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REGRESSION-BASED FORECAST 
COMBINATION METHODS 

Xiaoqiao WEI 

Abstract 

Least squares combinations (Granger & Ramanathan, 1984) are an important 
development in the forecast combination literature. However, ordinary least squares 
methods often perform poorly in real application due to the variability of 
coefficient/weight estimations. In this work, on one hand, we propose sequential 
subset selections to reduce the variability during combinations. On the other hand, we 
propose a novel method to simultaneously stabilize and shrink the coefficient/weights 
estimates. The proposed methods can be applied to various combination methods to 
improve prediction as long as their weights are determined based on ordinary least 
squares.

Keywords: forecast combinations, least squares, sequential selection, stabilization, 
shrinkage

JEL Classification:  C32, E24 

1. Introduction 

In their original papers, Bates and Granger (1969), and Newbold and Granger (1974) 
showed that combined forecasts may reduce prediction variability under the conditions 
that the forecasts are unbiased. They proposed several combining rules based on 
estimated variance-covariances of the forecast candidates. Granger and Ramanathan 
(1984) later expanded these variance-covariance methods in a regression framework. 
They argued that the variance-covariance methods can be treated as the least 
squares solutions under two constraints: one is that there is no constant term in the 
least squares formulation, the other is that all coefficients/weights are nonnegative 
and sum up to 1. They advocated use of regression methods that loosen these 
constraints for smaller mean squared prediction errors. 
Since then, many regression-based forecast combination methods have been 
proposed in the literature. For example, Diebold (1988) considered serial correlation in 
the least squares framework. Coulson and Robins (1993) included a lagged 
dependent variable besides the forecast candidates. Deutsch et al. (1994) addressed 
regime switches when estimating coefficients/weights. Interested readers are referred 
to Timmermann (2006) and references therein. 
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Recently, researchers have worked on forecast combinations of a large number of 
forecasts in hope to take advantages of many different sources or models (e.g., Chan 
et al., 1999, Stock & Watson, 2003 and 2004, and Rapach & Strauss, 2005 and 
2008). It has been shown, however, that the ordinary regression combination is not 
optimal for this kind of scenarios due to high variance. The empirical evidence of poor 
performances of the large-number regression combinations is provided by Rapach & 
Strauss (2005, 2008), among many others. 

Chan et al. (1999) proposed the use of James-Stein estimation, ridge regression, and 
principle components regression as alternatives to ordinary least squares. Swanson 
and Zeng (2001) proposed regression combinations based on subset selections using 
AIC (Akaike, 1973) or BIC (Schwarz, 1978) to choose the best subset of all possible 
forecast candidates. Assume that there are p forecast candidates, by Swanson and 
Zeng’s method, one has to select among in total 2p�1 models, which is not practical 
when p is relatively large. Alternative to using AIC or BIC, one may apply subset 
selections by using t-statistic (e.g., Swanson and Zeng, 2001). However, this method 
often performs poorly in real applications (e.g., Rapach & Strauss, 2005 and 2008). 

In this work, we first consider sequential subset selections in contrast to all subset 
selections, which reduce the number of models fitted to be at most p(p+1)/2. 
Simulations and real data examples show that sequential subset selections 
substantially improve upon ordinary least squares. Although sequential subset 
selections are commonly used to choose explanatory variables or orders in ARIMA 
modeling (see Zou & Yang, 2004, for related issues), to our knowledge, they have not 
been discussed in the forecast combination framework. From our numerical studies, 
sequential subset selections are a valuable technique for large-number forecast 
combinations. 

We also propose a novel regression-based combination method, the decreasingly 
averaging method. Sequential subset selections discard insignificant forecast 
candidates using AIC or BIC. In contrast, the decreasingly averaging method retains 
all forecast candidates, but simultaneously stabilizes and slowly shrinks their 
coefficients/weights according to their order of appearance in the process of 
sequential selections. The less significant is the candidate, the more to be shrunk, 
thus the less effect on the combined forecasts. This is different from the existing 
Bayesian shrinkage methods (Stock & Watson, 2004), which shrink towards equal 
weights. Sequential subset selections and the decreasingly averaging method can be 
easily implemented. Actually, they can be tools to help other combination methods 
improve prediction accuracy especially in the large-number combination cases as long 
as their weights are determined based on ordinary least squares. For instance, it has 
been pointed out that Bayesian shrinkage methods have variable performance across 
different occasions or forecast horizons (Stock & Watson, 2004, and Rapach & 
Strauss, 2005 and 2008). In one real example which follows in section 4, we show that 
the proposed methods can help Bayesian shrinkage methods perform more stably 
and competitively compared to other combination methods. 

Recently, Hansen (2008) proposed Mallows Model Averaging (MMA) for forecast 
combinations and found that the MMA method compared favorably with other feasible 
forecasting methods in terms of the one-step-ahead mean squared forecast error. 
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However, it is not applicable in the present setting of nonnested forecasting models, 
which are often encountered in real applications. 

Yang (2004) pointed out there are two main directions of forecast combinations in the 
literature: combining for adaptation and combining for improvement. The first one 
targets the best individual performance among the pool of forecast candidates. The 
second one aims at significantly outperforming each individual forecast candidate. The 
early variance-covariance and regression based combination methods (including the 
proposed methods in this work) fall in the second direction. Interested readers are 
referred to Wei and Yang (2008) and references therein for some relevant work in the 
first direction. Different Bayesian combination methods can be categorized into either 
the first direction (e.g., Wright, 2003) or the second direction (e.g., Palm & Zellner, 
1992). 

The rest of the paper is organized as follows. In section 2, we propose sequential 
subset selections and the decreasingly averaging method. In section 3, we present 
simulation results for the proposed methods. In section 4, the proposed methods are 
examined through three data examples. Concluding remarks are given in section 5. 

2. Methodologies 

In this section, we first propose sequential subset selections and then the 
decreasingly averaging method. We shall also discuss the performance measures 
that will be used in next simulations and real data examples. 

2.1.   Sequential subset selections 
Assume that there is a time series which we are interested in for forecasting, yt, t = 1, 
2, · · · , and there are p forecast candidates, x1t, x2t, · · · , xpt, t = 1, 2, · · · . Granger and 
Ramanathan (1984) suggested the forecast combination: 
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where h is the forecast horizon, and the coefficients/weights can be estimated by least 
squares, possibly under some constraints. Then the combined forecast is given by 
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When p is large relative to the forecast sample size, the total variability of the 
coefficients/weights estimations is substantial and thus hurts the performance of the 

combined forecast 
c
tx . A natural solution to this issue is to select the subset of the 

most significant forecast candidates, discarding others, in the regression formulation. 
The most commonly used selection criteria are AIC and BIC. AIC measures the 
discrepancy between the true model and a fitted model, while BIC approximates the 
posterior probabilities in a Bayesian framework. Assume that the number of 
parameters in the fitted model is k, and the sample size is n. AIC and BIC are both of 
the form  
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-log(maximized likelihood) + penalty, 
where the penalty is k in AIC, or k*log(n)/2 in BIC. The model that minimizes the 
criterion is selected. 
When p is large, direct applications of AIC or BIC over all subset models is infeasible. 
Sequential selections are a practical approach to proceed. To apply sequential subset 
selections to the p forecast candidates, we first choose the most significant one which 
minimizes AIC or BIC among the p candidates. Then we update the previous model 
by adding the second most significant one among the remaining p�1 candidates. If the 
AIC (or BIC) of the updated model is greater than that of the previous model, we stop 
and the previous model is our final choice. Otherwise, we continue to sequentially add 
one candidate a time until all of the p forecast candidates are exhausted. 

2.2.   The decreasingly averaging method 
In this method, similarly to above, we first determine the most significant candidate 
using AIC or BIC, denoting it by x(1). Based on x(1), we determine the second most 
significant candidate, denoting it by x(2), and so on, until the least significant candidate, 
denoting it by x(p). Note that AIC and BIC provide exactly the same order of the p 
candidates. Then we fit the following p nested models: 
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We obtain a p by (p + 1) matrix of the estimated coefficients: 
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where the superscript i, i = 1, 2, · · · , p, denotes the ith nested model, and the ith row 
has p�i zeros to represent the coefficients of the candidates which are not in the 
model. We then take arithmetic averages over each of the columns, and denote them 
by 
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Finally, the combining weights of the p candidates (plus an intercept) are given by the 
averaged coefficients. The intercept and the coefficients of the most significant 
candidate are stabilized through averaging the p models. Other coefficients are not 
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only stabilized but forced to slightly shrink. The shrinkage occurs when the zeros are 
taken into the average calculations. The degrees of shrinkage of the coefficients of the 
candidates are in some sense proportional to the degrees of their insignificance.  

For instance, 

p

pp
p

^~ 1 �� � . The final weight of the least significant candidate is 1/p of 

its coefficient in the ordinary regression combination. Therefore, the insignificant 
candidates are of less importance, but still playing a role, in the forecast combinations. 
Note that the decreasingly averaging method is very different from simply averaging 
the forecast candidates. 

2.3.   Performance measures 
In our simulations, the time series yt, t  =  1, 2, · · · ,  is generated  by a mean function 
plus a random error. The conditional mean squared h-step-ahead forecasting error 
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tht xyE ��  on current time t is actually the sum of the squared conditional bias 

and conditional variance: 
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where mt+h|t is the mean, and vt+h|t is the error variance, conditional on current time t. 
Since the conditional variance vt+h|t is always the same no matter which combination 
method is used for prediction, when comparing the performance of different 
combination methods, we may only consider the squared conditional bias as the net 
loss: 
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Accordingly, the corresponding net risk may be defined by 
2)( c
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evaluating the performance of a series of combined forecasts
c
tx , t = 1, 2, · · · , l, we 

consider the average forecasting risk 
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This risk will be used as the performance measure in the following simulation 
investigations. In real data applications, since the above risk is unknowable, we 
instead consider the mean square prediction error 
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3. Simulations 

In this section, we extensively examine the performances of the proposed methods 
under random model settings. We do not limit our focus on some individual models. In 
contrast, we evaluate the behavior of the proposed methods on a number of randomly 



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 4/200910 

generated models. The simulation results under random model settings can provide 
us more fair and informative understanding of the proposed methods than those of 
some specific models. 

We consider two kinds of scenarios. One is that the random model has a fixed order, 
and the other is that the random model has various orders. Under each scenario, we 
consider two cases. One is that the true model is in the forecast candidate set, and 
the other is that the true model is not. Sequential subset selections and the 
decreasingly averaging method can be easily applied to various combination methods 
based on ordinary least squares for prediction improvement. For instance, in Coulson 
and Robin’s (1993) method, where the coefficients/weights of the forecast candidates 
plus a lagged dependent variable are determined by ordinary least squares, one can 
apply sequential subset selections to leave out insignificant terms to reduce the total 
estimation variability, or the decreasingly averaging method to simultaneously stabilize 
and shrink the coefficients/weights to improve upon the original versions. In this and 
following sections, we focus on applying the proposed methods to the ordinary 
regression combinations and Bayesian shrinkage methods. 

Stock and Watson (2004) proposed Bayesian shrinkage methods as follows 

/p)�)((i
^
��iw 11���  

where wi is the weight of the ith candidate, and �ˆi is the estimated coefficient of the 
ith candidate in an ordinary regression combination which does not include an 
intercept. � is a shrinkage tuning parameter, and is equal to max{0, 1��[p/(n�p)]}. In 
the following simulations and data examples, we consider � equal to 0.5 and 1 
respectively. 

When k is large (� is small), the weight shrinks toward equal weights from the least 
squares estimation. Diebold and Pauly (1990) pointed out that this kind of weight wi 
can be interpreted as a Bayesian estimator. 

3.1.   Random models with a fixed order 
In this sub-section, we first consider that the true model has a fixed order AR(4) with 9 
candidate models which are a white noise, AR(1) to AR(4), and MA(1) to MA(4), 
respectively. Note that the true model is in the candidate set. For this and the following 
simulations, the error term of the true model follows a normal distribution with mean 
zero and variance 4. We generate 100 models with coefficients randomly generated 
from the uniform distribution on [�1, 1] (non-stationary coefficients are discarded). We 
replicate each model and the candidate forecasts 100 times to simulate the 
forecasting risks. In each replication, we generate a sample with size 140. The 
candidate models start to generate one-step-ahead forecasts after 80 observations, 
then recursively do so once every additional observation is made. Thus there are in 
total 60 forecasts for each model. The combination methods use 40 forecasts to start 
weighting, evaluated on last 20 observations. 

We consider two types of ordinary least squares combinations. One is with recursive 
fitted sizes, which start from 40 and sequentially increase by one until 59. The other is 
with rolling fitted sizes, which always use the most recent 40 forecasts. We denote the 
two methods by re-OLS and ro-OLS respectively. Furthermore, we consider two 
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Bayesian shrinkage methods as described above (denoted by Shk-1 and Shk-2 
respectively). We apply the four methods to determine the combination weights of the 
9 forecast candidates. We also apply the proposed methods to these four methods. 
When applying AIC or BIC selection, some insignificant forecast candidates are left 
out, and the four existing methods determine the coefficients/weights based on the 
remaining forecast candidates. When applying the decreasingly averaging method 
(denoted by DA), all of the 9 forecast candidates remain in the four existing methods, 
but their (OLS) coefficients are adjusted by DA. Table 1 shows the results of the 
comparisons. The second column gives the means of the 100 forecasting risks of the 
four existing combination methods. The rest of the columns give respectively the 
means of the 100 forecasting risks of the proposed methods applied to the existing 
methods. The numbers in parentheses are the improvement percentages of the 
proposed methods over the existing methods. 

Table 1 

  Comparisons when the true model AR(4) is in the candidate set 

  DA AIC BIC 

re-OLS 1.53 0.82 (46%) 0.84 (45%) 0.69 (55%) 

ro-OLS 2.12 1.01 (52%) 0.98 (54%) 0.79 (63%) 

Shk-1 1.08 0.60 (45%) 0.61 (44%) 0.51 (53%) 

Shk-2 1.02 0.66 (35%) 0.58 (43%) 0.50 (51%) 

 

From Table 1, the recursive OLS outperforms the rolling OLS, while Bayesian 
shrinkage methods outperform the recursive OLS. All of the proposed methods can 
significantly improve upon the existing combination methods. When the true model is 
in the candidate set, BIC selection performs the best among the proposed methods, 
while the decreasingly averaging method performs similarly as AIC selection. 

We then consider that the random true model has a fixed order AR(6) with the same 9 
candidate models as in the previous experiment. Note that in this experiment the true 
model is not in the candidate set. Other settings remain the same as before. Table 2 
shows the results of the comparisons. 

The numbers in Table 2 are substantially bigger than those in Table 1 because in this 
experiment the true model is not in the candidate set. Every combination method 
produces bigger forecasting risks in this situation. The proposed methods, however, 
still significantly improve upon the existing methods. Furthermore, there are a couple 
of interesting phenomena worth mentioning. 

Table 2 

  Comparisons when the true model AR(6) is not in the candidate set 

  DA AIC BIC 

re-OLS 3.18 2.28 (28%) 2.68 (16%) 2.63 (17%) 

ro-OLS 3.80 2.44 (36%) 2.93 (23%) 2.77 (27%) 

Shk-1 2.62 2.07 (21%) 2.40 (8%) 2.46 (6%) 

Shk-2 2.53 2.19 (14%) 2.35 (7%) 2.43 (4%) 
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When the true model is not in the candidate set, the decreasingly averaging method 
performs the best among the proposed methods, while AIC and BIC selections 
perform similarly. In reality, it is usually the case where no model in the candidate set 
truly describes the underlying data generating process. Thus one may usually have 
many candidate models to entertain but without the true model. From this experiment, 
the decreasingly averaging method shows potential advantages in real applications. 

3.2.   Random models with various orders 
In previous sub-section, the random true model has a fixed order (either AR(4) or 
AR(6)). In this sub-section, we consider the true model has different orders since in 
reality the underlying data generating process may have a structural change. We first 
consider that the true model uniformly varies from AR(1) to AR(4), while the candidate 
models are the same as in previous experiments. Note that even though the true 
model varies, it is still in the candidate set. Other settings remains the same as in the 
previous experiments. Table 3 shows the results of the comparisons. 

It is of interest to compare Table 3 with Table 1. Even though the four existing 
methods yield different means of forecasting risks in the two tables, the proposed 
methods make similar improvements over the existing methods. Again in Table 3, 
when the true model is in the candidate set, BIC selection performs the best among 
the proposed methods, while the other two perform similarly. 

Table 3 

  Comparisons when the true model varies and is in the candidate set 

  DA AIC BIC 

re-OLS 1.40 0.77 (45%) 0.76 (46%) 0.62 (56%) 

ro-OLS 1.91 0.95 (50%) 0.90 (53%) 0.72 (62%) 

Shk-1 0.95 0.54 (44%) 0.54 (44%) 0.44 (54%) 

Shk-2 0.86 0.55 (36%) 0.52 (39%) 0.43 (50%) 

 

We then consider that the random true model uniformly varies from AR(5) to AR(7) 
with the same 9 candidate models. Note that the true model is not in the candidate 
set. Other settings remain the same as before. Table 4 shows the results of the 
comparisons. 

Table 4 

  Comparisons when the true model varies and is not in the candidate set 

  DA AIC BIC 

re-OLS 2.64 1.87 (29%) 2.17 (18%) 2.10 (20%) 

ro-OLS 3.14 2.01 (36%) 2.34 (26%) 2.22 (29%) 

Shk-1 2.15 1.68 (22%) 1.94 (10%) 1.93 (10%) 

Shk-2 2.13 1.83 (14%) 1.90 (11%) 1.90 (11%) 

 

From Table 4, the proposed methods significantly improve upon the four existing 
methods. As in Table 2, when the true model is not in the candidate set, AIC and BIC 
selections perform similarly, while the decreasingly averaging method significantly 
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outperforms both of them, which again shows its potential advantages in real 
applications. 

So far we have dealt with the cases where the random error of the true model follows 
a normal distribution with mean zero and variance 4. Alternatively, we also consider 
the random error taking different variances from 0.5 to 7 and different distributions 
such as shifted gamma (with mean zero), double exponential, and t. We obtain similar 
results as presented in this paper, which are available upon request. 

4. Data examples 

In this section, we apply the proposed methods to three real data sets with a focus on 
the third one where we compare the proposed methods with other existing 
combination methods across different forecast horizons. 

4.1.   Data set 1 
The data with n = 98 are levels of Lake Huron measured in each July from 1875 
through 1972 (Brockwell & Davis, 1991). Graphical inspection suggests differencing 
the data. The candidates are ARMA(p,q) models with p, q = 0, 1, 2. The training 
sample size for the candidate models is 57. Then we obtain 40 one-step-ahead 
forecasts for each model. The combination methods use the beginning 20 forecasts to 
calculate the initial coefficients/weights. We compare the performance of the 
combination methods over the last 20 observations. Table 5 gives the comparison 
results. The second column gives the MSEs of the existing combination methods. The 
rest of the columns give respectively the MSEs of the proposed methods applied to 
the existing methods. 

Table 5 

  Comparison results of data set 1 

  DA AIC BIC 

re-OLS 1.16 0.78 (33%) 0.76 (35%) 0.82 (30%) 

ro-OLS 1.74 1.07 (38%) 1.04 (40%) 0.73 (58%) 

Shk-1 0.85 0.73 (15%) 0.77 (9.8%) 0.85 (0.4%) 

Shk-2 0.72 0.68 (4.9%) 0.76 (-5.9%) 0.84 (-17%) 

 

In Table 5, the three proposed methods dramatically improve upon the recursive OLS 
method, and they perform comparably. The proposed methods also dramatically 
improve upon the rolling OLS method with BIC selection standing out. The 
decreasingly averaging method incorporates Bayesian shrinkage methods favorably 
compared to sequential subset selections. 

4.2.   Data set 2 
The data are aggregated Australian clay brick quarter productions (in million units) 
from March 1956 through September 1994 (Makridakis et al., 1998). The data set 
consists of 155 observations. After taking a log transformation, we difference the data 
to improve the stationarity. The candidates are ARMA(p,q) models with p, q = 0, 1, 2, 
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3, 4, 5 (discard the case if the AR parts are not stationary). We obtain 20 candidate 
models. The training sample size for the candidates’ models is 100. There are 54 one-
step-ahead forecasts for each model. The combination methods use the beginning 34 
forecasts to calculate the initial coefficients/weights. We compare the performance of 
the combination methods over the last 20 observations. Table 6 gives the comparison 
results (MSE×103). 

Table 6 

  Comparison results of data set 2 

  DA AIC BIC 

re-OLS 6.5 4.9 (25%) 5.3 (18%) 6.7 (-3.1%) 

ro-OLS 37.2 7.4 (80%) 5.4 (85%) 5.3 (86%) 

Shk-1 5.4 5.1 (5.6%) 5.7 (-5.6%) 4.4 (19%) 

Shk-2 6.0 6.0 (0.0%) 5.6 (6.7%) 4.4 (27%) 

 

In Table 6, most of the proposed methods significantly outperform the two regression 
combination methods. For this data set, BIC selection incorporates Bayesian 
shrinkage methods favorably, while the decreasingly averaging method make an 
improvement by 5.6% or remains the same performance as the original Bayesian 
shrinkage method. 

4.3. Data set 3 
Rapach and Strauss (2005) studied the large-number combinations for forecasting 
employment growth in Missouri using 22 candidate models. They examined in total 20 
different combination methods, where the recursive and rolling OLS and Bayesian 
shrinkage methods are all included (for more details about the data set, forecast 
candidates, and combination methods, please check their article). The Missouri 
employment growth data set spans from January 1976 to January 2005 and the 
combination methods are evaluated over the last 10 years. There are four forecast 
horizons considered, 3, 6, 12, and 24 months. Before we discuss the proposed 
methods, we present the MSEs of the best candidate, best combination, and simple 
average across the four horizons in Table 7.

1
 To be conformable to Rapach and 

Strauss (2005), the entries in Table 7 and the following Table 8 are ratios of the MSEs 
of the methods to that of an AR benchmark model. 

Table 7 

The MSEs of some methods of data set 3 

 Best ind. Best com. Simple average 

h=3 0.90 0.94 0.96 

h=6 0.83 0.91 0.92 

h=12 0.70 0.71 0.84 

h=24 0.76 0.51 0.83 

                                                          
1
 We rewrote the whole program in R statistical software, and found that there are very minor 
differences between our numerical results and those of Rapach and Strauss (2005). 
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From Table 7, we can find that the simple average method performed very well at 
short horizons (h = 3 or 6), and the best combined forecast (which is Shk-2) 
significantly outperformed the best individual forecast candidate at h = 24. Table 8 
shows the results when we apply the proposed methods to the recursive and rolling 
OLS and Bayesian shrinkage methods. 

Table 8 

  Comparison results of data set 3 across different forecast horizons 

   DA AIC BIC 

 re-OLS 1.44 1.15 (20%) 1.24 (14%) 0.93 (36%) 

h=3 ro-OLS 2.28 1.75 (23%) 2.05 (10%) 1.51 (34%) 

 Shk-1 1.18 1.04 (12%) 1.18 (0.0%) 0.89 (24%) 

 Shk-2 1.08 0.99 (9.1%) 1.13 (-4.6%) 0.89 (18%) 

 re-OLS 1.56 1.24 (21%) 1.27 (19%) 1.10 (29%) 

h=6 ro-OLS 2.45 1.89 (23%) 2.15 (12%) 1.68 (31%) 

 Shk-1 1.21 1.01 (17%) 1.05 (13%) 0.97 (20%) 

 Shk-2 1.02 0.91 (11%) 1.00 (2.0%) 0.96 (5.9%) 

 re-OLS 1.27 1.11 (13%) 1.24 (2.4%) 1.13 (11%) 

h=12 ro-OLS 2.81 2.13 (24%) 2.49 (11%) 2.30 (18%) 

 Shk-1 0.85 0.79 (7.1%) 0.95 (-12%) 0.92 (-8.2%) 

 Shk-2 0.71 0.71 (0.0%) 0.91 (-28%) 0.91 (-28%) 

 re-OLS 0.95 0.75 (21%) 0.83 (13%) 0.75 (21%) 

h=24 ro-OLS 1.62 1.28 (21%) 1.54 (4.9%) 1.25 (23%) 

 Shk-1 0.51 0.55 (-7.8%) 0.54 (-5.9%) 0.52 (-2.0%) 

 Shk-2 0.53 0.57 (-7.5%) 0.53 (0.0%) 0.52 (1.9%) 

 

From Table 8, we can find that the proposed method can significantly improve upon 
the recursive and rolling OLS methods, and at h = 24, they perform very well, reaching 
0.75. More interesting things happen to Bayesian shrinkage methods. We can find 
that Bayesian shrinkage methods have variable performance across different 
horizons. They performed very well at long horizons (h = 12 or 24), but poorly at short 
horizons (h = 3 or 6). However, BIC selection plus Bayesian shrinkage can reach 0.89 
at h = 3, and the decreasingly averaging method plus Bayesian shrinkage can reach 
0.91 at h = 6. The decreasingly averaging method plus Bayesian shrinkage makes 
improvement by 6.7% or remains the same as the original Bayesian shrinkage method 
at h = 12. The proposed methods plus Bayesian shrinkage methods have slightly 
worse performance than the original Bayesian shrinkage methods at h = 24, but still 
significantly outperform other combination methods. If we simply incorporate the 
decreasingly averaging method with the second Bayesian shrinkage method, we will 
reach 0.99, 0.91, 0.71, and 0.57, at the four horizons respectively, which makes the 
Bayesian shrinkage method the most attractive method out of the 20 combination 
methods across different forecast horizons. 
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5. Concluding remarks 

The Least squares combinations (Granger & Ramanathan, 1984) are an important 
development in the forecast combination literature. The methods include the early 
variance-covariance methods as their special cases in some sense. Recently, 
researchers have worked on large-number forecast combinations. It has been shown 
that ordinary least squares combinations of all forecast candidates may have very 
poor performance in such situations. Due to computational difficulty, all subset 
selections are unattractive. As a solution, we propose two approaches, sequential 
subset selections and the decreasingly averaging method. The proposed methods are 
easily implemented, and can be tools to help various combination methods to improve 
prediction accuracy as long as their coefficients/weights are determined based on 
ordinary least squares. In this work, we focus on applying the proposed methods on 
the ordinary regression combinations and Bayesian shrinkage methods. 

Sequential subset selections discard insignificant forecast candidates to reduce the 
variability of coefficient/weight estimations, leading to possibly improved predictions. 
The decreasingly averaging method retains all the candidates, but simultaneously 
stabilizes and slowly shrinks the coefficients/weights according to their significance, 
which is different from Bayesian shrinkage methods, which shrink towards equal 
weights. 

We conduct structured simulations to examine the performance of sequential subset 
selections and the decreasingly averaging method. The numerical results show the 
proposed methods can significantly improve upon the recursive and rolling OLS and 
Bayesian shrinkage methods. When the true model is in the candidate set, BIC 
performs the best among the proposed methods, while the other two perform similarly. 
When the true model is not in the candidate set, the decreasingly averaging method 
significantly outperforms AIC and BIC selections, while AIC and BIC selections 
perform similarly. Three real data examples also confirm the potential advantages of 
the proposed methods. Especially, in data set 3, we examine their performance in a 
comprehensive setting, comparing them with 20 different combination methods. We 
find that the proposed methods can help Bayesian shrinkage methods improve 
prediction accuracy at short horizons. In particular, the decreasingly averaging 
method can help the second Bayesian shrinkage method be the most attractive 
combination method out of the 20 combination methods across different forecast 
horizons. 

The theoretical understanding of the decreasingly averaging method remains future 
investigations. Another direction of future work is to examine the proposed methods 
on other combination methods based on ordinary least squares. 
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