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Abstract
A voting situation is given by a set of voters and the rules of legislation

that determine minimal requirements for a group of voters to pass a mo-
tion. A priori measures of voting power, such as the Shapley-Shubik index
and the Banzhaf value, show the influence of the individual players. We
used to calculate them by looking at marginal contributions in a simple
game consisting of winning and losing coalitions derived from the rules of
the legislation.

We introduce a new way to calculate these measures directly from the
set of minimal winning coalitions. This new approach logically appealing
as it writes measures as functions of the rules of the legislation. For certain
classes of games that arise naturally in applications the logical shortcut
drastically simplifies calculations. The technique generalises directly to
all semivalues.

Keywords. Shapley-Shubik index, Banzhaf index, semivalue, mini-
mal winning coalition, Möbius transform.

JEL codes: C71, D72

1 Introduction
The distribution of power among voting parties remains the central question of
the study of voting situations. Here power is the ability to change decisions by
being critical or swing voters to one or more coalitions. The Shapley-Shubik and
Banzhaf-Penrose measures are probably the most popular of all: Shapley and
Shubik (1954) consider all possible orderings of voters and look at the proportion
of swing voters among them, whereas Penrose (1946) and Banzhaf (1965) simply
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observe for each voter the number of times he is pivotal in the game. We study
the calculation of these measures.

A common point of the Shapley-Shubik and Banzhaf-Penrose measures is
that they can be expressed in terms of marginal contributions of the players,
which are weighted according to coefficients that depend on the measure not on
the particular game at hand. This feature is shared by other semivalues: values
characterised by the transfer, anonymity and null player axioms, but not by
all measures. The Deegan-Packel (Deegan and Packel, 1978) and public good
(Holler and Packel, 1983) indices are notable exceptions.

In the context of cooperative game theory, Harsanyi (1963) considers for
any n-person game a set of bargaining subgames played by the members of
each possible subset. The Harsányi dividends, a kind of discrete derivative of
the game are the pure contributions of cooperation (Billot and Thisse, 2005) in
the given subset. This leads to another representation of the game its Möbius
transform (Grabisch et al., 1998, and others).

We establish a strong link between minimal winning coalitions of a voting
game, and its Möbius transform. By expressing any voting game as an alter-
nating sum with a length corresponding to the cardinality of the set of minimal
winning coalitions, we obtain a new representation of semivalues that is based
on minimal winning coalitions only. Indeed, we want to stress that although
the set of winning coalitions determines the set of minimal winning coalitions
and conversely, only the minimal winning coalitions should come into play in
the calculation of acceptable indices, as it it is the case for the Deegan-Packel
and Holler-Packel indices.

The paper is organized as follows. In Section 2, the basic notions about vot-
ing games are briefly reviewed, and the concept of semivalue is introduced. We
also recall the Shapley-Shubik and Banzhaf indices. In Section 3, we explain the
Möbius transform of a game, presenting both the theory and the intuition. We
present our contribution, that is, the direct formulae using the sole information
of the set of minimal winning coalitions in Section 4. It is shown that such a
(nonnormalized) expression characterizes the class of semivalues. In Section 5
we give several applications, and show the effectiveness of our formulae in these
contexts. Finally, some concluding remarks, including literary comparisons are
made in Section 6.

2 Voting games and power indices
The purpose of this section is to introduce the notation and primitives of our
setup. We begin by clarifying some mathematical notation to avoid confusion
although these will be familiar to most readers. Then we introduce games, voting
games, power and power measures. There exists a plethora of power measures:
we can tell which of these is more fit for a particular problem by looking at
their properties. At the end we present a well-known characterisation for the
two best known measures.
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Let N denote the set of positive integers, R the real numbers, and R+ the non
negative numbers in R. If no ambiguity occurs, the cardinality of sets S, T, . . . is
denoted by lower case letters s, t, . . ., and we omit curly brackets for singletons,
so we write i for {i}.

We denote the set of players by N = {1, . . . , n} and the set of possible
coalitions of players by 2N . A cooperative transferable utility (TU) game over
N is any function v : 2N → R such that v(∅) = 0, where v(S) represents the
collective payoff that the players in coalition S can achieve if it forms.

We are interested in voting games that are simple, monotone and proper.
Simple games can only take the values 1 and 0 corresponding to winning and
losing coalitions. In monotone games additional players can only add to the
value of the coalition, that is v(S) ≤ v(T ) for every coalition S ⊆ T and
proper. Finally we assume that the assembly cannot make two or more decisions
simultaneously: v(S)+v(N \S) ≤ 1. Let GV (N) denote the set of voting games
on N . In voting games it is common to refer to players as voters so we use the
terms interchangeably.

A voter i is a swing for a coalition S if S ∪ i is winning but S is not. A
winning coalition S is minimal if every voter i ∈ S is a swing for S \ i. Let
W(v) and M(v) respectively denote the set of winning and minimal winning
coalitions of v. We drop the reference to v where no ambiguity occurs.

Games with |M(v)| = 1 are called unanimity games. In the unanimity game
uS he agreement of the members of S on an issue is necessary and sufficient to
pass a proposal. Unanimity games are used also beyond the voting literature.

A weighted voting game is a voting game entirely determined by a vector
[q;w1, . . . , wn], where wi ∈ N is the weight of the voter i, and q > 1

2
∑n
i=1 wi

is the quota. This quota is the condensed form of the rules of the legislation.
When the total weigths of a coalition reach this threshold, it can pass a bill,
i.e., S is winning iff

∑
i∈S wi ≥ q. For instance, in an assembly of parties, the

majority rule states that a coalition is winning if the sum of the votes (weights)
of all members of the coalition is greater than the half of the total of weights.

A measure of voting power is any mapping φ : GV (N)→ Rn+, where φi(v) is
a measure of the voter i’s influence in the game v. The bigger the value φi(v),
the more significant is the intrinsic power of representation of voter i in game
v. For the moment we leave the word significance ambiguous, all we can say
now is that its meaning is linked with the choice of φ, or rather its properties.
A power measure is a power index if the φi(v)’s add up to 1.

Such solutions concepts are not limited to voting games – we can find their
more general counterparts in non-simple TU games that are neither proper nor
monotone. In that context, the term is value, and values are employed to find
the fair allocation of gains among participants. For instance, the value Sh due
to Shapley (1953) assigns to each player his average marginal contribution when
forming the grand coalition in a random order, whereas the Banzhaf value Bz is
simply each player’s average contribution to the worths of embedding coalitions.
Mathematically, for any TU-game v, and any player i ∈ N , we have
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Shi(v) =
∑

S⊆N :i∈S

(s− 1)!(n− s)!
n! (v(S)− v(S \ i)), (1)

Bzi(v) =
∑
S⊆N :i∈S(v(S)− v(S \ i))

2n−1 . (2)

Applying the first to a voting game v Shapley and Shubik (1954) define the
Shapley-Shubik index of voter i as the probability that i is a swing in a given
increasing sequence (∅, {i1}, {i1, i2}, . . . , N), in other words the probability that
the winning coalitions of the sequence are precisely those containing i.

Now let ηi(v) be the number of coalitions for which i is a swing in v. Banzhaf
(1965) defined the Banzhaf index (also called Banzhaf-Coleman index) βi(v) as
the ratio of swings of i over the total number of swings.

In both cases, it follows that the Shapley-Shubik index and the Banzhaf
power of measure are also mathematically given by (1) and (2). Moreover, for
a given game v ∈ GV (N), the Banzhaf index β(v) is proportional to Bz(v).

βi(v) = ηi(v)∑n
j=1 ηj(v)

. (3)

Having several solutions to a problem is just as bad as having none: Which
of these measures is the most appropriate? The fundamental idea to study full
characterisations is to translate the above complex mathematical formulae into
elementary properties and if these properties or axioms uniquely determine a
measure, selecting a measure is equivalent to shopping among the axioms. The
characterisations of the Shaple-Shubik index and the Banzhaf measure turn out
to be rather similar. In the following we briefly recall below the well-known
axioms.

Null player axiom (Null): for all games v ∈ GV (N), if i ∈ N
is a null player, i.e., i is a swing for no coalition S ⊆ N \ i, then
φi(v) = 0.

Anonymity axiom (Anon): for all games v ∈ GV (N), for all
permutation σ on N , and any i ∈ N , φσ(i)(v) = φi(v ◦ σ),

where v ◦ σ(S) is defined to be v({σ(i) : i ∈ S}). In words, the power of the
voters should not depend on their labelling.

Efficiency (Eff): for all games v ∈ GV (N),
∑n
i=1 φi(v) = 1.

The following property applies to general TU-games, it does not really make
sense for voting games. Nevertheless, we present it, due to its utility in the
sequel.
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Linearity (Lin): for all TU-games v and w, and scalars a, b, then
φ(a · v + b · w) = aφ(v) + b φ(w),

where operations + and · of the first member denote the usual sum and scalar
product in the vector space of TU-games.

Dubey (1975) overcomes the problem by introducing the transfer axiom,
revisited by Laruelle and Valenciano (2001) in the following intuitive form:

Transfer axiom (Trans): for all v, w ∈ GV (N), S ∈M(v)∩M(w),
and i ∈ N , then

φi(v)− φi(v−S) = φi(w)− φi(w−S),

where v−S is defined by W(v−S) := W(v) \ {S}. To quote the authors, “this
axiom postulates that the effect (gain or loss) on any player’s power of elimi-
nating a single minimal winning coalition from the set of winning ones is the
same in any game in which this coalition is minimal winning”.

The Shapley-Shubik index Sh is the unique index satisfying the (Null),
(Anon) (Trans) and (Eff) axioms1 whereas the Banzhaf measure Bz satisfies
(Null), (Anon), and (Trans) (or (Lin)).

A semivalue is any measure of power that satisfies the transfer (Trans),
null player (Null) and anonymity (Anon) axioms, which makes of Sh and Bz
examples of semivalues.

Alternatives of the Banzhaf index need special mention, especially those that
take the swings of voters only in the minimal winning coalition into account.
Unfortunately the Deegan-Packel and public good indices do not satisfy the
(Trans) axiom, even in their nonnormalized form so they fail to be semivalues.

3 Möbius transform and dividends
Another approach to build a power index comes down to consider how much
the players purely contribute relatively to the coalitions they belong. Harsanyi
(1963) introduced an alternative, but equivalent representation of TU-games.
This approach is based on the observation that the payoff v(S) of a coalition
S is composed of 3 parts: (i) the intrinsic value of its members, as singletons,
(ii) the added value of cooperation among subsets of these members and finally
(iii) the added value of forming S as an improvement over all existing forms
of cooperation. When put this way we can see that only item (iii) is a merit
of forming S, while the rest of the value is generated in subsets of S. This
item (iii) is referred to as the (Harsanyi) dividend of coalition S. Turning our
formula around, expressing the dividends from the payoffs and extending it to
the empty set we obtain the following definition.

1In the characterisation of the Shapley value for general TU games (Lin) replaces (Trans).
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Definition 1 Let v be a TU-game. For each coalition T , the dividend ∆v(T )
is defined, recursively, as follows.

∆v(∅) = 0,
∆v(T ) = v(T )−

∑
S(T

∆v(S) if t ≥ 1. (4)

Moreover, (4) accepts the explicit formula

∆v(T ) =
∑
S⊆T

(−1)t−sv(S), ∀T ∈ 2N . (5)

For instance, the dividend of a singleton {i} in the game v is its worth v(i)
itself (this is item (i) above), and the dividend of the coalition {i, j} is the
difference v({i, j}) − [v(i) + v(j)]. When T = {i, j, k}, one might think that
∆v(T ) would be given by v(T )− [v(i) + v(j) + v(k)]. However, this expression
must already include the dividends of each pair {i, j}, {i, k} and {j, k} to the
dividend of T .

Actually, ∆v(S) measures the pure contribution of cooperation of T (Billot
and Thisse, 2005) since one can interpret it as the “contribution of cooperation
within the coalition T independently of what cooperation brings about in all
possible subcoalitions that could have been formed before the coalition T is
determined”. This representation, namely the mapping T 7→ ∆v(T ) is also
known as the Möbius transform of the game v (Rota, 1964).

To see the equivalence of the two forms note that this is a bijective map-
ping. Given the Möbius transform ∆v it is possible to retrieve the characteristic
function v Indeed, by rewriting (4), we have, for any coalition T

v(T ) =
∑
S⊆T

∆v(S)

=
∑
S∈2N

∆v(S)uS(T ). (6)

Consequently, any cooperative game, and thus any voting game, can be
expressed as a linear combination of unanimity games. The family of unanimity
games forms a basis of the vector space of cooperative games with dividends as
coordinates.

Now, let
∑
S∈2N ∆v(S)uS be the (unique) representation of the game v as

a linear combination of unanimity games. Calculating the Shapley-Shubik or
Banzhaf measures of a player using this decomposition is actually quite simple.
First observe that

Shi(uS) = βi(uS) =
{

1
s , if i ∈ S
0, otherwise,

(7)

Bzi(uS) =
{

21−s, if i ∈ S
0, otherwise.

(8)
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As the Shapley-Shubik index and the Banzhaf measure are semivalues, by
the (Trans) axiom they can be written in terms of dividends (Owen, 1986):

Proposition 2 For all game v ∈ GV (N), and all players i ∈ N

Shi(v) =
∑

S⊆N :i∈S

∆v(S)
s

, (9)

Bzi(v) =
∑

S⊆N :i∈S
21−s∆v(S). (10)

Proof: By successively using (6), linearity2, then (7) we get

Shi(v) = Shi
( ∑
S⊆N

∆v(S)uS
)

=
∑
S⊆N

∆v(S) Shi(uS)

=
∑

S⊆N :i∈S

∆v(S)
s

.

By a similar argument, we establish (10). �

As it is underlined above, the Shapley-Shubik index provides an insight on
the interpretation of the dividends: each is equitably shared among the players
who belong to the associate coalition. By adding all these contributions for a
given player, Shi is formed.

4 Alternative formulae
Let v be a voting game in GV (N). Such a game only takes values 0 and 1,
corresponding to losing and winning coalitions. Its dividends, however may
take other integer values — how can we interpret the dividends of a voting
game? As a first answer, let us consider the Möbius transform of a unanimity
game. For any nonempty coalition S

∆uS (T ) =
{

1 if T = S,

0 otherwise.
(11)

Indeed, by applying (6) on mapping described above, we easily retrieve the
game uS . This confirms the interpretation of dividends, in the sense that in the
unanimity game uS only coalition S has a “weight” in terms of dividends.

Now consider a voting game v = uS +uS′−uS∪S′ with two minimal winning
coalitions S and S′.

2Although the transfer axiom would be more suitable, using linearity is mathematically
valid for voting games, which are particular cooperative games.
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∆v(T ) =


1 if T = S or S′,
−1 if T = S ∪ S′,
0 otherwise.

Interestingly, the dividend of coalition S ∪ S′ is the opposite of the ones of
S and S′, which can be explained by the double impact of the two (minimal)
winning coalitions on their union. This impact must be balanced by a negative
dividend since coalition S ∪ S′ has the same influence on the game than those
of S and S′: S ∪ S′ is winning but not “more winning” than S and S′.

As it is true that the dividends of v give insight on the contribution of coali-
tions of players, that is even more true about the minimal winning coalitions.
And as the calculation of the Shapley-Shubik and the Banzhaf indices are based
on the set of winning coalitions, it is also possible to compute them with the
sole information of the set of minimal winning coalitions. We propose here such
formulae.

For any family of coalitions S = {S1, . . . , Sm}, let Ŝ =
⋃m
i=1 Si.

Proposition 3 Let v be any voting game of GV (N). Then

v =
∑

S⊆M(v):S6=∅

(−1)|S|−1uŜ . (12)

Proof: Let T be any coalition, and T be the collection of all minimal winning
coalitions included in T , that is T = {M ∈ M(v) : M ⊆ T}. Note that T is
nonempty iff T ∈ W(v). Besides, for any subset S of M(v), uŜ(T ) = 1 if and
only if Ŝ ⊆ T , i.e., T includes every coalition of S. As coalitions in T are also
minimal winning, this is equivalent to have T containing every element of S,
i.e., S ⊆ T .
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Consequently, if T is winning,∑
S⊆M(v):S6=∅

(−1)|S|−1uŜ(T ) =
∑

S⊆T :S6=∅

(−1)|S|−1uŜ(T ) (13)

=
∑

S⊆T :S6=∅

(−1)|S|−1

= −
∑

S⊆T :S6=∅

(−1)|S|

= −
∑
S⊆T

(−1)|S| + 1

= −
|T |∑
k=0

∑
S⊆T :|S|=k

(−1)k + 1

= −
|T |∑
k=0

(
|T |
k

)
(−1)k + 1

= −(1− 1)|T | + 1 = 1 = v(T ),

where the first equality of the last line holds since |T | 6= 0. On the other hand,
if T is not winning, then T is empty, and the right member of (13) is still valid
but has no term, and thus vanishes, so (12) is again true, which concludes the
proof. �

The novelty is here that only the set of minimal winning coalitions is used
to express v in terms of unanimity games.

Note that linear combinations of voting games are more meaningful in co-
operative game theory, since the sum of two voting games, or a scalar times
a voting game are not in general a voting game. However, we showed that
such combinations make sense in the Proposition above. In addition, linearity
enables to establish the following result:

Lemma 4 φ : GV (N) → Rn is a semivalue if and only if one of the following
equivalent conditions holds.

1. ∃α1, . . . , αn ∈ R such that for all i, φi(v) =
∑
S⊆N :i∈S α|S| (v(S)−v(S\i)).

2. ∃β1, . . . , βn ∈ R such that for all i, φi(v) =
∑
S⊆N :i∈S β|S|∆v(S).

3. ∃γ1, . . . , γn ∈ R such that for all i, φi(v) =
∑
S⊆M(v):i∈Ŝ γ|Ŝ| (−1)|S|−1.

Furthermore

βj = γj =
n−j∑
k=0

(
n− j
k

)
αj+k, ∀j = 1, . . . , n (14)

αj =
n−j∑
k=0

(−1)k
(
n− j
k

)
βj+k, ∀j = 1, . . . , n. (15)
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As a consequence, we establish our main result.

Theorem 5 For any v ∈ GV (N), and all i ∈ N ,

Shi(v) =
∑

S⊆M(v):S6=∅

(−1)|S|−1 · 1Ŝ(i)
|Ŝ|

, (16)

Bzi(v) =
∑

S⊆M(v):S6=∅

(−1)|S|−1 · 21−|Ŝ| · 1Ŝ(i), (17)

where 1A denotes the indicator function of the set A.

Proof: The result straightforwardly follows from (7), (8) and linearity of the
power indices Sh and Bz. �

Unfortunately, this representation does not work for well-known derived in-
dices of the Banzhaf index such as the public good index, Deegan-Packel index,
Johnston index (Johnston, 1978), or Colomer-Martinez index (Colomer and
Martinez, 1995) due to their “nonlinearity”, even in nonnormalized forms.

In the formulae above, the coalitions under the form Ŝ may appear more
than once. It is possible to avoid this thanks to the Möbius transform. By
identification of the linear coefficient of uS in (12) and (6), we get:

∆v(T ) =
∑

S⊆M(v):Ŝ=T

(−1)|S|−1. (18)

Let M be the closure of M(v) with respect to the union operation. This
set can be constructed by looking at all subsets ofM(v) and taking each union.
FormallyM = {Ŝ : S ⊆M(v),S 6= ∅}. Note thatM(v) ⊆M(v) ⊆ W(v), with
strict inclusion possible on both sides. Then, for any voting game:

v =
∑

T∈M(v)

∆v(T )uT . (19)

This yet another reformulation of the game suggests an even simpler calcu-
lation of our measures. Similar formulas can be found for other semivalues.

Corollary 6 For any v ∈ GV (N), and all i ∈ N ,

Shi(v) =
∑

T∈M(v):i∈T

∆v(T )
t

, (20)

Bzi(v) =
∑

T∈M(v):i∈T

∆v(T ) · 21−t. (21)
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5 Applications
With M(v) ( W(v) possible our approach can, in some cases, simplify the
calculations drastically. In this section we show some examples that illustrate
this point.

In games where set of voters is large, butM(v) is small it is clearly preferable
to use a calculation that relies on the latter. In that case, even good algorithms
derived from classical formulae will take much longer.

Example: Let N be a large assembly of voters, partitioned into {1, 2, 3, 4}
and the rest N ′ of voters. We consider the game v with the following rules that
are necessary to pass a bill:

1. Voter 1 is a veto, i.e., in any winning coalition, 1 is present.

2. The presence of 2 and 3 is also sufficient (in addition of 1).

3. If 2 is absent, all members of N ′ must be present, jointly with 3 or 4.

We easily derive from these rules three possible minimal winning coalitions:
S = {1, 2, 3}, T = N ′ ∪ {1, 3}, and U = N ′ ∪ {1, 4}. Then by applying (16) in
Theorem 5, we get, for any i ∈ N

Shi(v) =(−1)0
(1S(i)

s
+ 1T (i)

t
+ 1U (i)

u

)
+ (−1)1

(1S∪T (i)
|S ∪ T |

+ 1S∪U (i)
|S ∪ U |

+ 1T∪U (i)
|T ∪ U |

)
+ (−1)2 1S∪T∪U (i)

|S ∪ T ∪ U |

Thus, we straightforwardly get

Sh(v) =
(1

3 + 2
n− 2 −

2
n− 1 ,

1
3 −

1
n− 1 ,

1
3 + 1

n− 2 −
2

n− 1 ,
1

n− 2 −
1

n− 1 ,

2
n− 2 −

2
n− 1 , . . . ,

2
n− 2 −

2
n− 1

)
,

that has the following asymptotic behavior (for large n’s):

Sh(v) =
(1

3 + 2
n2 ,

1
3 −

1
n
,

1
3 −

1
n
,

1
n2 ,

2
n2 , . . . ,

2
n2

)
.

In the same way, we also get:

Bz(v) =
(1

4 + 23−n,
1
4 − 22−n,

1
4 , 2

2−n, 23−n, . . . , 23−n
)
.

Note that small cardinalities of M(v) also occur for weighted games with
a large threshold. Having said that, the set M(v) can be large enough so
that considering all possible unions of elements of M(v) could take very long.
However, it is quite common that for a given weighted voting game, the set
{wi : i ∈ N} of all possible different weights is quite small, even if the number
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of players is great. We show in the following example that the set of possible
unions can be reduced to a bit larger set of combinations to explore.

Example: Let us consider a council with eight representative parties, two
of them having a weight of 4, another having a weight of 2, and all others
having weight 1, and where the two-thirds majority is required. If the parties
are numbered according to the decreasing order of their weights, this situation is
then represented by the weighted voting game v [10; 4, 4, 2, 1, 1, 1, 1, 1]. Thus, we
easily show that there are exactly 21 minimal winning coalitions, which induces
a sum over 221 (more than two million) terms in (16) and (17). However,
by identifying the coalitions in which every weight (4, 2 and 1) appears the
same number of times, we only have to consider 11 kinds of such coalitions:
{4, 4, 2}, {4, 4, 1, 1}, {4, 2, 1, 1, 1, 1}, {4, 4, 2, 1, 1}, {4, 4, 2, 1, 1, 1, 1}, {4, 4, 1, 1, 1},
{4, 4, 1, 1, 1, 1}, {4, 4, 2, 1, 1, 1, 1, 1}, {4, 2, 1, 1, 1, 1, 1}, {4, 4, 2, 1, 1, 1} and
{4, 4, 1, 1, 1, 1, 1}. By using some basic combinatorics, we can use (20) and (21)
in order to get:

Sh(v) =
(2

7 ,
2
7 ,

5
42 ,

13
210 ,

13
210 ,

13
210 ,

13
210 ,

13
210

)
,

Bz(v) =
(29

64 ,
29
64 ,

9
64 ,

3
32 ,

3
32 ,

3
32 ,

3
32 ,

3
32

)
.

6 Discussion
Ever since the power measures have been around theorists have been looking
for efficient ways of expressing them.

Felsenthal and Machover (1996) proposed an alternative representation of
the Shapley-Shubik index by introducing roll-call: every voter is assumed to
vote “yea” or “nay” with equal probability, and all n! possible orders in which
the voters may be called are also assumed to be equiprobable. Thus, there are
2nn! distinct roll-call patterns, and here, for a given voting game, the pivotal
voter relatively to roll-calls is the one whose vote finally decides the outcome.
The result obtained is not so much a new formula, but quite another model that
leads to the Shapley-Shubik index. We here do not propose a new model but
new formulae for semivalues which bring new insight on the function of minimal
winning coalitions.

Ours is not the only approach to express power measures in terms of winning
coalitions. Kirsch and Langner (to appear) also emphasise the importance of
building a power index this way. However, their expressions are not quite as
straightforward as ours, and the way they have been obtained is much longer,
making use of much complicated combinatorics. Introducing the Möbius trans-
form in our approach does not only stress the important link with the set of
minimal winning coalitions, but also simplifies the connection between these
issues.
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