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CHOICE RULES WITH SIZE CONSTRAINTS FOR
MULTIPLE CRITERIA DECISION MAKING

Laurent ALFANDARI

ABSTRACT :

In outranking methods for Multiple Criteria Decision Making (MCDM), pair-wise comparisons of
alternatives are often summarized through a fuzzy preference relation.
In this paper, the binary preference relation is extended to pairs of subsets of alternatives in order to define
on this basis a scoring function over subsets.
A choice rule based on maximizing score under size constraint is studied,  which turns to formulate as
solving a sequence of classical location problems. For comparison with the kernel approach, the interior
stability property of the selected subset is discussed and analyzed.
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RESUME :

Dans les méthodes de surclassement pour l’Aide Multicritère à la Décision, la comparaison par paires des
actions potentielles aboutit le plus souvent à la construction d’une relation floue de préférence.
Dans ce papier, nous proposons d’étendre la relation binaire de préférence aux sous-ensembles d’actions,
ce qui nous conduit à déterminer une fonction de score associée à chaque sous-ensemble.
Une procédure de choix basée sur la maximisation du score sous contrainte de cardinalité est étudiée.
Nous montrons que cette procédure de choix équivaut à résoudre de façon séquentielle des problèmes
combinatoires de localisation bien connus. Afin de comparer cette nouvelle approche à la méthode
classique de recherche de noyaux, nous analysons la propriété de stabilité du sous-ensemble choisi et
discutons de la pertinence de cette contrainte.
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1 Introduction

In a Multiple Criteria Decision Making (MCDM) problem, we are given a finite set of
alternatives X = {a1, . . . , an} evaluated along a finite set C of m criteria, and weights
summing over one associated with criteria. Under frequently-met conditions on the
type of criteria, choosing or ranking alternatives can hardly rely on the computation
of a single criterion that would aggregate all criteria on a unique scale [16]. Such con-
ditions justify the use of other methods known as Outranking Methods [16, 19]. These
methods generally proceed in two steps: a construction step and an exploitation step.
In the construction step, pairwise comparisons of the alternatives of X are summarized
using a binary preference relation R, whereby for (ai, aj) ∈ X ×X, R(ai, aj) indicates
credibility of proposition ’ai is at least as good as aj ’, denoted by ai � aj . R is said
to be crisp (resp., valued or fuzzy) if R(ai, aj) ∈ {0, 1} (resp. R(ai, aj) ∈ [0, 1]) for
all (ai, aj) ∈ X × X. When R is a crisp relation, like for the Electre Is method [16],
R(ai, aj) = 1 is stated when:
- a majority of criteria agrees with proposition ai � aj , (concordance principle)
- no criterion vetoes proposition ai � aj , i.e. no criterion is so favorable to aj in the
comparison with ai that the gap exceeds a prefixed threshold (discordance principle).
When R is a valued relation, like for Electre III [17] or Promethee [6] methods, R(ai, aj)
is the total weight of criteria supporting proposition ai � aj , possibly decreased by the
product of m non-discordance coefficients ranging from 1 (no opposition to proposition
ai � aj) to 0 (full opposition to proposition ai � aj).
In the whole paper, R is a reflexive valued relation and is assumed to be calculated
already, so that we focus on the exploitation step. A choice rule is a function C asso-
ciating with set X and relation R a subset C(X, R) ⊆ X such that C(X, R) 6= ∅. The
scope of the paper is to restrict to crisp choice rules for valued relations (fuzzy choice,
meaning that an alternative belongs to the choice set with a certain degree of credibility,
will not be studied; we refer to [13, 15, 3] for fuzzy choice rules).

A number of papers in the literature propose crisp choice rules for the exploitation
step, called selection step in this case. Two main families of methods may be distin-
guished. The first type of methods, say, ensemble methods, consist in searching for
subsets with appropriate properties. For crisp outranking relations, the kernel method
looks for a subset of alternatives that is both absorbing and interior stable (kernels were
originally studied by von Neumann and Morgenstern in game theory; see [16] for ap-
plications to MCDM). Extensions to quasi-kernels were studied in [12, 18]. For valued
relations, characterizations of kernels were also proposed in [13, 15] and will be discussed
in the paper, given their close connexions with our approach. Beside, scoring methods
are based on a scoring function score : X → < so that the alternatives with highest
score are selected (contrary to ensemble methods, no constraints link selected alterna-
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tives together). The scoring function associated with ai ∈ X can be defined in a number
of ways; we refer to [1] for a thorough analysis of a sample of score functions. When R

is a valued relation, the ’Min in Favor’ scoring function deserves special interest. It is
defined by the minimum degree of credibility with which ai is considered at least as good
as any other alternative of X and can be interpreted as a security level. The associated
choice rule was shown to combine three advantages : ordinality, continuity and ’greatest
faith’ (see [4] for definition of these terms and detailed axiomatic results).

The method developed in this paper is an ensemble method even though it uses
a scoring function. It combines in some way the Min in favor score and the absorp-
tion property of kernels. The choice problem studied here is a particular issue in the
sense that the selected set, which is generally required to be ’as small as possible’ in
the literature, is explicitly constrained to contain no more than a prefixed number p of
alternatives. Selection of a fixed number of alternatives is indeed a widespread issue in
real applications (for example, selection of investment projects with limited budget, or
prechoice of p tender offers from architect offices for architectural projects). Neverthe-
less, ensemble methods like kernel methods do not generally enable the decision-maker
to formally limit the size of the set, which can be a constraint of crucial importance in
various decision contexts.
The paper is organized as follows. Section 2 introduces an extension of the binary val-
ued relation R to pairs of subsets of X. This extended relation is used in section 3
for defining a scoring function over subsets, which turns to formulate as the absorbing
credibility degree of a set. The associated choice rule of at most p alternatives is shown
to be equivalent to solving location covering models. Section 4 discusses the links be-
tween the approach developed in the paper and the kernel approach with a focus on the
interior stability property of the chosen set. Section 5 concludes the paper and lays the
foundations for future work.

2 Extended preference relation

As a choice rule consists of finding a subset that is at least as good as all other subsets of
X, we propose to characterize the formal preference relation between subsets underlying
the scoring function that will be used. Before introducing this extended binary relation,
we briefly recall some basic rules of credibility calculus. Following the terminology used
in [2], let P denote a set of atomic propositions above which a credibility function
r : P → [0, 1] is defined, i.e., r(x) is the degree of credibility of proposition x ∈ P. Let
E denote the superset constructed from P such that all x ∈ P also belong to E , and

∀x, y ∈ E ,¬x ∈ E , x ∧ y ∈ E , x ∨ y ∈ E
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By extending r from P to E , we have

∀x ∈ E , r(¬x) = 1− r(x) (1)

∀x, y ∈ E , r(x ∧ y) = min(r(x), r(y)) (2)

∀x, y ∈ E , r(x ∨ y) = max(r(x), r(y)) (3)

Moreover, for a set of propositions x1, . . . , xn ∈ E , let

n∨
i=1

xi = x1 ∨ x2 ∨ . . . ∨ xn and
n∧

i=1

xi = x1 ∧ x2 ∧ . . . ∧ xn

denote the classical conjunctions and disjunctions of propositions. With the above
terminology, we have for our MCDM problem P = {(ai � aj) : ai, aj ∈ X} and
r(ai � aj) = R(ai, aj).

Definition 1. A set A ⊆ X is said to absorb a set B ⊆ X if ∀aj ∈ B,∃ai ∈ A, ai �
aj . It is denoted by A � B.

Definition 2. The extended preference relation R : 2X × 2X → [0, 1] is defined by
R(A,B) = r(A � B) for A,B ⊆ X.

For the sake of simplicity, we use notation R(A, aj) instead of R(A, {aj}) and
R(ai, B) instead of R({ai}, B). The following proposition provides characterizations
of extended relation R, adapting for item (ii) a classical result usually stated for an
absorbing set, i.e., for B = X \A.

Proposition 1. The following three propositions are equivalent:

(i) R(A,B) = r(A � B),

(ii) R(A,B) is analytically defined by:

R(A,B) = min
aj∈B

max
ai∈A

R(ai, aj) (4)

(iii) R(A,B) verifies the following properties:

(Coherence) ∀A,B ⊆ X, min
aj∈B

R(A, aj) ≤ R(A,B) ≤ max
ai∈A

R(ai, B) (5)

(A−monotony) ∀A′ ⊆ A ⊆ X, ∀B ⊆ X, R(A,B) ≥ R(A′, B), (6)

(B −monotony) ∀A ⊆ X, ∀B′ ⊆ B ⊆ X, R(A,B) ≤ R(A,B′) (7)
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Proof. (i) ⇔ (ii) We have

r(A � B) = r(∀aj ∈ B,∃ai ∈ A, ai � aj)

= r(
∧

aj∈B

∨
ai∈A

ai � aj)

= min
aj∈B

r(
∨

ai∈A

ai � aj) by (2)

= min
aj∈B

max
ai∈A

r(ai � aj) by (3)

= min
aj∈B

max
ai∈A

R(ai, aj)

(ii)⇔ (iii) Proving that if R(A,B) is expressed by (4) then R satisfies (5)-(7) is straight-
forward. Conversely, assume that (5)-(7) are verified. Then,

R(A, aj) ≥ R(ai, aj) for (ai, aj) ∈ A×B by (6)

=⇒ R(A, aj) ≥ max
ai∈A

R(ai, aj) for aj ∈ B

=⇒ min
aj∈B

R(A, aj) ≥ min
aj∈B

max
ai∈A

R(ai, aj)

=⇒ R(A,B) ≥ min
aj∈B

max
ai∈A

R(ai, aj) by (5)

On the other side,

R(A,B) ≤ R(A, aj) for aj ∈ B by (7)

=⇒ R(A,B) ≤ min
aj∈B

R(A, aj)

=⇒ R(A,B) ≤ min
aj∈B

max
ai∈A

R(ai, aj) by (5)

and the proof is complete. �

The min-max form of the extended binary relation R captures the monotony proper-
ties of the relation. An additional obvious property of extended relation R is reflexivity,
as ∀ai ∈ X, R(ai, ai) = 1⇔ ∀A ⊆ X, R(A,A) = 1. Transivity of the extended relation
also directly depends of the transitivity of the inital relation:

(∀ai, aj , ak ∈ X, R(ai, aj) = 1 ∧R(aj , ak) = 1⇒ R(ai, ak) = 1)

⇔ (∀A,B, C ⊆ X, R(A,B) = 1 ∧R(B,C) = 1⇒ R(A,C) = 1)

In next subsection the extended relation R is used for scoring subsets of alternatives.

3 Scoring function and choice rule

3.1 Scoring subsets of alternatives

The aim of a choice rule is to select a set that is at least as good as others. If for subsets
of alternatives the outranking binary relation expresses in terms of absorption, then the
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choice can be made on the basis of the credibility with which a subset absorbs all subsets
of X.

Definition 3. score : 2X → [0, 1] is the application defined by

∀A ⊆ X, score(A) = r(
∧

B⊆X

A � B) (8)

On the basis of the extended preference relation, expression (8) leads to score a sub-
set A by the classical credibility of A being an absorbing set.

Proposition 2. score(A) = R(A,X) = R(A, Ā), where Ā = X \A.

Proof. From expression (8) we have

score(A) = r(
∧

B⊆X

A � B)

= min
B⊆X

r(A � B) by (2)

= min
B⊆X

R(A,B)

= R(A,X) by (7)

= min(R(A,A), R(A, Ā))

= R(A, Ā) as R(A,A) = 1 �

Given the min-max form (4) of R(A,B), the scoring function is defined by

score(A) = min
aj∈Ā

max
ai∈A

R(ai, aj) (9)

It can interpret as a security level and extends the Min in Favor rule to R : 2X × 2X →
[0, 1].

Remark 1. The absorbing property of a set has already been studied in the lit-
erature from both crisp and fuzzy points of view (cf. the so-called ’exterior stability’
∆2 rule, deeply analysed by Kitainik [13] when combined with both or any of the two
classical rules ∆1 (GOTCHA) and ∆3 (interior stability)). However, it has not been
taken directly as a scoring function. Here, converting absorbing credibility into score
follows in a straightforward way from the preference relation between subsets stated
in section 2 which is, in our opinion, an innovative and interesting way of structuring
and analysing MCDM problems. The reason why such possible additional property as
interior stability is dropped will be discussed in section 4.
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3.2 Choice rule

Since score(X) = 1, choice rules should express additional constraints in order to obtain
a set of limited size. This is the case for the kernel approach through the interior stability
(∆3) constraint, as we shall see in section 4. In this paper, we achieve a straightfor-
ward trade-off between the score of the selected set score(A) and its cardinality |A|, by
maximizing score under size constraint. Hence, for an input p ∈ {1, . . . , n}, we wish to
find

σ(p) = max
A⊂X
|A|≤p

score(A) (10)

Remark 2. The iterated ranking rule associated with the Min in favor scoring
function, analysed in [4], is a greedy approximation heuristic for σ(p). At step one, the
heuristic picks an alternative with highest score score(ai) = R(ai, X \ {ai}) (from the
latter expression one can check that our scoring function is indeed an extension of the
Min in favor choice rule as claimed in the introduction). This alternative, say, α1, is
removed from X and the process is iterated again at step two on X ← X \{α1} and gen-
erally speaking, on X ← X \{α1, . . . , αt} at step t+1, where αt is the alternative found
at step t. The resulting subset {α1, . . . , αp} is a feasible though not optimal solution for
the problem of choosing a set of p alternatives with highest score. When the ranking
rule is not iterated, i.e., one selects in one shot the alternatives that rank from 1 to p

according to their score, the security level obtained this way is generally not optimal
either. The problem complexity will be discussed later on.

Function σ of (10) is clearly non-decreasing but generally not strictly non-decreasing.
In order to avoid selecting bad alternatives, i.e., alternatives that do not help to absorb
the rejected set, an additional requirement should express minimality of the selected
subset: a smaller subset should be of lower score, i.e., σ(|A| − 1) < σ(p), otherwise
the chosen set could even contain alternatives that are dominated by all other alter-
natives of X. Moreover, all minimal subsets A ⊂ X verifying score(A) = σ(p) are
not equivalent. For n = 5 and p = 2, consider a minimal set A such that |A| = 2,
score(A) = σ(2) = 0.6, and the three rejected alternatives are absorbed with credibility
degrees respectively equal to 0.6, 0.6 and 0.7. If another minimal subset A′ also verifying
|A′| = 2 and score(A′) = σ(2) = 0.6 is such that the rejected alternatives are absorbed
with credibility degrees respectively equal to 0.6, 0.7 and 0.8, one can consider that A′

should be preferred to A. Hence, we select only one of those sets such that the total (or
average) credibility of considering each rejected alternative absorbed by A is maximum.
The choice rule finally expresses as follows.
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Definition 4. The choice rule Cp(X, R) is to find a subset A∗ ⊂ X such that

|A∗| ≤ p (11)

score(A∗) = σ(p) (12)

σ(|A∗| − 1) < σ(p) (13)

ΣR(A∗) = max{ΣR(A) : |A| ≤ p, score(A) = σ(p) > σ(|A| − 1)} (14)

where ΣR(A) =
∑

aj∈Ā R(A, aj).

The rest of the section is devoted to problem solving.

3.3 Solving via location models

We show that the choice rule of definition 4 is equivalent to solve a sequence of classical
combinatorial location problems, namely, p-center, Set Covering and p-median. The
p-center problem was originally introduced by Hakimi ([10], see also [11] for a review).
It consists in choosing p nodes of a network for locating facilities or public services, such
that the farthest demand node is as close as possible to a facility. The p-center objective
is typically designed for the location of emergency services like hospitals, care centers
or fire stations, for which social equity or security considerations lead to prefer small
maximal distance rather than small average distance to customers. The problem is stated
as follows. Let D = {1, . . . , n} represent a set of demand nodes and L = {1, . . . ,m}
be the set of all possible locations for a facility. For (i, j) ∈ L ×D, dij is the distance
or time required to reach j from i. The mixed-integer LP model associated with the
p-center is:

Minimize δ (15)

s.t.
∑
i∈L

yi ≤ p (16)∑
i∈L

xij = 1 for j ∈ D (17)

yi ≥ xij for (i, j) ∈ L×D (18)∑
i∈L

dijxij ≤ δ for j ∈ D (19)

yi, xij ∈ {0, 1}, δ ≥ 0 (20)

where binary variables yi indicate whether i ∈ L is selected or not as location for a
facility, and binary variables xij indicate whether demand j ∈ D is assigned to location
i ∈ L or not.
The p-median problem consists in finding p locations so that the average (or total)
distance between the n customers and the p centers is minimum. When an upper bound
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δ on the maximal distance is specified, setting LD(δ) = {(i, j) ∈ L ×D : dij ≤ δ}, the
problem formulates as follows:

Minimize
∑

(i,j)∈LD(δ)

dijxij (21)

s.t.
∑
i∈L

yi = p (22)∑
(i,j)∈LD(δ)

xij = 1 for j ∈ D (23)

yi ≥ xij for i ∈ L, (i, j) ∈ LD(δ) (24)

yi, xij ∈ {0, 1} (25)

By constraint (23) and objective (21), xij = 1 if and only if i ∈ L is the closest facility
to j ∈ D in the optimal solution.

Proposition 3. A∗ = Cp(X, R) can be computed by the following process:

1. solve the p-center (15)-(20) with L = D = X and dij = 1−R(ai, aj). Let δ(p) be
the optimal value.

2. solve the Set Covering problem of minimizing
∑

j∈L yj submitted to constraints
(17)-(20) with δ = δ(p) in (19). Let p∗ be the optimal value.

3. solve the p-median (21)-(25) with p = p∗ in (22) and δ = δ(p).
A∗ = {ai ∈ X : yi = 1}.

Proof. By R(ai, ai) = 1 we have yi = xii and dii = 0 for all ai ∈ X. With these
settings, the optimal value δ(p) of the p-center (step 1) is

δ(p) = min
A⊂X,
|A|≤p

{
max
aj∈X

[
min
ai∈A

dij

]}

= 1− max
A⊂X,
|A|≤p

{
min
aj∈Ā

[
max
ai∈A

R(ai, aj)
]}

= 1− max
A⊂X,
|A|≤p

score(A)

= 1− σ(p)

Step 2 simply ensures to get a subset A minimizing |A| under constraint

max
aj∈X

min
ai∈A

dij ≤ δ(p)⇔ score(A) ≥ σ(p)
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i.e., such that σ(|A| − 1) < score(A) = σ(p). Finally, at step 3,∑
j∈D

∑
i∈L

dijxij =
∑
j∈D

min
i∈L:yi=1

dij

=
∑

aj∈X

min
ai∈A

(1−R(ai, aj)) with A = {ai : yi = 1}

= |X| −
∑

aj∈X

max
ai∈A

R(ai, aj)

= |X| − (|A|+
∑
aj∈Ā

max
ai∈A

R(ai, aj)) as R(ai, ai) = 1

= (n− p∗)− ΣR(A)

So, ΣR(A) is maximized under constraints |A| = p∗ and score(A) = σ(p), as required in
the choice rule of definition 4. �

The p-center, Set Covering and p-median problems are all NP-hard [9]. When p is a
constant independent of n, p-center and p-median problems can be solved in polynomial
time by enumerating (possibly implicitly) all (p

n) = O(np) combinations of p centers and
assigning each customer to its nearest center. As covering location problems are not the
main purpose of the paper we will not provide a comprehensive list of methods for these
problems, which comprises exact branching methods, column generation, metaheuristics,
greedy, local search and relaxation-based heuristics. The reader is referred to the detailed
surveys of [7, 11, 14]. All these methods can be applied in a straightforward way to the
MCDM problematic developed in this paper, which is not inconsiderable asset of the
approach.
Most methods for location problems are known to provide better gaps to optimality when
distances satisfy the triangle inequalities, which turn to be equivalent to the Lukasiewicz
valued transitivity property for the MCDM associated problem:

∀ai, aj , ak ∈ X, dij + djk ≥ dik ⇐⇒ R(ai, ak) ≥ max(R(ai, aj) + R(aj , ak)− 1, 0)

Unfortunately, well-known discordance and threshold effects generally prevent relation
R from being transitive in most MCDM outranking methods [16].

4 On the interior stability of the selected set

4.1 Comparison with kernels

In this section, we discuss the interior stability property of the choiced subset for com-
parison with kernel methods. We first recall the kernel approach for a crisp relation
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R′ : X → {0, 1}. This crisp relation R′ is generally obtained from a valued relation R

through a so-called λ-cut, where R′(ai, aj) = 1 if and only if R(ai, aj) ≥ λ, with λ ≥ 0.5
(see [16]). A kernel is a subset K ⊂ X such that:

∀aj 6∈ K,∃ai ∈ K, R′(ai, aj) = 1 (K is absorbing: ∆2 rule)

∀ai, aj ∈ K, R′(ai, aj) = 0 (K is interior stable: ∆3 rule)

One can note that dropping the ∆3 rule in the above kernel method and searching for the
minimum absorbing set amounts to solving the ’dual’ problem associated with the choice
problem of this paper, i.e., score of (9) is constrained and size is minimized. Addition of
the ∆3 rule has two positive effects : it prevents selecting an alternative which would be
outranked by another alternative of the set, meaning structural incomparability within
the selected set, and it indirectly reduces the size of the set, without constraining it
however by an upper bound as required in our choice rule of p alternatives. Several
drawbacks may be outlined concerning the above kernel method. First, the existence
of a kernel is not guaranteed (cf. the alternative proposition of quasi-kernels [12, 18]).
Second, the λ-cut requires to choose an arbitrary score level λ ≥ 0.5 above which fuzzy
preference gets crisp, causing a loss of information then. Third, the defuzzification step
R(ai, aj) < λ ⇔ R′(ai, aj) = 0 presents some problems of logical coherence related to
an asymmetric treatment of truthfulness versus falseness, as evidenced by Bisdorff [2].
Some of these effects have been somewhat cancelled or reduced via the introduction
by Kitainik [13] of kernels based on valued relations, avoiding defuzzification. This
alternative Kernel rule, denoted by CK , leads to search for a subset K ⊂ X such
that the minimum between its absorbing (∆2) credibility and its interior stability (∆3)
credibility is maximum, i.e.,

CK(X, R) = arg max
K⊂X

{
r23(K) = min

(
min
aj∈K̄

max
ai∈K

R(ai, aj) ; min
(ai,aj)∈K2

1−R(ai, aj)

)}
= arg max

K⊂X
{r23(K) = min(score(K), stability(K))} (26)

This approach also presents some inconvenients due to the ∆3 rule. Just like the exis-
tence problem for the former kernel approach on crisp relations, the existence of a kernel
K with credibility degree r23(K) ≥ 0.5 is not guaranteed though only credibility degrees
exceeding 0.5 could pretend to a truthfulness interpretation (see [2]). It is easy however
to find situations for which the Cp choice rule with a small p also provides an optimal
score beyond 0.5, but addition of the ∆3 rule makes these situations more likely. We
show furthermore that, in some simple realistic MCDM situations, the CK rule may
lead to choose sets of alternatives with undesirable properties, namely, dominated alter-
natives.
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Definition 5. An alternative ai ∈ X is dominated by aj (noted aj∆ai) iff

∀c ∈ C, gc(aj) ≥ gc(ai) and ∃c′ ∈ C : gc′(aj) > gc′(ai)

where gc(ai) denotes the performance of ai ∈ X on criterion c ∈ C. We note ND = {ai ∈
X :6 ∃aj ∈ X, aj∆ai} (resp. D = X \ ND) the set of non-dominated (resp., dominated)
alternatives.

Definition 6. Let R denote the set of valued relations R : X ×X → {0, 1} such
that

ai ∈ ND ⇒ ∀al ∈ X \ {ai}, R(al, ai) < 1 (27)

A choice rule C is ∆-consistent if ∀R ∈ R, ∀A = C(X, R), A ∩ D = ∅.

Proposition 5.

(i) The Kernel choice rule expressed in (26) is not ∆-consistent. Moreover, there
exist MCDM problems such that K = CK(X, R) is unique, verifies r∗23(K) > 0.5
and K = D.

(ii) The choice rule Cp(X, R) is ∆-consistent.

Proof. (i) We construct an MCDM instance with a set X of six alternatives
evaluated along five equally weighted criteria. The data are given in figure 1. Perfor-
mances range from 1 (poorest performance) to 3 (top performance) on each criterion.
The indifference, preference and veto thresholds are respectively set to 0, 1 and 2 for
all five criteria. The performance on the fourth (resp., fifth) criteria is equal for all
alternatives to an arbitrary number u (resp., v). We have ai∆ai+3 for i = 1, 2, 3,
ND = {a1, a2, a3} and D = {a4, a5, a6}. Application of the Kernel choice rule of (26)
provides a unique kernel K = D with credibility degree r∗23(D) = 0.80 > 0.5. In-
deed, stability(D) = 1 as R(ai, aj) = 0 for all i, j = 4, 5, 6, i 6= j, and score(D) = 0.8
as R(a4, a1) = R(a5, a2) = R(a6, a3) = 0.8. Hence, the Kernel choice rule is not ∆-
consistent since K = D, which is the worst possible case: all selected alternatives are
dominated ones and all efficient alternatives are rejected.

(ii) Let A = Cp(X, R) and suppose that A ∩ D 6= ∅. Consider an alternative ai ∈
A∩{D} dominated by an alternative aj . We show that aj ∈ A (case a) or aj ∈ Ā (case b)
both lead to a contradiction. If aj ∈ A (case a), then for all ak ∈ Ā, R(ai, ak) ≤ R(aj , ak)
so R(A \ {ai}, Ā) = R(A, Ā), and we deduce from this equality and R(aj , ai) = 1 that
R(A \ {ai}, Ā∪{ai}) = R(A, Ā), i.e., score(A \ {ai}) = score(A). This contradicts (13).
If aj ∈ Ā (case b), we have two subcases: aj ∈ D, and aj ∈ ND. If aj ∈ D, then
there is an al ∈ A which dominates both aj and ai since relation ∆ is transitive. So,
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c 1 2 3 4 5 R a1 a2 a3 a4 a5 a6

a1 3 1 2 u v a1 1 0 0.6 1 0 0.8
a2 2 3 1 u v a2 0.6 1 0 0.8 1 0
a3 1 2 3 u v a3 0 0.6 1 0 0.8 1
a4 3 1 1 u v a4 0.8 0 0 1 0 0
a5 1 3 1 u v a5 0 0.8 0 0 1 0
a6 1 1 3 u v a6 0 0 0.8 0 0 1

Figure 1: performance table and R-matrix. Equal weights ; veto threshold = 2

by removing ai from A we reduce the size of A without compromizing score as seen for
case a, contradicting (13). Finally, if aj ∈ ND, then

ΣR((A \ {ai}) ∪ {aj})− ΣR(A) ≥ R((A \ {ai}) ∪ {aj}, ai)−R(A, aj)

= 1−R(A, aj) since aj∆ai

> 0 by (27)

So ΣR((A \ {ai}) ∪ {aj}) > ΣR(A), which contradicts (14) and ends the proof of item
(ii). �

Let us re-examine the example of figure 1 comparing CK and Cp choice rules. We
have seen in the proof of proposition 5 that the Kernel choice rule CK(X, R) leads to
select the unique kernel K = D = {a4, a5, a6} with score(D) = 0.8 and stability(D) = 1.
The efficient set ND verifies score(ND) = 1 but stability(ND) = 1 − 0.6 = 0.4 < 0.8,
justifying rejection for CK but selection for Cp with p ≥ 3. Let us remark that even
if the valued relation is defuzzified to form a crisp relation through a λ-cut, K = D
remains an admissible kernel for λ = 0.8. It sounds natural however to claim that any
rational decision-maker would prefer the efficient set ND rather than the dominated
set D, and score should not be compromized. In a sense, absorption and stability are
measures of exterior and interior preference, respectively, but only the former enables
to justify rejection of non chosen alternatives, which is the aim of a choice rule.
Moreover, the optimal credibility degrees for CK and Cp can diverge in a drastic way.
Consider the example of figure 2, with four alternatives evaluated along an arbitrary
number m of equally weighted criteria. As in figure 1, indifference, preference and veto
thresholds are set to 0, 1 and 2, respectively. We set ε = 1/m. The unique kernel
with the CK rule of (26) is K = {a3, a4}, with score(K) = 2ε, stability(K) = 1 and
r∗23(K) = score(K) = 2ε. Set {a1, a2} may be perceived as much better than set K as
score({a1, a2}) = 1− ε, but it is penalized for the CK rule by its interior stability since
stability({a1, a2}) = ε < r∗23(K). The latter credibility degree tends to 0 when m is
large, whereas the absorption credibility (or score) of the set {a1, a2} tends to one.
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c 1 2 3 4 5 ... m R a1 a2 a3 a4

a1 2 1 3 3 3 ... 3 a1 1 1-ε 1-ε 0
a2 1 2 3 3 3 ... 3 a2 1-ε 1 0 1-ε
a3 3 0 3 2 2 ... 2 a3 2ε 0 1 0
a4 0 3 3 2 2 ... 2 a4 0 2ε 0 1

Figure 2: performance table and R-matrix. Equal weights = ε ; veto threshold = 2

4.2 Sufficient conditions for interior stability in the σ(p)-cut

For ending the section, we consider again the kernel approach on crisp relations built
through λ-cuts, like Electre 1 and 1s methods. We focus on the case λ = σ(p).

Definition 7. A = Cp(X, R) is called interior stable in the σ(p)-cut if ∀ai, aj ∈
A, ai 6= aj , R(ai, aj) < σ(p).

We study whether for the defuzzification approach, transitivity of relation R is a
sufficient condition to make A an interior stable set, i.e., a kernel in the σ(p)-cut, or not.
Transitivity for a crisp relation is stated by logical expression R(ai, aj) ∧ R(aj , ak) ⇒
R(ai, ak) for ai, aj , ak ∈ X. There are several ways of turning this logical expression
to an equivalent inequality valid for the valued case, for example, min-transitivity or
Lukasiewicz-transitivity:

R(ai, ak) ≥ min(R(ai, aj);R(aj , ak)) (min-transitivity)

R(ai, ak) ≥ max(R(ai, aj) + R(aj , ak)− 1, 0) (L-transitivity)

We first show that min-transitivity is a sufficient condition for making A = Cp(X, R) a
kernel in the σ(p)-cut, using the following useful proposition.

Proposition 6. For all ak ∈ A = Cp(X, R), at least one of the following two propo-
sitions is true:
(i) ∀ai ∈ A \ {ak}, R(ai, ak) < σ(p).
(ii) ∃aj ∈ Ā,∀ai ∈ A \ {ak}, R(ak, aj) ≥ σ(p) > R(ai, aj).

Proof. Assume that there is an ak ∈ A such that (i) and (ii) are both false, i.e.,
(¬i) ∃ai ∈ A \ {ak}, R(ai, ak) ≥ σ(p), and
(¬ii) ∀aj ∈ Ā,∃ai ∈ A \ {ak}, R(ak, aj) ≤ R(ai, aj).
This can be re-formulated as

(¬i) R(A \ {ak}, ak) ≥ σ(p), and

(¬ii) R(A \ {ak}, Ā) ≥ R(ak, Ā)

13



We have

score(A) = R(A, Ā)

= min
aj∈Ā

max
ai∈A

R(ai, aj)

= min
aj∈Ā

max
(

max
ai∈A\{ak}

R(ai, aj);R(ak, aj)
)

= min
aj∈Ā

max
ai∈A\{ak}

R(ai, aj) by (¬ii)

= R(A \ {ak}, Ā)

Hence, as score(A) = σ(p),
R(A \ {ak}, Ā) = σ(p) (28)

On the other side, we have

score(A \ {ak}) = R(A \ {ak}, Ā ∪ {ak})
= min

aj∈Ā∪{ak}
max

ai∈A\{ak}
R(ai, aj)

= min

(
min
aj∈Ā

max
ai∈A\{ak}

R(ai, ak); max
ai∈A\{ak}

R(ai, ak)

)
= min

(
R(A \ {ak}, Ā);R(A \ {ak}, ak)

)
= min (σ(p);R(A \ {ak}, ak)) by (28)

= σ(p) by (¬i)

Thus we showed that if (i) and (ii) are both false, then σ(p) = score(A \ {ak}) ≤
σ(|A| − 1), which contradicts item (13) of definition 4 and ends the proof of proposition
6. �

Proposition 7. If R is min-transitive, then A = Cp(X, R) is interior stable in the
σ(p)-cut.

Proof. Assume that R is min-transitive and consider an arbitrary ak ∈ A. We show
that R(ai, ak) < σ(p) for all ai ∈ A \ {ak}. If item (i) of proposition 4 is true, then it is
done. Otherwise, there is an aj ∈ Ā such that for all ai ∈ A \ {ak}, we have

R(ak, aj) ≥ σ(p) > R(ai, aj) (by part (ii) of proposition 6)

≥ min (R(ai, ak);R(ak, aj)) (by min-transitivity)

= R(ai, ak)

as min(x, y) < y ⇒ min(x, y) = x. Hence, R(ai, ak) < σ(p) for all ai ∈ A \ {ak}. Since
this proposition holds for any ak ∈ A, the proof is complete. �
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R a1 a2 a3 a4 a5

a1 1 γ γ r14 r15

a2 1-γ 1 r23 γ γ

a3 1-γ 1-r23 1 r34 r35

a4 1-r14 1-γ 1-r34 1 r45

a5 1-r15 1-γ 1-r35 1-r45 1

Figure 3: R-matrix for proposition 8.

The reverse is not true: there is no need that R be min-transitive for making
A = Cp(X, R) interior stable in the σ(p)-cut (the proof is obvious). Beside, no equiva-
lent result holds for L-transitivity as claimed in the following proposition.

Proposition 8. There exist MCDM instances such that R is L-transitive and
A = Cp(X, R) is not interior stable in the σ(p)-cut.

Proof. We exhibit an instance with a set of five alternatives X = {a1, . . . , a5}
comparing in such a way that :

R(ai, aj) + R(aj , ak) ≤ 1 + R(ai, ak)

R(ai, aj) = 1−R(aj , ai)

The R-matrix is given in figure 3, with γ ∈ (1/2, 2/3], and r14, r15, r23, r34, r35, r45 ∈
(1− γ, γ).

Bouyssou showed in [5] that for any reflexive valued relation R, there is an Electre III
situation such that the construction step of the method leads to an outranking relation
identical to R. Hence, the valued relation R of figure 3 can be obtained as the result of
an MCDM construction technique. This relation is L-transitive indeed as

R(ai, aj) + R(aj , ak)−R(ai, ak) ≤ γ + γ − (1− γ) = 3γ − 1 ≤ 1

using γ ≤ 2/3. The Cp choice rule associated with p = 2 leads to select

A = C2(X, R) = {a1, a2}

with σ(2) = γ. Since R(a1, a2) = σ(2), A is not interior stable in the σ(p)-cut. �

We deduce from proposition 8 that when R is L-transitive and σ(p) > 0.5, A =
Cp(X, R) is generally not interior stable either when interior stability is defined by
stability(A) = min{1−R(ai, aj) : ai, aj ∈ A, ai 6= aj} as in (26), since 1− σ(p) < σ(p).
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5 Conclusion

In this paper, we have proposed an innovative choice rule which allows the decision-
maker, generally confronted with hard budget constraints, to specify an input upper
bound p on the number of selected alternatives. The choice rule, named Cp, is shown
to be equivalent to solving a sequence of p-center, set covering and p-median location
problems, and thus benefits from all the abundant literature on this topic. Axiomatic
analysis of the underlying preference relation between subsets and comparison with
alternative kernel methods are provided for ensuring confidence in the model. In partic-
ular, it is shown that some negative effects induced by the interior stability requirement
of the kernel approach disappear when applying the Cp choice rule. Just like kernel
methods, unicity of the selected set is not systematic for Cp, although deciding between
equally-scored subsets through the p-median formulation reduces the search space. Fur-
ther work should analyse conditions on which the choice rule Cp is inclusive, in the
sense that whenever ∃A = Cp(X, R) such that ai ∈ A, then ∃A′ = Cp+1(X, R) such
that ai ∈ A′. Also, the axiomatic study of the properties of the extended preference
relation can be deepened for re-use in other choice rules or even ranking rules based on
the absorption concept.
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