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Abstract

We provide two new indices of efficiency for determining the degree of coherence in an
agent’s consumption decisions. We analyze to which extent they improve the efficiency
displayed by Varian’s [16] index. We report on the results of a Montecarlo experiment
that confirms that strict improvements of Varian’s vector-index appear on a regular basis.

1. Introduction

In the theory of consumer behavior many non-parametric tests are designed to check
for an agent’s optimizing behavior without any functional restriction on the demand.
For finite sets of data, Afriat [1] and Varian [15] outstand among a large literature.
After Afriat-Varian it is known that violations of the Generalized Axiom of Revealed
Preference (GARP) mean violations of the usual neoclassical model of demand choice.
In experimental economics this has permitted to find contradictions to the standard
demand model (cf., e.g., Battalio et. al. [3], Koo [9], Sippel [12], and Mattei [10, 11]).

Nonetheless, apart from intrinsic lack of rationality many other factors may be a cause for
inconsistency with the ezact optimizing model: measurement errors, non-observability of
all consumption choices, rationing in the available quantities, time-evolving preferences,
.... Afriat’s [2] seminal contribution investigates the degree of coherence in a finite list
of demand observations. by using a uniform bound for goodness-of-fit of the agent’s
behavior. Varian [16] proposes the use of vector-indices instead, a line followed by e.g.,
Famulari [6], Gross [7], Swofford and Withney [13] among others.
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In this work we provide two new vector-indices of efficiency that allow to determine the
degree of coherence in an agent’s consumption decisions. Our construction is algorith-
mic and computationally efficient. These indices improve the performance of Varian’s
[16] index (further studied by Tsur [14]), in the following sense. Comparing uniform
bounds is trivial: the higher, the closer to rational. Comparing vector-indices can be
done through norms as proposed by Varian, but the choice of the norm can produce
different conclusions. Here we take a more basic and less arguable position: we request
that for all sets of data our vector-indices provide Pareto-improvements of Varian’s, that
improvement being strict for a non-negligible part of the problems. We perform a Mon-
tecarlo experiment to check how Tsur’s test performs against our proposals, confirming
that strict improvements of Varian’s vector-index appear on a regular basis.

We organize our research as follows. In Section 2 we fix the notation and comment
on the literature briefly. Section 3 gives our main results, and Section 4 reports on the
conclusions from our Montecarlo experiment. Section 5 contains the proofs of our results.

2. Definitions and preliminary results

The pure theory of consumer’s behavior aims at studying the structure of choices among
bundles of goods by a rational agent, when he faces different price-income situations.
We fix k& > 0 goods. The agent can select non-negative amounts of every good. A
demand vector T = (1,---,x)) is a k-dimensional vector whose i-th component cap-
tures the amount of good ¢ that the agent demands. Market prices are captured by
P = (p1, -+ ,pr). Henceforth we assume that all prices are positive (we discard freely
available goods from the analysis), that is, p € R 4

We fix a finite set of demand data, namely {(p:,z;)};,. BEach (p,, 7)) € R, x RE
means that ' has been demanded at normalized prices p,, thus p,z; = 1 throughout.

The possible rationality of this series of observations relates to the fulfilment of behavioral
postulates that are typically expressed in terms of the following concepts.

Definition 1. The consumer directly reveals that prefers T, to Z,, denoted T; R° Z,
if Pty = 5. He reveals that prefers Ty to T, denoted T; R T, if for some suitable
bundles we have T; R° Ty, v R Ty, R° z,.

The following postulate is necessary and sufficient for our list of demand observations to
be generated by an agent through optimization of a non-satiated, continuous, concave
and monotone utility (cf., Varian [15]):

Definition 2. The set of consumption data {(p',z')}}_, agrees with the Generalized
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Axiom of Revealed Preference (also GARP) if for each pair of observations i,j such
that 'Rz’ one has p’x? < plat.

GARP is an ezxact test of the rationality of demand choices. As has been mentioned,
experimental studies confirm that relevant series of data do not pass such test. Does
this mean that the data must be considered as fully irrational? It is agreed that the
answer is no, and thus different models attempt to account for some inaccuracies in the
specification of the observations that permit to fit the data into approximate rationality.

In the non-parametric approach that we follow in this paper the analyst keeps control of
the inefficiency of the agent as an optimizer by introducing either a global parameter for
the problem (namely, a number 0 < e < 1), or a vector-index of efficiency e = (e;)7,
(with 0 <e; <1, Vt). In the latter, richer instance, each e; is interpreted as the “level
of efficiency” of the agent in the j-th budget situation. Afriat’s [2, pp. 467-8] index !
belongs to the first class, while Varian’s [16] proposal i belongs to the second one. A
formal definition of revelation subject to a vector-index follows:

Definition 3. An index-mapping § is a procedure that with each series of m demand
observations assigns a vector-index & = (§1,...,&m), 0< & < 1Vt. Formally speaking:

E{(@ ) ) = £= (&1 &m), for each {(@, Je) }y -

Given € = (e;)f, with 0 < e, < 1 Vt, we say that the consumer directly reveals under
the vector-index € that prefers T; to T, denoted T; R°(€) Ty, if ey > Dils. He
reveals under the vector-index € that prefers T, to xs, denoted Ty R(€) Ts, if there are
Tyyy ..., Ty, such that 7, R%(e) &, --- R°(€) z;, R°(e) xs.

From the point of view of intuition, Varian [16] explains that if for example e; = 0.9 we
only count bundles Z, whose cost is less than 90% of the price paid for Z; as candidates
for being revealed “worse” than choice z;. It is intuitively clear that this imposes less
restrictions on the conditions for optimization that must be verified 2 and therefore yields
a non-exact concept of rationality in the form of the next postulate (cf., [16]):

Definition 4. The demand data {(p:,T¢)}7_, agree with the Generalized Axiom of Re-
vealed Preference under €, henceforth GARP(eé), if for each pair of observations t,s it
is true that T, R(€) Ty entails e;pyxy < Pils.

1Tt represents the minimal percentage of money (in unit terms) that the agent can waste in every
decision so that the data fit the standard optimization model. Thus its main drawback is that it does
not inform of which observations cause the possible lack of consistency. It is worth mentioning that
Houtmann and Maks [8] propose an efficient algorithm to compute Afriat’s index that is based on the
bisection method.

2Formally: if we let 0 = (0,...,0) and 1 = (1,...,1) then for every vector & € [0, 1] the relations
RY(e) C R°(1) = R and R(é) € R(1) = R must hold true.



For our purposes only index-mappings that perform well with respect to such approxi-
mately rational behavior are worth studying. This can be achieved in two related senses.

Definition 5. The index-mapping & is efficient (resp., strongly efficient) if for each
finite set of data {(q,y:) }i™, with associated & = &({(q, ys)},) the following holds 3:

{(q, 90) Y7y verifies GARP(C), V(¢ € Cy, with { < & (resp., with { < &)

We intend to build on Varian’s proposal z. This is axiomatically based on Samuelson’s
overcompensation function, which yields interesting economic insights. We do not need
such interpretation here, but rather its alternative algorithmic construction *:

Algorithm 1. Pseudo-code for computing Varian’s index

Input: Cost matrix associated with{(p;, z;)},

1. begin

2. for j:=1 to n do e(j) «— 1

3. for 4,5 :=1 to n if C(i,i) > C(i,j) then R°(i,j) « 1 else R%(i,j) «
0

4. Compute the transitive closure R of R’ and check for GARP

5. if {(p,7+)}}., does not agree with GARP then

for j:=1 to n do e(j) « min {g((j;)) : @-Rij}

6. return
Output: i = ¢({(py, T¢) }1-y)

It is trivial that strong efficiency implies efficiency. The converse implication does not
hold: Afriat’s index-mapping is efficient but not strongly efficient 5. Varian’s index-
mapping is strongly efficient. In what follows all index-mapping are at least efficient.

For series of demand observations that do not agree with the exact optimizing model,
Varian proposed to use the Euclidean norm of 1— ¢ as a measure of the goodness-of-fit of
the data with such standard model. He argued that there is a positive correlation between
the degree of coherence in the decisions and [|i]|. Alternatively, in order to compare the

3By C,, we mean the unit m-cube. Also, (ai,...,a,) < (b1,...,by) means a; < b; for each i, and
(a1, ooy am) < (b1, ...,by) means a; < b; for each ¢ but (ay, ..., am) # (b1, ..., bm).

“For any {(q, yt)}7™ 1, its cost matrix is C' = (c¢;j)i j<m defined by ¢;; = ¢;y; for each i, .

>Consider the following counterexample: z; = (8,1,8),Z2 = (5,5,6),Z3 = (5,6,5),74 = (8,8,1),
for respective prices p = (1,1,0.5),p2 = (1,1,1.5),p5 = (1,0.5,1),p4 = (1,2,2). Afriat’s index is
e* =(1,1,1,1) and because the data violate GARP we can not have strong efficiency.
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performance of different index-mappings with regard to efficiency we introduce Definition
6 below (implications as to comparing in Varian’s sense are straightforward).

Definition 6. Let £ and ¢ be index-mappings. We say that &

1. describes the demand behavior quasi-better than ¢ if for each 2 = {(q, y:) }7~, it
is true that £(2) = ¢(2) and at least for one such case the inequality is strict.
2. describes the demand behavior better than ¢ if for each = {(q, yr) } 72y it is true

that £(2) > ¢(2).

3. Main theoretical results

Next we put forward two strongly efficient index-mappings that describe the behavior
of an agent quasi-better than Varian’s index-mapping (proofs are given in Section 5).
They are defined algorithmically and yield the output in polinomial time.

Definition 7 (IM1). Let {(p;, %)}, be demand data and {0y} the family of n-
vectors U = (Vg1 ,Ukn) € IR | associated with it through the followz'ng recurrent
equation © initialized at vy = (1,--+,1): U = Ug_1 © U}, where Uf = (Viy,- -+, Uf,)
PtTs

e < 1:ZsR(0k_1)Ty ¢ if T, violates

is a vector in IR! | such that vj, = ma:v{
GARP(U_1) and v, =1 otherwise.

We denote by © the vector-index © = (vy,--- ,v,) € IR} such that vy = v_1y for
each observation t.

Algorithm 2. Pseudo-code for computing IM1

1. begin

2. for i,j:=1 to n do v(j) < 1; C,(i,j) — C(i,7)

3. While [{(p:, 7:)}}., does not verify GARP(v)]

4. for j:=1 to n do Cy(j,]) <—C(J J) Co(4,5) —v() - C(4,7)

5. for i,j := 1 to n if C,(4,1) C,(i,7) then RY(i,7) « 1 else
RY(i,5) « 0

6. Compute the transitive closure R, of the relation R

7. for j:=1 to n do G,(%;) «— {z; : z;R,z; and C,(j,7) > Cy(j,7)}

8. for j:=1 to n if G,(Z;) # @ then

0(j) = v(j) - maz {SEF <1 7 € Golz))

9. return

5If 5, € IR"™, we denote Z =9 ®w € IR"™ when 2 = v; - w; for each t.



In order to define our second index-mapping we need an aux1hary definition. With
{(p )}, and a family {€}pes of n-vectors & = (€, ,&m) € R, we define

the family {Cy}xer of n-vectors ¢, = (Ce1,-+- ,Crm) € IR, associated with {&}bier
through: (i = max {% <1: i’sR(Ek,l)xt} if 7, violates GARP(&,_1) and (=
1 otherwise.

Definition 8 (IM2). Let {(pt,xt)}t , be demand data and let {19k} 1" be a family

of n-vectors Uy, = (Vg1,- -+ ,Vgn) € IR" | obtained by the following recurrent equation
indtialized at U1 = (1,-++ ,1): Upy1 = 0, © U5, where {@}Z:n is the family of n-vectors
associated with {0,}7" and 0% = (9%, ,0%,) € IR" ., s such that U5, = Gy if %

is not consistent with GARP(Uyx_1), G = ¢ and FZT, con s <t such that (s = (f,
where ¢ = maz{Cys : (ks < 1} and U5, =1, otherwise.

We denote by ¥ the vector-index ¥ = (1, ,¥9,) € IR}, such that ¥, = Upp_1y for
each observation t.

Algorithm 3. Pseudo-code for computing IM2

1. begin

2. for i,7:=1 to n do ¥(j) «— 1; Cy(i,5) — C(i,7)

3. While [{(p:,Z:)}}., does not verify GARP(?)]

4. for j:=1to n do Cy(j,j) — C(j.j); Cu(j,j) < 9(j)-C(.J)

5. for 4,j := 1 ton if Cy(i,i) > Cy(i,j) then RY(i,j) < 1 else
R3(i,j) < 0

6. Compute the transitive closure Ry of the relation R)

7. for j:=1 to n do Gy(Z;) < {&; : T;RyZ; and Cy(j,7) > Cy(4,7)}

8. for j:=1 to n if Gy(Z;) # @ then

Pert*(j) «— max {g((j l)) <1l:z;€ G,g(:fj)}

9. v* — max{Pert*(j) : Gy(Z;) # T};
w* —min{j : z; € Gy(z;) : Pert*(j) =v*}

10. for j:=1 to n if (Gy(z;) # @; Pert*(j) = v*;j = w*) then
0(j) = v -9(j)

11. return

Example 1. Let us consider the demand data with the following cost matriz:

1.00 1.25 0.91 1.50
0.67 1.00 0.85 0.95
0.60 0.80 1.00 1.25
0.40 0.70 0.75 1.00



It can be checked that Varian’s index is (0.91,0.67,0.6,0.4), IM1 is (0.91,0.85,0.6,0.7)
and IM2 is (0.91,0.67,0.6, 1).

The respective cost matrices associated with IM1 and IM2 are the following:

091 125 091 1.50 091 1.25 091 1.50
0.67 0.85 0.85 0.95 0.67 0.67 0.85 0.95
0.60 0.80 0.60 1.25 0.60 0.80 0.60 1.25
0.40 0.70 0.75 0.70 0.40 0.70 0.75 1.00

By using the standard representation of binary relations by oriented graphs, we can visu-
alize this information as in Figure 1. Here the transition cost from vertex (observation)
i to vertex j is ¢;j — c; when this amount is lesser or equal than 0. Observe that orig-
inally there were cycles of negative length, which can not appear under the respective
vector-indices because they stem from strongly efficient index-mappings.

0.07 /0.0
A |

1 =——0.33—= T2 1 =—00—— T2 T =—-0.18——= T2 1 =—0.0——= T2

\ o ] o

03 204
06| X (—015]-0.2 00| \_ 3 ¥ \ AN
/ }@l O'\)\ / b\)\l / 0'\\\
T4 =—-0.25—> T3 ~ T4 T3 T4 z3 T4 ——0.25—= T3
06/‘ N 0.0 06/‘
(1,1,1,1) (0.91,0.67,0.6,0.4)  (0.91,0.85,0.6,0.7)  (0.91,0.67,0.6,1)

Figure 1: A representation of the respective relations R?, R°(7), R°(v), R°(J)

4. Montecarlo experiment

Next we run a Montecarlo experiment in order to analyze the goodness-of-fit of the
optimizing model as well as the statistical significance of the violations of GARP. We
generate the data using the Almost Ideal Demand System (AIDS) model by Deaton and
Muellbauer [4, 5]. We introduce perturbations both in prices and demanded amounts
through random variables with a normal logarithmic distribution. Our series of data
have n = 20 observations with £ = 8 goods.

Table 1 summarizes the results of our Montecarlo experiment. In all cases GARP is
violated and 1 > 7, although we must point out that examples are known where both
indices coincide, and the inequality © > ¢ holds in 99.966% of the simulations. This



information complements the main theoretical results about comparisons of the different
indices. The proportion of simulations where IM2 is “better” than IM1, in the sense of
Definition 6, is 1.82%, while the remaining cases end up in incomparability: 98.18% of
the cases yield ¥ % 0 and © % 9.

Number of simulations: 4500 (20 demand observations of 8 components)
Average Afriat index: 0.562

Percentage simulations violating GARP: 100.00%

Percentage simulations with ¢ > 7: 1.82%

Percentage simulations with U % o A © % ¥: 98.18%

Index Euclidean Norm Percentage of simulations with

(Average) 1€l > Tl
v 3.421927808 99.966%
0 3.721796885 100.00%

Table 1: Results of the Montecarlo experiment.

Another fact that must be stressed concerns the statistical significance of the violations of
GARP. Our experiment produced 4 cases where Tsur’s test concludes that such violation
is structural while our indices do not concur to this rejection of rationality at suitable
levels, but rather small random perturbations explain such apparent irrationality.

5. Appendix: proofs

Given {(p1,Z1),..., (Pn,Tn)} arbitrary demand data, we say that z; is strongly incon-
sistent with GARP if there is T, such that Z,RZ; and p;T; > p;ZTs. In terms of the
description given in Example 1: Z; lies in a cycle of negative length where the transition
cost from it is strictly negative.

IM1 is strongly efficient: Take {(p1, 1), ..., (Pn, T,)} arbitrary demand data that are
inconsistent with GARP. We need to prove that its associated © verifies GARP(v) By
absurdum, assume that there are bundles 7; and T, such that :Eth(D)i’t and vpyT; >
PeTy;. Since Ty is strongly inconsistent with GARP there are Ty, - - Ty, L < <n—1
such that z,, Rz, and p;x; > p;ay, for each 1 < i < r,. Without loss of generality we can
reorder the prior demanded bundles in such way that p;z;, > pyZ;,,, for 1 <i<rp—1.
Besides, when k& > 1 the definition of {Dk}z;é entails v, > v, thus Z;, R(0x)7; and
UpPsTy > Py, In particular, 2, R(0,)Z; and vpepiZe > Py, for all h < j. From this
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we deduce v;; = ];g:. Furthermore, ©; > © implies vjpZ; > veP@s > Pidiy;, hence
DTy, = UiDeTy > PyTy,, which in turn implies pyT;; > py7y;, an absurd conclusion that
proves the claim. m

IM2 is strongly efficient: Take {(p1,71), ..., (Pn, T)} arbitrary demand data that are
inconsistent with GARP. We need to prove that its associated ¢ verifies GARP(9).

By absurdum, assume that there are bundles 7; and Z; such that :Z’th(ﬁ):Z’t and

Vi > Py, The fact that R(J) is a subrelation of R entails that z, is strongly
inconsistent with GARP thus there are z;,--- y T, ¢ = 1 with zy, R¥; and pyz, >
DTy, Vi = 1,--- 1. Without loss of generality we can assume that pz;, > piZ,,,
Vi=1,---,r,— 1. Besides, for all k > 1 the definition of {ﬁk}}i’l” yields 9, > 9, which
implies ft].R(ﬁk)ft because R(V) is a subrelation of R(Jy), and furthermore 0,p,z; >
bt
- _ ﬁtfzj ’
Further, ﬁkj = Y 1mphes ﬁk:jtﬁtjt = ﬁtﬁti‘t > ptjtjy therefore ﬁtjtj = ﬁtﬁti‘t > ﬁtjtj and
PiTy; > PiTy;, which is absurd. This proves the claim. m

UiPeTy > Pely;, which in turn yields the existence of k; > 1 such that Uy, =

IM1 describes the demand behavior quasi-better than Varian’s index-mapping:
In view of Example 1 we only need to check that © = 0y > iy = i —~we drop subindices
for convenience— for every finite list of demand observation 2 = {(p1, 1), ..., (Pn, Tn)}
that is inconsistent with GARP.

For every fixed bundle 7, if it is not strongly inconsistent with GARP, i.e., if 37,
such that z,Rz; and p;z; > p;Ts, then 7, = vy = 1 by construction. If z, is strongly

inconsistent with GARP there exist z,,- - - s Tty Tt 2 1, such that z, Rz, and p,z, >
D%y, Vi = 1,--- 1. We do not lose generality by ordering its precedent bundles
in such way that p,z,, > p74,,,, Vi = 1,---,r, — 1. Suppose that 7, is strongly
inconsistent with GARP(vy) for every k=1,--- ,r,— 1, and also that Z; is consistent

with GARP(v,,). Then vgy = vy, YK = 14,-+- ,n — 1, thus v; = v,,;. Besides, as
PtTs
DtTtVE—1t

Ukt = Max <1: isR(Dk_lt)ft}, Vk=1,---,r; the following equality holds:

e — — —
[[Lip@, 1 Dy,
1l - = = T =
L5 i e DTy

Ut = Upit = =1

If there is k € IN (k <7, — 1) such that z; violates GARP(vy,) for every h < k and
Ty is consistent with GARP(vy), then

B = I _

_ _ [[im ;e 1 kE_ . H:t:k peti . Pk

V¢ = Vgt = kfl,,'——:vt_zt‘—rt ——— =l ——— =2 Ut
Hi:l Dex; Pt Hi:k—i—l DX, DPtZy,

Consequently, for every t the inequality v; > i; holds true. m



IM2 describes the demand behavior quasi-better than Varian’s index-mapping:
In view of Example 1 we only need to check that ¥ = ¥4 > iy = ¢ —we drop subindices
for convenience- for every finite list of demand observation 2 = {(p1, 1), ..., (Pn, Tn)}
that is inconsistent with GARP.

For any bundle z; we denote by RI(Z;) the set formed by all the demanded bundles
Zs such that z,Rz; and p;T; > p;Ts. Observe that for a given 7, if it is not strongly
inconsistent with GARP, that is, if RI(Z;) = &, by construction one has ¥, = i,.
Therefore in order to prove the claim it suffices to check v; > 4, for every z; that is
strongly inconsistent with GARP. For one such bundle, there are Z;,---, Ty, 1 2 1,
such that z, Rz, and px, > py,, Vi = 1,---,1r,. We do not lose generality by
ordering its precedent bundles in such way that p,z,, > p2y,,,, Ve =1,--- 7, — 1. Let
k* =1 #RI(Z:), then for every z; and k > k* with k* < k < n(n — 1) one must
have ¥y; = U+ thus ¥y = Oy, If T, is strongly inconsistent with GARP (ﬁk) for every
k < k*, then

k* Tt — — — —
Oorr = 0, = || YR | iy R
k*t — t — k*—1 19 — ri—1 _ _ — :E = — i‘

h=1 Yht Hizl Py Pt Pt

=1

Otherwise, there is k < k* such that Z, is strongly inconsistent with GARP(J,)

Vh <k and 7, verifies GARP(?;), thus

k k*—1
[, v i Un
h=1 Yht : h=k t
Do = O, = IS = g = teE
Hh:1 Ut h=k+1 Vht

Furthermore, because 0, < U5 for every h > k, one has H::}l Ope = Z*:,; +1 Unt, which
yields vz, > i; and thus 9, > 7; for each t. m
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