal
equilibrium by replacing Ǎt by Ǎ = 0 in the log-linear system of the baseline model.

To be able to simulate the log-linear model and obtain the IRFs in Figure 3 , however, we need
to determine the Lagrange multiplier A on the intertemporal budget constraint. A is determined
such that the government’s intertemporal budget constraint (14) be binding. We define the deficit
in period t by

Λ(St) = nt · ce
t +(1−nt) · cu

t −nt ·w(at).

where we define the vector
St = [at ,nt ,ce

t ,c
u
t ] .

The intertemporal budget constraint (14) can rewritten as

+∞

∑
t=0

δ
t ·E0 [Λ(St)] = 0. (A38)

We can linearize the deficit around its steady-state value Λ
(
S
)
:

Λ(St)≈ Λ
(
S
)
+a · ∂Λ

∂a
(S) · dat

a
+n · ∂Λ

∂n
(S) · dnt

n
+ ce · ∂Λ

∂ce (S) ·
dce

t
ce + cu · ∂Λ

∂cu (S) ·
dcu

t
cu

Λ(St)≈ Λ
(
S
)
+Λ1 · ǎt +Λ2 · ňt +Λ3 · če

t +Λ4 · ču
t

E0 [Λ(St)]≈ Λ
(
S
)
+Λ1 ·E0 [ǎt ]+Λ2 ·E0 [ňt ]+Λ3 ·E0 [če

t ]+Λ4 ·E0 [ču
t ] ,

where Λ1,Λ2,Λ3,Λ4 are constant. Using (A38), we infer that the intertemporal budget con-
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straint (14) is a linear combination of the expected value of the log-deviations {E0 {ňt}, E0 {ǎt},
E0 {če

t }, E0 {ču
t }}+∞

t=0 and of the steady-state deficit Λ
(
S
)
.

We compute the unique stationary rational expectations solution to the log-linear system using
the standard method. Let Xt ∈ Rk be the vector of log-deviations: Xt = [ǎt , ňt , če

t , č
u
t , . . .]

′. Let
Zt+1 ∈Rk be a vector of innovations at time t+1. In our system there is only one exogenous shock,
so there is only one non-zero entry in the vector Zt+1: Zt+1 = [0,0, . . . ,zt+1]

′ where zt+1∼N(0,σ2).
The solution to the log-linear system satisfies

Xt+1 = M1Xt +M2Zt+1,

where M1 ∈ Rk×k,M2 ∈ Rk×k are matrices that are constant over time. Taking expectations, and
using the fact that Xt is stationary: for all t ≥ 0,

E0 [Xt ] = E0 [Xt+1] = M1E0 [Xt ]+M2E0 [Zt+1] = M1E0 [Xt ] .

Since all the eigenvalues from M1 have an absolute value strictly less than one, we infer that for all
t ≥ 0, E0 [Xt ] = 0. Hence the log-linear system is such that

E0 [ňt ] = E0 [ǎt ] = E0 [če
t ] = E0 [ču

t ] = 0.

We conclude that the intertemporal budget constraint is satisfied by the solution to the log-linear
system in a stochastic environment as long as it holds in steady-state and Λ

(
S
)
= 0. Therefore the

Lagrange multiplier A is simply obtained by solving the steady state of the model, which is the
same as that of the baseline model with budget balance each period.

E.6 Duration of unemployment benefits

This section describes and studies a dynamic model in which unemployment benefits have finite
duration, as in Fredriksson and Holmlund [2001]. We introduce three superscripts: e for Employed
workers; u for unemployed workers eligible to receive Unemployment benefits; a for unemployed
workers whose unemployment benefits expired, and who only receive social Assistance. The con-
sumptions of market good for each type of worker are ce

t , cu
t , and ca

t . The consumptions of home
good for unemployed workers are yu

t and ya
t . The search efforts of unemployed workers are eu

t and
ea

t . To simplify notation, we define the following utility gains: ∆vu,e
t ≡ v(ce

t )− [v(cu
t + yu

t )−m(yu
t )],

∆va,e
t ≡ v(ce

t )− [v(ca
t + ya

t )−m(ya
t )] ∆va,u

t ≡ ∆va,e
t −∆vu,e

t .

Labor market. At the beginning of period t there are xu
t eligible jobseekers exerting effort eu

t , and
xa

t ineligible jobseekers exerting effort ea
t . The number of matches ht made is given by ht = h(ea

t ·
xa

t + eu
t · xu

t ,ot), where ea
t · xa

t + eu
t · xu

t is aggregate search effort and ot is vacancy. We define labor
market tightness as θt ≡ ot/(ea

t · xa
t + eu

t · xu
t ). After matching, zu

t eligible workers and za
t ineligible

workers are unemployed. At the end of period t, a fraction λt of the zu
t eligible unemployed workers
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become ineligible. The stocks of workers are related by:

zu
t = xu

t · (1− eu
t · f (θt)) (A39)

za
t = xa

t · (1− ea
t · f (θt)) (A40)

xu
t = zu

t−1 · (1−λt−1)+ s ·nt−1 (A41)
xa

t = za
t−1 +λt−1 · zu

t−1 (A42)

Government’s budget. The government must balance its budget each period, so it chooses the
arrival rate of ineligibility {λt}+∞

t=0 and consumptions {ca
t ,c

u
t ,c

e
t }

+∞

t=0 subject to the resource con-
straint

at ·nα
t −

r ·at

q(θt)
· [nt− (1− s) ·nt−1] = nt · ce

t + zu
t · cu

t + za
t · ca

t . (A43)

Firm’s problem. The firm’s problem is as in the baseline model. Optimal hiring satisfies (A24).

Worker’s problem. Given government policy {ce
t ,c

u
t ,c

a
t ,λt}+∞

t=0 and tightness {θt}+∞

t=0 the rep-
resentative worker chooses efforts and home productions {eu

t ,e
a
t ,y

u
t ,y

a
t }

+∞

t=0 to maximize expected
utility

E0

+∞

∑
t=0

δ
t ·
{

v(ce
t )−

[
xu

t · k(eu
t )+ xa

t · k(ea
t )+ zu

t ·∆vu,e
t + za

t ·∆va,e
t
]}

, (A44)

subject to the laws of motion (A39), (A40) (A41),and (A42) of the unemployment probabilities
{xu

t ,x
a
t ,z

u
t ,z

a
t }

+∞

t=0. Given {θt}+∞

t=0, a choice of efforts {eu
t ,e

a
t }

+∞

t=0 determines labor supply {ns
t}

+∞

t=0,
which is the employment rate in period t given by

ns
t = 1− (za

t + zu
t ) . (A45)

We form the Lagrangian of the worker’s problem with multipliers At ,Bt ,Ct ,Dt assigned to the
laws of motion (A39), (A40) (A41),and (A42). The first-order conditions with respect to home
productions yu

t and ya
t are

m′(yu
t ) = v′(cu

t + yu
t ) (A46)

m′(ya
t ) = v′(ca

t + ya
t ). (A47)

The first-order conditions with respect to efforts eu
t and ea

t are

k′(eu
t ) = f (θt) ·At

k′(ea
t ) = f (θt) ·Bt .
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The first-order conditions with respect to unemployment probabilities xu
t and xa

t are

Ct = k(eu
t )+At · (1− eu

t f (θt))

Dt = k(ea
t )+Bt · (1− ea

t f (θt)) .

The first-order conditions with respect to probabilities zu
t and za

t are

At = ∆vu,e
t +(1− s) ·δ ·Et [Ct+1]+λt ·δ ·Et [Dt+1−Ct+1]

Bt = ∆va,e
t +(1− s) ·δ ·Et [Dt+1]+ s ·δ ·Et [Dt+1−Ct+1] .

Combining these equations we have

∆k′t
f (θt)

= ∆va,u
t +(1−λt) ·δ ·Et [Dt+1−Ct+1]

Et [Dt+1−Ct+1] = Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
,

where ∆kt = k(ea
t )− k(eu

t ) and ∆k′t = k′(ea
t )− k′(eu

t ). Combining the equations once more yields

k′(eu
t )

f (θt)
+(1− s) ·δ ·Et

[
κ · k(eu

t+1)−
k′(eu

t+1)

f (θt+1)

]
= ∆vu,e

t +λt ·δ ·Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
(A48)

k′(ea
t )

f (θt)
+(1− s) ·δ ·Et

[
κ · k(ea

t+1)−
k′(ea

t+1)

f (θt+1)

]
= ∆va,e

t + s ·δ ·Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
. (A49)

Labor market equilibrium. As in the baseline model, tightness {θt}+∞

t=0 equalizes labor demand{
nd

t
}+∞

t=0 to labor supply {ns
t}

+∞

t=0 such that (A29) holds, defining employment {nt}+∞

t=0.

Equilibrium definition. An equilibrium with unemployment insurance is a collection of stochas-
tic processes {λt ,ce

t , cu
t , ca

t ,yu
t ,ya

t , eu
t ,ea

t , nt , θt}+∞

t=0 that satisfy equations (A39), (A40), (A41), (A42),
(A43), (A24), (A45), (A46), (A47), (A49),and (A48).

Steady state. In steady state there are no aggregate shocks: at = a for all t. The stocks of workers
are constant over time. We can recombine the laws of motion of employment and unemployment
probabilities to express {zu,xu,za,xa,n} as a function of {λ,θ,ea,eu}. These steady-state relation-
ships are useful to solve steady-state equilibria numerically.

In steady state the outflows into and outflows from social assistance are equal.

xa · ea · f (θ) = λ · xu · [1− eu · f (θ)]

xa = xu ·λ ·
1− eu · f (θ)

ea · f (θ)
.
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The outflows from and inflows into employment are equal.

s ·n = xa · ea · f (θ)+ xu · eu · f (θ)

n =
1
s
· xu · [eu · f (θ) · (1−λ)+λ] .

We write the stock of unemployment at the beginning of the period in two different ways.

1− (1− s) ·n = xa + xu

1− 1− s
s
· xu · [eu · f (θ) · (1−λ)+λ] = xu

[
1+λ · 1− eu · f (θ)

ea · f (θ)

]
.

Combining our previous results, we get the following relationships:

xu =

[
1+λ · [1− eu · f (θ)]

[
1

ea · f (θ)
+

1− s
s

]
+

1− s
s
· eu · f (θ)

]−1

xa =

[
1+

1− s
s
· ea · f (θ) ·

{
1+

1
λ
·
[

1
eu · f (θ)

−1
]−1
}]−1

zu =

[
1+λ ·

[
1

ea · f (θ)
+

1− s
s

]
+

1
s
·
[

1
eu · f (θ)

−1
]−1
]−1

za =

[
1+
[

1
ea · f (θ)

−1
]−1

· 1
s
·

{
1+

1
λ
·
[

1
eu · f (θ)

−1
]−1
}]−1

n =

[
1+ s ·

[
1

ea · f (θ)
−1
]
+

s
(1−λ) · eu · f (θ)+λ

·
[

1− eu

ea

]]−1

.

Optimal equilibrium. We assume that the generosity of the system of transfers is constant:
there exists τu,e,τa,e such that for all t, τu,e = cu

t /ce
t , τa,e = ca

t /ce
t . The government’s problem is

to choose a government policy {λt ,ce
t }

+∞

t=0 to maximize social welfare (A44) over all equilibria
with unemployment insurance. An optimal equilibrium is an equilibrium with unemployment
insurance that attains the maximum of (A44). To determine numerically the optimal arrival rate
λ(a) in a steady state with technology a, we perform a grid search over a large range of arrival
rates {λi} (once we have picked λ, consumption ce is given by the resource constraint (A43)). We
pick the arrival rate λi such that the associated steady state maximizes social welfare. We repeat
the computation for a sequence of technology

{
a j
}

to plot the graphs in Figure 4.

F Alternative Models of Recessions

71



F.1 Aggregate demand shock

This section characterizes optimal UI in a model in which recessions are caused by the combination
of low aggregate demand and nominal wage rigidity. After a negative demand shock, prices fall.
Nominal wage rigidity, combined with a lower price level, leads to a higher real wage and a higher
marginal cost of labor, which leads to lower hiring and higher unemployment.29

Wage. Assume that nominal wages are rigid. The real wage w follows a simple wage rule

w =
µ
p
, (A50)

where p is the aggregate price level and µ is a parameter. The rule says that the real wage w is
constant in nominal terms: w · p = µ.

Firm’s problem. The production function is linear in employment: g(n) = n. Productivity is
constant: workers always produce one unit of good. The firm starts with 1− u workers, and
decides how many additional workers to hire such that employment n maximizes real profit:

π = n−w ·n− r
q(θ)

· [n− (1−u)] .

The first-order condition implies
1 = w+

r
q(θ)

, (A51)

where w is the real wage—taken as given by the firm.

Money. Because of nominal wage rigidity, it is necessary to define the price-setting mechanism.
The firm’s production is sold in a perfectly competitive goods market. The firm takes the market
price p as given. The aggregate demand curve on the goods market takes the simple form m/p,
borrowed from the quantity theory of money. Aggregate demand m proxies for the position of
the economy in the business cycle. The firm’s production at a given price p determines aggregate
supply of goods. When the labor market is in equilibrium the amount of goods produced is n.
When the goods market is in equilibrium, the price clears the market:

m
p
= n. (A52)

Equilibrium. Given the aggregate price level determined by (A52) the equilibrium real wage is
a function of employment

w =
µ
m
·n.

29The model loosely captures one story of the Great Depression: contractionary monetary policy lead to deflation,
which raised real wages above trend in presence of nominal wage rigidity, which in turn depressed employment.
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Figure A1: Labor market equilibrium in presence of demand shocks

When aggregate demand m falls, the real wage w tends to rise. Inserting the equilibrium real wage
into the firm’s profit-maximization condition (A51) yields a labor demand curve

nd(θ,m) =
m
µ
·
[

1− r
q(θ)

]
. (A53)

The labor supply ns(θ,∆c) retains the same structure as in the model with technology shocks.
Equating labor demand with labor supply curve defines implicitly equilibrium labor market tight-
ness θ(m,∆c) and employment n(m,∆c) as a function of aggregate demand m and consumption
gain from work ∆c. The labor market equilibrium, depicted in Figure A1, shares the same struc-
ture as the equilibrium in the text.

Jobs are also rationed in recessions. Higher employment implies more production, lower prices
in the goods market, higher real wages because of nominal wage rigidity, and requires a lower
tightness for firms to be willing to hire: the aggregate labor demand curve is downward sloping in
a price θ-quantity n plan. If demand is low enough (m < µ), the labor demand falls below zero for
n < 1: jobs are rationed.

Business cycle fluctuations. We focus on the case with log utility: v(c)= ln(c). We parameterize
the equilibrium of the model with (m,τ). We have the following comparative statics for equilibrium
variables:

∂θ

∂m

∣∣∣∣
τ

> 0,
∂e
∂m

∣∣∣∣
τ

> 0,
∂n
∂m

∣∣∣∣
τ

> 0.

The result corresponds to Lemma A5. The proof is identical to that of Lemma A5 because, even
if the labor demand is different in the model with demand shocks, it remains true that ∂nd/∂θ <
0, ∂nd/∂m > 0.
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Optimal UI formula. In the model, real wages respond to UI because UI affects equilibrium
tightness, equilibrium employment, equilibrium price level, and eventually equilibrium real wage
because the nominal wage is rigid. In the optimal UI formula, we must account for the impact of
UI on the government’s budget through wages. For instance if higher UI implies higher wages,
then higher UI has an additional beneficial effect because it increases the tax base. Of course the
wage increase is partly at the cost of firm’s profits. Thus we account for fluctuations in profits for
consistency. The appropriate optimal UI formula in this framework is given by (A20). As in the
text, assume that n ≈ 1 and that the third and higher order terms of v(·) are small. The formula
simplifies to

τ

1− τ
=

ρ

εM · (1− τ)+
κ

κ+1
·
(

εm

εM −1
)
·
[

1+
ρ

2
· (1− τ)− 1

∆c
· η

1−η
· r

q(θ)

]
. (A54)

The government’s budget constraint combined with (A51) imposes

n · ce +(1−n) · cu = n ·w = n ·
{

1− r
q(θ)

}
.

With n≈ 1, ce ≈ 1− r/q(θ). The formula simplifies to

τ

1− τ
=

ρ

εM · (1− τ)+
κ

κ+1
·
(

εm

εM −1
)
·
[

1+
ρ

2
· (1− τ)− 1

1− τ
· η

1−η
· 1
[q(θ)/r]−1

]
. (A55)

Elasticities. We now study the elasticities εm and εM in the model with demand shocks. We first
examine the elasticity wedge εm/εM. We differentiate the labor demand condition (A53).

dn
d∆c

=−m
µ
·η · r

q(θ)
· 1

θ
· dθ

d∆c
.

Using Lemma 1, which remains valid because the structure of labor supply has not changed, and
Definition 1 of elasticity εM:

(1−n) · εM =−m
µ
· r

q(θ)
· κ

κ+1
· 1−n

h
· η

1−η
·
(
ε

M− ε
m)[

εm

εM −1
]
=

µ
m
· q(θ)

r
· κ+1

κ
·h · 1−η

η
.

Under Assumption 4 we can write [
εm

εM −1
]
= ℵ · q(θ)

r
·n · µ

m
,
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where ℵ is a constant under Assumption 3, defined by

ℵ≡ 1−η

η
· κ+1

κ
· s > 0.

Finally, using the labor demand condition (A53),[
εm

εM −1
]
= ℵ ·

[
q(θ)

r
−1
]
> 0.

There is a positive wedge εm > εM between micro- and macro-elasticity, as in the model with
technology shocks (Proposition 2). The wedge widens in recessions. Since ∂θ/∂m|τ > 0 and q(·)
is decreasing, ∂

[
εm/εM]/∂m|τ < 0. The result corresponds to Part 1 of Proposition 3.

To determine the cyclicality of the macro-elasticity εM, we need to derive an equation equivalent
to (A6) in presence of demand shocks ((A6) is only valid in a context in which, unlike here, real
wages do not respond to UI). We start from the budget constraint.

cu = n · (w−∆c) = n ·
(

n · µ
m
−∆c

)
dcu

d∆c
= ε

M · (1−n) ·
[
2 · w

∆c
−1
]
−n

dcu

d∆c
= ε

M · (1−n) ·
[

2
n
· τ

1− τ
+1
]
−n.

Under the assumption that v(c) = ln(c),

d∆v
d∆c

=
1
ce +

[
1
ce −

1
cu

]
· dcu

d∆c
d∆v
d∆c

=

[
(1−n) · 1

ce +n · 1
cu

]
+

[
1
ce −

1
cu

]
· εM · (1−n) ·

[
2
n
· τ

1− τ
+1
]
.

Equation (A5) remains valid. With log utility, it can be written

ln(1/τ)

1− τ
· κ

s
· εm = ce · n

1−n
· d∆v

d∆c
.

Using these two results,

ln(1/τ)

1− τ
· κ

s
· εm =

[
n+

n2

1−n
· 1

τ

]
− 1− τ

τ
· εM ·

[
2 · τ

1− τ
+n
]

ε
M =

[
1+

n
1−n

· 1
τ

]
·
[

κ

s
· 1

n
· εm

εM ·
ln(1/τ)

1− τ
+

2
n
+

1− τ

τ

]−1

.

∂n/∂m|τ > 0, ∂
[
εm/εM]/∂m|τ < 0, so ∂εM/∂m|τ > 0. The result corresponds to Part 2 of Proposi-
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Figure A2: Labor market equilibrium in presence of preference shocks

tion 3.

Optimal replacement rate over the business cycle. Using optimal UI formula (A55), the fact
that ∂q(θ)/∂m|τ < 0, as well as our results that ∂

[
εm/εM]/∂m|τ < 0 and ∂εM/∂m|τ > 0, we infer

that the optimal replacement rate τ is countercyclical: dτ/dm < 0. The economic mechanism is
the same as in the model with technology shocks in the text: the moral hazard cost of UI falls in
recession, while the value of UI as a correction of the rat-race externality rises; hence it is optimal
to increase the generosity of UI in recessions.

F.2 Preference shock

We assume that technology a remains constant at a = 1. Instead of technology shocks, recessions
are driven by shocks to the disutility from search.

Worker’s problem. A worker’s utility is v(c)−λ · k(e), where λ is a preference parameter that
indicates the disutility of search. Fluctuations in λ drive the business cycle. Given labor market
tightness θ and consumptions ce and cu, a jobseeker chooses effort e to maximize expected util-
ity v(cu)+ e · f (θ) ·∆v−λ · k(e). The optimal job-search effort satisfies the following first-order
condition:

k′(e) = f (θ) · ∆v
λ
. (A56)

As the disutility from effort k(·) is convex and the job-finding rate f (·) is increasing, the optimal
effort e increases with tightness θ, increases with the utility gain from working ∆v, and decreases
with the preference parameter λ.

76



0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

Unemployment rate

L
a

b
o

r 
m

a
rk

e
t 

ti
g

h
tn

e
s
s

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

Unemployment rate

R
e

p
la

c
e

m
e

n
t 

ra
te

 τ

Figure A3: Optimal unemployment insurance over a business cycle driven by preference shocks

Equilibrium. The labor market equilibrium is depicted in Figure A2. It shares the same structure
as the labor market equilibrium in the text. The only difference is the response of the economy
to a shock. When λ increases, search becomes more costly, effort supply es(θ,∆c,λ) diminishes
for a given θ, and the labor supply curve ns(θ,∆c,λ) ≡ n∗(es(θ,∆c,λ),θ) shifts left. Equilibrium
employment falls, unemployment increases, and labor market tightness increases. Periods with
higher λ are “recessions” because they are periods with higher unemployment. However, these pe-
riods are unrealistic because they combine high unemployment with hight labor market tightness.
In reality tightness falls when unemployment increases.

Optimal unemployment insurance formula. Looking at the derivation of the optimal UI for-
mula in the text (proof of Proposition 1), it appears that replacing the disutility of effort k(e) by
λ · k(e) does not influence the optimal UI formula because the preference parameter λ does not
affect the convexity κ of k(e).

Elasticities. We now study the elasticities εm and εM in the model with preference shocks. Our
goal is to determine whether optimal UI should be procyclical or countercyclical. Proposition 2
remains valid: under Assumptions 2, 3, and 4 the elasticity wedge is given by

εm

εM = 1+χ ·q(θ) ·nα−1,

where χ = α · (1−α) · [(1−η)/η] · [(1+κ)/κ] · (s/r) is constant. In recessions, n decreases while
θ increases. So q(θ) decreases while nα−1 increases. To determine the cyclicality of the wedge
εm/εM, note that the firm’s profit-maximization condition (11) implies

q(θ) ·nα−1 =
w
α
·q(θ)+ r

α
.
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In recessions the wage w remains constant so that the right-hand side of the equation decreases as
q(θ) decreases. Hence q(θ) · nα−1 decreases. The elasticity wedge εm/εM becomes procyclical,
whereas it was countercyclical in presence of technology shocks (Proposition 3). In general, we
cannot conclude on the cyclicality of εM given τ. We conjecture that the cyclicality of the optimal
replacement rate τ depends on parameter values. Therefore we resort to simulations to describe
the optimal replacement rate over the business cycle.

Simulations. The results from the simulation of the model with preference shocks are displayed
in Figure A3. All computations are based on the dynamic model calibrated in Table 1 (the calibra-
tion does not need to change even if the source of shock is different). The optimal replacement rate
is procyclical: it increases from 58% to 72% when the unemployment rate decreases from 10%
to 4%. Labor market tightness increases sharply in recessions, making this model of the business
cycle unrealistic.
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