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Abstract

In this paper we propose a novel goodness-of-fit testing scheme for regime-switching models. We consider models
with an observable, as well as, a latent state process. The test is based on the Kolmogorov-Smirnov supremum-
distance statistic and the concept of the weighted empirical distribution function. We apply the proposed scheme to
test whether a 2-state Markov regime-switching model fits electricity spot price data.
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1. Introduction

Regime-switching models have attracted a lot of attention in recent years. A flexible specification allowing for
abrupt changes in model dynamics has led to its popularity in many fields including economics (Hamilton, 1990),
population dynamics (Luo and Mao, 2007), speech recognition (Juang and Rabiner, 1985), river flow analysis (Vasas
et al., 2007) and traffic modeling (Cetin and Comert, 2006). Yet despite this popularity, the statistical verification of
regime-switching models is often neglected. But a statistical model cannot be reliable, if it does not fit empirical data.
Derivation of appropriate goodness-of-fit testing techniques is needed.

Recent work concerning the statistical fit of regime-switching models has been mainly devoted to testing parameter
stability versus regime-switching hypothesis. There have been several tests developed for verification of the number
of regimes. Most of them are based on the likelihood ratio (LR) technique (Garcia, 1998; Cho and White, 2007), but
there are also approaches related to recurrence times (Sen and Hsieh, 2009) or the information matrix (Carrasco et
al., 2004). Hamilton (1996) applied the score function technique for different tests of model misspecification, like
omitted autocorrelation or omitted explanatory variables. However, to our best knowledge, appropriate procedures for
goodness-of-fit testing of the distribution of regime-switching models have not been derived to date. With this paper
we want to fill the gap. We propose an edf-based testing technique build on the Kolmogorov-Smirnov test. The testing
procedure is developed for regime-switching models with an observable, as well as, a latent state process. The later
involves application of the weighted empirical distribution function concept.

The paper is structured as follows. In section 2 we describe the structure of the analyzed regime-switching models
and briefly explain the estimation process. In section 3 we introduce goodness-of-fit testing procedures appropriate for
regime-switching models both with observable and latent state processes. Next, in section 4 we provide a simulation
study and check the performance of the proposed technique. In section 5 we show how Markov regime-switching
models and the described goodness-of-fit procedure can be applied to electricity spot prices. Finally, in section 6 we
conclude.
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2. Regime-switching models

2.1. Model definition

Assume that the process Xt may be in one of L states (regimes) at time t, driven by an independent state process
Rt. The possible specifications of the process Rt may be divided into two classes: those where the current state
of the process is observable (like threshold models, e.g. TAR, STAR, SETAR) and those where it is latent. The
most prominent specifications of the second group are the Markov regime-switching models (MRS), in which Rt is
assumed to be a Markov chain. It is governed by the transition matrix P containing the probabilities pi j of switching
from regime i at time t to regime j at time t + 1, for i, j = {1, 2, ..., L}:

P = (pi j) =


p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL

 , with pii = 1 −
∑
j,i

pi j. (1)

The state process Rt follows the Markov property. Therefore the current state Rt at time t depends on the past only
through the most recent value Rt−1. The probability of being in regime j at time t + m starting from regime i at time t
is given by

P(Rt+m = j | Rt = i) = (P′)m · ei, (2)

where P′ denotes the transpose of P and ei denotes the ith column of the identity matrix.
Definitions of the separate regimes can be arbitrarily chosen depending on the modeling needs. However, in

this paper we will focus on two commonly used specifications. The first one assumes that the process Xt is driven
by independent regimes defined in one of two ways: as a mean-reverting AR(1) process or an i.i.d. sample with a
specified distribution. In the second specification Xt is described by an AR(1) model with only parameters changing
between different regimes.

Recall that the AR(1) time series model is defined as:

Xt+1 = α + (1 − β)Xt + σϵt, (3)

where ϵt ∼ N(0, 1), i.e. it is a standard Gaussian random variable. Note, that (3) is a discrete time version of a
continuous process given by the stochastic differential equation (SDE)

dXt = (α − βXt)dt + σdWt (4)

known as the Vasiček (1977) model.

2.2. Calibration

Calibration of regime-switching models with an observable state process simplifies to the problem of estimating
separate regime’s parameters. In case of MRS models, though, it is not straightforward, since the state process is latent
and not directly observable. In this paper we use the Expectation-Maximization (EM) algorithm that was first applied
to MRS models by Hamilton (1990) and later refined by Kim (1994). It is a two-step iterative procedure, reaching a
local maximum of the likelihood function. The steps are as follows

• Step 1 For a parameter vector θ compute the conditional probabilities P(Rt = j|x1, ..., xT ; θ) - the so called
’smoothed inferences’ - for the process being in regime j at time t.

• Step 2 Calculate new and more exact maximum likelihood estimates of θ using the likelihood function weighted
with the smoothed inferences from step 1.

For a detailed description of the estimation algorithm see Kim (1994) and Janczura and Weron (2010).
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3. Goodness-of-fit testing

In this section we provide a goodness-of-fit technique, that can be applied to evaluate the fit of regime-switching
models. It is based on the Kolmogorov-Smirnov (K-S) goodness-of-fit test and verifies whether the null hypothesis
H0 that observations come from the distribution specified by the model cannot be rejected. The procedure can be
easily adapted to other empirical distribution function (edf) type tests, e.g. Anderson-Darling. Note, that proofs of all
lemmas and theorems given in this section are moved to the Appendix.

3.1. Testing in case of observable state process
First, we focus on the independent regimes specification. Provided that the values of the state process Rt are known,

observations can be split into separate subsamples related to each of the regimes. Namely, subsample j consists of
all values Xt satisfying Rt = j. The regimes are independent from each other, but still the i.i.d. condition among
subsamples must be ensured. Therefore the mean-reverting regime observations are exchanged with their respective
residuals. Precisely, the following transformation is applied to each pair of consecutive AR(1) observations

h(x, y, k) =
x − (1 − β)ky − α 1−(1−β)k

β

σ
√

1−(1−β)2k

1−(1−β)2

, (5)

where α, β and σ are the model parameters, see (3).

Lemma 3.1 If H0 is true (i.e. the sample is generated from the theoretical distribution) transformation h(Xt+k, Xt, k)
applied to consecutive observations from the mean-reverting AR(1) regime leads to a sample of independent and
N(0, 1) distributed random variables.

Observe that transformation h(Xt+k, Xt, k) is based on subtracting the conditional mean from Xt+k and standardiz-
ing it with the conditional variance. Indeed, (1 − β)kXt + α

1−(1−β)k

β
is the conditional expected value of Xt+k given

(X1, X2, ..., Xt) and σ2 1−(1−β)2k

1−(1−β)2 is the respective conditional variance.
Note, that for models described by a more general SDE

dXt = µ(Xt)dt + σ(Xt)dWt (6)

a transformation similar to (5) can be derived. Using the Euler scheme and rearranging terms of formula (6), we get
that

ϵt−∆t,t =
Xt − Xt−∆t − µ(Xt−∆t)∆t

√
∆tσ(Xt−∆t)

(7)

has the standard Gaussian distribution. However, since the Euler scheme is an approximation of a continuous process,
(7) is valid only for small ∆t (for details on errors of the Euler scheme see e.g. Bally and Talay, 1996). In contrast,
transformation (5) is exact.

Transformation (5) ensures that the subsample containing observations from the mean-reverting regime is i.i.d.
Since other regimes are i.i.d. by definition, standard edf tests can be applied. Moreover, combining all subsamples
yields an i.i.d. sample coming from a distribution being a mixture of normal and model-specified laws. The cumulative
distribution function is given by

F(x) =
L∑

j=1

P(R = j)F j(x), (8)

where P(R = j) is the probability of the process being in regime j and F j(x) is the cumulative distribution func-
tion (cdf) related to regime j. Note, that for the mean-reverting AR(1) regime F j(x) is the standard Gaussian cdf.
Therefore, not only for separate regimes, but also for the whole model the goodness-of-fit can be tested.

Now, we focus on the case when the model dynamics is described by the AR(1) process with only parameters
changing between regimes. Namely, given that the process Xt is in the jth regime at time t, we have that

Xt = α j + (1 − β j)Xt−1 + σ jϵt. (9)
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Similarly, as in the independent regimes case, the testing procedure is based on extracting the residuals of the AR(1)
process (9). Indeed, observe that the transformation h(Xt, Xt−1, 1), (5), with parameters αRt , βRt and σRt corresponding
to the current value of the state process Rt, yields an i.i.d. N(0, 1) distributed sample. Thus, the standard edf type tests
can be applied.

3.2. Testing in case of latent state process

In the standard goodness-of-fit testing based on the empirical distribution function (edf) each observation is taken
into account with weight 1

n (i.e. proportionally to the size of the sample). However, in MRS models the state process
is latent. The estimation procedure (the EM algorithm) only yields the probabilities that a certain observation comes
from a given, say jth, regime. Moreover, in the resulting model distribution each observation is, in fact, weighted with
the corresponding probability. Therefore, similar approach should be used in a testing procedure. In the following we
introduce a weighted empirical distribution function (wedf) concept and employ it to goodness-of-fit testing.

Definition 3.1 For a sample of observations X1, X2, ..., Xn and corresponding weights w1, ...,wn, such that 0 ≤ wi ≤
M, ∀i=1,...,n, the weighted empirical distribution function (wedf) is defined as:

Fn(t) =
n∑

i=1

wiI{Xi<t}∑n
i=1 wi

, (10)

where I is the indicator function.

The idea of the weighted empirical distribution function appears in literature in different contexts. Maiboroda (1996,
2000) applied it to the problem of estimation and testing for homogeneity of components of mixtures with varying
coefficients. Withers and Nadarajah (2010) investigated properties of distributions of smooth functionals of Fn(t). In
both approaches weights were assumed to fulfill the condition

∑n
i=1 wi = n. Different choice of weights was given by

Huang and Brill (2004). They proposed the level-crossing method to find weights improving efficiency of the edf in
the distribution tails. Yet another approach employing weighted distribution is the generalized (weighted) bootstrap
technique, see e.g. Haeusler et al. (1991), where a specified random weights are used to improve resampling method.
In this paper the weighted empirical distribution function is applied to testing goodness-of-fit of regime-switching
models in case when observations cannot be unambiguously classified to one of the regimes. The only restrictions
imposed on the choice of weights are the ones guarantying that Fn(t) is an unbiased and consistent estimator of F(t),
as stated in the following lemma.

Lemma 3.2 If ∀i∈N 0 ≤ wi ≤ M and lim
n→∞

n∑
i=1

wi = ∞, then the weighted empirical distribution function Fn(t) is an

unbiased and consistent estimator of the theoretical cumulative distribution function F(t).

The following theorem yields a generalization of the K-S test to the case of the weighted empirical distribution
function (wedf).

Theorem 3.1 If X1, X2, ... are independent, ∀i∈N Var(Xi) < ∞, 0 ≤ wi ≤ M, lim
n→∞

n∑
i=1

w2
i = ∞, and the theoretical dis-

tribution F(t) is continuous then
∑n

i=1 wi√∑n
i=1 w2

i

sup
t∈R
|Fn(t)−F(t)| converges (weekly) to the Kolmogorov-Smirnov distribution

as n→ ∞.

The proof of Theorem 3.1 is given in the Appendix. Note, that if each wi ≡ 1, Theorem 3.1 simplifies to the result for
the standard Kolmogorov-Smirnov test (Lehmann and Romano, 2005, p. 584).

If hypothesis H0 is true than, by Theorem 3.1, the statistic

Dn =

∑n
i=1 wi√∑n

i=1 w2
i

sup
t∈R
|Fn(t) − F(t)| (11)

4



asymptotically has the Kolmogorov-Smirnov distribution KS . Therefore if n is large enough, the following approxi-
mation holds

P(Dn ≥ c|H0) ≈ P(κ ≥ c), (12)

where κ ∼ KS , and c is the critical value. Hence, the p-value for the analyzed sample (x1, x2, ..., xn) can be approxi-
mated by P(κ ≥ dn), where

dn =

∑n
i=1 wi√∑n

i=1 w2
i

max
1≤ j≤n

∣∣∣Fn(x j) − F(x j)
∣∣∣ (13)

is the test statistic. Note that, for a given value of dn, P(κ > dn) is the standard Kolmogorov-Smirnov test p-value, so
the K-S test tables can be easily applied in the wedf approach.

Theorem 3.1 is especially useful in case of MRS models. Note, that if the state process Rt is a Markov chain with
no transient states and wi = P(Ri = j), the assumptions of Theorem 3.1 are satisfied. Goodness-of-fit of the individual
regimes, as well as, of the whole model can be verified. Again, the mean-reverting AR(1) regime is subjected to
a similar transformation as (5). If only parameters change between regimes, see (9), the transformation (5) applies
directly with k = 1 and parameters αRt , βRt , andσRt corresponding to the current value of the state process Rt. However,
in case of independent regimes and latent state process the calculation of the conditional mean and variance is not
straightforward and, hence, transformation (5) has to be modified. Denote the mean reverting regime observation at
time t by Xt,MR. Observe that, from (3), Xt,MR has a Gaussian distribution. Its conditional mean and variance, given the
previous observations xt−1 = (x1, x2, ..., xt−1) are equal to α+ (1−β)E(Xt−1,MR|xt−1) and (1−β)2Var(Xt−1,MR|xt−1)+σ2,
respectively. Therefore

g(Xt,MR, xt−1) =
Xt,MR − α − (1 − β)E(Xt−1,MR|xt−1)√

(1 − β)2Var(Xt−1,MR|xt−1) + σ2
(14)

has the standard Gaussian distribution. The values E(Xt−1,MR|xt−1) and Var(Xt−1,MR|xt−1) can be calculated as stated
in the following lemma.

Lemma 3.3 For the mean-reverting AR(1) regime observations Xt,MR the following equalities hold

E(Xt,MR|xt) = P(Rt = MR|xt)xt + P(Rt , MR|xt)
[
α + (1 − β)E(xt−1,MR|xt−1)

]
, (15)

E(X2
t,MR|xt) = P(Rt = MR|xt)x2

t + P(Rt , MR|xt)
[
α2 + 2α(1 − β)E(Xt−1,MR|xt−1) +

+(1 − β)2E(X2
t−1,MR|xt−1) + σ2

]
. (16)

Note, that if k is such a number that P(Rt−1 = MR|xt−1) = P(Rt−2 = MR|xt−2) = ... = P(Rt−k+1 = MR|xt−k+1) = 0 and
P(Rt−k = MR|xt−k) = 1, then g leads to the transformation (5), i.e. g(Xt,MR, xt−1) = h(Xt, j, xt−k, j, k).

The values P(Rt = j|xt) are calculated during the EM estimation procedure. To test, if observations (x1, x2, ..., xn)
come from the distribution F j (Gaussian for mean-reverting regime and model-specified distributions for the other
regimes), it is enough to calculate dn according to formula (13), with w j

i = P(Ri = j), i = 1, 2, ..., n, and apply
approximation (12). In the mixture case (8) the procedure is similar, but the tested sample consists of L sequences
(x j

1, x
j
2, ..., x

j
n) and corresponding weights (w j

1,w
j
2, ...w

j
n), j = 1, ..., L, where x j

i is the value related to regime j (i.e.
transformed data for the mean-reverting regime and sample observations for the other regimes).

4. Simulations

In this section we check the performance of the procedure introduced in section 3.2. We generate 10000 trajectories
of the MRS model with two independent regimes – one driven by an AR(1) process (3) and a second described by an
independent sample following the Gaussian law with mean m and variance s2, N(m, s2). The length of each trajectory
is 2000 observations. The simulation study is performed for two different sets of parameters, see Table 1 for details.
Observe that regimes of MRS models are not directly observable and, hence, the standard edf approach can be used
only if some identification of the state process is performed. A natural choice is to relate each observation with the
most probable regime by letting Rt = j if P(Rt = j) > 0.5. We call this approach ewedf (equally-weighted distribution
function). We apply the ewedf, as well as, the wedf-based goodness-of-fit test and calculate the percentage of rejected
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Table 1: Parameters of simulated trajectories of a MRS model with AR(1) base regime dynamics and an independent N(m, s2) distributed regime.
Parameters Probabilities

α β σ2 m s2 p11 p22

Sim #1 10.0 0.3 10.00 42 2.0 0.7 0.4
Sim #2 0.9 0.2 0.01 3 0.5 0.5 0.5

Table 2: Percentage of rejected hypotheses H0 at the 5% significance level calculated from 10000 simulated trajectories with parameters given in
Table 1. The results of the K-S test based on the ewedf, as well as, the wedf approach are reported independently for the two regimes and the whole
model.

ewedf wedf
Regime AR(1) N(m, s2) Model AR(1) N(m, s2) Model
Sim #1 0.2522 0.0831 0.7727 0.0553 0.0557 0.0410
Sim #2 0.1004 0.5180 0.3452 0.0535 0.0539 0.0441

hypotheses H0 at the 5% significance level. The results are reported in Table 2. Clearly all of the obtained values are
close to the significance level only in case of the wedf test. The values obtained for the ewedf-based test are far from
the expected level of 5%. This simple example clearly shows that in case of MRS models the wedf approach should
be used.

In Figure 1 we illustrate different types of empirical distribution functions. The wedf and ewedf functions are
compared with the true edf. Note, that the edf can be calculated only when the simulated state process is known.
However, when dealing with the real data, the state process is latent and, hence, the standard edf cannot be calculated.
The distribution functions are calculated separately for the two regimes of the trajectory of the MRS model, see Sim #1
in Table 1 for parameter details. Observe that, while the wedf function replicates the true edf quite well, the ewedf
approximation is not that good. This is in compliance with the rejection percentage given in Table 2.

5. Application to electricity spot prices

Now, we are ready to apply the new goodness-of-fit technique to electricity price models. We analyze the mean
daily (baseload) day-ahead spot prices from two major power markets: the PJM Interconnection (PJM; U.S.) and the
European Energy Exchange (EEX; Germany). For each market the sample totals 1827 daily observations (or 261 full
weeks) and covers the 5-year period January 5, 2004 - January 4, 2009.

It is well known that electricity prices show strong seasonality (on the annual, weekly and daily level), mean
reversion, high volatility and abrupt short-lived price changes called spikes (Eydeland and Wolyniec, 2003; Weron,
2006). Therefore we assume that the electricity price, Pt, is represented by a sum of two independent parts: a
predictable (seasonal) component ft and a stochastic component Yt , i.e. Pt = ft + Yt. Moreover, as in Huisman
and de Jong (2003), we model log-prices instead of prices themselves and let Xt = log(Yt) be driven by a Markov
regime-switching model with mean-reverting, see (3), base regime (Rt = 1) and i.i.d. Gaussian distributed spikes
(Rt = 2).

Following Weron (2009) and Janczura and Weron (2010) the deseasonalization is conducted in three steps. First,
the long term trend Tt is estimated from daily spot prices Pt using a wavelet filtering-smoothing technique (for details
see Trück et al., 2007; Weron, 2006). The price series without the long-term seasonal trend is obtained by subtracting
the Tt approximation from Pt. Next, the weekly periodicity st is removed by subtracting the ’average week’ calculated
as the arithmetic mean of prices corresponding to each day of the week (U.S. and German national holidays are treated
as the eight day of the week). Finally, the deseasonalized prices, i.e. Pt − Tt − st, are shifted so that the minimum of
the new process is the same as the minimum of Pt. The resulting deseasonalized time series Xt = log(Pt − Tt − st) can
be seen in Figure 2. The estimated model parameters are presented in Table 3.

For both analyzed datasets the K-S test based on the wedf approach is performed. Since the state process is latent,
the standard edf-type goodness-of-fit techniques are not applicable. The obtained p-values are reported in Table 4.
For the PJM market the model yields a satisfactory fit only for the spike distribution (regime). Hypothesis about the
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Figure 1: Comparison of the weighted empirical distribution function (wedf), the equally-weighted empirical distribution function (ewedf) and
the standard empirical distribution function (edf) calculated for a sample trajectory of a MRS model with two independent regimes. Distribution
functions of the i.i.d. Gaussian regime are given in the left panel, while of the residuals of the AR(1) regime in the right panel.

Table 3: Parameters of the 2-regime model with mean reverting base regime and independent Gaussian distributed spikes fitted to PJM and EEX
log-prices.

Base regime Spike regime Probabilities
α β σ2 µ s2 p11 p22 P(Rt = 1) P(Rt = 2)

PJM 0.60 0.15 0.01 4.26 0.14 0.9808 0.8349 0.8958 0.1042
EEX 0.99 0.26 0.02 3.79 0.38 0.9816 0.8321 0.9015 0.0985

base regime and the model distribution can be rejected at the 5% significance level. The EEX log-prices yield a better
fit, as none of the tests can be rejected at the 5% significance level.

6. Conclusions

In this paper we have proposed a goodness-of-fit testing scheme for regime-switching models. We have analyzed
two different classes of models – with an observable and a latent state process. For both specifications we described the
testing procedure. The latent state process case involved introduction of the weighted empirical distribution function
(wedf) concept and a generalization of the Kolmogorov-Smirnov test.

We have focused on two commonly used specifications of regime-switching models – one with dependent autore-
gressive states and a second with independent autoregressive or i.i.d. regimes. Nevertheless, the proposed approach
can be easily applied to other specifications of regime-switching models. The performed simulation study has con-
firmed the good performance of the wedf approach. Moreover, we have applied the wedf testing technique to verify
the statistical fit of a sample Markov regime-switching model to electricity spot price data.

Table 4: p-values of the K-S test based on the wedf approach for both datasets.
Base regime Spike regime Model

PJM 0.0160 0.3066 0.0401
EEX 0.0558 0.1030 0.0687
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Figure 2: Calibration results for the 2-regime model with mean reverting base regime and independent Gaussian distributed spikes fitted to PJM
(left panel) and EEX (right panel) log-prices. Observations with P(Rt = 2) > 0.5, i.e. spikes, are denoted by dots. The lower panels display the
probability P(Rt = 2).

Appendix A.

Proof of Lemma 3.1. Assume, that Rt+k = j,Rt+k−1 , j, ...,Rt+1 , j,Rt = j, where j stands for the mean-reverting
regime. From (3) we have

Xt+k = α
1 − (1 − β)k

β
+ (1 − β)kXt + σ

[
ϵt+k + (1 − β)ϵt+k−1 + ... + (1 − β)k−1ϵt

]
. (A.1)

Since ϵt, ..., ϵt+k are independent and normally distributed, the linear combination σ[ϵt+k+(1−β)ϵt+k−1+...+(1−β)k−1ϵt]
is also Gaussian. Moreover

σ[ϵt+k + (1 − β)ϵt+k−1 + ... + (1 − β)k−1ϵt]
d
= σ

√
1 − (1 − β)2k

1 − (1 − β)2 ϵt,t+k, (A.2)

where ϵt,t+k ∼ N(0, 1) and d
= denotes equality of distributions. The subscript (t, t + k) means that ϵt,t+k is a combination

of ϵt, ..., ϵt+k. Thus

Xt+k
d
= α

1 − (1 − β)k

β
+ (1 − β)kXt + σ

√
1 − (1 − β)2k

1 − (1 − β)2 ϵt,t+k. (A.3)

Rearranging the terms of (A.3) we get that h(Xt+k, Xt, k) has the standard Gaussian distribution. Moreover, inde-
pendence of h(Xt+k, Xt, k) and h(Xs+l, Xs, l), for s < s + j < t < t + k is implied by the independence of ϵt,t+k and
ϵs,s+l. �

Proof of Lemma 3.2. First, observe that

E(I{X<t}) = P(X < t) = F(t). (A.4)

Thus, from the definition of Fn(t) we have that

E[Fn(t)] =
n∑

i=1

wiE(I{Xi<t})∑n
i=1 wi

=

n∑
i=1

wiF(t)∑n
i=1 wi

= F(t) (A.5)

and Fn(t) is an unbiased estimator of F(t). Moreover,

Var(I{X<t}) = E(I{X<t}) − [E(I{X<t})]2 = F(t)[1 − F(t)], (A.6)

8



implying that

Var[Fn(t)] =
∑n

i=1 w2
i Var(I{Xi<t})(∑n
i=1 wi

)2 =

∑n
i=1 w2

i(∑n
i=1 wi

)2 F(t)[1 − F(t)]. (A.7)

Finally, from the Chebyshev’s inequality (Billingsley, 1986, p. 65), for any ϵ > 0 we have

P(|Fn(t) − E[Fn(t)]| > ϵ) ≤ Var[Fn(t)]
ϵ2

=
F(t)[1 − F(t)]

∑n
i=1 w2

i

ϵ2
(∑n

i=1 wi

)2 ≤
F(t)[1 − F(t)]

∑n
i=1 Mwi

ϵ2
(∑n

i=1 wi

)2 =

=
F(t)[1 − F(t)]M
ϵ2
∑n

i=1 wi
(A.8)

and Fn(t) converges in probability to F(t), if lim
n→∞

n∑
i=1

wi = ∞. Therefore Fn(t) is a consistent estimator of F(t).
�

Proof of Theorem 3.1. First, note that F(t) ∈ {0, 1} implies Fn(t) = F(t) and supt∈R |Fn(t)−F(t)| = supt∈D |Fn(t)−F(t)|,
where D = R\{t : F(t) = 0 ∨ F(t) = 1}. Therefore in the following we will limit ourselves to the case 0 < F(t) < 1.

Second, observe that the distribution of supt∈R |Fn(t) − F(t)| does not depend on F. Indeed, since Ui = F(Xi) has
the uniform distribution, P(supt∈R |Fn(t) − F(t)| ≤ x) = P(supt∈R |

∑n
i=1

wiI{Ui<y}∑n
i=1 wi

− y| ≤ x), where y = F(t).
Next, note that the sequence of random variables Yi = wiI{Xi<t} satisfies the Lindeberg condition (Billingsley, 1986,

p.369). Let S 2
n =
∑n

i=1 Var(Yi) and µi = E(Yi), where Var(Yi) = F(t)[1 − F(t)]w2
i and E(Yi) = wiF(t), see equations

(A.6) and (A.4), respectively. The Lindeberg condition yields

1
S 2

n

n∑
i=1

∫
{|Yi−µi |>δS n}

(Yi − µi)2dP =
1

S 2
n

n∑
i=1

w2
i

∫
{wi |I{Xi<t}−F(t)|>δS n}

[
I{Xi<t} − F(t)

]2 dP ≤

≤ 1
S 2

n

n∑
i=1

w2
i P
(
wi|I{Xi<t} − F(t)| > δS n

)
max
{
F(t)2, [1 − F(t)]2

}
≤

≤
max
{
F(t)2, [1 − F(t)]2

}
[1 − F(t)] F(t)

max
1≤i≤n

P
(
wi|I{Xi<t} − F(t)| > δS n

)
.

Since wi|I{Xi<t} − F(t)| ≤ M and the fact that lim
n→∞

n∑
i=1

w2
i = ∞ implies lim

n→∞
S n = ∞ we have

∃n0∀n>n0∀1≤i≤n P
(
wi|I{Yi<t} − F(x)| > δS n

)
= 0. (A.9)

Therefore, the Lindeberg condition is satisfied:

lim
n→∞

1
S 2

n

n∑
i=1

∫
{|Yi−µi |>δS n}

(Yi − µi)2dP = 0. (A.10)

This ensures that the Central Limit Theorem holds for Y1,Y2, ... and∑n
i=1 wiI{Xi<t} −

∑n
i=1 wiF(t)√

F(t)[1 − F(t)]
∑n

i=1 w2
i

d→ N(0, 1). (A.11)

The latter is equivalent to ∑n
i=1 wi√∑n

i=1 w2
i

[Fn(t) − F(t)]
d→ N(0, F(t)[1 − F(t)]). (A.12)
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Recall that the Kolmogorov-Smirnov distribution KS is a distribution of sup0≤y≤1 |B(y)|, where B(y) is a Brownian
bridge, i.e. B(y) ∼ N(0, y(1 − y)), see e.g. Lehmann and Romano (2005, p. 585). Therefore, putting y = F(t) and
taking the supremum, we obtain that ∑n

i=1 wi√∑n
i=1 w2

i

sup
t∈R
|Fn(t) − F(t)| d→ KS . (A.13)

�

Proof of Lemma 3.3. Let Xt = (X1, X2, ..., Xt). Observe that

Xt,MR = IRt=MRXt + IRt,MR[α + (1 − β)Xt−1,MR + σϵt], (A.14)

where ϵt has the standard Gaussian distribution. Thus,

E(Xt,MR|Xt) = P(Rt = MR|Xt)Xt +

+P(Rt , MR|Xt)
[
α + (1 − β)E(Xt−1,MR|Xt,Rt , MR) + σE(ϵt |Xt,Rt , MR)

]
=

= P(Rt = MR|Xt)Xt + P(Rt , MR|Xt)
[
α + (1 − β)E(Xt−1,MR|Xt−1) + σE(ϵt)

]
=

= P(Rt = MR|Xt)Xt + P(Rt , MR|X1, ..., Xt)
[
α + (1 − β)E(Xt−1,MR|Xt−1)

]
.

Analogously,

E(X2
t,MR|Xt) = P(Rt = MR|Xt)X2

t + P(Rt , MR|Xt)E
[
(α + (1 − β)Xt−1,MR + σϵt)2|Xt,Rt , MR

]
=

= P(Rt = MR|Xt)X2
t + P(Rt , MR|Xt)

{
2σE

[
(α + (1 − β)Xt−1,MR)ϵt |Xt,Rt , MR

]
+

+E
[
α2 + 2α(1 − β)Xt−1,MR + (1 − β)2X2

t−1,MR|Xt,Rt , MR
]
+ σ2E[ϵ2t |Xt,Rt , MR]

}
.

From the law of iterated expectation and basic properties of conditional expected values:

E
[
(α + (1 − β)Xt−1,MR)ϵt |Xt−1

]
= 0, (A.15)

yielding

E(X2
t,MR|Xt) = P(Rt = MR|Xt)X2

t +

+P(Rt , MR|Xt)
[
α2 + 2α(1 − β)E(Xt−1,MR|Xt−1) + (1 − β)2E(X2

t−1,MR|Xt−1) + σ2
]
.

Finally, substituting variables (X1, X2, ..., Xt) with their observed values (x1, x2, ...xt) completes the proof. �
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