USING THE MULTIVARIATE DATA ANALYSIS TECHNIQUES ON THE INSURANCE MARKET

Vasile DEDU* Daniel ARMEANU** Adrian ENCIU***

Abstract

In the present financial theory, we confront with complex economic phenomena and activities which cannot be studied or analyzed profoundly because of the plurality of existing variables, ratios and information. The economic, financial and social activity carried on under crisis or economic growth conditions registered year by year a development of the products and instruments in use. The complexity of the economic area may be simplified through techniques of multi-dimensional analysis. Such a method is the analysis of the principal components which allows the decreasing of the initial causal space dimension generated by the functional links which are established among the initial explanatory variables. The dimension of this space is determined by the number of explanatory variables identified as causes of the economic phenomenon and the higher their number, the more difficult it is to analyze the initial causal space because the information volume, the complexity of calculations, the risk not to identify the contribution of each variable to the creation of the initial causal space variability and the decrease in the initial variables significance in case they would be inter-correlated grow. The simplification of the initial causal space means the determination of a change which consists in transition from a space with a large number of variables to another one of fewer dimensions, equivalent but on the conditions of keeping maximum information from the initial space and maximizing the variability of the new space (called principal space). Variables from the principal space represent the principal components, they are un-correlated and the vectors which define them have a unitary length.

Keywords: original variables, covariance matrix, eigenvalue, eigenvector, principal components, total variance, generalized variance, factor matrix, factor loadings, factor scores, classification

JEL Classification: G15, G22, C44

^{*} Professor, Academy of Economic Studies, Bucharest.

^{**} Professor, Academy of Economic Studies, Bucharest.

^{***} Lecturer, Ph.D., Academy of Economic Studies, Bucharest.

We defined the principal components (PC) as standardized linear combinations(SLC) of the original variables. Therefore, if z_i is principal component i, $\beta^{(i)}$ the vector whose elements define SLC i and x_j the original variables, j = 1, 2, ..., n, we have:

$$\mathbf{z}_{i} = \beta_{1}^{(i)} \cdot \mathbf{x}_{1} + \beta_{2}^{(i)} \cdot \mathbf{x}_{2} + \dots + \beta_{n}^{(i)} \cdot \mathbf{x}_{n} = \sum_{j=1}^{n} \beta_{j}^{(i)} \cdot \mathbf{x}_{j}$$
(1)

Let $z = (z_1 \ z_2 \ \dots \ z_n)^t$ be the vector of the *n* PCs, $B = \begin{pmatrix} \beta_1^{(1)} \ \beta_1^{(2)} \ \dots \ \beta_1^{(n)} \\ \beta_2^{(1)} \ \beta_2^{(2)} \ \dots \ \beta_2^{(n)} \\ \vdots \ \vdots \ \dots \ \vdots \\ \beta_n^{(1)} \ \beta_n^{(2)} \ \dots \ \beta_n^{(n)} \end{pmatrix}$ be an *n*vn matrix constitution of the *n* PCs.

be an *nxn* matrix consisting of column vectors and $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^t$ be the vector of the *n* original variables. In terms of matrix algebra, equation (2) can be written as:

$$z = B^{t} \cdot x \tag{2}$$

Let **z** and **β** be generic notations for a PC and a vector whose elements define a SLC, respectively. In order to determine the PCs, we must maximize the variance of each PC. This is done by solving the following system:

$$\begin{cases} z = \beta^{t} \cdot x \\ \max \operatorname{VAR}(z) \end{cases}$$
(3)

Taking into account that β is a SLC, system (4) can be equivalently written as:

$$\begin{cases} \max_{\beta} \beta^{t} \cdot \Sigma \cdot \beta \\ \beta^{t} \cdot \beta = 1 \end{cases}$$
(4)

where $\pmb{\Sigma}$ is the covariance matrix of the original variables.

System (5) will be solved using the Lagrangian approach. Thus, we can define:

$$\mathbf{L} = \boldsymbol{\beta}^{\mathrm{t}} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\beta} - \boldsymbol{\lambda} \cdot \left(\boldsymbol{\beta}^{\mathrm{t}} \cdot \boldsymbol{\beta} - 1 \right)$$
(5)

The first-order conditions for maximization are:

$$\begin{cases} \frac{\partial L}{\partial \beta} = 0\\ \frac{\partial L}{\partial \lambda} = 0 \end{cases} \Leftrightarrow \begin{cases} 2 \cdot \Sigma \cdot \beta - 2 \cdot \lambda \cdot \beta = 0\\ \beta^{t} \cdot \beta - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} (\Sigma - \lambda \cdot I_{n}) \cdot \beta = 0\\ \beta^{t} \cdot \beta - 1 = 0 \end{cases}$$
(6)

where I_n is the identity matrix.

It can be easily proven that the normated eigenvectors of matrix $\boldsymbol{\Sigma}$ satisfy system (6). The variance of each PC, given by the bilinear form $\beta^t \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\beta}$, will equal the corresponding eigenvalue of matrix $\boldsymbol{\Sigma}$. It is obvious that $\boldsymbol{\Sigma}$ has \boldsymbol{n} eigenvalues

Romanian Journal of Economic Forecasting – 4/2009 — 171

 $\lambda_1,\lambda_2,...,\lambda_n$; rearranging them so as $\lambda_1\geq\lambda_2\geq...\geq\lambda_n$, the following inequality holds:

$$VAR(z_1) = \lambda_1 \ge VAR(z_2) = \lambda_2 \ge ... \ge VAR(z_n) = \lambda_n$$
(7)

Consequently, increasing the number of PCs retained will result in a greater share of variance recovered from the original variable space. It is worth mentioning that the PC transformation preserves the **total variance** (V_T) from the initial space:

$$V_{T} = \sum_{i=1}^{n} VAR(x_{i}) = \sum_{i=1}^{n} VAR(z_{i}) = \sum_{i=1}^{n} \lambda_{i} \Leftrightarrow tr(\Sigma) = tr(K)$$
(8)

where **K** is the covariance matrix of the PCs. **K** is a diagonal matrix¹:

$$\mathbf{K} = \begin{pmatrix} \lambda_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \lambda_n \end{pmatrix}$$
(9)

PCA also results in the preservation of generalized variance (V_G):

$$\mathbf{V}_{\mathrm{G}} = \left| \boldsymbol{\Sigma} \right| = \left| \mathbf{K} \right| \tag{10}$$

For the reasons showed below, it is considered that the analysis of the principal components is a simplified re-expressing of the initial causal space, the simplification being made on the conditions of maximization of the information quantity from the original space.

We used the principal components method in order to analyze the activity of insurance company branches, for the purpose of determining the best branch of the company. We took into consideration eight ratios relevant for the activity of branches (subscribed net premium minus cancelled premium – PRI_NET, total income – VEN_TOT, administrative expenses – CH_ADM, acquiring expenses – CH_ACH, net indemnification – DESP_NET, number of employees – NR_ANG, premium net reserve – REZ_NE_P, net claims reserve – REZ_NE_D and the financial result – REZ_FIN).

In the beginning, we have calculated the average and the standard deviation for the considered ratios:

Table 1

	Average	Standard deviation
PRI_NET*	3882.834	2518.938
VEN_TOT	4632.147	3080.051
CH_ADM	847.484	771.328
CH_ACH	1338.690	855.323

Average and the standard deviation for the considered ratios

¹ As a matter of fact, PCA basically consists of diagonalizing a symmetrical matrix (in our case Σ). Matrix K is computed as $B^t \cdot \Sigma \cdot B$.

Using the Multivariate Data Analysis Techniques

	Average	Standard deviation
DESP_NET*	3299.661	2419.452
NR_ANG	29	17
REZ_NE_P	1666.036	1245.263
REZ_NE_D	1347.465	1448.332
REZ_FIN	-899.070	1316.304

The higher the standard deviation is, the more different the companies' branches are. In our case, the deviation has high values for all the considered ratios and this means the branches are very different from each other, forming a space with high variability where the causal dependencies structure is very complex and very difficult to be visualized. It is worth noticing that for the financial result ratio the average is negative, and that means the activity carried on in 2007 was materialized in loss.

The table below is the correlation matrix for the nine original variables (considered ratios). Obviously, the elements located on the principal diagonal are equal with the unit:

Table 2

	PRI_	VEN_	CH_	CH_	DESP_	NR_	REZ_	REZ_	REZ_
	NET*	TOT	ADM	ACH	NET*	ANG	NE_P	NE_D	FIN
PRI_NET*	1.00	0.99	0.77	0.96	0.93	0.68	0.93	0.60	-0.35
VEN_TOT	0.99	1.00	0.79	0.98	0.93	0.68	0.94	0.64	-0.40
CH_ADM	0.77	0.79	1.00	0.83	0.78	0.91	0.82	0.28	-0.12
CH_ACH	0.96	0.98	0.83	1.00	0.92	0.73	0.93	0.67	-0.47
DESP_NET*	0.93	0.93	0.78	0.92	1.00	0.76	0.85	0.57	-0.35
NR_ANG	0.68	0.68	0.91	0.73	0.76	1.00	0.71	0.11	0.01
REZ_NE_P	0.93	0.94	0.82	0.93	0.85	0.71	1.00	0.57	-0.35
REZ_NE_D	0.60	0.64	0.28	0.67	0.57	0.11	0.57	1.00	-0.84
REZ_FIN	-0.35	-0.40	-0.12	-0.47	-0.35	0.01	-0.35	-0.84	1.00

The correlation matrix for the original variables

Values over 0.7 (in modules) of the correlation coefficients show a deep correlation among ratios. It is noticed that deep correlations among the majority of the analyzed variables diminish the particular significance of them, on one side, and emphasizes the existence of informational redundancies, on the other side: there is a significant quantity of information dissipated among the variables.

Further on, we shall calculate own values of the correlation matrix. We mention that we are interested only in own values higher than 1, as we consider them useful to be analyzed only the principal components which have an informational content more abundant than the original variables (in standardized form, obviously). The results are shown in the table below.

The following graph shows the eight own values of the correlation matrix; one may notice that the first two are representative, while the next register values which tend to zero.

Romanian Journal of Economic Forecasting - 4/2009 -

Institute of Economic Forecasting

Table 3

Eigenvalues and variance

	Figonyaluos	% Total	Cumulated	% Variance
	Eigenvalues	variance	eigenvalues	cumulated
1	6.602600	73.36222	6.602600	73.36222
2	1.653816	18.37573	8.256416	91.73796

Figure 1

Eigenvalues of the correlation matrix

As one may notice, there are two own values higher than unit and, as a consequence, we shall have two principal components. This explains in a 92% proportion the variability in the initial causal space, which means that the decrease of analyzed space size from nine to two variables was realized on the conditions of an informational loss of 8%, a percentage that we can considered very good. Therewith, we can notice that the first characteristic taken individually synthesizes 73% of the information contained by the nine initial ratios and, thus, it can be subsequently used in order to make a pertinent classification of the branches.

We determined the factor matrix for the two representative components that resulted. The factor matrix is very important in our analysis since its elements (also known as factors intensities) are correlation coefficients between the original variables and the principal components. The calculation formula for an element of this matrix is:

Romanian Journal of Economic Forecasting – 4/2009

Using the Multivariate Data Analysis Techniques

$$\rho_{ij} = \frac{\sqrt{\lambda_j}}{\sqrt{VAR(x_i)}} \cdot \beta_{ij}, i = 1, 2, ..., n \qquad j = 1, 2, ..., k$$

where k is the number of principal components contained in the analysis. The matrix factor is:

Table 4

The matrix factor				
Indicator	Factor 1	Factor 2		
PRI_NET*	-0.965660	-0.023463		
VEN_TOT	-0.979685	0.013217		
CH_ADM	-0.854459	-0.396520		
CH_ACH	-0.990402	0.039537		
DESP_NET*	-0.945573	-0.063853		
NR_ANG	-0.765581	-0.540190		
REZ_NE_P	-0.947269	-0.055641		
REZ_NE_D	-0.649682	0.722210		
REZ_FIN	0.446871	-0.820813		
Variance	6.602600	1.653816		
% Total variance	0.733622	0.183757		

The first principal component synthesizes 73.36% of the information contained in the original space. It is strongly correlated in the negative way with the ratios subscribed net premium minus cancelled premium, total income, administrative expenses, acquiring expenses, net indemnification, number of employees and premium net reserve, providing important information about the activity volume of the company's branches.

The following table shows the coefficients of the line combinations which define the principal components (own vectors of the correlation matrix), on the basis of which we shall calculate the results of observations in the principal components space.

Table 5

Indicator	Factor 1	Factor 2
PRI_NET*	-0.146254	-0.014187
VEN_TOT	-0.148379	0.007992
CH_ADM	-0.129412	-0.239760
CH_ACH	-0.150002	0.023906
DESP_NET*	-0.143212	-0.038609
NR_ANG	-0.115951	-0.326632
REZ_NE_P	-0.143469	-0.033644
REZ_NE_D	-0.098398	0.436693
REZ_FIN	0.067681	-0.496315

Eigenvectors of the correlation matrix

Romanian Journal of Economic Forecasting – 4/2009

We shall determine further on the coordinates of the observations in the factors space (principal components):

Table 6

Principal components					
BRANCH	Factor 1	Factor 2			
ALBA	0.09344	-0.09959			
ALEXANDRIA	0.40922	-0.27503			
ARAD	0.41135	-0.02610			
BACAU	0.81536	-0.13890			
BAIA MARE	0.18777	-0.46544			
BIHOR	-1.23334	1.12144			
BISTRITA	0.14206	0.29295			
BRAILA	0.87456	0.10597			
BRASOV	-0.26066	0.08114			
BUCOVINA	-0.09538	-0.35187			
BUCHAREST	-3.54107	-2.25638			
BUZAU	-0.14688	-0.91079			
COVASNA	1.29346	-0.01787			
DAMBOVITA	0.79434	-0.20405			
DOBROGEA	0.15797	-0.13023			
GALATI	-0.59249	0.05738			
GORJ	0.01358	-0.59256			
HUNEDOARA	-0.06593	-0.30123			
IALOMITA	0.84471	-0.00995			
DOROBANTI	-1.36629	5.04952			
MOLDOVA	0.41066	-0.20579			
MUNTENIA	-2.55893	-0.69534			
MURES	0.69032	-0.04918			
NEAMT	0.95073	0.00248			
OLTENIA	-0.13759	0.34542			
PLOIESTI	-0.05952	-0.18522			
RESITA	1.09052	-0.25960			
SATU MARE	-0.23877	0.16928			
SIBIU	-0.67635	-0.04648			
SLATINA	1.24570	-0.06519			
TIMISOARA	-0.61038	-0.09203			
VASLUI	0.45854	-0.23640			
MARAMURES	0.43325	0.06636			
TRANSILVANIA	-0.81292	0.61249			
VALCEA	0.11693	-0.15092			
VRANCEA	0.96206	-0.13828			

Principal components

As we could see below, the first principal component synthesizes the majority of the initial ratios and offers important information about the volume activity of the branches.

Romanian Journal of Economic Forecasting – 4/2009

Therefore, we made a classification of the branches according to this new characteristic. The following graph synthesizes the classification results.

Figure 2

The classification of branches by the first principal component

We point out that the first principal component is strongly negatively correlated with the ratios of subscribed net premium minus cancelled premium, total income, administrative expenses, acquiring expenses, net indemnification, number of employees and premium net reserve. This fact is possible since, as we could see also in the correlation matrix, there are strong correlations between these ratios; intuitively, it is logical that a high volume of net subscribed premium to be followed by high acquiring expenses or high paid indemnification.

The classification by the first component is very important, since it allows easy appreciation of the turnover of each branch. The strong opposite correlation means that those branches that will register low results as to this factor, will have the highest volume of activity and, reciprocally, the branches with lower values at the first factor will have a low volume of turnover. Thus, we noticed the branches of Bucharest, Muntenia, Dorobanți and Bihor which have the highest values of the above mentioned ratios. The branches with a medium volume of turnover are Alba, Bistrița, Braşov, Bucovina, Galați, Piteşti, Timişoara, Transilvania, etc., while the branches of Bacău, Covasna, Slatina, Ialomița, Neamțt, etc., registered the lowest volume of activity in 2007.

The second principal component synthesizes the ratios of claims net reserve (positive correlation) and the financial result (negative correlation), providing information about the branches profitability as well as the level of the claims reserve. In relation to the results registered for this factor, we distinguish the profitable branches (Buzău), branches with outstanding loss and claims reserves (Dorobanți), branches with

Romanian Journal of Economic Forecasting – 4/2009

considerable losses and high claims reserve (Braşov, Bucharest, Bihor, Transilvania, Oltenia, Timişoara, etc.), branches with high loss and/or high claims reserve (Dâmbovița, Dobrogea, Galați, Gorj, Muntenia, Brăila, Mureş, etc.) as well as branches with low loss and relatively low levels of reserves (Covasna, Reşița). The classification by the second principal component is:

Figure 3

The classification by the second principal component

In conclusion, we saw that the analysis of the principal components can be a very powerful and useful analytical instrument, which allows us not only to reduce the dimensionality and to eliminate the informational redundancies, but also to visualize more clearlz such causal complex dependencies. Based on this method and techniques specific to factor analysis, we succeed to analyze the branches of an insurance company and to obtain outstanding results. Since the first principal component contains 73.36% of the information included in the original space and it is strongly correlated in a negative way with seven from the nine indicators taken into consideration, we succeed to create a hierarchy of the branches of an insurance company in relation with their financial powers. Thus, through this data analysis method we created a classification of the branches in relation to nine indicators specific to insurance field which reveals their financial power without losing too much information generated by these indicators. This was not possible to create based on initial data. Also, the analysis of the principal components allowed us to make the graphic representation of the observations in a space significantly reduced toward the initial causal space, which simplifies a lot the analysis.

Using the Multivariate Data Analysis Techniques

References

- Armeanu, Dan, Balu, Florentina, (2007). "Utilizarea analizei componentelor principale pentru identificarea variantei optime de creditare", in *Studii şi cercetări de calcul economic şi cibernetică economică*, 41(4): 123-133.
- Anghelache, Constantin, Armeanu, Dan, (2008). "Application of Discriminant Analysis on Romanian Insurance Market"/"Aplicarea analizei discriminante pe piațta românească a asigurărilor", *Theoretical and Applied Economics/Economie teoretică şi aplicată*, 11(528): 51-62.
- Diamantaras, K. I., (2002). Neural Networks and Principal Component Analysis, CRC Press.
- Gheorghe, Ruxanda, (2005). "Analiza multidimensionala a datelor", Master Baze de Date Suport pentru Afaceri.
- Gheorghe, Ruxanda, (2001). Analiza Datelor, Editura ASE, București.
- Simar, Leopold, (2004). Applied Multivariate Statistical Analysis, Springer.
- Spircu, Liliana, (2006). Analiza Datelor: Aplicatii Economice, Editura ASE, București.
- Vintilă, Georgeta, Armeanu, Dan, (2009). "Using the models of data analysis in financial evaluation of companies performances ", in *Metalurgica International*, XIV(7): 195-202.

Romanian Journal of Economic Forecasting - 4/2009 -