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Abstract
There are few studies directly addressing exchange rate and inflation volatilities, and lack of
consensus among them. However, this kind of study is necessary, especially because they can
help monetary authorities to know price behavior better. This article analyses the relation
between exchange rate and inflation volatilities using a bivariate GARCH model, and
therefore modeling conditional volatilities, fact largely unexplored by the literature. We find a
semi-concave relation between those series, and this nonlinearity may explain their apparently
disconnection under a floating exchange rate system. The article also shows that traditional
tests, with non-conditional volatilities, are not robust.

Resumo
Existem poucos estudos analisando, diretamente, a relação entre as volatilidades cambial e da
inflação, e pouco consenso entre os mesmos. Todavia, tal análise é importante, especialmente
por auxiliar a autoridade monetária no conhecimento do comportamento de preços. Este artigo
analisa a relação entre as volatilidades da taxa de câmbio e da inflação empregando um
modelo Garch bivariado e, portanto, modelando as volatilidades condicionais, fato não
explorado pela literatura. Encontramos uma relação semicôncava entre tais séries, e esta não-
linearidade pode explicar sua aparente desconexão em um regime de taxas de câmbio
flutuantes. O artigo também mostra que testes tradicionais, com volatilidades não-
condicionais, não são robustos.
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1. Introduction

The study of exchange rate volatility’s effects should be important for monetary policy decisions,
since higher volatility means higher uncertainty, which may affect inflation expectations, a crucial
variable in monetary policy decisions. Although the literature about the impact of exchange rate volatility
on inflation is not as extensive as the one available for its pass-through to prices, some authors highlight
such relation. Whether the impacts are significant or not remains controversial: some authors defend the
absence of connection between exchange rate and macroeconomic variables volatilities, while others state
the opposite1. According to the first group, exchange rate volatility is not important to macroeconomic
variables, since empirical evidence shows a substantial increase in the former during floating exchange
rate regimes, while the latter did not present a similar rise in their volatilities2. The second group finds
evidence of such relation, being either positive or negative, in studies conducted under different aims and
approaches.

This paper tests the existence of a relation between exchange rate and inflation volatilities for the
Brazilian case, and our conclusions in this paper could be classified in the second group, related
especially with the findings of Dixit (1989) and Seabra (1996). By developing an optimization model for
the firm, the first author shows that trade flows and prices would depend on investment made on a future
basis and, consequently, on both expectations and higher moments of the distributions involved. In
consequence, the macroeconomic environment affects the pattern of price changes. Hence, not only the
level of the devaluation but also the volatility of the exchange rate would affect its pass-through to prices.
Seabra (1996), on its turn, uses a model of intertemporal optimization with asymmetric adjustment costs
and shows that the critical value that leads a firm to invest is a function of uncertainty. If uncertainty is
high, the optimal decision will be to wait before making a movement (wait-and-see strategy), even with
the exchange rate at a level that makes investment profitable. This attitude impacts on aggregate supply
and, therefore, on inflation.

Other interesting works are those of Haussmann, Panizza and Stein (2001), who find a negative
and significant correlation in their tests between pass-through and measures of volatility, and Smith
(1999), where a reduction in inflation volatility as a result of an increase in exchange rate volatility was
found in approximately 31% of the cases. The welfare approach recalled by Ghosh, Gulde, Ostry and
Holger (1997) and by Sutherland (2002) are also worth mentioning. The former show that inflation
volatility is lower under floating and intermediate exchange rate regimes for countries with low inflation,
while the latter show that the sign of the relation between exchange rate and inflation volatilities will
depend on the model’s parameters.

In this paper, we adopt a more sophisticated econometric methodology than those applied so far in
literature: instead of constructing exogenous volatility series (by computing the volatility of subsamples
or rolling windows) we apply a bivariate GARCH model, working with conditional volatility series. The
purpose of this procedure is to adopt a measure not sensitive to individual selection criteria. Apart from
that, by modeling the conditional heteroskedasticity of exchange rates, it is also a more suitable
econometric technique. One of the contributions proposed by this paper is to verify whether exchange rate
volatility has impacts strong enough on inflation so that the monetary authority should monitor it, an
approach still scarce, especially in Brazil. The other one is to show that traditional tests are not robust for
this type of study and that Garch-type models are more suitable for such analysis.

The paper is divided into six sections, including this introduction. Section 2 introduces the
theoretical model that led to the econometric tests, while data is presented in section 3. The results
obtained by the use of traditional methods (i.e.: unconditional variance series) are presented in section 4.
Section 5 shows the results of the bivariate GARCH model, and section 6 concludes.

                                                
1 For the first group, see, for instance, Krugman (1998), Obstfeld and Rogoff (2000), Baxter and Stockman (1988), Flood and Rose (1995),
Obstfeld and Rogoff (2000), Rogoff (2001) and Duarte and Stockman (2002). For the second, Calvo and Reinhart (2000a, 2000b),
Barkoulas, Baum and Cavaglan (2002), Wei and Parsley (1995), Andersen (1997), Smith (1999), Engel and Rogers (2001), Devereux and
Engel (2003) and Chen (2004), Chen (2004), Barone-Adesi and Yeung (1990), Bleaney (1996), and Bleaney and Fielding (2002).
2 Obstfeld and Rogoff (2000) call the apparently disconnection between the exchange rate volatility and macroeconomic fundamentals as the
exchange rate disconnect puzzle (ERDP).
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2. The theoretical model
We derive an equation relating inflation and exchange rate volatilities to test for the existence of a

significant relation between them. The approach to achieve such equation is based on Bleaney and
Fielding (2002), with slight modifications. The government has a utility function Z, of the Barro and
Gordon (1983) type, to be maximized. Z is given by equation (1), which represents the case where the
government of a country faces a trade-off between price stabilization and output growth above its
equilibrium level.

22 )*(5.05.0 kyybZ −−−−= π (1)
Where π is inflation, y is the output level and y* is potential output. The term b > 0 is incorporated

by the authors, meaning the relative weight given to output, and k > 0 represents the inflationary bias of
the government. The presence of b and k comes from the assumption that a government could eventually
attribute a higher weight to output growth to the detriment of price stability.

The restriction imposed by the authors upon function Z consists of an expectations-augmented
Phillips Curve, including the exchange rate. Here, we have the first difference to the model of Bleaney
and Fielding (2002) since we will focus not on the real but on the nominal exchange rate. Our restriction
will be a Phillips Curve for an open economy, including both the forward-looking and the backward-
looking term, as described in equation (2) below.
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where pt
ext is the foreign price level, st, the nominal exchange rate and e

tπ
 the inflation expectation

between period t and period t+1.
We also assume the exchange rate following a random walk, as in many partial equilibrium

studies. Thus, we have
st = st-1 + ηt ηt ~ N(0, σ2

η) (3)
applying (2) and (3) to (1), and obtaining the first-order condition for the maximization of Z with

respect to π, we have
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Some assumption also must be made concerning the behavior of e
tπ . We, then, consider that

inflationexpectations are of the form:
e
tπ = πt-1 + νt (5)

Thus, substituting (5) in (4) we get that
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The terms tε , ηt and νt are independents, therefore, inflation variance given by
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But, from (2), we have that E(εt) 2 is the inflation variance. Hence,
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Inflation variance is, therefore, a function of νt (the variance of the shock expected in t in relation
to t-1 inflation) and of ηt (variance of the exchange rate process).

With (8), we may test for a relation between volatilities and we aim to do that by using a
multivariate GARCH model. However, due to the small sample available – from the beginning of the
floating exchange rate system in Brazil, i.e., January, 1999 to September, 2004 – the large number of
terms to be estimated does not allow us to estimate a multivariate GARCH model with three variables.
Aside from that, the inflation expectations research published by the Central Bank of Brazil started only
on April, 2000, reducing our sample even further. Therefore, we will assume that the variance measured
by νt is constant and, hence, equation (8) becomes:

 Var(π) = µ’0 + µ1var(ηt),
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 where µ’0=µ0 + var(νt) is the new constant.
Although the assumption that νt is constant is strong, we may consider it. Table 1 shows the result

of a regression of e
tπ  against πt-1 and a constant. If our hypothesis that the shock expected to t+1 in

comparison with t-1 is, on average, constant, then the residuals of this equation should be homoskedastic.
As we may see, we accept the null hypothesis of homoskedasticity, which supports our assumption that νt

is constant.3 Besides, if we compute 1−−= t
e
ttv ππ  one can notice that almost the entire series is within

the interval of one standard deviation from the mean, as shown in Graph 1, with the longest period in
which it was outside that band being from December 2002 to April 2003.

The data for e
tπ  refer to the average market expectations for IPCA4 inflation in month t+1 as in

the last business day of month t-1, and they are published by the Investor Relations Group (Gerin) from
the Central Bank of Brazil.5

Table 1: Estimation of Equation πe
t = c + πt-1

method: OLS; sample: 2000:03 to 2004:10
Variable Coefficient Standard deviation t-statistics p-value

πt-1 0.1593 0.0542 2.9385 0.0049
C 0.4463 0.0555 8.0351 0.0000

MA(1) 0.6576 0.1145 5.7452 0.0000

R2 0.4584 Durbin-Watson 1.8755

adjusted R2 .4376 White Test for
homoskedasticity: (p-value) 0.4354

Graph 1 – Evolution of νt = πe - πt-1
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3. Data
Our sample was computed on a monthly basis, from 1999:01 to 2004:09, and data used in our

estimations were the following:
a) Price Index: Extended Consumer Price Index (IPCA), consumer price index published by the

Brazilian Institute of Geography and Statistics (IBGE),6 December/1993=100 and considered by
the Central Bank of Brazil as the reference index in the inflation targeting regime;

b) Exchange Rate: Exchange rate R$/US$, selling prices, monthly average;
c) External Prices: Producer price index (PPI), published by the Bureau of Labour Statistics7

(commodities, final goods).
d) GAP: output gap. It was computed by subtracting the industrial production series published by

IBGE (used as a proxy for monthly GDP) from the trend obtained by the Hodrick-Prescott filter.
All series were seasonally adjusted by the X-12 method and, afterwards, taken in logarithms (ln).

Next, unit root tests were performed. All series, except for gap have unit roots, as shown in Table A1 in

                                                
3 Equivalent tests to πt and st from equations 2 and 3 accepted the alternative hypothesis of heteroskedasticity.
4 Index of consumer prices considered by the Central Bank in the inflation targeting.
5 http://www4.bcb.gov.br/?FOCUSERIES
6 http://www.ibge.gov.br
7http://www.bls.gov/data
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the appendix I, and, therefore, they were taken in first differences. The series in first difference of Price
Index, Exchange Rate and External Prices are henceforth referred to as IPCA, E and PPI, respectively.

4. Tests with unconditional volatility
As a first step, we followed the main procedures found in literature and made tests using

unconditional volatilities. In such cases, volatility is more often computed by the standard deviation from
the mean in small samples, or by the variance within them. These samples are given either by splitting the
series into small subsamples or by adopting rolling windows8.

In this paper, we opted for three different methods to calculate the unconditional volatility series.
The first one is constructed by computing the standard deviation from the mean in rolling windows with
4, 6, 8 and 12 observations in each window (series are computed as the first difference of the natural
logarithm of the variable on a monthly basis). The second one considers the variances, instead of the
standard deviation. Finally, we tested a VAR between the price index (IPCA) and the exchange rate (E)
and analyzed the resulting variance decomposition.

4.1. Rolling Windows with standard deviations
The volatilities computed by the standard deviations are presented in Graphs 2 and 3, where E_i

and IPCA_i are the volatilities of E and IPCA, respectively, within a window of size i. It is possible to
note that the series are sensitive to the size of the window. As Table A.2 shows, the unit root test for
IPCA _i is also affected by window size: IPCA_4 is stationary and so is IPCA_6, although we reject the
presence of unit roots in the former at a level of significance of 10%. However, IPCA_8 and IPCA_12
have unit roots. Since E_i is always stationary, we computed the first differences of IPCA_8 and
IPCA_12, named d_ IPCA_8 and d_IPCA_12, respectively.

Graph 2 – Variances of IPCA (standard deviations
from the mean) - Rolling Windows
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Graph 3 – Variances of E (standard deviations from
the mean) - Rolling Windows
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The estimation results also are very sensitive to window size, as it can be seen in tables A.3 to A.6
in appendix I9. In the four-month window, the lagged terms of a variable in its respective equation and the
effect of inflation variance on exchange rate variance are considered to be statistically significant. With
regard to the six-month window, there are significant cross-terms. However, the Wald test shows that the
sum of the lagged coefficients of E_6 in the IPCA_6 equation is not statistically different from zero, and
                                                
8 Bastourre and Carrera (2004) attribute the few macroeconomic studies about volatility to the lack of a pattern to define or to measure
volatility. According to them, the use of rolling windows, instead of subsamples, has the advantage of reducing information loss (resultant
from the reduced sample size). However, this procedure is also limited due to the difficulty in determining the ideal number of observations
in a window. In addition, it may imply a high correlation between the computed series, which may affect the quality of estimators, and alter
the true relation between the volatilities. For instance, once the exchange rate regime varies over time, a certain window may contain two
different regimes.
9 The number of lags in each VAR was chosen by taking into consideration the information criteria, absence of residual autocorrelation (LM
test), absence of correlation between variables, and parsimony. In all models the dummy variable d2002_M11 - which assumes the unity
value for November 2002 – was included, since in all series there is a peak in that month, probably associated with the confidence crisis. Its
inclusion allowed us to correct problems of residual autocorrelation or correlation between the variables found in the model. For similar
reasons, the dummy variables d1999 in the four-month window and d2003_M10 in the 12-month window were included. The latter assumes
the unity value for April and May 1999 (peak in E_4) while the former equals the unity value for October 2003 (peak in IPCA_12).
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the same happens to the lagged coefficients of IPCA_6 in the E_6 equation. Only the dummy and first lag
of a variable are significant in the equation. In the eight-month window, only E_8(-1) in the equation for
E_8 is significant, while only the dummy is significant in the D_IPCA_8 equation. However, in this
VAR, the correlation between IPCA_8 and E_8 equals –0.43, which may jeopardize the OLS estimation.
Finally, the VAR between d_IPCA_12 and E_12 reports the coefficient of E_12(-1) as the only
significant one in the E_12 equation. E_12(-1), E_12(-6) and E_12(-7) are significant in the d_IPCA_12
equation and, according to the Wald test, their sum is statistically different from zero at a 10% level.

In sum, the relation between those two endogenous variables is sensitive to window size.
Depending on the size selected, we may accept or reject that the exchange rate variance affects inflation
variance and the other way round, as well as accept or reject that lagged values of inflation variance will
affect it.

4.2. Rolling Windows with variances
Once again, we have series that are very sensitive to window size, as shown in Graphs 4 and 5 (pi

and ei are the volatility series for IPCA and E, respectively, computed as the variance of the sample inside
the window). Concerning stationarity, the only difference from the standard deviation case is that the
variance of IPCA in the six-month window is not stationary (table A.7 in the appendix I). Hence, we took
the first difference of p6, p8 and p12, and named them as dp6, dp8 and dp12, respectively.

Graph 4 – Variances of IPCA (variances) –
Rolling Windows
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Graph 5 – Variances of E (variances) –
Rolling Windows
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Tables A.8 to A.11 in the appendix I show the results of the four estimated VARs10. For the four-
month window VAR, only the lagged terms of each variable are significant and, differently from the
previous case, the volatility of IPCA would not affect the exchange rate volatility. As for the six-month
window, contrary to what was observed in the standard deviation case, the only significant terms are the
dummy and the first lag of the exchange rate volatility in its own equation. In the eight-month window,
we do not find the correlation problem we found before but, again, the only term that is significant is e6(-
1) in the equation for the exchange rate variance. Finally, the VAR between dp12 and e12 indicates e12(-
1) as the only significant variable in the equation for e12 . In the equation for inflation variance, the
coefficients for e12(-1) and e12(-2) are significant and the Wald test shows that their sum is statistically
different from zero at a 10% level.

In sum, we notice that the results differ from the ones obtained in the case with standard
deviations concerning unit root tests, the number of lags in the VAR and the significance of some
variances. None of the models showed that inflation volatility is affected by its lagged term, differently
from what happens to exchange rate volatility. When it comes to cross-terms, we find that exchange rate
volatility is significant in explaining inflation volatility in the 12-month windows. Hence, one can realize
that results are sensitive not only to window size but also to the method chosen to compute volatility. In
addition, since there are lagged effects in the case of exchange rate variance, we reinforce the adequacy of
investigating a GARCH-type model.

                                                
10 .D2002_M11 was included for the six-month window case
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4.3. Variance decomposition in a VAR model
The last exercise performed in this section was to test a VAR between the price index and the

exchange rate and to analyze variance decomposition. Since both series have unit roots, as shown in
Table 1, we first tested for the presence of cointegration vectors. As shown in Table A.12 in the appendix
I, the Trace and Eigenvalue tests do not accept the null hypothesis of presence of a cointegration vector.11

For this reason, we will test a VAR between the first differences of price index (IPCA) and exchange
rates (E).

In the variance decomposition factorization by Cholesky method, we chose E preceding IPCA,
since we consider the former to be more exogenous than the latter. The Granger test may be used to give
further support in the ordering decision (table A.13 in the appendix I. However, since the correlation
between the residuals is low (-0.17<|0.20|)12 the order does not have significant effects over the results.
Table A.14 shows the VAR results, while Table A.15 presents the variance decomposition.

By analyzing the variance decomposition in table A.15, we find that about 3% of the movements
in IPCA in t+1 may be explained by shocks in E in period t. There are increasing accumulated effects
over time, and shocks in E explain around 42% of the movements in IPCA after 12 months. A shock in
IPCA, in its turn, does not have an immediate effect on the sequence of E, however it has lagged effects,
although on a smaller scale.

Graphs 6 to 9 show these decompositions over time, as well as the interval of ± 2 standard errors.
We notice that shocks to the variables have positive effects on their sequences, and apart from the impact
of IPCA on E, they are different from zero. Therefore, we cannot rule out the hypothesis that shocks to
the exchange rate – represented by ηt in equation (3) – might affect inflation.

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10

Graph 6 - Percent E variance due to E

-10

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Graph 7 - Percent E variance due to IPCA

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Graph 8 - Percent IPCA variance due to E

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10

Graph 9 - Percent IPCA variance due to IPCA

Based on the results presented in this section, we may infer that the traditional measures used to
verify whether there is a relation between the volatilities of exchange rate and macroeconomic variables
(standard deviations or variances in subsamples) yield results that are sensitive to the subsample size,
leading us to accept or reject the significance of the relation according to the window size we are working
with.

The variance decomposition, in its turn, indicates that shocks to the exchange rate affect inflation
variance. Since volatility is also a measure of uncertainty, this result sounds more intuitive than some of
those presented before: if the exchange rate affects inflation and has delayed effects (incomplete
exchange rate pass-through in the short run), shocks to that variable will affect the uncertainty about
future inflation. Besides, an adequate exchange rate model must consider the presence of conditional
heteroskedasticity, as illustrated in Table A.16 in the appendix. In this case, it is necessary to generate
volatility series for both variables in the same way - hence, to consider conditional variance for both - and

                                                
11 The conclusion is the same if we consider only one lag.
12 Enders (1995) suggests, as a rule-of-thumb, that a correlation between residuals of the variables < |0.2| is not strong enough to affect the
results in the Cholesky decomposition.
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not simply compare the variance series obtained from a GARCH (p,q) model for the exchange rates with
an exogenous measure of inflation volatility. Furthermore, we show that variance decomposition reports
that shocks to the IPCA affect its variance, just as well as some of the results obtained in the rolling
window procedure show us that IPCA volatility is affected by its past values, reinforcing the application
of the test for a bivariate GARCH model with E and IPCA.

5. Tests with conditional variance– Bivariate GARCH
Testing a GARCH model requires, first, some assumption about the mean equations. We

considered, therefore, three different cases. The first one is consisted of only lagged terms of each
variable; the second, of a Phillips Curve for the IPCA equation (according to equation 2 in Section 2) and
the lagged values for the exchange rate; the third, of the Phillips Curve for the IPCA and a random walk
with drift for the exchange rate (equation 3 in Section 2). According to unit root tests previously
performed, both variables were considered in first differences of their logarithms. Considering both the
cross-correlograms and OLS models, we chose the number of lags in the equations for IPCA and
exchange rate.13 With regard to variance specifications, we tested five different options: diagonal-Vec
(Bollerslev, Engle and Wooldridge, 1988), constant correlation (CCORR, from Bollerslev, 1990), full
parameterization (Vec), the BEKK restriction (Engle and Kroner, 1993) and the dynamic conditional
correlation (DCC, from Engle, 2000). Only under the BEKK restriction convergence was achieved, and
we consider some reasons for that further ahead in this section.

The general form of mean, variance and covariance equations under the BEKK model are:
Mean equations
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For each case, different simulations were made changing the convergence criteria and the number
of iterations. Therefore, it is possible that, for each case, we ended up with more than one result achieving
convergence. When this occurred, the choice was made based on the following criteria: LM and the
ARCH-LM tests (i.e. absence of residual serial correlation and of arch-type residuals), calculation of the
eigenvalues to assure that the condition of covariance stationarity was respected (see Engle and Kroner,
1993 for further details on conditions and tests), and, when all the previous were respected, we chose the
result that maximized, for the case considered, the likelihood function. The final results are presented in
table 2.

By analyzing Table 2, we notice that the results for the mean equations are quite similar, as well as
the values in the variance equation for cases (1) and (2). Case (3) differs from the other two but, since that
model has ARCH residuals for the equation of E and serial correlation of residuals for both mean
equations15, it cannot be considered as a good model.
                                                
13 When they pointed to different number of lags, we tested the highest one.
14 Variance and covariance equations are from Engle and Kroner (1993), equation 2.3, pages 5 and 6, without suppressing the GARCH
terms.
15 We could not find any model that removed the autocorrelation in the mean equation of the exchange rate, which was expected since there
are no lagged terms in that equation.
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Table 2 – Bivariate GARCH Results
Monthly data from 1999:01 to 2004:09

Variables Case 1 Case 2 Case 3a

Function Value 548.5888337 558.7008734 548.0509755
Constant 0.00282329* 0.00197323* 0.0011409*

(0.0005596) (0.00050458) (0.00051313)
IPCAt-1 0.55715402* 0.57849083* 0.68315183*

(0.07376155) (0.0609667) (0.05967424)
Et-1 - 0.03863824* 0.06380358*

(0.00980401) (0.00779833)
Et-2 - -0.00073484 -0.00920641

(0.00964137) (0.0073217)
GAPt-2 - 0.01673604** 0.01552899**

(0.00977043) (0.0095768)
PPIt-1 - 0.09498593** 0.10285839*

Equation for IPCA

(0.05367548) (0.05499651)
Constant 0.00669639 0.01229489* 0.01917512*

(0.00424251) (0.0043067) (0.00534423)
Et-1 0.8094822* 0.60752556* -

(0.11426506) (0.12549928) -
Et-2 -0.22750191** -0.16772685 -

Equation for E

(0.13597143) (0.10694474)
α 0 0 0 0
α 1 + + +
α 2 + + +
α 3 + + +
α 4 0 0 0
α 5 0 0 0

Conditional variance of
IPCA

α 6 0 0 0
β0 0 0 0
β1 + 0 +
β2 + 0 +
β3 + + +
β4 + + +
β5 + + +

Conditional variance of
E

β6 + + +
µ0 + + -
µ1 - 0 -
µ2 - - -
µ3 - - -
µ4 0 0 0
µ5 0 0 0

Covariance

µ6 0 0 0
Notes: (a) case presents residual autocorrelation in both mean equations (LM test); residuals of ARCH-type in the exchange
rate equation; standard deviations in parentheses; * and ** denote significance at 5% and 10%, respectively.

Comparing the variance equations in cases (1) and (2), we see that the differences lie in the signs
of g12 and g22, in the values of a11, a22 and a12 and in the significance of coefficients µ1, β1 and β2, that is,
the impact of ε2

1,t-1
 on the conditional variance of E (first difference of the exchange rate) and in the

covariance and impact of ε2
1,t-1ε2

2,t-1 on the conditional covariance of E.
However, it can be seen from Table 3 that the significance of µ1, β1 and β2 is the only significant

difference between both cases. The difference in the signs of g12 and g22 does not affect the final result
because these coefficients are considered under three situations: (i) squared values; (ii) multiplied by each
other, (iii) multiplied by coefficients that are statistically equal to zero. The differences in a11, a22 and a12,
in their turn, fall within standard deviation boundaries, thus, they may not be considered to be significant.
It is important to notice that for the inflation equation all cases provided the same signals and the same
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significance (i.e. if statistically equal to or different from zero). Therefore, our results for the response of
IPCA to shocks in E are robust.

Table 3 - Estimated Parameters in Variance and Covariance Equations
Monthly data from 1999:01 to 2004:09

G11 -0.1041899 -0.0513807 0.03980506*
(0.1348117) (0.11993625) (0.14292026)

g21 0.00810385 0.01085598 -0.00743866*
(0.01683404) (0.01418979) (0.0156595)

g12 12.52650218* -13.00132891* 13.12325566*
(1.55221793) (1.68386503) (1.98208477)

g22 0.41076103** -0.43513845* 0.50120845*
(0.23448881) (0.21248228) (0.22752382)

a11 0.27491257* 0.40438372* -0.44434782*
(0.12289452) (0.13130784) (0.17146475)

a21 0.0595035* 0.05305404* -0.05393149*
(0.0131604) (0.01178906) (0.01283429)

a12 -3.42461647** -5.71185332* 7.4208698
(1.98123913) (2.10969805) (2.41134849)

a22 -0.46199166* -0.59176609* 0.78655762*
(0.1406473) (0.14044079) (0.16694871)

c11 -0.00000016 -0.00000008 0.00000006
(0.007226) (0.00455714) (0.00519676)

c21 0.00211834* 0.00175652* -0.00189984*
(0.00037541) (0.00033542) (0.00031271)

c22 0.00366595 0.0038599 -0.00462995
(0.00836578) (0.00918004) (0.01001528)
(0.00836578) (0.00918004) (0.01001528)

The Wald Test was performed to decide between the cases considered. The unrestricted case – that
is, case (2) – was preferred to the detriment of cases (1) and (3), as shown in Table 4. Hence, we will
consider case (2) as our results from now on.

Table 4 –Wald Test16

Cases tested Observed χ 2

q
 statistic Null hypothesis:

Variables added in case (2) are not jointly significant
Case (1) vs Case (2) 20.22 Reject
Case (2) vs.Case (3) 21.30 Reject

Tables 5 to 8 show the results of the Ljung-Box and LM tests for auto-correlation of residuals, the
Arch-LM test for Arch-type residuals, the multivariate Portmanteau test for cross-correlation and the
eigenvalue vector17 for case 2. As it can be seen from these tables, the model estimated in case 2 respects
the conditions of no serial autocorrelation or cross-correlation of residuals, no Arch-type residuals and is
covariance stationary. Therefore, we can say that the dependence between exchange rate and inflation
volatilities was completely captured by the bivariate-Garch model.

By analyzing the results of case 2, shown in the second column of Table 2, one can notice that the
conditional variance of IPCA is affected (statistically significant) by shocks to the IPCA, E and shocks
common to both. However, since α1 and α3 are square coefficients, we cannot determine whether the
effects of IPCA and E shocks have a positive or negative sign, but we can affirm that they are statistically
significant. Lagged variances and covariances, however, do not play a significant role in explaining IPCA
variance.

                                                
16 Wald Test: -2(lr-lu) ~ 2

qχ , where q is the number of added variables, lr and lu are the log-likelihood of the restricted and unrestricted cases,

respectively. Under Ho, the added variables are not jointly significant.
17 For a brief explanation of the eingevalue calculation, see Appendix II.
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As for the conditional variance of E, it is affected by its lagged values and by lagged values of the
conditional variance of IPCA – the latter goes undetected by almost all tests with unconditional variances
– although we also cannot make assertions about the sign. Shocks common to both variables (ε1,t-1ε2,t-1)
and in the covariance have a positive and significant sign. Graph 10 shows the estimated conditional
variances over time.

Table 5 –Lung-Box Tests for Residual Autocorrelation
E1 (residuals of inflation Equation) E2 (residuals of exchange rate equation)Ljung-Box

Q-Statistics Significance Level Q-Statistics Significance Level

Q(1-0) 0.0041 0.9491 0.0934 0.7599

Q(2-0) 0.8666 0.6484 0.1501 0.9277

Q(3-0) 1.4555 0.6926 0.1737 0.9817

Q(4-0) 1.8807 0.7577 1.2716 0.8662

Q(5-0) 1.9857 0.8511 1.7955 0.8766

Q(6-0) 3.2571 0.7760 2.3153 0.8885

Q(7-0) 3.6674 0.8172 2.9063 0.8935

Q(8-0) 6.2370 0.6207 6.2032 0.6245

Q(9-0) 6.5844 0.6803 6.3149 0.7080

Q(10-0) 6.8781 0.7369 7.5265 0.6750

Q(11-0) 7.5425 0.7536 12.2845 0.3426

Q(12-0) 13.8282 0.3118 12.9173 0.3751

Table 6 – LM and ARCH-LM Tests
N*R2 values18

Inflation Equation Exchange Rate EquationLags Qui-square critical level
at 5%

LM test Arch-LM test LM test Arch-LM test

1 3.8415 1.1927 0.9080 3.3525 0.4656

2 5.9915 4.9930 2.1524 4.1045 3.0632

3 7.8147 5.5838 6.5384 2.7580 3.3708

4 9.4877 6.2760 7.8664 5.3360 3.6771

5 11.0705 7.8937 8.0904 7.2583 3.4554

6 12.5916 8.5463 8.9747 9.3236 4.2765

7 14.0671 12.1124 8.9349 13.0569 4.7729

8 15.5073 14.6820 9.1488 18.5930 4.9308

9 16.9190 14.9107 9.5050 18.1027 5.4148

10 18.3070 14.8134 9.9457 18.3225 5.3254

11 19.6751 15.1475 11.3772 20.7173 5.7317

12 21.0261 19.7229 9.7259 20.2341 10.0397

Table 7– Multivariate Portmanteau Test for Cross-Correlation19

M Test Statistics Significance Level

3 5.6954 0.3370

5 12.2948 0.5036

7 16.5348 0.7389

10 25.0132 0.8394

12 36.2776 0.6803

15 45.2643 0.7660

                                                
18 The N*R2 value must be < than the χ2 to accept the null hypotheses of no autocorrelation and arch residuals.
19 H0: ρ1 = ρ2 = … = ρm = 0 and Ha: ρi ≠ 0 for some i Є {1,…,m} (See TSAY,2002, for the multivariate Portmanteau test for cross-
correlation).
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Table 8 – Eigenvalue Vector
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Finally, results show us that shocks in the exchange rate (E) and shocks common to exchange rate
and IPCA have negative and significant effects over the covariance between the two variables. This is an
important result in our model. It means that shocks that affect the exchange rate or the exchange rate and
IPCA simultaneously will cause a “disconnection” of these two variables. After all, everything else the
same, a reduction in the covariance means a reduction in the correlation coefficient between the variables.

At first, we considered that the lack of convergence for specifications other than the BEKK model
would result from the small size of our sample (January, 1999 to September, 2004). However, this may be
questioned since the BEKK specification has more parameters than some of the other specifications
tested. The negative sign of shocks in E over the conditional covariance (µ1 < 0) and the dispersion
graphs presented below (graphs 11 to 14) suggest that the sign of shocks in E over the conditional
variance of IPCA may not be the same all the time. If this is true, then we may have a reason for the non-
convergence of specifications that, instead of working with squared terms (imposing the positivity of the
matrix), try to find a sign for the relation. In these specifications, if the signs of a coefficient in the
equations of exchange rate’s and inflation’s variances change from positive to negative, they will not
converge to a final value, since the model will have to establish whether the coefficient is positive or
negative. In the BEKK specification, however, this problem does not exist once it works with square
coefficients. However, further tests are necessary before we can make such assertion.
Graphs 11 to 14 are dispersion graphs with the conditional variances of E on the horizontal axis and of
IPCA on the vertical axis. Graph 11 plots the entire sample and one can clearly see four outliers in that
graph, which correspond to the period between February and May 1999 (i.e. the first months after the
change in the exchange rate regime, caused by the 1999 crisis, and before the adoption of the inflation-
targeting regime in June of that year). Hence, we excluded these observations and built Graph 12. Again,
five outliers were removed to construct Graph 13 (June 1999, November 2000, December 2001,
December 2002 and January 2003). Graph 14, in its turn, was built using only the region with the highest
concentration of observations (57% of the sample).20

                                                
20The observations removed from Graph 14 are, related to Graph 11: January to July 1999; November 1999 to January 2000; March, August,
October and November 2000; April 2001; December 2001 to March 2002; October 2002 to March 2003; May, July, September and
November 2003 and August 2004.
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Graph 11 — Exchange rate and inflation volatilities (full sample)
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Graph 12 — Exchange rate and inflation volatilities (reduced sample)

0

0,000005

0,00001

0,000015

0,00002

0,000025

0,00003

0,0005 0,0015 0,0025 0,0035 0,0045 0,0055 0,0065

Conditional Variance of E

C
on

di
tio

na
l V

ar
ia

nc
e 

of
 IP

C
A

Graph 13

Graph 13 — Exchange rate and inflation volatilities (reduced sample)
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Graph 14 — Exchange rate and inflation volatilities (reduced sample)
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Graph 12 and, mainly, graph 13 suggest a semiconcave (if not concave) relation between the two
variables at stake (i.e. the conditional variances of exchange rate and of IPCA). To illustrate the relation, a
trend was included in those graphs and in graph 14, and the adjusted R2 of each trend equation was
reported (see graphs A.1 to A.3 in the appendix I). The semiconcave relation would imply that, although
the response of inflation volatility to exchange rate volatility is positive, the proportion in its variation
decreases as exchange rate volatility rises.

If we consider graph 14, which plots the region with the highest concentration of observations, we
find a clear concave relation. This would mean that, after a certain point, the positive relation between
volatilities becomes negative, as opposed to the convex form observed in financial variables (the so-called
smile of volatility). Also, it is possible that it is reflecting the existence of a regime switching in the
volatilities, since we are removing the extreme values of the sample. We need a longer sample to test if
this behavior would be reproduced over time. However, we can only use graph 14 to speculate about
these possibilities happening. Nonetheless, it is a question to be answered in future research, since some
works of other authors find, as we pointed out in the introduction, the sign may change according to the
model’s parameters.

6. Conclusions
The analysis presented in sections 4 and 5 show that the use of unconditional variances leads us to

results that are sensitive to the chosen measure of volatility, which is based on subjective criteria. The
multivariate GARCH model, dealing directly with the effects of conditional volatilities, finds a semi-
concave relation (differently from the case for financial series, where this relation has a convex form),
statistically significant, between exchange rate and inflation variances.

The results seem to be in line with the intuition obtained from other studies, especially Dixit
(1989) and Seabra (1996). When exchange rate volatility is very high, increasing uncertainty, inflation
response may be reduced, leading to smaller effects. This may explain why some studies to Brazil found a
decrease in the short-run pass-through from exchange rates to consumer prices after the floating regime.

The analysis based on the role played by uncertainty could also make a bridge between the two
different points of view concerning the existence of a relation between the volatilities of exchange rate
and inflation. The relation would exist but, under certain conditions, the disconnection between the
variables would be too strong to be noticed. In periods of high volatility, agents will not respond with the
same intensity as they do in periods of stability due to the lack of knowledge concerning the duration of
the movements in the exchange rate (whether temporary or permanent). Therefore, inflation volatility has
smaller amplitude. On the other hand, when exchange rate volatility is lower, inflation would respond
more promptly21. This disconnection becomes clearer in the negative sign found in the response of the
conditional covariance to shocks in the exchange rate and would be reinforced if the sign reversion found
in graph 14 is verified in future studies.

The caveats of this paper basically lie in the small sample available for Brazil, since the floating
regime for exchange rates having started only in 1999. Because of that, we cannot establish with certainty
whether the problems faced with convergence were due to the sign instability or to the small period
involved. Nonetheless, we tend not to rely too much in the small sample explanation, since three out of
the other four restrictions tested – diagonal VEC, CCORR and DCC – have less parameters to be
estimated. Nonetheless, a large sample is essential to corroborate the results.

However, this article innovates by (i) applying a multivariate GARCH model, thus, considering
conditional variances to analyze the relation between volatilities, (ii) trying to establish a relation between
exchange rate and inflation volatilities and its possible implications for monetary policy and (iii) showing
that traditional tests performed with exogenously constructed volatility series are sensitive to the criteria
chosen to construct such series and do not reveal relevant features of that relation.

                                                
21 For instance, in an environment with fixed exchange rates, the agents know that devaluation is permanent. Therefore, facing a new level of
the exchange rates, they need to adjust their costs. The same is not true under a floating system: agents have costs to adjust their prices to a
new level of exchange rates and costs to return to the original position if the (de)valuation is not permanent.
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Appendix I – Tables & Graphs

Table A.1 – ADF Unit Root Test
sample: 2000:03 to 2004:10

Variable ADF test statistics Critical value at 5% ADF test statistics –first
difference of the variable Critical value at 5%

Price Index -2.1704 (a) -3.4783 -3.904127(a) -3.4783
Exchange Rate -1.7097 (a) -3.4783 -7.427513(a) -3.4783
External Prices -1.5419 (a) -3.4783 -8.014687(a) -3.4793

GAP -9.7018 -2.9077 - -
Note: test performed with (a) trend or intercept and (b) without trend.

Table A.2 – ADF Unit Root Test – std. dev.
sample: 2000:03 to 2004:10

Variable ADF test statistics Critical Value at 5% ADF test statistics – first
difference of variables Critical Value at 5%

IPCA_4 -3.4697 -3.4805 - -
IPCA_6 -1.8540(a) -1.9461 - -
IPCA_8 -1.3046 (a) -1.9463 -7.0015 -3.4865

IPCA_12 -0.8823(a) -1.9465 -5.9875 -3.4921
E_4 -11.9597 -3.4816 - -
E_6 -10.8574 (b) -2.9084 - -
E_8 -9.5054(b) -2.9100 - -

E_12 -7.5521(b) -2.9136 - -
Note: test performed with (a) trend or intercept and (b) without trend.

Table A.3 – VAR for four-month windows
Variables E_4 IPCA_4 Variables E_4 IPCA_4

E_4(-1)  0.2790 -5.65E-05 D2002_M11  0.005  7.11E-05
 (0.0449)  (0.0004)  (0.001)  (8.7E-06)
[ 6.2085] [-0.1423] [ 5.1319] [ 8.1232]

IPCA_4(-1)  21.8600  0.7206 D1999  0.0121  1.59E-06
 (7.7321)  (0.0683)  (0.0015)  (1.4E-05)
[ 2.8272] [ 10.5446] [ 7.8898] [ 0.1177]

C  0.0004  2.27E-06  R-squared  0.8856  0.7384
 (0.0002)  (1.4E-06)  Adj. R-squared  0.8779  0.7210
[ 2.2992] [ 1.5965]  F-statistic  116.0581  42.3377

Note: standard deviations between parentheses; t-statistics in brackets.
Table A.4 – VAR for six-month windows

Variables E_6 IPCA_6 Variables E_6 IPCA_6 Variables E_6 IPCA_6
E_6(-1)  0.9027  0.0034 E_6(-6)  0.0706 -0.0010 IPCA_6(-5) -26.5070 -0.0059

 (0.1118)  (0.0018)  (0.0482)  (0.0008)  (7.8289)  (0.1248)
[ 8.0747] [ 1.9157] [ 1.4657] [-1.343] [-3.3858] [-0.0469]

E_6(-2)  0.0398 -0.0064 IPCA_6(-1)  0.4882  0.8246 IPCA_6(-6)  19.6540 -0.0141
 (0.1483)  (0.0024)  (7.085)  (0.1129)  (6.1560)  (0.0981)
[ 0.2684] [-2.7097] [ 0.0689] [ 7.3032] [ 3.1927] [-0.1434]

E_6(-3)  0.0239 -0.0002 IPCA_6(-2)  1.8361  0.1457 C  0.0002  1.86E-06
 (0.1548)  (0.0025)  (9.0902  (0.1449)  (0.0001)  (1.8E-06)
[ 0.1546] [-0.0727] [ 0.202] [ 1.0061] [ 1.8206] [ 1.0462

E_6(-4) -0.1345  0.0043 IPCA_6(-3) -4.3719 -0.0721 D2002_M11  0.0028  4.59E-05
 (0.1139)  (0.0018)  (8.7652)  (0.1397)  (0.0004)  (6.8E-06)
[-1.1809] [ 2.3814] [-0.4989] [-0.5159] [ 6.5062] [ 6.7698]

E_6(-5) -0.1018  0.0005 IPCA_6(-4)  7.9487 -0.0954  R-squared  0.88102  0.8588
 (0.0874)  (0.0019)  (8.6463)  (0.1378)  F-statistic  25.0626  20.5897
[-1.1643] [ 0.3891] [ 0.9193] [-0.6920]  Adj. R-squared  0.8459  0.8171
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Table A.5 – VAR for eight-month windows
Variables E_8 D_IPCA_8 Variables E_8 D_IPCA_8

E_8(-1) 0.7930 0.0016 D_IPCA_8(-2) 5.3804 -0.04323

(0.0987) (0.001) (9.1884) (0.0900)

[ 8.0398] [ 1.6026] [ 0.5856] [-0.4790]

E_8(-2) 0.0097 -0.0006 C 0.0002 -1.79E-06

(0.0674) (0.0007) (0.0001) (1.1E-06)

[ 0.1439] [-0.9426] [ 1.8207] [-1.63756]

D_IPCA_8(-1) 1.8755 0.09867 D2002_M11 0.0015 4.21E-05

(9.215) (0.0903) (0.0005) (5.2E-06)

[ 0.2035] [ 1.0922] [ 2.8223] [ 8.1145]

R-squared 0.721 0.5781 Adj. R-squared 0.6947 0.5383

F-statistic 27.3886 14.5247

Table A.6 – VAR for twelve-month windows
Variables E_12 D_IPCA_12 Variables E_12 D_IPCA_12 Variables E_12 D_IPCA_12

E_12(-1) 1.1266 0.0066 E_12(-7) -0.01345 0.00166 D_IPCA_12(-6) 6.95244 -0.0856

(0.1548) (0.0017) (0.0727) (0.0008) (8.1141) (0.0874)

[ 7.2795] [ 3.9409] [-0.1849] [ 2.1149] [ 0.8568] [-0.9788]

E_12(-2) -0.0864 -0.0041 D_IPCA_12(-1) -7.3151 0.1543 D_IPCA_12(-7) -8.1538 0.0164

(0.2702) (0.0029) (9.9846) (0.1076) (7.6083) (0.082)

[-0.3197] [-1.394] [-0.7326] [ 1.4338] [-1.0717] [ 0.2005]

E_12(-3) -0.15121 0.0009 D_IPCA_12(-2) 5.3827 0.107 C 8.75E-05 -1.55E-06

(0.2749) (0.003) (9.8458) (0.1061) (9.6E-05) (1.0E-06)

[-0.5499] [ 0.3009] [ 0.5467] [ 1.0081] [ 0.9099] [-1.4988]

E_12(-4) 0.1970 -0.0028 D_IPCA_12(-3) -11.8497 -0.0342 D2002_M11 -0.000391 2.64E-05

(0.2605) (0.0028) (10.5016) (0.1132) (0.0003) (3.7E-06)

[ 0.7565] [-0.9924] [-1.12837] [-0.3018] [-1.1375] [ 7.1275]

E_12(-5) -0.1114 0.0021 D_IPCA_12(-4) -0.5193 -0.1149 D2003_M10 -0.0018 1.46E-05

(0.2391) (0.0026) (10.1884) (0.1098) (0.0004) (3.8E-06)

[-0.466] [ 0.7939] [-0.051] [-1.0465] [-5.0760] [ 3.8268]

E_12(-6) 0.0218 -0.0040 D_IPCA_12(-5) 14.2164 0.0848 R-squared 0.9317 0.8543

(0.1654) (0.0018) (9.2135) (0.0993) Adj. R-squared 0.8986 0.7837

[ 0.1315] [-2.2462] [ 1.543] [ 0.8540] F-statistic 28.1265 12.0931

Table A.7 – ADF Unit Root Test – variances
sample: 2000:03 to 2004:10

Variable ADF test
statistics

Critical Value at
5%

ADF test statistics – first
difference of variables

Critical Value at
5%

p4 -3.2566(b) -2.9069 - -
p6 -2.5156 (b) -2.9084 -7.3599 -3.484
p8 -0.8460 (a) -1.9463 -7.3398 -3.4865

p12 -0.4167 (a) -1.9467 -5.9193 -3.4922
e4 -6.5715 -3.4816 - -
e6 -5.8641 (b) -2.9084 - -
e8 -5.4361 (b) -2.9100 - -

e12 -4.5351 (b) -2.9136 - -
Note: test performed with (a) trend or intercept and (b) without trend

Table A.8 – VAR for four-month windows
Variable E4 p4 Variables E4 p4

E4(-1) 0.6525 0.002503 C 0.0088 0.0008

(0.0605) (0.00665) (0.0032) (0.0004)

[ 10.7898] [ 0.37628] [ 2.7471] [ 2.1113]

P4(-1) 0.0791 0.700972 R-squared 0.6643 0.4998
(0.8394) (0.09233) Adj. R-squared 0.6534 0.4837
[ 0.0942] [ 7.59224] F-statistic 61.3330 30.976

Note: Std. deviations in parentheses and t-statistics in square brackets.
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Table A.9 – VAR for six-month windows
Variable E6 dp6 Variable E6 dp6

e6(-1) 0.7630 0.0083 Dp6(-1) 0.7124 0.0221

(0.1127) (0.0136) (0.8625) (0.1044)

[ 6.7736] [ 0.6068] [ 0.826] [ 0.2116]

e6(-2) 0.0101 -0.0126 Dp6(-2) 0.43334 -0.1202

(0.0903) (0.0109) (0.8515) (0.1031)

[ 0.1113] [-1.1549] [ 0.509] [-1.1664]

C 0.0064 3.82E-05 D2002_M11 0.02998 0.0056

(0.0024) (0.0003) (0.0077) (0.0009)

[ 2.6605] [ 0.1319] [ 3.8767] [ 6.0109]

R-squared 0.7255 0.4332

F-statistic 29.0747 8.4069
Adj. R-squared 0.7006 0.3817

Table A.10 – VAR for eight-month windows
Variable E8 dp8 Variables E8 dp8

e8(-1) 0.8994 0.0203 dp8(-1) 0.0669 0.0222

(0.1177) (0.0151) (1.0564) (0.1351)

[ 7.6418] [ 1.3501] [ 0.0633] [ 0.1639]

e8(-2) -0.0595 -0.0136 dp8(-2) 0.1905 -0.007

(0.0988) (0.0126) (1.0548) (0.1349)

[-0.6021] [-1.0740] [ 0.1806] [-0.0512]

C 0.0052 -0.0002 R-squared 0.7267 0.0338

(0.0025) (0.0003) Adj. R-squared 0.7064 -0.0378

[ 2.0663] [-0.6696] F-statistic 35.8896 0.4722

Table A.11 – VAR for twelve-month windows
Variables E12 dp12 Variables E12 dp12 Variables E12 dp12

e12(-1) 0.9752 0.0413 dp12(-1) -0.9046 0.1774 C 0.0028 -0.0004

(0.1086) (0.0124) (1.1596) (0.1325) (0.0023) (0.0003)

[ 8.976] [ 3.3225] [-0.7802] [ 1.3391] [ 1.2268] [-1.5782]

e12(-2) -0.0543 -0.0290 dp12(-2) -0.1943 0.17707 R-squared 0.8348 0.245

(0.1014) (0.0116) (1.1187) (0.1278) Adj. R-squared 0.8216 0.1846

[-0.5357] [-2.5057] [-0.1736] [ 1.3851] F-statistic 63.1833 4.0552

Table A.12 – Cointegration test between exchange rate and consumer price index
Number of cointegration vectors under Ho Eigenvalue Trace statistic Critical Value ( 5%) p-value **

Unrestricted Cointegration Rank Test (Trace)

None 0.1048 8.3109 15.495 0.4328
At most one 0.019 1.2275 3.8412 0.2679

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

None 0.1048 7.0834 14.2646 0.4793
At most one 0.019 1.2275 3.8415 0.2679

** MacKinnon-Haug-Michelis (1999) p-values

Table A.13 – Granger Causality Test 22

Null Hypothesis Number of Obs. F-statistic p-value

 E does not Granger-Cause IPCA 66  9.0601  5.0E-05
 IPCA does not Granger-Cause E  1.4686  0.2323

                                                
22 It is important to include as many lags as possible in variable x that may be significant over variable y. We tested an equation with 13 lags
in both variables and the highest significant lag of x over y was the third lag of E over IPCA. In the Granger Causality test the null hypothesis
that IPCA Granger-Causes E is rejected both with 3 and with 13 lags.
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Table A.14 – VAR between E and IPCA
Variables E IPCA Variables E IPCA

E(-1) 0.6036 0.0356 IPCA(-1) 0.9185 0.6556
(0.1217) (0.0111) (1.2735) (0.1163)
[ 4.9597] [ 3.201] [ 0.7213] [ 5.6392]

E(-2) -0.1168 -0.0037 IPCA(-2) -2.704 -0.2059
(0.1501) (0.0137) (1.5498) (0.1415)
[-0.7780] [-0.2669] [-1.7447] [-1.4555]

E(-3) 0.1183 0.0220 IPCA(-3) 2.4593 0.1452
(0.1239) (0.0113) (1.5498) (0.1415)
[ 0.9547] [ 1.9463] [ 1.5868] [ 1.0260]

E(-4) 0.0827 -0.0051 IPCA(-4) -2.5399 0.06289
(0.1033) (0.0094) (1.1504) (0.1050)
[ 0.8007] [-0.5394] [-2.2079] [ 0.5988]

C 0.01652 0.0018 D2002_M11 -0.135 0.0143
(0.0084) (0.0008) (0.0344) (0.0031)
[ 1.9756] [ 2.3730] [-3.9256] [ 4.5682]

R-squared 0.4582 0.7168 Adj. R-squared 0.3696 0.6704
F-statistic 5.1688 15.4665

Note: Std. deviations in parenthesis and t-statistics in square brackets.
Table A.15 – Variance Decomposition (Cholesky ordering: E IPCA)

Variance decomposition of E: Variance decomposition of IPCA:

Period Std. Error E IPCA Period Std. Error E IPCA

1 0.0306 100.000 0.0000 1 0.0028 3.0385 96.9616

2 0.0356 99.4964 0.5036 2 0.0034 7.1131 92.8869

3 0.0370 98.2151 1.7849 3 0.0037 15.7357 84.2643

4 0.0374 98.2384 1.7616 4 0.004 27.0031 72.997

5 0.0383 97.469 2.5310 5 0.0042 32.3807 67.6193

6 0.0391 95.4898 4.5102 6 0.0043 36.3763 63.6237

77 0.0395 93.5715 6.4285 7 0.0044 39.2664 60.7336

8 0.0397 92.8832 7.1168 8 0.0045 41.3734 58.6266

9 0.0398 92.2703 7.7298 9 0.0046 42.3243 57.6758

10 0.0400 91.7409 8.2591 10 0.0046 42.5519 57.4481

11 0.0402 91.4451 8.5549 11 0.0046 42.4477 57.5523

12 0.0403 91.3992 8.6008 12 0.0046 42.2399 57.7601

Table A.16 - OLS Equation for E
Variable Coefficient Standard Error t-statistic p-value

C 0.0059 0.0092 0.6378 0.5258
AR(1) 0.4341 0.0964 4.5041 0.0000

R2 0.2351 LM Test (1 lag) (a) 0.8708
Adjusted R2 0.2235 ARCH-LM Test (1 lag) 28.6673 (b)

Note: (a) null hypothesis of absence of autocorrelation accepted
also for higher number of lags; (b) null hypothesis of absence of
ARCH residuals rejected at 1%.

Graph A.1 — Exchange rate and inflation volatilities (reduced sample)

y = -0.372x2 + 0.0064x - 3E-06
Adjusted R2 = 0.6915
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Graph A.2 — Exchange rate and inflation volatilities (reduced sample)

y = -1.1874x2 + 0.0073x - 2E-06
R2 ajustado = 0.4842
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Graph A.3 — Exchange rate and inflation volatilities (reduced sample)

y = -4.2952x2 + 0.0114x - 3E-06
Adjusted R2 = 0.1339
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Appendix II – Diagnostic Tests for the Bi-Garch Model
This appendix brings a brief explanation about the test of covariance stationarity in the

multivariate Garch model under the BEKK restriction. For details, see ENGLE and KRONER (1993).
In a bivariate GARCH (1,1), the conditional variance has the form:
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Without exogenous variables, the BEKK restriction has the form:
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must be minor than the unity, in absolute values. In other words, we have to calculate the eigenvalue of
matrix X below:
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∗+∗∗+∗∗+∗∗+∗
∗+∗∗+∗∗+∗∗+∗
∗+∗∗+∗∗+∗∗+∗

=

g22)(g22a22)(a22g22)(g21a22)(a21g22)(g21a22)(a21g21)(g21a21)(a21
g12)(g2a12)(a22g11)(g22a11)(a22g12)(g21a12)(a21g11)(g21a11)(a21
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g12)(g12a12)(a12g11)(g12a11)(a12g12)(g11a12)(a11g11)(g11a11)(a11

X

Calculating the eigenvalues of X using the coefficients for case 2 presented in table 3 along the
text, we find the vector y of eigenvalues presented in table 8, where all absolute values are minor than
one. Hence, the case chosen respect the condition of covariance stationarity.


