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An NP-hard variant of the single-source Capacitated Facility Location Problem is studied, where each 
facility is composed of a variable number of fixed-capacity production units. This problem, especially the 
metric case, has been recently studied in several papers. In this paper, we only consider the general 
problem where connection costs do not systematically satisfy the triangle inequality property. We show 
that an adaptation of the set covering greedy heuristic, where the sub-problem is approximately solved by 
a Fully Polynomial-Time Approximation Scheme based on cost scaling and dynamic programming, 
achieves a logarithmic approximation ratio of (1+ε)H(n) for the problem, where n is the number of clients 
to be served, and H is the harmonic series. This improves the previous bound of 2H(n) for this problem. 
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RESUME :  
 
Nous étudions une variante du problème classique de localisation optimale d’entreprises avec capacités de 
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l’inégalité triangulaire. Nous proposons pour ce problème une heuristique adaptée de la méthode 
gloutonne pour le problème de Couverture d’Ensemble, où le sous-problème est traité par un schéma 
d’approximation utilisant une normalisation des coûts et la programmation dynamique. Nous montrons 
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Improved approximation of the general

Soft-Capacitated Facility Location Problem

Laurent Alfandari,

ESSEC,

BP 105 F-95021 Cergy-Pontoise, France ∗

E-mail : alfandari@essec.fr

Abstract

An NP-hard variant of the single-source Capacitated Facility Location Problem is

studied, where each facility is composed of a variable number of fixed-capacity produc-

tion units. This problem, especially the metric case, has been recently studied in several

papers. In this paper, we only consider the general problem where connection costs do

not systematically satisfy the triangle inequality property. We show that an adaptation

of the set covering greedy heuristic, where the subproblem is approximately solved by

a Fully Polynomial-Time Approximation Scheme based on cost scaling and dynamic

programming, achieves a logaritmic approximation ratio of (1+ )H(n) for the problem,

where n is the number of customers to be served and H is the harmonic series. This

improves the previous bound of 2H(n) for this problem.

Key-words: facility location, set covering, dynamic programming, FPTAS.

1 Introduction

The classical single-source Capacitated Facility Location Problem (CFLP) consists in as-

signing a set of n customers with known demands to a set of m possible facilities so that

each customer is assigned to a single facility without violating capacities of open facilities,

while minimizing the sum of the construction cost of selected facilites and the connexion cost

of customers to facilities. In this paper, we consider a variant of CFLP where each facil-

ity, if open, can be composed of a variable number (to determine) of fixed-size production

units. This problem, known as the Soft-Capacitated Facility Location Problem (SCFLP),

was first introduced in [10]. It arises indeed in many industrial applications, as production

is often structured by production lines or teams whose number is a decision to make. For

large instances of hard problems, the design of heuristics that are both fast and efficient is

a challenge. In this field, the polynomial approximation theory has received much attention

in the last two decades. The aim is to develop a ρ-approximation of the problem, i.e., a

polynomial-time algorithm that finds a feasible solution whose objective function is always

∗also LIPN, UMR-CNRS 7030, Université Paris XIII, France
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within a factor ρ of the optimum, so that ρ is as small as possible. The best-known ap-

proximation ratio for the metric version of CFLP is 6(1 + ) and was produced by Chudak

and Williamson [2]. This ratio is obtained by improving the analysis of the local search

heuristic of Korupolu, Plaxton and Rajamaran for this problem [14]. The first constant

approximation ratio for the metric uncapacitated problem (UFLP) was found by Shmoys,

Tardos and Aardal [18]. Their method, achieving an approximation ratio of 3.16, is based

on LP-rounding. This ratio has been repeatedly improved then until the greedy algorithm of

Mahdian, Ye and Zhang [16] which provides an approximation ratio of 1.52 for UFLP. The

metric version of SCFLP was shown by Jain, Mahdian and Saberi to admit a 3-approximation

by a combination of a primal-dual greedy process and lagrangian relaxation [12]. This ratio

was recently improved by the same authors to a 2-approximation [17]. Note that in many

real cases connection costs are transportation costs which do not only depend on the distance

in kilometers between customers and facilities, but also depend on the quantity delivered to

the customer. Therefore, connection costs do not generally satisfy the triangle inequality,

and approximating the general (non-metric) problem is a real issue. The general SCFLP is

approximable within ratio 2H(n), where H(n) =
P
1≤i≤n 1/i (see [10]). This comes from the

fact that a ρ-approximation for UFLP provides a 2ρ-approximation for SCFLP, and UFLP

was shown to be approximable within ratio H(n) by Hochbaum [8]. The algorithm of [8] for

UFLP relies on an exponential-size Set Covering reformulation of UFLP and the fact that

the exponential set of candidate subsets can be reduced to an equivalent set of polynomial

size. Since the Set Covering Problem (SCP) is approximable within ratio H(n) ≤ 1 + lnn
[3], the result also holds for UFLP. The bound of O(lnn) is asymptotically tight for SCFLP

since the problem is linked by an approximation-preserving reduction with SCP and SCP

cannot be approximated within a ratio better than lnn− ln lnn [4]. We improve the ratio of
2H(n) for SCFLP to (1+ )H(n) by an algorithm running in time O(mn4/ ). This algorithm

also uses an exponential-size Set Covering reformulation of SCFLP, and a FPTAS based on

cost scaling and rounding and dynamic programming for the subproblem of the SCP greedy

heuristic. In our approach, we do not restrict a priori the collection of subsets in the SCP

reformulation and do not exactly solve the subproblem. The SCFLP is formally stated and

reformulated as a SCP in section 2. The adaptation of the SCP classical greedy process to

SCFLP is presented in section 3. The subproblem of the greedy heuristic for SCFLP is shown

to admit a Fully Polynomial Time Approximation Scheme (FPTAS) in section 4. Section 5

concludes the paper.

2 Problem statement and reformulation

The Soft-Capacitated Facility Location Problem (SCFLP) is stated as follows. The set of

customers to be served is denoted by I = {1, . . . , n}, whereas the set of possible locations for
facilities is J = {1, . . . ,m}. For (i, j) ∈ I × J , cij is the connection cost between customer

i and location j, di is the demand of customer i, fj (resp. Kj) is the construction cost

(resp., capacity) of a production line on location j. The Integer Linear Programming model

corresponding to SCFLP is the following:

2



Minimize
P
j∈J

fjyj +
P

(i,j)∈I×J
cijxij (1)

s.t.
P
j∈J

xij = 1 for i ∈ I (2)

(SCFLP)
P
i∈I

dixij ≤ Kjyj for j ∈ J (3)

yj ∈ N, xij ∈ {0, 1} (4)

where integer variables yj indicate the number of production lines settled in facility j ∈ J ,

and binary variables xij indicate whether customer i ∈ I is assigned to location j ∈ J or not.

The objective (1) minimizes the total cost of the location. The semi-assignment constraints

(2) express single-source supplying. Constraints (3) express restricted capacities of facilities.

The difference between SCFLP and the classical CFLP is that variables yj are not binary but

integer (and unbounded). SCFLP is NP-hard, since the Set Covering Problem (SCP), which

is NP-hard [5], reduces to it. Given a set C of elements and a collection S = {S1, . . . , Sm}
of subsets of C with cost c(S) for S ∈ S, SCP consists in finding a minimum cover of C,

i.e., a subset S 0 ⊆ S such that ∪S∈S0S = C and total cost
P

S∈S0 c(S) is minimum. The
polynomial reduction is built as follows: set I = C, J = S, Kj = n, fj = c(Sj) for all j ∈ J ,

di = 1 for all i ∈ I, and cij = 0 if i ∈ Sj, M otherwise, with M >
P

j∈J fj . Then, there is
a SCFLP solution of cost at most c if and only if there is a cover of cost at most c in the

transformed set covering instance.

In general, cij is a transportation cost which depends on the distance in kilometers δij be-

tween i and j, the demand di of customer i, expressed in tons for instance, and the unitary

transportation cost µ expressed in currency units per ton and kilometer. If transportation

costs are linear, then cij = δijdiµ. In that case, the triangle inequality is rarely verified:

consider the following example of two facilities j and j0 and two customers i and i0 such
that δij = δi0j0 = 50, δij0 = δi0j = 30, di = 1000 and di0 = 100. Then, cij = 50000µ and

cij0 + ci0j0 + ci0j = 38000µ, so we do not have cij ≤ cij0 + ci0j0 + ci0j . The best-known ra-

tio for the general (non-metric) SCFLP relies on a reduction to the uncapacitated problem

UFLP. The formulation of UFLP is: minimize (1) under constraints (2) and yj ≥ xij for all

i, j ∈ I × J , where variables yj are binary. The result mentionned in section 1, according to

which a ρ-approximation for UFLP provides a 2ρ-approximation for SCFLP [10], is obtained

by replacing connection costs cij by cij + di(fj/Kj) in UFLP. The approximation result of

2H(n) for SCFLP is achieved by applying Hochbaum’s approach to UFLP with the modified

connection costs. Our improvement of this bound is achieved by reformulating SCFLP as

a particular SCP. The key idea is that approximately solving the subproblem of the exact

SCFLP problem reveals to be better than exactly solving the subproblem of the approximate

UFLP model. We introduce now the SCP reformulation of SCFLP.

Definition 1. Let I be an arbitrary instance of SCFLP. We denote by γ(I) the trans-
formed Set Covering instance of I such that:
(i) C = I is the set of elements to cover,

(ii) S = {SL,j : L ⊆ I, j ∈ J} is the collection of subsets,

3



(iii) each subset SL,j ∈ S covers L and has cost c(SL,j) = d
P

i∈L di/Kjefj +
P

i∈L cij

Proposition 1. Solving SCFLP on an arbitrary instance I is equivalent to solve SCP
on γ(I), i.e., every SCFLP-solution of cost at most c for I can be transformed in polynomial
time in a cover of cost at most c for γ(I) .

Proof. Let {yj , xij} be a solution of VFCLP on I with cost c. Then, the collection of
subsets {SL(j),j : j ∈ J/yj > 0}, where L(j) = {i ∈ I : xij = 1}, is a feasible cover in γ(I).
From (3) and (4) we have dPi∈I dixij/Kje ≤ yj and we easily derive that the cost of the

cover is at most c. Conversely, let S 0 = {SLt,jt , t = 1, . . . , q} ⊂ S be a feasible cover for
γ(I). Set Q1 = L1 and Qt = Lt \ ∪1≤h≤l−1LDP for t = 2, . . . , q. Set xijl = 1 for all i ∈ Qt,

t = 1, . . . , q, set all other x-variables to zero, and yj = dPi∈I dixij/Kje for j ∈ J . This

solution satisfies (2-4) and thus is indeed a feasible solution of VFCLP. We get

X
j∈J

fjyj +
X

(i,j)∈I×J
cijxij ≤

qX
t=1

⎛⎝dPi∈Qt di

Kjt
efjt +

X
i∈Qt

cij

⎞⎠ as yj ≤
X
t:jt=j

d
P

i∈Qt di

Kjt
e

≤
qX

t=1

Ã
d
P

i∈Lt di
Kjt

efjt +
X
i∈Lt

cij

!
as Qt ⊆ Lt

= c(S 0)

which completes the proof. ¤.

3 Greedy heuristic and worst-case analysis

Since SCFLP reduces to SCP by proposition 1, we consider the best polynomial-time algo-

rithm for SCP, i.e., the Greedy heuristic which picks at each step a subset S∗ ∈ S minimizing
the ratio ’cost over number of new covered elements’. If U denotes the set of elements that

remains to cover at current step, the subproblem of the Greedy heuristic is formally described

as finding

r∗(U) = min
S∈S

c(S)

|S ∩ U | (5)

This iterative search terminates when U = ∅. The Greedy heuristic was shown by Chvátal
to guarantee an approximation ratio of H(∆) ≤ 1 + ln∆, where ∆ = maxS∈S |S| [3]. Never-
theless, this heuristic cannot be directly applied to the SCP instance γ(I), given an instance I
of SCFLP, since the number |S| of candidate subsets in γ(I) is equal to |J |2|I| = m2n, which

is exponential in n (hence the reduction of definition 1 is not a polynomial Karp-reduction

[6]). Therefore, enumeration of S for solving subproblem (5) is prohibited. We first use the

fact that that if subproblem (5) is approximable within ratio (1 + ) then the logaritmic

approximation ratio of Greedy is conserved (proposition 2). Then we prove that the subprob-

lem for SCFLP, which is NP-hard, admits indeed a polynomial-time (1 + )-approximation

despite the exponential number of subsets in γ(I) (Proposition 3). For proposition 2, we
need the following lemma that reformulates for our needs a part of the proof of [3].
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Lemma 1. [3] Let S 0 = {S1, . . . , Sq} be a feasible cover of C for SCP. For S ∈ S, let
S1 = S and St = S \ ∪1≤h≤t−1Sh for t = 2, . . . , q. Moreover, set tS = max{t : St 6= ∅}.
Then we have

c(S 0) ≤
X

S∈Sopt

Ã
tSX
t=1

¡|St|− |St+1|¢µc(St)|Stt |
¶!

(6)

where Sopt is an optimal cover.

Proposition 2. Consider an instance (C,S) of the Set Covering problem. If the subprob-
lem (5) can be approximated within ratio 1+ by some polynomial-time algorithm A, then the

associated greedy heuristic Greedy(A), where A is applied to the subproblem, approximates

the Set Covering instance within ratio (1 + )H(∆), where ∆ = maxS∈S |S|.

Proof. The proof simply adapts Chvàtal’s one. Let S 0 = {S1, . . . , Sq} denote the cover
constructed by Greedy(A) in chronological order 1, . . . , q. Since A is a (1+ ) approximation

for the subproblem, the subset Stt defined as in lemma 1 satisfies c(St)/|Stt | ≤ (1+ )(c(S)/|St|)
for all S ∈ S. Plugging that inequality into (6) leads to

c(S 0) ≤ (1 + )
X

S∈Sopt
c(S)

Ã
tSX
t=1

|St|− |St+1|
|St|

!

≤ (1 + )
X

S∈Sopt
c(S)

|S|X
i=1

1

i

≤ (1 + )

Ã
∆X
i=1

1

i

!
c(Sopt)

= (1 + )H(∆)c(Sopt) ¤

We now go back to the original facility location problem SCFLP. Set

wj(L) =

Ã
d
X
i∈L

di/Kjefj +
X
i∈L

cij

!
(7)

rj(L) = wj(L)/|L| (8)

r∗j (U) = min
L⊆U

rj(L) (9)

The adaptation of the set covering Greedy heuristic for SCFLP is described in algorithm 1.

The transfer of the Greedy ratio H(n) (≤ 1+lnn) to SCFLP depends on the approximability
of subproblem (9), which is NP-hard. Indeed, the subproblem for a fixed j ∈ J can be

reformulated as the following fractional Integer Program:

Minimize

Ã
fjy +

X
i∈U

cijxi

!
/

ÃX
i∈U

xi

!
s.t.

X
i∈U

dixi ≤ Kjy

(SP)j
X
i∈U

xi ≥ 1

y ∈ N, xi ∈ {0, 1}
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––––––––––––––––––––––––––––––-

Algorithm 1 /Greedy heuristic for SCFLP/

Begin

U ← I

Repeat

For j ∈ J do find a best-possible approximation of ratio r∗j (U) of (9)
r∗(U) = minj∈J r∗j (U)
Let (L∗, j∗) be the optimal pair for r∗(U)
yj∗ := 1, xij∗ := 1 for i ∈ L∗

U ← U \ {L∗}
Until U = ∅
output y, x

End

––––––––––––––––––––––––––––––—

Consider the restriction SP’j of SPj where Kj ≥ di for all i ∈ U ,
P

i∈U di > Kj , and fj >

|U |Pi∈U cij . The latter inequality induces that y = 1 for the optimal solution of SP’j . Hence

SP’j is equivalent to maximizing (
P

i∈U xi)/(fj+
P

i∈U cijxi) under the knapsack constraintP
i∈U dixi ≤ Kj, which is an NP-hard Binary Fractional Knapsack Problem (BFKP) studied

by Billionnet in [1]. Since SP’j is a subcase of SPj , the latter problem is NP-hard. The rest

of the paper is devoted to showing that the subproblem (9) of finding r∗j (U) for j ∈ J admits

a Fully Polynomial-Time Approximation Scheme (FPTAS).

4 A FPTAS for the subproblem

The algorithm for approximating optimal ratio r∗j (U) of (9) is a two-phase algorithm. In the
first step, a 2-approximation of the optimal ratio is found. In the second step, costs are scaled

and rounded as in the approximation algorithms of Ibarra and Kim [9] and Lawler [15] for

the Knapsack Problem or the algorithm of Hassin for the Constrained Shortest Path Problem

[7], and a Dynamic Programming procedure is applied. Before describing more formally the

algorithm, we need to introduce the following two lemmas.

Lemma 2. Set αji = di(fj/Kj) + cij, and let Sp = {αji1 , . . . , αjip}, for p = 1, . . . , |U |,
be the sorted list of p smallest αji values, i.e. αjil ≤ αjil+1 for l = 1, . . . , |U | − 1. Set

Sq = argmin1≤p≤|U | rj(Sp). Then rj(Sq)/r
∗
j (U) ≤ 2.

Proof. We note L∗ the optimal subset associated with r∗j (U) and v(L) =
P

i∈L α
j
i for

L ⊆ U . Then we have v(L) ≤ w(L) ≤ v(L) + fj for all L ⊆ U (see (7) for the definition of
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wj). It comes:

rj(Sq) ≤ rj(S|L∗|) = w(S|L∗|)/|L∗|
≤ (v(S|L∗|) + fj)/|L∗|
≤ (v(L∗) + fj)/|L∗| as v(S|L∗|) = min

|L|=|L∗|
v(L)

≤ (w(L∗) + fj)/|L∗| = r∗j (U) + fj/|L∗|
≤ 2r∗j (U) ¤

Lemma 3. Given j ∈ J and non-negative real values B, f̂j and ĉij for i ∈ U , the problem

of minimizing

r̂j(L) =
dPi∈L di/Kjef̂j +

P
i∈L ĉij

|L| (10)

over subsets L ⊆ U under the constraint r̂j(L) ≤ B can be solved in time O(|U |3B) by a
Dynamic Programming procedure.

Proof. Set U = {i1, . . . , i|U |} and Ul = {i1, . . . , il} for l = 1, . . . , |U |. Set

d∗(ŵ, l, p) = min
L⊆Ul

{
X
i∈L

di/ d
X
i∈L

di/Kjef̂j +
X
i∈L

ĉij = ŵ; |L| = p}

for ŵ ∈ {1, . . . , |U |B}, l ∈ {1, . . . , |U |}, p ∈ {0, . . . , l}. This can be calculated by setting:

d∗(ŵ, l, 0) =

(
0 if ŵ = 0

+∞ otherwise
for l = 1, . . . , |U |

d∗(ŵ, 1, 1) =

(
d1 if ŵ = ĉ1j + dd1/Kjef̂j ,
+∞ otherwise

and for other triples (ŵ, l, p),

d∗(ŵ, l, p) = min(d∗(ŵ, l − 1, p),³
d∗(ŵ − ĉilj − bdil/Kjcf̂j , l − 1, p− 1) + dil

´
z0(ŵ, l, p),³

d∗(ŵ − ĉilj − (bdil/Kjc+ 1)f̂j , l − 1, p− 1) + dil

´
z1(ŵ, l, p))

where, for k = 0, 1,

zk(ŵ, l, p) =

⎧⎪⎪⎨⎪⎪⎩
1 if d(d∗(ŵ − ĉilj − bdil/Kjc− k, l − 1, p− 1) + dil)/Kje

= dd∗(ŵ − ĉilj − bdil/Kjc− k, l − 1, p− 1)/Kje + bdil/Kjc+ k

+∞ otherwise

We thus look for

min
ŵ,p≥1

{ŵ/p : d∗(ŵ, n, p) <∞}
The complexity order of this Dynamic Programming procedure is the produce of the ranges

of the three integer indexes ŵ, l and p, hence the whole process runs in O(|U |3B).¤

7



––––––––––––––––––––––––––––––––

Algorithm 2 /FPTAS for the subproblem/

Begin

Step 1. Let {αji1 , . . . , αji|U|} be the list of coefficients α
j
i = di(fj/Kj) + cij

sorted by non-decreasing order

Sp := {αji1 , . . . , αjip} for p = 1, . . . , |U |
Compute Sq = argmin1≤p≤|U |w(Sp)/p
R := rj(Sq)

Step 2. Set f̂j = bfj/( R/4)c and ĉij = bcij/( R/4)c
Output subset LDP returned by the Dynamic Programming procedure

of lemma 3 with upper bound B = 2/

End

––––––––––––––––––––––––––––––––

We now introduce algorithm 2 which approximates optimal ratio r∗j (U).

Proposition 3. Algorithm 2 is a (1+ )-approximation of r∗j (U) running in O(|U |3/ ).

Proof. Combining fj ≥ ( R/4)f̂j and cij ≥ ( R/4)ĉij we obtain that

rj(L
∗) ≥ ( R/4)r̂j(L∗) ≥ ( R/4) min

L⊆U
r̂j(L) = ( R/4)r̂j(LDP )

Since rj(L
∗) ≤ 2R we get that

r̂j(LDP ) ≤ 2/ (11)

which justifies that the upper bound B is set to 2/ in DP . Now, we have:

rj(LDP ) =
dPi∈LDP di/Kjefj +

Ph
i∈LDP cij

|LDP |

≤ dPi∈LDP di/Kje (bfj/( R/4)c+ 1) ( R/4) +
P

i∈LDP (bcij/( R/4)c+ 1) ( R/4)
|LDP |

= (
R

4
)

µ
r̂j(LDP ) +

|LDP |+ 1
|LDP |

¶
≤ (R/2)(1 + ) by (11)

≤ r∗j (U)(1 + ) by lemma 2

The complexity of step 1 of algorithm 2 is the time of sorting coefficients αji for i ∈ U , which

can be done in time |U | ln |U |. The complexity of step 2 is O(|U |3B) = O(|U |3/ ). Hence,
the overall complexity of algorithm 2 is O(|U |3/ ). ¤.

5 Conclusion

From propositions 1, 2 and 3 we derive the main result of the paper.
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Theorem 1. Algorithm 1 combined with FPTAS Algorithm 2 for subproblem (9) approx-

imates SCFLP within ratio (1 + )H(n) in computational time O(mn4/ ).

Since H(n) ≤ 1+ lnn, the gap to the inapproximability bound lnn of Feige [4] is reduced
as close as possible. We can note that an adaptation of the partitioning algorithm of [7] to

the SCFLP case would solve the subproblem in time O((n4/ ) log(n/ )), which is significantly

higher than O(n3/ ). Finally, we could address the question whether such techniques could be

applied to the classical Capacitated Facility Location Problem (CFLP) with hard capacities

and obtain a O(lnn) ratio for this problem, which is to our knowledge an open problem. An

important obstacle is that there is no trivial reformulation of CFLP as an equivalent SCP as

in definition 1 since for CFLP, a cover cannot be systematically transformed into a feasible

partition of inferior cost (joining two subsets, i.e., two sets of customers corresponding to the

same facility j may exceed the hard capacity of j). Another interesting issue is whether our

algorithm could improve the best-known ratio of 2 for the metric SCFLP [17]. This is quite

possible since a slightly-modified version of the greedy SCP-type procedure of Hochbaum,

where opening cost is set to zero once a facility is open, was proved to achieve a pretty good

approximation ratio of 1.81 for the metric UFLP [13]. This leaves several open problems for

future research.
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