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Abstract

We consider forecast combination and, indirectly, model selection for VAR
models when there is uncertainty about which variables to include in the
model in addition to the forecast variables. The key difference from tradi-
tional Bayesian variable selection is that we also allow for uncertainty regard-
ing which endogenous variables to include in the model. That is, all models
include the forecast variables, but may otherwise have differing sets of en-
dogenous variables. This is a difficult problem to tackle with a traditional
Bayesian approach. Our solution is to focus on the forecasting performance
for the variables of interest and we construct model weights from the predic-
tive likelihood of the forecast variables. The procedure is evaluated in a small
simulation study and found to perform competitively in applications to real
world data.
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†Michael.Andersson@riksbank.se
‡Sune.Karlsson@esi.oru.se



1 Introduction

The increasing availability of data has spurred the interest in forecasting proce-
dures that can extract information from a large number of variables in an efficient
manner. Examples include the diffusion indexes of Stock and Watson (2002b) and
procedures based on combining forecasts from many models as in Jacobson and
Karlsson (2004), see Stock and Watson (2006) for a recent review and additional
references. While this development has clear implications for policy makers such as
central banks (see e.g. Bernanke and Boivin (2003)) procedures of this type are not
particularly widespread in central banks. Notable practitioners are Sveriges Riks-
bank, the Bank of England and the Bank of Canada. These central banks employ a
wide variety of model approaches, ranging from simple univariate time series models
to highly sophisticated multivariate non-linear models. While a great many models
are used, the procedures are easy to manage and highly automated (see, for example,
Andersson and Löf (2007) and Kapetanios, Labhard and Price (2007)).

One possible reason for the apparent lack of interest in the possibilities offered by
these procedures is that the literature has largely focused on univariate forecasting
procedures. This paper attempts to bridge this gap by proposing a Bayesian proce-
dure for combining forecasts from multivariate forecasting models, e.g. VAR models.
Standard applications of Bayesian model averaging suffer from a basic difficulty in
this context, when additional variables are included and modelled the connection
between the overall measure of fit for the model, the marginal likelihood, and the
expected forecasting performance for the variables of interest is lost. It is easy to
see that the (multivariate) marginal likelihood can change when a model is modified
by adding, removing or exchanging variables without this having the corresponding
effect on the predictive ability for the variable of interest.

We circumvent this problem by focusing on the predictive performance for the
variables of interest and base the forecast combination on the predictive likelihood
as proposed by Eklund and Karlsson (2007) in the context of univariate forecasting
models. While the basic predictive likelihood is also multivariate it is meaningful
to marginalize the predictive distribution with respect to the auxiliary variables
yielding a univariate predictive distribution and corresponding predictive likelihood.
Forecasts from different models can then be combined using weights based on the
univariate predictive likelihood.

Specifically we consider forecast combination and, indirectly, model selection for
VAR models when there is uncertainty about which additional variables to include
in the model. Given a set of auxiliary variables that are expected to be useful for
modelling and forecasting the variable of interest we consider the set of models that
arise when taking all possible combinations of the auxiliary variables. The forecasts
from these models are then combined using weights based on the predictive likelihood
at the relevant forecast horizon.

In most cases the predictive likelihood will not be available in closed form. In-
stead we use MCMC methods to simulate the predictive distribution and estimate
the density function from the MCMC output. In addition the MCMC output is
used to obtain forecast intervals both for forecasts based on a single model and the
combined forecast.

The procedure is evaluated in a simulation study and found to perform compet-
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itively in an application to forecasting the growth rate of US GDP.

2 Bayesian Forecast Combination

Bayesian forecast combination is a straightforward application of Bayesian model
averaging (see Hoeting, Madigan, Raftery and Volinsky (1999) for an introduction
to Bayesian model averaging and Min and Zellner (1993), Jacobson and Karlsson
(2004) and Koop and Potter (2004) for applications of Bayesian model averaging to
forecasting and Timmermann (2006) for a review of forecast combination). Suppose
that the forecaster has a set, M = {M1, . . . ,MM} , of M possible forecasting models
available, each specified in terms of a likelihood function L (y| θi,Mi) and prior
distribution for the parameters in the model, p (θi|Mi) . In addition the forecaster
assigns prior probabilities, p (Mi) , to each model, reflecting the forecasters prior
confidence in the models. The posterior model probabilities can then be obtained
by routine application of Bayes theorem

p (Mi|y) =
m (y|Mi) p (Mi)∑M
j=1m (y|Mj) p (Mj)

(1)

where

m (y|Mi) =

∫
L (y| θi,Mi) p (θi|Mi) dθi (2)

is the marginal likelihood of model Mi. The combined forecast is obtained as

E (yT+h|y) =
M∑
j=1

E (yT+h|y,Mj) p (Mj|y)

by weighting the forecasts from each model by the posterior model probabilities. It
is easily seen that the Bayesian forecast combination is a special case of the general
result that the marginal (over all models) posterior distribution for some function φ
of the parameters is

p (φ|y) =
M∑
j=1

p (φ|y,Mj) p (Mj|y) . (3)

The crucial feature of the marginal distribution (3) is that it takes account of both
parameter and model uncertainty. It is thus relatively easy to produce prediction
intervals that incorporates model uncertainty.

The marginal likelihood (2) is the basic Bayesian measure of fit of a model and
is a joint assessment of how well the likelihood and parameter prior agrees with the
data. It is the key quantity for determining the posterior model probabilities and
hence the weights assigned to the forecasts from the different models.

2.1 Predictive Likelihood

The marginal likelihood is well suited for combination of univariate forecasting mod-
els but, unfortunately, problematic when it comes to the combination of forecasts
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from multivariate forecasting models. Multivariate forecasting models, e.g. VAR-
models, are typically built with the express purpose of forecasting a single variable
and the remaining dependent variables in the model are only included if they are
deemed to improve the forecasting performance for the variable of interest. As the
marginal likelihood measures the fit of the whole model it is easy to see that the
forecast performance can remain unaffected by a change in the model that either
increases or decreases the marginal likelihood. This can happen when a dependent
is exchanged for another variable or the dimension of the model changes as variables
are added or dropped from the model.

To overcome these problems with the marginal likelihood we propose to base
the forecast combination on the predictive likelihood as suggested by Eklund and
Karlsson (2007) in the context of univariate forecasting models. Our primary moti-
vation for using the predictive likelihood is that it is meaningful to marginalize this
over the non-forecasted variables to obtain a measure that is focused on the variable
of interest. An added benefit of the predictive likelihood is that it is a true out
of sample measure of fit whereas the marginal likelihood depends on the predictive
content of the parameter prior. When combining the forecasts from a large set of
models it is often to time consuming to provide well thought out parameter priors
for all the models. Instead uninformative default priors such as the ones suggested
by Fernández, Ley and Steel (2001) are used and with this type of prior the marginal
likelihood essentially reduces to an in-sample measure of fit.

Our use of the predictive likelihood is based on a split of the data, Y = (y′1,y
′
2, . . . ,y

′
T )′ ,

into two parts, the training sample, Y∗n = (y′1,y
′
2, . . . ,y

′
n)′ of size n, and an eval-

uation or hold out sample, Ỹn =
(
y′n+1,y

′
n+2, . . . ,y

′
T

)′
of size m = T − n, where

yt = (y1t, . . . , yqt) is the vector of modelled variables. The training sample is used
to convert the prior into a posterior and the predictive likelihood is obtained by
marginalizing out the parameters from the joint distribution of data and parame-
ters,

p
(

Ỹn

∣∣∣Y∗n,Mi

)
=

∫
L
(

Ỹn

∣∣∣ θi,Y∗n,Mi

)
p (θi|Y∗n,Mi) dθi. (4)

Technically this is the predictive distribution of an unknown Ỹn conditional on the
training sample, Y∗n. When evaluated at the observed Ỹn (4) provides a measure
of the out of sample predictive performance and we refer to this as the predictive
likelihood. Since our primary interest is to forecast a subset of the q modelled vari-
ables the multivariate predictive likelihood (4) suffers from the same drawback as
the marginal likelihood in that it is not directly informative about the forecasting
performance for the variable of interest. To overcome this we marginalize the predic-
tive distribution of Ỹn with respect to the auxiliary variables, with y1 the variable
of interest we have

p ( ỹ1,n|Y∗n,Mi) =

∫
p
(

Ỹn

∣∣∣Y∗n,Mi

)
dỹ2,n . . . dỹq,n (5)

the marginal predictive likelihood for the hold of sample of y1 as a measure of the
average predictive performance for the variable of interest.

Replacing the marginal likelihood with the marginal predictive likelihood in (1)
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yields the predictive weights

w (Mi| ỹ1,n,Y
∗
n) =

p ( ỹ1,n|Y∗n,Mi) p (Mi)∑M
j=1 p ( ỹ1,n|Y∗n,Mj) p (Mj)

(6)

and the combined forecast

ŷT+h =
M∑
j=1

E (yT+h|Y,Mj)w (Mi| ỹ1,n,Y
∗
n) .

Note that the forecasts from each model is conditional on all available data up to
time T. That is, the model specific posterior is based on the full sample and the
forecast is the expected value of yT+h with respect to this posterior. The sample
split is only used for the purpose of calculating the predictive weights.

Comparing (6) with the posterior model probabilities in (1) it is clear that there
are two distinct differences between using predictive weights for forecast combination
and standard Bayesian model averaging. The first difference is the use of prior model
probabilities in (6) instead of posterior model probabilities based on the training
sample as suggested by (1). This is the sample split idea; the training sample is
used to learn about the parameters of each model and the hold out sample is used
to assess the forecasting performance and update the model weights. The second
difference is that we marginalize out the auxiliary variables from the predictive
likelihood to produce a measure of forecast performance that focuses on the variable
of interest.

While the predictive weights (6) strictly speaking can not be interpreted as pos-
terior probabilities they have several appealing properties in addition to providing
a basis for meaningful marginalization with respect to the auxiliary variables in the
model.

• Proper prior distributions are not required for the parameters. The predictive
likelihood is, in contrast to the marginal likelihood, well defined as long as the
posterior distribution of the parameters conditioned on the training sample is
proper.

• The predictive likelihood is not an absolute measure of forecasting perfor-
mance. Instead it is relative to the precision of forecasts implied by the model
and models with a good in-sample fit are penalized when a ”good” and ”bad”
model forecast both forecasts poorly. This is illustrated in Figure 1. If the
forecast error is small (1, solid lines) as can be expected from a model with
good in-sample fit, the predictive likelihood prefers the ”good” model but the
”bad” model is favoured if the forecast error (-2, dashed lines) is larger than
what can be expected from the ”good” model. The predictive weights will thus
be small for models that overfit the data or models that suffer from structural
breaks.

2.2 Dynamic Models

The predictive densities (4) and (5) are joint predictive distributions for lead times
h = 1 through h = m = T − n. For dynamic models where the forecast precision
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Figure 1 Predictive likelihood for a ”good” and a ”bad” model

54321012345

Forecast error

Predictive likelihood

Forecast error

Predictive likelihood

Predictive likelihood for a ”good” model (circles) and a ”bad” model (dots) evaluated
at small (solid lines) and large (dashed lines) forecast errors.

typically deteriorates as the lead time increases these will not be appropriate mea-
sures of forecast performance if the focus is on producing forecasts for a few select
lead times. One solution is to set m to the largest lead time, H, considered but this
will typically be small (say 8 quarters) and the Monte Carlo experiments in Eklund
and Karlsson (2007) indicates that the hold out sample should be large, on the order
of 70% of the data. To combine these two requirements we suggest using a series of
short horizon predictive likelihoods,

g (Y,n|Mi) =

T−hk∏
t=n

p (y1,t+h1 , . . . , y1,t+hk
|Y∗t ,Mi) (7)

where h1, . . . , hk represents the lead times at which we wish to evaluate the forecast
performance.

The use of the predictive likelihood in dynamic models is complicated by the fact
that the predictive likelihood is not available in closed form for lead times h > 1.
Instead the predictive distribution must be simulated and the predictive likelihood
estimated from the simulation output. Standard density estimation techniques can
be used for this purpose and works quite well if the predictive likelihood is evaluated
at a single lead time. Evaluating the predictive likelihood at multiple horizons leads
to more complex multivariate density estimation.

To facilitate the use of multiple horizon predictive likelihoods we take advan-
tage of the model structure and use the idea of Rao-Blackwellization to estimate
the predictive likelihood. Consider the task of evaluating the unknown density fu
at u = x when we have draws from the joint distribution of (u, v) or only the
marginal distribution of v and the conditional density fu|v is known. We want fu (x)
=
∫
fu,v (x, v) dv =

∫
fu|v (x, v) fv (v) dv = Ev

[
fu|v (x, v)

]
where we make the de-

pendence of fu|v on v explicit by including it as an argument to the function. A
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simple Monte Carlo estimate is then given by f̂u (x) = 1
R

∑R
i=1 fu|v (x, v∗i ) where v∗i

are the draws from the marginal distribution of v. The Rao-Blackwellized estimate
will in general be quite precise even for moderate sample sizes and preserves any
smoothness properties of the underlying density.

In our case the conditioning variables are the parameters of the VAR-model, Γ
and Ψ and we wish to estimate the predictive likelihood for the subset of variables
and lead times, y1,t+h1 , . . . , y1,t+hk

. For the VAR-model

yt =

p∑
i=1

yt−iAi + xtC + ut (8)

= ztΓ + ut

with zt = (yt−1, . . . ,yt−p,xt) and normally distributed errors, ut ∼ N (0,Ψ) ,
the joint lead time 1 through H = max (h1, . . . , hk) predictive distribution con-
ditional on the parameters, p (yt+1, . . . ,yt+H |Y∗t ,Mi,Γ,Ψ) , is multivariate normal
(see Lütkepohl (1993) for details). Consequently, the conditional predictive distri-
bution for the subset of interest, p (y1,t+h1 , . . . , y1,t+hk

|Y∗t ,Mi,Γ,Ψ) , is also multi-
variate normal. The Rao-Blackwellized estimate of p (y1,t+h1 , . . . , y1,t+hk

|Y∗t ,Mi) is
then obtained as

p̂ (y1,t+h1 , . . . , y1,t+hk
|Y∗t ,Mi) =

1

R

R∑
i=1

p
(
y1,t+h1 , . . . , y1,t+hk

|Y∗t ,Mi,Γ
(i),Ψ(i)

)
by averaging over draws Γ(i) and Ψ(i) from the posterior distribution based on
Y∗t . The draws from the posterior distribution of the parameters are, in our case,
obtained from a standard Gibbs sampler.

The estimates of the predictive weights, finally, are formed as

ŵ (Mi| ỹ1,n,Y
∗
n) =

ĝ (Y,n|Mi) p (Mi)∑M
j=1 ĝ (Y,n|Mj) p (Mj)

(9)

with

ĝ (Y,n|Mi) =

T−hk∏
t=n

p̂ (y1,t+h1 , . . . , y1,t+hk
|Y∗t ,Mi) . (10)

3 Prior Specification

We use a Normal-Diffuse prior on the parameters in the VAR-model (8), i.e. vec (Γ) ∼
N (γ0,Σ0) and π (Ψ) ∝ |Ψ|−(q+1)/2 , see Kadiyala and Karlsson (1997) for details
and the Gibbs sampler for simulating from the posterior distribution of Γ and Ψ.
The prior for Γ is a Litterman type prior. That is, γ0 is zero except for elements
corresponding to the first own lag of variables. These are set to unity for variables
believed to be non-stationary and to 0.9 for stationary variables. Σ0 is a diagonal
matrix and the prior standard deviations are given by

π1

kπ3
, own lags, k = 1, . . . , p

siπ1π2

sjkπ3
, lags of variable j in equation i, k = 1, . . . , p

π4, deterministic variables
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where si is the residual standard deviation for equation i from the OLS fit of the
VAR-model.

The model prior is given by

π (Mj) ∝
K∏
k=1

δdk
k (1− δk)1−dk

where dk = 1 if variable k is included in the model and δk is the prior inclusion
probability of variable k.

4 Monte Carlo Experiment

We use three small Monte Carlo experiments to evaluate the forecasting performance
of forecast combinations based on the predictive weights (9). The data generating
processes are a bivariate VAR(1),

DGP 1: yt = yt−1

(
0.5 0.2
0.5 0.5

)
+ ut, (11)

a bivariate VAR(2),

DGP 2: yt = yt−1

(
0.5 0.2
0.5 0.5

)
+ yt−2

(
0.1 0.1
0.2 −0.3

)
+ ut, (12)

a trivariate VAR(1),

DGP 3: yt = yt−1

 0.5 0.2 0.1
0.5 0.5 0.1
0.5 0.3 0.2

+ ut, (13)

and, finally, a univariate AR(2)

DGP 4: yt = 0.5yt−1 + 0.3yt−2 + ut. (14)

In addition we generate a set of 5 extraneous variables as

z1,t = 0.5y1,t−1 + 0.5z1,t−1 + e1,t

z2,t = 0.5y2,t−1 + 0.5z2,t−1 + e2,t

z3,t = 0.7z3,t−1 + e3,t

z4,t = 0.2z4,t−1 + e4,t

z5,t = e5,t.

with ui,t, and ei,t iid standard normal random variables. The last, white noise,
extraneous variable is dropped with the trivariate VAR-model and a second white
noise series is added for the univariate AR-model so that the generated data sets
in each Monte Carlo experiment consists of seven variables. For each experiment
we generate 100 data sets of length 112 with the last 12 observations set aside for
forecast evaluation.
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The variable to be forecasted is y1,t. For the bivariate DGPs we consider the 42
models arising from modelling y1,t alone or together with combinations of y2,t and
z1,t, . . . , z5,t with a maximum of four variables in the model, for the trivariate DGP
we consider the 57 possible models when allowing a maximum of five variables in
the model. For the univariate AR(2) z2 simplifies to z2,t = 0.5z2,t−1 + e2,t and we
consider models with a maximum of 4 variables. We use two settings for the lag
length of the VAR-models, p = 2 and p = 4.

We are particularly concerned about the number of observations needed for the
hold out sample, for this we consider three cases, m = 30, m = 50 and m = 70,
(m = 70 is not used in combination with lag length 4 in the estimated models since
this would reduce the number of available observations too much) and the effect of
the lead time used for the calculation of the predictive weights, here we consider
eight alternatives, the single lead times h = 1, 2, 3, 4 and 8 and the multiple lead
times h = (1, 2, 3, 4), h = (1, 2, 3, 4, 5, 6, 7, 8) and h = (1, 4, 8) . We also experiment
with two specifications of the model prior, setting δk = 0.2 implying a prior expected
model size of 2.15 when we allow for four variables in the model and 2.19 when we
allow five variables. The other settings δk = 0.5, with all models equally likely and
prior expected model sizes 3.29 and 3.74. The prior for Γ is specified with π1 = 0.5,
π2 = 0.5, π3 = 1 and π4 = 5.0.

When conducting the Monte Carlo exercise we simplify the estimation of the
predictive likelihoods by not updating the posterior distribution of the parameters
as t increases in the product (10), this allow us to perform all the calculations
for the predictive weights within a single Gibbs sampler run instead of running one
Gibbs sampler for each value of t.1 The predictive likelihoods are estimated based on
5000 draws from Markov chain and the final forecast, E (yT+h|Y,Mj) , is estimated
from 5000 draws from the Markov chain based on the full sample. To increase the
precision of the estimate we use antithetic variates where an antithetic draw of Γ,
conditional on Ψ, is obtained in each step of the Markov chain.

4.1 Results

We will focus on DGP 1, a bivariate VAR(1), when the models are estimated with
lag length p = 2 when reporting the results. The qualitative results are similar for
the other DGPs as well as models estimated with p = 4. A comprehensive set of
results are available in Appendix B.

Table 1 reports on the posterior variable inclusion ”probabilities”, or more pre-
cisely the sum of the predictive weights for the set of models containing the variable.
It is clear that the procedure is able to discriminate between the variable y2 which
is in the true model and the extraneous variables. The strongest discrimination
is achieved when the predictive likelihood is evaluated at h = 1. This is not too
surprising given that prediction intervals rapidly becomes very wide as the forecast
horizon increases with a correspondingly diminishing discriminatory power. Longer
lead times might, however, be important for seasonal or cyclical data. This is to

1We do a limited check on the effect of not updating the prior by rerunning a few experiments
for the first DGP with the posterior updated as new observations are added. The results are
slightly better when the posterior is updated, particularly for m = 70, but overall the differences
are small. Se Tables B2, B5, B7 and B9 for details on the performance.
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Table 1 Predictive weights for variables, DGP 1, models estimated with lag length
p = 2

Model prior, δk = 0.2

h hold out sample, m = 30 hold out sample, m = 70

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.79 0.17 4.71 0.92 0.15 6.11
4 0.42 0.19 2.26 0.49 0.20 2.47
8 0.31 0.19 1.57 0.28 0.20 1.40
1− 4 0.76 0.17 4.38 0.79 0.19 4.10
1− 8 0.70 0.18 3.81 0.66 0.18 3.76
1, 4, 8 0.76 0.17 4.49 0.76 0.16 4.68

Model prior, δk = 0.5

h hold out sample, m = 30 hold out sample, m = 70

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.88 0.31 2.79 0.96 0.28 3.48
4 0.60 0.36 1.67 0.63 0.32 1.96
8 0.49 0.37 1.32 0.40 0.32 1.27
1− 4 0.85 0.30 2.89 0.84 0.26 3.25
1− 8 0.78 0.28 2.80 0.71 0.22 3.27
1, 4, 8 0.85 0.29 2.88 0.82 0.23 3.64

p (·) denotes the predictive weight for the variable.

some extent indicated by the results for DGP 2 which contains a cycle. Evaluating
the predictive likelihood at multiple horizons discriminates almost as well as the
single h = 1 and can be a useful alternative. Increasing the size of the hold out sam-
ple is beneficial for discriminating between the variables although the estimation
sample can obviously not be made too small (in particular when the posterior is not
updated with new observations and always based on the first T −m observations).
As can be expected we also achieve better discrimination with the δk = 0.2 model
prior which favours small models.

Table 2 summarizes the model selection properties of the predictive likelihood.
The predictive weights for the true model are not particularly large but the perfor-
mance is reasonable in terms of model selection. With the δk = 0.2 model prior the
correct model is selected in between 70% and 87% of the Monte Carlo replicates
when the predictive likelihood is evaluated at h = 1. Performance is, on the other
hand, quite poor with the uninformative model prior which favours large models.

Figure 2 summarizes the forecast performance for DGP 1 and models estimated
with lag length p = 2. The figure compare the root mean square forecast error
(RMSE) for the forecast combination to that of the forecasts from the model with
only y1,t, i.e. an AR(2). There is clearly a substantial gain for shorter forecast lead
times. The larger hold out sample, m = 70, provides the best forecasts together
with predictive criteria that puts weight on lead time 1. The difference between the
δk = 0.2 and δk = 0.5 model priors is small for this DGP and models estimated with
lag length p = 4 gives slightly worse forecasts.
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Table 2 Model selection, DGP 1, models estimated with lag length p = 2. Average
predictive weight and proportion selected for true model.

Model prior, δk = 0.2 Model prior, δk = 0.5
h hold out, m = 30 hold out, m = 70 hold out, m = 30 hold out, m = 70

Weight Selected Weight Selected Weight Selected Weight Selected
1 0.31 0.87 0.44 0.70 0.08 0.20 0.18 0.39
4 0.16 0.29 0.23 0.34 0.05 0.18 0.15 0.26
8 0.12 0.19 0.12 0.13 0.05 0.25 0.10 0.15

1− 4 0.33 0.61 0.42 0.46 0.13 0.28 0.33 0.37
1− 8 0.33 0.50 0.31 0.34 0.19 0.30 0.28 0.28
1, 4, 8 0.34 0.66 0.41 0.45 0.14 0.31 0.34 0.40

The results for DGP 2 shown in Figure 3 show a larger improvement from the
forecast combination at lead time 1 than for DGP 1 but the results are slightly worse
than an AR(2) at the longer lead times. Again, the forecasts combinations based on
the predictive likelihood evaluated at h = 4 and 8 provides the least improvement
on an AR(2). Performance is slightly better for the δk = 0.5 model prior with
smaller differences between combinations based on predictive likelihoods evaluated
at different horizons.

With DGP 3 (Figure 4) the forecast combination improves on an AR(2) at all but
the longest lead times. The difference between the different forecast combinations is
small except for when the predictive likelihood is evaluated at h = 8 which performs
worse than the other combinations. The difference between model priors is very
small, the δk = 0.5 prior does slightly better at longer lead times and the δk = 0.2
prior does slightly better at short lead times.

DGP 4, finally, provides a check on the forecast performance when the true
model is a univariate AR(2). The performance of the predictive likelihood forecast
combination, depicted in Figure 5, is very close to the AR(2) and the RMSE never
exceeds that of the AR(2) by more than 1.6% in the experiments we performed.
The forecast performance is very stable across the prior settings, the horizons at
which the predictive likelihood is evaluated and the size of the hold out sample.
There are, on the other hand, substantial differences in terms of variable and model
selection. With the uniform δk = 0.5 prior, which favours large models, the correct
univariate model is never selected in more than 38% of the replicates. This indicates
the importance of the shrinkage prior on the parameters as a protection agains
overfitting. The model selection performs better with the δk = 0.2 prior where the
correct model is selected in 39% to 89% of the replicates.

Overall it is clear that forecast combination based on the predictive likelihood can
improve substantially on the common benchmark of a univariate AR-model. The
improvement is larger for short lead times and is also larger for more complex DGPs.
The performance is in general better when the predictive likelihood is evaluated at a
single short horizon although the use of multiple horizons may be more robust. With
a single horizon the use of standard density estimation techniques is uncomplicated
and the procedure generalizes readily to situations where the model structure does
not allow the use of the Rao-Blackwellization device.
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Figure 2 RMSE for forecast combination relative to AR(2), DGP 1, δk = 0.2
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Figure 3 RMSE for forecast combination relative to AR(2), DGP 2, δk = 0.2
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Figure 4 RMSE for forecast combination relative to AR(2), DGP 3, δk = 0.2

0.80

0.85

0.90

0.95

1.00

1.05

1 2 3 4 5 6 7 8 9 10 11 12

F orec as t lead time

R
M

S
E

 r
el

at
iv

e 
to

 A
R

(2
)

h=1, m=50 h=4, m=50

h=8, m=50 h=14, m=50

h=18, m=50 h=1,4,8, m=50

h=1, m=70 h=4, m=70

h=8, m=70 h=14, m=70

h=18, m=70 h=1,4,8, m=70

Figure 5 RMSE for forecast combination relative to AR(2), DGP 4, δk = 0.2
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Figure 6 Sequential forecasts from 2000:1 to 2008:3.
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Note: The figure presents the median of the predictive distribution.

5 Forecasting US GDP

This section illustrates the predictive likelihood forecast combination procedure at
work. The forecast variable is U.S. gross domestic product (GDP). The VAR models
are of dimensions one to four and we use a data set of 19 series (GDP included)
ranging from second quarter 1971 to the second quarter 2007. The full list variables
can be found in Appendix A. This implies estimation of 988 (unique) model combi-
nations. The series are modelled in their first differences or in the levels, but in the
presentation the forecasts, as well as the data, are in the fourth log-differences (as
an approximation to yearly growth rates).

The prior variable probabilities, δk, are all set to 0.2, but we have also tried a
value of 0.5 (which is equivalent to a uniform prior over the model space). The
final results do not change much when the prior distribution is changed. However,
the procedure puts a larger predictive weights on larger systems when the prior
0.5 is used. The predictive likelihood is evaluated at lead time 1 and computed
through 5000 Gibbs samples and 50 evaluation points in time. The final forecasts
arises as the mean forecast from 1000 Gibbs samples. The prior specification for the
parameters is of the same Litterman type as in the Monte Carlo experiment; we set
the first (own) lag mean to zero for difference stationary variables and the first lag
mean to 0.9 for stationary series. The overall tightness (π1) is 0.2, the cross-equation
tightness (π2) is 0.5 the lag decay (π3) is 1 and the tightness on the constant term
(π4) is 5.

In order to compare the general forecasting performance of our procedure, we
compute (pseudo out-of-sample) root of the mean squared errors (RMSE) for the
combination estimator and compare it to the model with the highest model pre-
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Table 3 Forecast accuracy, absolute and relative RMSE, US GDP growth

Lead For. comb. Top mod. AR(2) R. Walk Rec. mean No Fcsts
1 0.41 1.11 1.23 1.61 3.32 30
2 0.58 1.10 1.23 1.73 2.71 29
3 0.93 1.01 1.11 1.44 1.88 28
4 1.23 0.96 1.04 1.33 1.56 27
5 1.36 0.94 0.97 1.31 1.49 26
6 1.41 0.94 0.95 1.36 1.48 25
7 1.33 0.95 0.95 1.47 1.54 24
8 1.22 0.95 0.96 1.64 1.61 23

Stdev (GDP ) 1.15
RMSE for forecast combination. Ratio of RMSE to RMSE for forecast com-
bination for other procedures.

dictive weight (which may be a different model for different forecast occasions).
Furthermore, the performance is also compared to a Bayesian second-order autore-
gressive model, a random walk forecasts and a recent mean construct (based on the
last eight quarters of data). The RMSE’s, for horizons 1-8, are calculated for fore-
casts ranging from first quarter 2000 to second quarter 2007. The reported results
concern average performance of the procedure (in terms of RMSE:s) but we also
present a current situation analysis (in terms of forecasts and predictive weights).

5.1 Average Forecasting Performance

Figure 6 presents a cascade plot of forecasts (one to eight steps ahead) from different
points in time. This picture reveals how well the forecasts track the development
of GDP growth (if we neglect data revisions which may be sizeable). For example,
the first BMA forecast is constructed with data up to the last quarter 1999. From
the forecast cascade it is demonstrated that the BMA procedure underestimated
the weakness of the economy during 2001, but predicts the period 2002 to 2005
reasonably well. The forecasts did not quite catch the down turn in the recent past
and GDP growth is somewhat overpredicted, but not to the same degree as in 2001.

Turning to a more formal evaluation of the forecasts, Table 3 shows that the fore-
cast combination improves on the top model and especially the AR(2) for shorter
lead times but does slightly worse than the top model for lead times 4 and higher
and worse than the AR(2) for lead times 5 and higher.2 Due to the small evalua-
tion sample no formal testing is performed. This improvement is somewhat more
articulated when we use the uniform prior for the models, δk = 0.5. The two sim-
plest alternative forecasts, namely the random walk and the recent mean forecasts,
perform notably worse than the other forecasts.

The size of the RMSE of the forecast combination for lead times h = 4 and
higher is approximately the same as the standard deviation of the GDP series. Our
procedure can thus be regarded as a complement to traditional forecasts for short

2The ability of autoregressions to compare well with more sophisticated approaches is a familiar
phenomenon. See, for example, Stock and Watson (2002a) and Stock and Watson (2004).
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Figure 7 Forecast from 2007:2. Posterior mean and probability intervals for forecast
combination and mean forecast from a Bayesian AR(2).
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horizons. This is in line with previous studies, see for instance Galbraith and Tkacz
(2006).

5.2 Contemporaneous Forecasts from the Procedure

Figure 7 presents the posterior median of the combination forecasts given data
up to second quarter 2007. The forecast cover the period 2007:3 to 2009:4. The
figure also presents the associated 50 and 68 per cent probability intervals for the
forecast combination and the forecasts from a Bayesian autoregression. The inter-
vals demonstrate that there is considerable forecast uncertainty. The combination
forecast suggests that the US economy will slowly approach the potential growth
rate. The autoregressive forecast only considers the dynamics contained in GDP
itself, whereas, the combination procedure also takes the other eighteen variables
into account. Figure 7 demonstrate that the information contained in the indicator
variables leads to a lower forecast for the whole forecast period compared to not
using the indicator information. Thus, the indicators contain a signal of a weaker
growth than the GDP series by itself.

Figure 8 presents the predictive weights (i.e. the sum of the predictive weights
for the models containing the variable) for each variable, based on the present full
data-set. This information may be useful by itself, e.g., this information may be in-
corporated in judgementally based forecasting schemes. The highest variable inclu-
sion probability is found for the jobless claims (JOBLESS). The other real variables
exhibit notably lower predictive weights probabilities, and the nominal variables
even lower weights. Some interesting patterns do, however, emerge if we consider
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Figure 8 Variable inclusion, predictive weights
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Table 4 Top 10 Models

Rank Variables Pred weight
1 GDP JOBLESS 0.126
2 GDP CONS JOBLESS 0.093
3 GDP JOBLESS NASDAQ 0.059
4 GDP JOBLESS NYSE 0.044
5 GDP JOBLESS M2 0.037
6 GDP JOBLESS Chic prod 0.034
7 GDP CONS JOBLESS NASDAQ 0.033
8 GDP CONS JOBLESS NYSE 0.030
9 GDP JOBLESS EMP 0.022

10 GDP JOBLESS M2 Chic prod 0.021

Equal weights for all specifications/models 0.001
The table presents the top ten models based on data from 1971:2 to
2007:2. The column Pred weight reports the predictive weight of each
model.
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groups of variables measuring the same underlying feature of the economy. Employ-
ment (EMP payr, EMP, chic EMP), stock prices (NASDAQ, NYSE), consumption
(CONS), money supply (M2) and production (INDPROD, ISM pmi, chic PROD)
are all important factors.

Table 4 presents posterior analysis for the top ten models, using the current data
set. As a point of reference the table also gives the ”posterior probability”, 1/988,
for an equal weighting scheme. Given the variable predictive weights it is not a
surprise that the top ranked model consists of GDP and jobless claims.

6 Conclusions

This paper proposes to use weights based on the predictive likelihood for combining
forecasts from dynamic multivariate forecasting models such as VAR-models. Our
approach overcomes a basic difficulty with standard Bayesian forecast combination
based on the marginal with multivariate forecasting models, that the marginal like-
lihood can change with the dimension of the model in ways that are unrelated to the
forecasting performance for the variable of interest. This is achieved by considering
the marginal predictive likelihood for the variable of interest rather than the joint
predictive likelihood which suffers from the same problem.

The predictive likelihood is not available in closed form for forecasts at lead times
greater than 1 and we propose simulation strategies for estimating the predictive
likelihood. Our approach is completely general and does not rely on natural conju-
gate priors or the availability of closed form solutions for the posterior quantities.
All that is required is the ability to simulate from the posterior distribution of the
parameters and to simulate one step ahead forecasts. The approach is thus also well
suited for non-linear forecasting models.

We evaluate the performance of the forecast combination procedure in a small
Monte Carlo study and in an application to forecasting US GDP growth. Overall
the forecast combinations perform very well. In the Monte Carlo study the forecast
combination outperforms our benchmark autoregression by as much as 23% but does
slightly worse for forecasts more than four quarters ahead.
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Appendices

A Data used for the US GDP forecasts

The data set consists of real, nominal and indicator type variables:

• GDP: National Income Account, Overall, Total, Constant Prices, SA (US
Dept. of Commerce)

• INDPROD: Production, Overall, Total, SA (Federal Reserve)

• CONS: Personal Outlays, Overall, Total, Constant Prices, SA (US Dept. of
Commerce)

• JOBLESS: Jobless claims, SA (US Dept. of Labor)

• EMP payr: Employment, Overall, Nonfarm Payroll, Total, SA (Bureau of
Labor Statistics)

• EMP: Civilian Employment, Business Cycles Indicators, SA (The Conference
Board)

• COMPEMP: National Income Account, Compensation of Employees, Total,
SA (The US Dept. of Commerce)

• SAVErate: Personal Savings, Rate, SA (Federal Reserve)

• Profits: National Income Account, Corporate Profits, with IVA and CCAdj,
Total, SA (The US Dept. of Commerce)

• PCE core: Price Index, PCE, Overall, Personal Consumption Expenditures
less Food and Energy, SA (Bureau of Economic Analysis)

• CPI core: Consumer Prices, All Items less Food and Energy, SA (Bureau of
Labor Statistics)

• M2: Money Supply M2, SA (Federal Board of Governors)

• NASDAQ: Composite Index, Close (NASDAQ)

• NYSE: Composite Index, Close (NYSE)

• ISM pmi: Business Surveys, ISM Manufacturing, PMI Total, SA (Institute for
Supply Management)

• Chic prod: Business Surveys, Chicago PMI, Production, SA (PMAC)

• Chic emp: Business Surveys, Chicago PMI, Employment, SA (PMAC)

• FFR: Policy Rates, Fed Funds Effective Rate (Federal Reserve)

• CarSales:

20



– Car Sales, Domestic, SA (The US Dept. of Commerce)

– Car Sales, Imported, SA (The US Dept. of Commerce)

– Truck Sales, Domestic Light, SA (The US Dept. of Commerce)

– Truck Sales, Imported Light, SA (The US Dept. of Commerce)
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B Monte Carlo Experiments

B.1 DGP 1

The DGP is

yt = yt−1

(
0.5 0.2
0.5 0.5

)
+ ut,

and the irrelevant variables are generated as

z1,t = 0.5y1,t−1 + 0.5z1,t−1 + e1,t

z2,t = 0.5y2,t−1 + 0.5z2,t−1 + e2,t

z3,t = 0.7z3,t−1 + e3,t

z4,t = 0.2z4,t−1 + e4,t

z5,t = et

with ui,t and ei,t iid N (0, 1) . T = 100 (not accounting for lag lengths) and an
additional 12 observations are set aside for forecast evaluation. Model averaging
and model selection over the 42 possible models with up to four variables. y1 is
always included in the model. The results are based on 100 Monte Carlo replicates.
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Table B2 Predictive weights for variables, DGP 1, models estimated with lag length
p = 2 and updated posterior distributions for calculation of predictive weights

Model prior, δk = 0.2

h hold out sample, m = 30 hold out sample, m = 70

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.78 0.17 4.60 0.97 0.14 6.84
4 0.39 0.18 2.16 0.56 0.19 3.00

1− 4 0.77 0.17 4.39 0.92 0.15 6.35

Model prior, δk = 0.5

h hold out sample, m = 30 hold out sample, m = 70

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.88 0.32 2.76 0.99 0.28 3.54
4 0.58 0.36 1.60 0.72 0.36 2.00

1− 4 0.86 0.31 2.80 0.96 0.25 3.78

p (·) denotes the predictive weight for the variable.
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Table B3 Predictive weights for variables, DGP 1, models estimated with lag length
p = 4

Model prior, δk = 0.2

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.77 0.17 4.49 0.88 0.17 5.31
2 0.65 0.19 3.41 0.73 0.19 3.93
3 0.47 0.19 2.44 0.55 0.19 2.86
4 0.38 0.20 1.91 0.41 0.19 2.15
8 0.28 0.19 1.48 0.27 0.18 1.51

1− 4 0.75 0.19 3.90 0.79 0.20 3.92
1− 8 0.66 0.19 3.51 0.68 0.19 3.57
1, 4, 8 0.72 0.17 4.23 0.77 0.15 5.00

Model prior, δk = 0.5

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.88 0.32 2.71 0.94 0.31 3.07
2 0.79 0.35 2.26 0.83 0.35 2.40
3 0.65 0.37 1.76 0.71 0.36 1.97
4 0.57 0.37 1.52 0.59 0.36 1.67
8 0.48 0.37 1.30 0.45 0.34 1.33

1− 4 0.85 0.31 2.77 0.86 0.29 2.92
1− 8 0.76 0.28 2.70 0.75 0.26 2.92
1, 4, 8 0.83 0.31 2.72 0.83 0.26 3.21

p (·) denotes the predictive weight for the variable.
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Table B4 Model selection, DGP 1, models estimated with lag length p = 2. Average
posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected Weight Selected

1 0.31 0.87 0.37 0.78 0.44 0.70
2 0.26 0.69 0.31 0.68 0.38 0.61
3 0.19 0.46 0.24 0.51 0.30 0.45
4 0.16 0.29 0.19 0.34 0.23 0.34
8 0.12 0.19 0.15 0.19 0.12 0.13

1− 4 0.33 0.61 0.40 0.59 0.42 0.46
1− 8 0.33 0.50 0.38 0.46 0.31 0.34
1, 4, 8 0.34 0.66 0.42 0.60 0.41 0.45

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected Weight Selected

1 0.08 0.20 0.10 0.20 0.18 0.39
2 0.07 0.18 0.09 0.25 0.17 0.34
3 0.06 0.17 0.08 0.21 0.15 0.32
4 0.05 0.18 0.08 0.18 0.15 0.26
8 0.05 0.25 0.08 0.19 0.10 0.15

1− 4 0.13 0.28 0.22 0.32 0.33 0.37
1− 8 0.19 0.30 0.29 0.35 0.28 0.28
1, 4, 8 0.14 0.31 0.24 0.38 0.34 0.40

Table B5 Model selection, DGP 1, models estimated with lag length p = 2 and up-
dated posteriors for calculation of predictive weights. Average posterior probability
and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 70
Weight Selected Weight Selected

1 0.31 0.86 0.47 0.90
4 0.15 0.26 0.24 0.48

1− 4 0.33 0.61 0.49 0.72

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 70
Weight Selected Weight Selected

1 0.07 0.15 0.14 0.38
4 0.05 0.23 0.09 0.24

1− 4 0.11 0.29 0.26 0.41
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Table B6 Model selection, DGP 1, models estimated with lag length p = 4. Average
posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.31 0.82 0.37 0.77
2 0.24 0.60 0.30 0.61
3 0.18 0.39 0.23 0.42
4 0.15 0.22 0.17 0.28
8 0.11 0.13 0.14 0.15

1− 4 0.30 0.53 0.38 0.50
1− 8 0.31 0.47 0.34 0.37
1, 4, 8 0.32 0.65 0.39 0.57

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.08 0.17 0.11 0.26
2 0.07 0.12 0.09 0.22
3 0.06 0.11 0.08 0.18
4 0.05 0.14 0.07 0.21
8 0.05 0.22 0.08 0.24

1− 4 0.12 0.22 0.23 0.36
1− 8 0.19 0.28 0.29 0.36
1, 4, 8 0.13 0.27 0.24 0.33
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Table B7 Forecast performance, RMSE relative to univariate AR(2), hold out
sample m = 30, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
Posterior distribution not updated for predictive weights Updated posterior

h 1 2 3 4 8 1− 4 1− 8 1, 4, 8 1 4 1− 4
1 0.965 0.970 0.966 0.968 0.969 0.967 0.974 0.975 0.960 0.971 0.966
2 0.876 0.890 0.902 0.922 0.945 0.886 0.881 0.876 0.871 0.925 0.874
3 0.896 0.907 0.929 0.936 0.957 0.893 0.895 0.888 0.894 0.941 0.892
4 0.935 0.941 0.952 0.957 0.964 0.930 0.931 0.924 0.935 0.962 0.930
5 0.978 0.983 0.988 0.991 0.996 0.984 0.985 0.980 0.977 0.989 0.979
6 0.965 0.972 0.976 0.979 0.991 0.971 0.973 0.968 0.964 0.978 0.968
7 0.967 0.970 0.973 0.979 0.989 0.969 0.972 0.970 0.965 0.978 0.966
8 0.986 0.987 0.988 0.989 0.997 0.989 0.987 0.986 0.986 0.987 0.988
9 0.996 0.996 0.996 0.997 0.997 0.998 0.999 0.997 0.996 0.996 0.999

10 0.985 0.986 0.986 0.991 0.996 0.990 0.990 0.988 0.984 0.989 0.987
11 0.997 0.998 0.999 1.003 1.003 1.001 1.002 1.001 0.996 1.001 0.999
12 1.006 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.006 1.007 1.009

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
Posterior distribution not updated for predictive weights Updated posterior

h 1 2 3 4 8 1− 4 1− 8 1, 4, 8 1 4 1− 4
1 0.961 0.962 0.959 0.957 0.953 0.961 0.969 0.967 0.956 0.959 0.959
2 0.869 0.873 0.882 0.897 0.911 0.873 0.870 0.864 0.861 0.896 0.858
3 0.887 0.893 0.907 0.912 0.931 0.884 0.887 0.879 0.883 0.915 0.880
4 0.926 0.929 0.936 0.940 0.947 0.921 0.925 0.917 0.924 0.945 0.920
5 0.973 0.978 0.982 0.985 0.988 0.976 0.980 0.975 0.970 0.985 0.973
6 0.959 0.965 0.969 0.971 0.981 0.963 0.967 0.962 0.958 0.970 0.961
7 0.963 0.965 0.967 0.971 0.980 0.964 0.967 0.963 0.961 0.970 0.961
8 0.985 0.986 0.986 0.987 0.995 0.987 0.985 0.984 0.985 0.987 0.988
9 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.997 0.997 0.999 1.001

10 0.985 0.986 0.985 0.991 0.994 0.987 0.987 0.986 0.985 0.990 0.986
11 0.998 0.999 0.999 1.003 1.003 0.999 0.999 0.999 0.998 1.003 0.999
12 1.008 1.009 1.008 1.010 1.010 1.009 1.007 1.007 1.007 1.009 1.009
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Table B8 Forecast performance, RMSE relative to univariate AR(2), hold out
sample m = 50, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.936 0.954 0.969 0.978 0.982 0.961 0.993 0.987
2 0.840 0.860 0.886 0.912 0.954 0.864 0.881 0.865
3 0.867 0.884 0.908 0.926 0.958 0.888 0.902 0.887
4 0.920 0.926 0.940 0.956 0.973 0.923 0.940 0.935
5 0.965 0.971 0.980 0.992 0.992 0.975 0.984 0.977
6 0.953 0.962 0.971 0.984 0.992 0.973 0.980 0.973
7 0.959 0.964 0.971 0.986 0.993 0.978 0.987 0.979
8 0.983 0.983 0.987 0.995 0.996 0.991 0.992 0.989
9 0.994 0.996 0.997 1.003 1.002 1.002 1.001 1.004

10 0.982 0.983 0.984 0.992 0.996 0.985 0.989 0.990
11 0.996 0.997 0.997 1.003 1.005 1.001 1.001 1.005
12 1.005 1.005 1.003 1.006 1.008 1.004 1.004 1.006

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.941 0.949 0.957 0.968 0.971 0.960 0.989 0.980
2 0.844 0.856 0.870 0.888 0.923 0.864 0.875 0.863
3 0.865 0.874 0.893 0.908 0.937 0.882 0.895 0.879
4 0.913 0.916 0.929 0.942 0.958 0.913 0.931 0.925
5 0.965 0.968 0.974 0.987 0.985 0.970 0.979 0.975
6 0.952 0.958 0.963 0.977 0.983 0.968 0.974 0.969
7 0.957 0.961 0.966 0.980 0.987 0.974 0.980 0.975
8 0.982 0.982 0.986 0.994 0.992 0.989 0.987 0.987
9 0.993 0.996 0.997 1.003 1.002 1.001 0.998 1.001

10 0.981 0.983 0.985 0.991 0.993 0.984 0.986 0.989
11 0.995 0.997 0.997 1.003 1.005 1.000 0.998 1.003
12 1.005 1.005 1.005 1.007 1.009 1.005 1.003 1.006
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Table B9 Forecast performance, RMSE relative to univariate AR(2), hold out
sample m = 70, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
Posterior distribution not updated for predictive weights Updated posterior

h 1 2 3 4 8 1− 4 1− 8 1, 4, 8 1 4 1− 4
1 0.930 0.966 0.963 0.988 1.000 0.965 0.990 0.972 0.943 0.987 0.955
2 0.836 0.845 0.860 0.904 0.957 0.845 0.856 0.853 0.836 0.913 0.836
3 0.863 0.874 0.900 0.925 0.960 0.880 0.906 0.888 0.866 0.923 0.866
4 0.923 0.923 0.939 0.954 0.959 0.937 0.952 0.945 0.920 0.949 0.919
5 0.961 0.965 0.972 0.988 0.986 0.972 0.988 0.985 0.965 0.982 0.964
6 0.954 0.953 0.965 0.981 0.993 0.961 0.980 0.974 0.953 0.975 0.952
7 0.959 0.956 0.966 0.990 0.984 0.967 0.977 0.970 0.958 0.982 0.961
8 0.983 0.983 0.990 0.997 0.986 0.985 0.985 0.983 0.982 0.989 0.982
9 0.996 0.999 1.004 1.006 0.998 1.003 1.005 1.002 0.994 1.000 0.999

10 0.985 0.986 0.990 0.994 0.993 0.987 0.988 0.987 0.981 0.989 0.984
11 0.997 1.001 1.004 1.005 1.003 1.003 1.003 1.002 0.994 1.002 0.997
12 1.005 1.005 1.008 1.011 1.010 1.005 1.008 1.006 1.003 1.008 1.004

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
Posterior distribution not updated for predictive weights Updated posterior

h 1 2 3 4 8 1− 4 1− 8 1, 4, 8 1 4 1− 4
1 0.935 0.970 0.964 0.980 0.985 0.961 0.986 0.960 0.951 0.971 0.960
2 0.839 0.846 0.852 0.878 0.929 0.836 0.848 0.843 0.841 0.882 0.837
3 0.865 0.871 0.887 0.905 0.937 0.870 0.899 0.880 0.866 0.898 0.862
4 0.920 0.920 0.932 0.942 0.946 0.930 0.947 0.937 0.915 0.937 0.911
5 0.962 0.964 0.971 0.985 0.983 0.967 0.984 0.979 0.962 0.979 0.961
6 0.955 0.951 0.960 0.975 0.986 0.955 0.973 0.968 0.952 0.968 0.950
7 0.960 0.957 0.965 0.985 0.976 0.961 0.973 0.967 0.957 0.977 0.959
8 0.985 0.984 0.989 0.995 0.982 0.983 0.984 0.983 0.982 0.991 0.983
9 0.997 1.002 1.005 1.007 0.997 1.003 1.004 1.003 0.994 1.003 0.999

10 0.985 0.988 0.993 0.996 0.992 0.988 0.987 0.987 0.981 0.991 0.982
11 0.997 1.003 1.006 1.005 1.004 1.003 1.001 1.001 0.995 1.004 0.997
12 1.006 1.006 1.009 1.011 1.011 1.006 1.006 1.005 1.003 1.010 1.005
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Table B10 Forecast performance, RMSE relative to univariate AR(2), hold out
sample m = 30, models estimated with lag length p = 4

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.978 0.980 0.979 0.981 0.970 0.976 0.978 0.986
2 0.886 0.908 0.920 0.939 0.947 0.904 0.912 0.900
3 0.914 0.925 0.941 0.948 0.968 0.916 0.913 0.908
4 0.938 0.945 0.956 0.959 0.970 0.940 0.942 0.930
5 0.979 0.986 0.991 0.993 0.996 0.990 0.985 0.981
6 0.962 0.970 0.974 0.978 0.989 0.971 0.966 0.962
7 0.977 0.979 0.981 0.986 0.992 0.981 0.974 0.973
8 0.995 0.993 0.995 0.995 1.003 0.999 0.993 0.992
9 1.019 1.015 1.014 1.012 1.008 1.017 1.016 1.018

10 0.994 0.996 0.998 1.001 1.008 1.002 1.003 0.999
11 1.009 1.009 1.012 1.016 1.015 1.010 1.011 1.013
12 1.021 1.021 1.021 1.024 1.021 1.019 1.016 1.020

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.972 0.971 0.975 0.970 0.959 0.974 0.975 0.981
2 0.886 0.896 0.910 0.919 0.920 0.897 0.904 0.894
3 0.907 0.914 0.925 0.926 0.945 0.907 0.903 0.900
4 0.931 0.935 0.942 0.945 0.952 0.932 0.933 0.922
5 0.975 0.979 0.984 0.985 0.985 0.981 0.978 0.974
6 0.959 0.964 0.967 0.969 0.977 0.964 0.961 0.958
7 0.975 0.975 0.975 0.978 0.984 0.976 0.971 0.967
8 0.997 0.997 0.997 0.995 1.003 0.999 0.995 0.993
9 1.022 1.020 1.019 1.017 1.015 1.022 1.021 1.021

10 0.996 0.996 0.996 1.001 1.003 0.998 0.999 0.996
11 1.011 1.010 1.011 1.015 1.015 1.010 1.012 1.012
12 1.023 1.023 1.023 1.025 1.024 1.022 1.019 1.021
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Table B11 Forecast performance, RMSE relative to univariate AR(2), hold out
sample m = 50, models estimated with lag length p = 4

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.950 0.963 0.984 0.985 0.980 0.959 1.001 0.986
2 0.853 0.865 0.900 0.921 0.955 0.876 0.913 0.880
3 0.890 0.903 0.930 0.945 0.974 0.904 0.928 0.906
4 0.924 0.929 0.948 0.962 0.974 0.927 0.957 0.935
5 0.968 0.975 0.984 0.993 0.998 0.977 0.995 0.982
6 0.953 0.962 0.971 0.982 0.991 0.969 0.979 0.964
7 0.973 0.979 0.986 0.996 0.999 0.990 1.002 0.986
8 0.994 0.995 0.999 0.998 1.003 1.005 1.009 0.999
9 1.022 1.023 1.019 1.016 1.010 1.028 1.029 1.026

10 0.996 0.999 0.998 1.007 1.011 1.001 1.005 1.002
11 1.010 1.014 1.014 1.017 1.018 1.016 1.021 1.020
12 1.021 1.023 1.022 1.022 1.019 1.023 1.025 1.025

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.952 0.960 0.971 0.970 0.970 0.952 0.985 0.980
2 0.861 0.870 0.885 0.900 0.925 0.873 0.904 0.882
3 0.889 0.897 0.913 0.925 0.952 0.895 0.917 0.899
4 0.918 0.923 0.935 0.945 0.959 0.923 0.952 0.931
5 0.967 0.974 0.976 0.985 0.993 0.975 0.992 0.978
6 0.952 0.960 0.962 0.973 0.983 0.964 0.973 0.957
7 0.969 0.975 0.978 0.990 0.995 0.982 0.992 0.979
8 0.995 0.997 0.999 0.999 1.005 1.003 1.005 0.998
9 1.021 1.025 1.022 1.023 1.020 1.026 1.029 1.026

10 0.997 1.000 1.000 1.006 1.009 1.001 1.004 1.002
11 1.010 1.015 1.014 1.018 1.021 1.015 1.021 1.019
12 1.022 1.025 1.025 1.025 1.024 1.023 1.024 1.024
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B.2 DGP 2

The DGP is

yt = yt−1

(
0.5 0.2
0.5 0.5

)
+ yt−2

(
0.1 0.1
0.2 −0.3

)
+ ut,

and the irrelevant variables are generated as

z1,t = 0.5y1,t−1 + 0.5z1,t−1 + e1,t

z2,t = 0.5y2,t−1 + 0.5z2,t−1 + e2,t

z3,t = 0.7z3,t−1 + e3,t

z4,t = 0.2z4,t−1 + e4,t

z5,t = et

with ui,t and ei,t iid N (0, 1) . T = 100 (not accounting for lag lengths) and an
additional 12 observations are set aside for forecast evaluation. Model averaging
and model selection over the 42 possible models with up to four variables. y1 is
always included in the model. The results are based on 100 Monte Carlo replicates.

Table B12 Predictive weights for variables, DGP 2, models estimated with lag
length p = 2

Model prior, δk = 0.2

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.86 0.18 4.67 0.95 0.16 5.80
2 0.83 0.19 4.26 0.93 0.19 4.82
3 0.62 0.21 2.95 0.79 0.23 3.42
4 0.45 0.24 1.87 0.58 0.27 2.13
8 0.35 0.25 1.40 0.37 0.29 1.28

1− 4 0.89 0.20 4.38 0.94 0.20 4.60
1− 8 0.84 0.24 3.46 0.86 0.24 3.56
1, 4, 8 0.84 0.23 3.62 0.91 0.25 3.68

Model prior, δk = 0.5

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.92 0.33 2.78 0.98 0.30 3.31
2 0.90 0.33 2.71 0.96 0.30 3.17
3 0.76 0.35 2.19 0.87 0.33 2.61
4 0.63 0.38 1.67 0.72 0.37 1.96
8 0.52 0.38 1.35 0.52 0.39 1.33

1− 4 0.93 0.31 2.98 0.96 0.28 3.44
1− 8 0.88 0.32 2.72 0.89 0.29 3.04
1, 4, 8 0.89 0.34 2.63 0.95 0.32 2.98

p (·) denotes the predictive weight for the variable.
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Table B13 Predictive weights for variables, DGP 2, models estimated with lag
length p = 4

Model prior, δk = 0.2

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.85 0.18 4.76 0.94 0.17 5.69
2 0.81 0.19 4.19 0.91 0.19 4.69
3 0.53 0.21 2.51 0.67 0.21 3.15
4 0.34 0.23 1.50 0.42 0.23 1.83
8 0.28 0.23 1.20 0.33 0.24 1.38

1− 4 0.84 0.21 4.04 0.91 0.21 4.42
1− 8 0.79 0.22 3.56 0.83 0.19 4.26
1, 4, 8 0.77 0.21 3.63 0.88 0.19 4.73

Model prior, δk = 0.5

h hold out sample, m = 30 hold out sample, m = 50

p (y2) max [p (zi)]
p(y2)

max[p(zi)]
p (y2) max [p (zi)]

p(y2)
max[p(zi)]

1 0.91 0.32 2.82 0.97 0.31 3.17
2 0.89 0.33 2.72 0.95 0.31 3.08
3 0.68 0.36 1.92 0.79 0.33 2.37
4 0.54 0.37 1.44 0.60 0.37 1.62
8 0.45 0.37 1.23 0.49 0.37 1.33

1− 4 0.89 0.31 2.83 0.94 0.28 3.34
1− 8 0.85 0.30 2.86 0.88 0.24 3.62
1, 4, 8 0.84 0.31 2.68 0.93 0.27 3.43

p (·) denotes the predictive weight for the variable.
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Table B14 Model selection, DGP 2, models estimated with lag length p = 2.
Average posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.32 0.85 0.39 0.77
2 0.29 0.73 0.34 0.63
3 0.20 0.51 0.27 0.52
4 0.14 0.24 0.18 0.31
8 0.10 0.14 0.12 0.19

1− 4 0.33 0.55 0.37 0.49
1− 8 0.30 0.44 0.35 0.41
1, 4, 8 0.30 0.60 0.35 0.47

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.07 0.15 0.11 0.28
2 0.07 0.27 0.10 0.23
3 0.06 0.17 0.09 0.26
4 0.04 0.12 0.07 0.21
8 0.04 0.13 0.07 0.19

1− 4 0.11 0.27 0.19 0.27
1− 8 0.15 0.24 0.26 0.31
1, 4, 8 0.10 0.19 0.19 0.29
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Table B15 Model selection, DGP 2, models estimated with lag length p = 4.
Average posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.33 0.83 0.39 0.75
2 0.30 0.78 0.35 0.60
3 0.18 0.46 0.24 0.45
4 0.11 0.13 0.14 0.20
8 0.09 0.09 0.11 0.12

1− 4 0.33 0.56 0.38 0.45
1− 8 0.31 0.46 0.36 0.39
1, 4, 8 0.30 0.52 0.35 0.45

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 50
Weight Selected Weight Selected

1 0.08 0.16 0.12 0.27
2 0.07 0.17 0.11 0.26
3 0.05 0.12 0.09 0.23
4 0.04 0.07 0.06 0.18
8 0.04 0.11 0.07 0.12

1− 4 0.11 0.21 0.22 0.34
1− 8 0.15 0.20 0.28 0.35
1, 4, 8 0.11 0.20 0.21 0.31
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Table B16 Forecast performance RMSE relative to univariate AR(2), DGP 2, hold
out sample m = 30, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.828 0.838 0.871 0.904 0.933 0.831 0.838 0.838
2 0.862 0.861 0.887 0.913 0.948 0.860 0.877 0.864
3 0.915 0.918 0.924 0.946 0.979 0.921 0.942 0.940
4 0.978 0.987 0.987 0.988 1.005 0.986 0.995 0.995
5 0.971 0.976 0.979 0.983 0.990 0.978 0.979 0.974
6 0.985 0.989 0.993 0.996 1.001 0.993 0.994 0.993
7 0.983 0.987 0.992 0.996 1.004 0.988 0.989 0.990
8 1.003 1.008 1.009 1.007 1.015 1.006 1.006 1.007
9 1.024 1.031 1.035 1.028 1.030 1.032 1.031 1.034

10 1.018 1.027 1.033 1.031 1.035 1.033 1.032 1.035
11 1.019 1.027 1.034 1.030 1.037 1.032 1.030 1.035
12 1.012 1.021 1.031 1.029 1.035 1.027 1.026 1.030

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.831 0.839 0.857 0.881 0.902 0.840 0.831 0.838
2 0.849 0.845 0.862 0.882 0.916 0.852 0.868 0.856
3 0.911 0.913 0.918 0.935 0.966 0.915 0.940 0.936
4 0.977 0.983 0.983 0.985 1.001 0.983 0.993 0.994
5 0.970 0.973 0.974 0.978 0.984 0.976 0.978 0.974
6 0.981 0.984 0.986 0.989 0.996 0.987 0.992 0.990
7 0.983 0.984 0.989 0.991 0.998 0.985 0.988 0.988
8 1.003 1.006 1.006 1.005 1.013 1.003 1.004 1.006
9 1.026 1.031 1.034 1.028 1.031 1.031 1.031 1.033

10 1.021 1.027 1.032 1.031 1.035 1.031 1.032 1.034
11 1.023 1.028 1.034 1.029 1.037 1.030 1.030 1.035
12 1.016 1.022 1.029 1.027 1.032 1.025 1.025 1.029
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Table B17 Forecast performance RMSE relative to univariate AR(2), DGP 2, hold
out sample m = 50, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.827 0.846 0.872 0.897 0.937 0.832 0.834 0.831
2 0.850 0.850 0.882 0.916 0.946 0.850 0.869 0.855
3 0.911 0.909 0.913 0.933 0.952 0.913 0.912 0.912
4 0.974 0.978 0.979 0.984 0.999 0.986 0.987 0.987
5 0.968 0.971 0.973 0.973 0.992 0.972 0.978 0.983
6 0.981 0.984 0.988 0.988 1.004 0.987 0.990 0.997
7 0.978 0.980 0.985 0.985 1.003 0.986 0.989 0.993
8 0.997 1.000 1.002 1.003 1.012 1.006 1.011 1.012
9 1.018 1.024 1.030 1.025 1.034 1.026 1.032 1.039

10 1.015 1.021 1.027 1.026 1.038 1.025 1.031 1.041
11 1.014 1.020 1.027 1.025 1.045 1.025 1.033 1.043
12 1.008 1.016 1.025 1.026 1.048 1.019 1.029 1.040

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.832 0.847 0.866 0.885 0.914 0.833 0.829 0.831
2 0.847 0.850 0.866 0.891 0.919 0.850 0.858 0.847
3 0.911 0.912 0.914 0.926 0.940 0.916 0.914 0.914
4 0.975 0.979 0.982 0.983 0.994 0.986 0.989 0.990
5 0.969 0.973 0.975 0.973 0.989 0.975 0.980 0.984
6 0.981 0.984 0.987 0.986 0.999 0.988 0.991 0.998
7 0.979 0.982 0.985 0.983 0.999 0.987 0.991 0.995
8 0.998 1.001 1.004 1.002 1.010 1.006 1.013 1.014
9 1.021 1.028 1.032 1.027 1.034 1.028 1.035 1.040

10 1.018 1.025 1.029 1.027 1.039 1.026 1.034 1.042
11 1.018 1.025 1.029 1.026 1.045 1.027 1.036 1.045
12 1.012 1.020 1.025 1.024 1.046 1.021 1.031 1.040

38



Table B18 Forecast performance RMSE relative to univariate AR(2), DGP 2, hold
out sample m = 30, models estimated with lag length p = 4

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.818 0.836 0.919 0.945 0.935 0.846 0.857 0.872
2 0.885 0.888 0.943 0.964 0.988 0.902 0.917 0.921
3 0.935 0.937 0.962 0.975 1.004 0.954 0.973 0.988
4 0.997 1.005 1.011 1.009 1.025 1.010 1.019 1.030
5 0.993 0.999 1.005 1.005 1.011 1.006 1.009 1.014
6 1.002 1.006 1.014 1.016 1.026 1.015 1.024 1.030
7 1.004 1.006 1.016 1.017 1.028 1.015 1.024 1.028
8 1.019 1.024 1.028 1.025 1.036 1.028 1.035 1.040
9 1.044 1.050 1.055 1.047 1.053 1.056 1.060 1.065

10 1.044 1.049 1.053 1.049 1.059 1.060 1.064 1.070
11 1.051 1.053 1.058 1.053 1.065 1.066 1.074 1.078
12 1.045 1.048 1.054 1.053 1.063 1.059 1.067 1.071

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.816 0.825 0.891 0.920 0.905 0.837 0.844 0.865
2 0.872 0.864 0.909 0.924 0.948 0.887 0.899 0.897
3 0.933 0.934 0.961 0.966 0.997 0.951 0.961 0.982
4 1.001 1.005 1.012 1.007 1.025 1.014 1.016 1.030
5 0.995 0.999 1.004 1.002 1.010 1.009 1.007 1.014
6 1.003 1.005 1.011 1.011 1.022 1.016 1.021 1.026
7 1.006 1.007 1.014 1.012 1.025 1.016 1.020 1.025
8 1.023 1.025 1.028 1.024 1.037 1.028 1.034 1.039
9 1.054 1.056 1.058 1.051 1.059 1.062 1.064 1.067

10 1.053 1.055 1.056 1.051 1.063 1.064 1.066 1.071
11 1.062 1.062 1.062 1.057 1.070 1.071 1.077 1.079
12 1.054 1.055 1.056 1.053 1.065 1.064 1.068 1.071
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Table B19 Forecast performance RMSE relative to univariate AR(2), DGP 2, hold
out sample m = 50, models estimated with lag length p = 4

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.807 0.823 0.901 0.927 0.933 0.825 0.835 0.822
2 0.875 0.874 0.924 0.968 0.978 0.884 0.893 0.874
3 0.942 0.949 0.963 0.974 0.987 0.966 0.958 0.954
4 1.000 1.010 1.011 1.010 1.020 1.017 1.005 1.013
5 0.990 0.998 1.006 0.999 1.007 1.001 0.989 0.997
6 1.004 1.009 1.016 1.014 1.013 1.015 1.000 1.009
7 1.006 1.008 1.016 1.013 1.015 1.020 1.001 1.010
8 1.022 1.025 1.023 1.022 1.024 1.030 1.025 1.027
9 1.044 1.049 1.050 1.046 1.039 1.053 1.040 1.046

10 1.041 1.044 1.046 1.043 1.039 1.049 1.037 1.044
11 1.047 1.047 1.049 1.048 1.040 1.054 1.038 1.046
12 1.041 1.043 1.048 1.050 1.043 1.050 1.032 1.041

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.815 0.818 0.877 0.907 0.908 0.818 0.824 0.812
2 0.868 0.866 0.893 0.927 0.937 0.877 0.883 0.868
3 0.947 0.952 0.961 0.964 0.977 0.966 0.956 0.949
4 1.003 1.010 1.015 1.011 1.017 1.019 1.005 1.013
5 0.993 1.000 1.007 1.001 1.006 1.002 0.988 0.997
6 1.005 1.010 1.016 1.012 1.009 1.014 0.998 1.007
7 1.006 1.009 1.016 1.011 1.012 1.019 1.000 1.008
8 1.023 1.026 1.029 1.023 1.025 1.031 1.023 1.027
9 1.050 1.054 1.057 1.050 1.042 1.056 1.040 1.049

10 1.046 1.049 1.053 1.046 1.041 1.052 1.037 1.045
11 1.052 1.053 1.057 1.052 1.044 1.056 1.038 1.048
12 1.046 1.049 1.054 1.050 1.042 1.052 1.031 1.045
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B.3 DGP 3

The DGP is

yt = yt−1

 0.5 0.2 0.1
0.5 0.5 0.1
0.5 0.3 0.2

+ ut,

and the irrelevant variables are generated as

z1,t = 0.5y1,t−1 + 0.5z1,t−1 + e1,t

z2,t = 0.5y2,t−1 + 0.5z2,t−1 + e2,t

z3,t = 0.7z3,t−1 + e3,t

z4,t = 0.2z4,t−1 + e4,t

with ui,t and ei,t iid N (0, 1) . T = 100 (not accounting for lag lengths) and an
additional 12 observations are set aside for forecast evaluation. Model averaging
and model selection over the 57 possible models with up to five variables. y1 is
always included in the model. The results are based on 100 Monte Carlo replicates.
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Table B21 Predictive weights for variables, DGP 3, models estimated with lag
length p = 4

Model prior, δk = 0.2

h hold out sample, m = 50

p (y2) p (y3) max [p (zi)]
p(y2)

max[p(zi)]
p(y3)

max[p(zi)]

1 0.89 0.86 0.17 5.16 5.03
2 0.77 0.71 0.19 3.98 3.65
3 0.63 0.56 0.20 3.19 2.82
4 0.53 0.44 0.22 2.44 2.03
8 0.32 0.29 0.25 1.25 1.16

1− 4 0.79 0.78 0.20 3.88 3.82
1− 8 0.62 0.64 0.19 3.35 3.45
1, 4, 8 0.72 0.75 0.21 3.49 3.63

Model prior, δk = 0.5

h hold out sample, m = 50

p (y2) p (y3) max [p (zi)]
p(y2)

max[p(zi)]
p(y3)

max[p(zi)]

1 0.94 0.94 0.34 2.76 2.74
2 0.86 0.84 0.38 2.26 2.21
3 0.77 0.75 0.39 1.99 1.93
4 0.70 0.66 0.40 1.74 1.64
8 0.49 0.51 0.41 1.18 1.22

1− 4 0.86 0.86 0.31 2.79 2.81
1− 8 0.69 0.76 0.25 2.79 3.08
1, 4, 8 0.78 0.86 0.29 2.71 3.01

p (·) denotes the predictive weight for the variable.
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Table B22 Model selection, DGP 3, models estimated with lag length p = 2.
Average posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected

1 0.39 0.73 0.41 0.62
2 0.28 0.56 0.30 0.43
3 0.17 0.31 0.20 0.24
4 0.10 0.14 0.12 0.13
8 0.04 0.04 0.06 0.08

1− 4 0.37 0.49 0.35 0.40
1− 8 0.30 0.31 0.20 0.21
1, 4, 8 0.33 0.49 0.24 0.24

Model prior, δk = 0.5

h hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected

1 0.14 0.32 0.22 0.36
2 0.13 0.27 0.20 0.25
3 0.10 0.22 0.17 0.28
4 0.08 0.20 0.12 0.22
8 0.05 0.10 0.07 0.06

1− 4 0.25 0.34 0.33 0.37
1− 8 0.27 0.30 0.21 0.19
1, 4, 8 0.24 0.32 0.24 0.27

Table B23 Model selection, DGP 3, models estimated with lag length p = 4.
Average posterior probability and proportion selected for true model.

Hold out sample, m = 50

h Model prior, δk = 0.2 Model prior, δk = 0.5
Weight Selected Weight Selected

1 0.40 0.72 0.17 0.41
2 0.28 0.52 0.14 0.29
3 0.15 0.28 0.10 0.18
4 0.10 0.11 0.08 0.10
8 0.03 0.02 0.04 0.10

1− 4 0.33 0.42 0.25 0.31
1− 8 0.23 0.26 0.24 0.27
1, 4, 8 0.27 0.38 0.23 0.27
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Table B24 Forecast performance RMSE relative to univariate AR(2), DGP 3, hold
out sample m = 50, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.830 0.864 0.879 0.903 0.932 0.849 0.881 0.859
2 0.815 0.824 0.851 0.872 0.929 0.828 0.847 0.830
3 0.855 0.868 0.879 0.897 0.938 0.872 0.887 0.873
4 0.886 0.889 0.902 0.910 0.947 0.890 0.909 0.902
5 0.925 0.929 0.932 0.939 0.970 0.930 0.950 0.940
6 0.937 0.940 0.945 0.955 0.976 0.949 0.964 0.958
7 0.939 0.941 0.945 0.950 0.970 0.949 0.957 0.953
8 0.962 0.962 0.966 0.968 0.980 0.972 0.976 0.972
9 0.973 0.971 0.975 0.976 0.992 0.986 0.990 0.987

10 0.969 0.967 0.974 0.972 0.988 0.976 0.984 0.983
11 0.988 0.986 0.992 0.991 1.003 0.997 1.004 1.003
12 1.007 1.004 1.007 1.005 1.011 1.016 1.017 1.017

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.819 0.844 0.847 0.854 0.882 0.833 0.855 0.839
2 0.814 0.820 0.832 0.840 0.882 0.821 0.831 0.824
3 0.853 0.865 0.868 0.880 0.914 0.865 0.880 0.867
4 0.883 0.885 0.893 0.898 0.929 0.886 0.906 0.898
5 0.924 0.928 0.927 0.931 0.958 0.929 0.946 0.935
6 0.936 0.940 0.940 0.949 0.967 0.946 0.961 0.954
7 0.938 0.941 0.941 0.946 0.960 0.944 0.953 0.948
8 0.966 0.967 0.968 0.969 0.974 0.973 0.977 0.970
9 0.978 0.978 0.978 0.980 0.991 0.988 0.993 0.986

10 0.971 0.970 0.974 0.974 0.984 0.975 0.984 0.979
11 0.992 0.989 0.994 0.995 1.003 0.996 1.003 1.000
12 1.013 1.011 1.013 1.013 1.015 1.016 1.018 1.016
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Table B25 Forecast performance RMSE relative to univariate AR(2), DGP 3, hold
out sample m = 70, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.821 0.826 0.849 0.846 0.921 0.842 0.892 0.888
2 0.815 0.830 0.871 0.860 0.946 0.845 0.878 0.884
3 0.858 0.863 0.876 0.875 0.944 0.870 0.897 0.897
4 0.902 0.898 0.910 0.909 0.941 0.905 0.915 0.921
5 0.929 0.916 0.928 0.929 0.958 0.926 0.939 0.941
6 0.934 0.927 0.934 0.939 0.972 0.932 0.947 0.948
7 0.940 0.931 0.940 0.946 0.966 0.945 0.950 0.950
8 0.962 0.955 0.962 0.968 0.982 0.959 0.967 0.968
9 0.978 0.972 0.975 0.979 0.987 0.979 0.978 0.980

10 0.975 0.968 0.970 0.978 0.989 0.978 0.981 0.982
11 0.990 0.987 0.991 0.996 1.001 0.994 0.992 0.995
12 1.008 1.006 1.007 1.013 1.015 1.010 1.009 1.013

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.815 0.814 0.816 0.817 0.877 0.821 0.896 0.876
2 0.819 0.821 0.850 0.843 0.913 0.841 0.882 0.875
3 0.861 0.865 0.865 0.863 0.925 0.868 0.899 0.892
4 0.899 0.896 0.903 0.902 0.926 0.902 0.920 0.917
5 0.927 0.919 0.922 0.922 0.950 0.925 0.944 0.941
6 0.931 0.927 0.925 0.931 0.965 0.931 0.949 0.945
7 0.939 0.937 0.938 0.944 0.959 0.942 0.952 0.949
8 0.960 0.956 0.961 0.967 0.975 0.957 0.966 0.964
9 0.977 0.974 0.978 0.983 0.983 0.979 0.976 0.976

10 0.974 0.972 0.974 0.981 0.984 0.977 0.979 0.980
11 0.989 0.989 0.993 0.997 0.999 0.993 0.991 0.993
12 1.009 1.010 1.010 1.015 1.016 1.011 1.009 1.012
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Table B26 Forecast performance RMSE relative to univariate AR(2), DGP 3, hold
out sample m = 50, models estimated with lag length p = 4

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.840 0.875 0.911 0.929 0.931 0.864 0.928 0.889
2 0.831 0.836 0.863 0.895 0.929 0.852 0.907 0.870
3 0.871 0.885 0.893 0.917 0.945 0.883 0.917 0.893
4 0.896 0.903 0.911 0.924 0.960 0.893 0.924 0.914
5 0.930 0.936 0.940 0.951 0.988 0.937 0.968 0.952
6 0.949 0.952 0.957 0.969 1.006 0.957 0.989 0.974
7 0.951 0.953 0.959 0.969 1.001 0.960 0.989 0.980
8 0.973 0.972 0.980 0.989 1.016 0.988 1.007 1.002
9 0.995 0.989 0.992 0.998 1.019 1.008 1.020 1.021

10 0.977 0.975 0.983 0.984 1.019 0.986 1.009 1.016
11 1.002 0.998 1.003 1.002 1.025 1.011 1.028 1.030
12 1.023 1.020 1.022 1.019 1.036 1.032 1.047 1.046

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.826 0.846 0.873 0.883 0.891 0.847 0.910 0.868
2 0.837 0.836 0.851 0.864 0.897 0.845 0.888 0.856
3 0.873 0.880 0.881 0.899 0.923 0.877 0.906 0.882
4 0.900 0.902 0.906 0.918 0.947 0.893 0.920 0.905
5 0.934 0.938 0.937 0.944 0.974 0.936 0.960 0.941
6 0.950 0.953 0.949 0.962 0.997 0.953 0.983 0.964
7 0.952 0.953 0.953 0.963 0.993 0.956 0.979 0.968
8 0.977 0.977 0.979 0.987 1.012 0.985 1.003 0.994
9 1.002 0.999 0.997 1.005 1.023 1.007 1.020 1.018

10 0.980 0.979 0.983 0.985 1.017 0.984 1.004 1.008
11 1.007 1.003 1.005 1.005 1.025 1.009 1.024 1.026
12 1.029 1.027 1.028 1.027 1.040 1.031 1.044 1.044
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B.4 DGP 4

The DGP is
yt = 0.5yt−1 + 0.3yt−2 + ut.

and the irrelevant variables are generated as

z1,t = 0.5y1,t−1 + 0.5z1,t−1 + e1,t

z2,t = 0.5z2,t−1 + e2,t

z3,t = 0.7z3,t−1 + e3,t

z4,t = 0.2z4,t−1 + e4,t

z5,t = e5,t

z6,t = e6,t

with ui,t and ei,t iid N (0, 1) . T = 100 (not accounting for lag lengths) and an
additional 12 observations are set aside for forecast evaluation. Model averaging
and model selection over the 42 possible models with up to four variables. y1 is
always included in the model. The results are based on 100 Monte Carlo replicates.

Table B27 Predictive weights for irrelevant variables, DGP 4, models estimated
with lag length p = 2

max [p (zi)]

Model prior, δk = 0.2 Model prior, δk = 0.5
h m = 30 m = 50 m = 70 m = 30 m = 50 m = 70
1 0.19 0.21 0.23 0.37 0.38 0.36
2 0.19 0.23 0.24 0.39 0.37 0.35
3 0.20 0.25 0.23 0.38 0.38 0.37
4 0.20 0.24 0.25 0.39 0.38 0.38
8 0.22 0.24 0.27 0.38 0.37 0.34

1− 4 0.22 0.24 0.23 0.35 0.33 0.29
1− 8 0.22 0.21 0.24 0.31 0.27 0.27
1, 4, 8 0.20 0.21 0.23 0.35 0.32 0.30

p (·) denotes the predictive weight for the variable.
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Table B28 Model selection, DGP 4, models estimated with lag length p = 2.
Average posterior probability and proportion selected for true model.

Model prior, δk = 0.2

h hold out, m = 30 hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected Weight Selected

1 0.30 0.89 0.31 0.75 0.31 0.56
2 0.29 0.87 0.29 0.67 0.32 0.50
3 0.28 0.82 0.27 0.64 0.31 0.48
4 0.28 0.83 0.27 0.65 0.30 0.46
8 0.27 0.82 0.27 0.63 0.28 0.47

1− 4 0.34 0.64 0.34 0.50 0.36 0.43
1− 8 0.38 0.54 0.37 0.42 0.37 0.39
1, 4, 8 0.34 0.69 0.36 0.50 0.36 0.40

Model prior, δk = 0.5

h hold out, m = 30 hold out, m = 50 hold out, m = 70
Weight Selected Weight Selected Weight Selected

1 0.04 0.16 0.05 0.18 0.09 0.19
2 0.04 0.18 0.06 0.25 0.11 0.24
3 0.04 0.18 0.05 0.21 0.12 0.30
4 0.04 0.19 0.05 0.23 0.12 0.25
8 0.04 0.24 0.06 0.19 0.12 0.24

1− 4 0.09 0.30 0.16 0.26 0.25 0.29
1− 8 0.17 0.38 0.26 0.28 0.31 0.32
1, 4, 8 0.08 0.28 0.17 0.27 0.25 0.31
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Table B29 Forecast performance RMSE relative to univariate AR(2), DGP 4, hold
out sample m = 30, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.999 0.992 0.994 0.993 0.990 0.995 0.990 0.989
2 1.000 1.000 0.998 0.998 1.001 1.000 1.003 1.000
3 0.991 0.991 0.993 0.992 0.994 0.991 0.991 0.992
4 0.994 0.992 0.992 0.993 0.995 0.989 0.990 0.995
5 0.994 0.994 0.991 0.991 0.995 0.989 0.995 0.995
6 0.999 0.999 0.998 0.999 1.004 0.995 0.999 1.003
7 1.004 1.006 1.004 1.005 1.005 1.006 1.008 1.008
8 1.007 1.009 1.007 1.006 1.007 1.008 1.010 1.010
9 1.006 1.007 1.006 1.006 1.008 1.006 1.009 1.009

10 1.003 1.003 1.003 1.002 1.004 1.002 1.006 1.006
11 1.002 1.002 1.001 1.000 1.002 0.999 1.003 1.003
12 0.999 1.000 0.999 0.999 0.999 0.999 1.003 1.002

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 1.000 0.991 0.994 0.993 0.990 0.996 0.986 0.989
2 0.998 0.997 0.994 0.994 0.998 0.995 0.998 0.995
3 0.986 0.986 0.988 0.987 0.990 0.985 0.986 0.986
4 0.990 0.989 0.988 0.989 0.992 0.986 0.989 0.992
5 0.989 0.990 0.985 0.986 0.991 0.986 0.993 0.991
6 0.997 0.997 0.994 0.996 1.003 0.992 0.997 1.001
7 1.004 1.004 1.004 1.004 1.003 1.004 1.006 1.006
8 1.008 1.009 1.008 1.007 1.007 1.009 1.011 1.009
9 1.007 1.007 1.006 1.006 1.009 1.006 1.010 1.010

10 1.003 1.003 1.002 1.002 1.004 1.002 1.008 1.006
11 1.001 1.001 1.000 0.999 1.001 0.999 1.003 1.002
12 0.996 0.996 0.996 0.996 0.997 0.996 1.001 0.999
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Table B30 Forecast performance RMSE relative to univariate AR(2), DGP 4, hold
out sample m = 50, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.998 0.999 1.002 0.999 0.990 0.999 0.988 0.995
2 1.001 1.006 1.004 1.003 1.003 1.004 1.003 1.005
3 0.997 1.001 1.002 0.999 0.994 1.001 0.995 0.998
4 0.998 1.001 1.000 0.998 0.997 0.999 0.995 0.998
5 0.995 0.996 0.996 0.993 0.995 0.997 0.995 0.995
6 1.004 1.009 1.009 1.006 1.007 1.008 1.006 1.009
7 1.007 1.013 1.015 1.011 1.014 1.014 1.014 1.016
8 1.008 1.014 1.014 1.011 1.014 1.013 1.015 1.015
9 1.006 1.009 1.010 1.007 1.012 1.009 1.011 1.012

10 1.003 1.004 1.005 1.003 1.008 1.004 1.006 1.007
11 0.999 1.001 1.001 0.999 1.003 1.000 1.001 1.001
12 0.998 0.999 0.999 0.998 1.001 0.998 1.000 0.999

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 1.000 1.000 1.005 1.000 0.990 1.001 0.990 0.996
2 0.998 1.004 1.002 0.999 1.000 1.003 1.001 1.002
3 0.992 0.995 0.995 0.993 0.989 0.998 0.992 0.996
4 0.995 0.997 0.995 0.995 0.995 0.996 0.993 0.997
5 0.991 0.993 0.993 0.990 0.992 0.995 0.992 0.995
6 1.001 1.005 1.006 1.003 1.006 1.005 1.005 1.008
7 1.006 1.012 1.013 1.011 1.013 1.012 1.013 1.015
8 1.009 1.014 1.014 1.012 1.015 1.013 1.014 1.015
9 1.006 1.009 1.010 1.008 1.012 1.009 1.011 1.011

10 1.002 1.005 1.005 1.004 1.008 1.004 1.006 1.006
11 0.998 1.000 1.000 0.999 1.002 0.999 1.001 1.000
12 0.995 0.996 0.997 0.996 1.000 0.996 0.998 0.997
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Table B31 Forecast performance RMSE relative to univariate AR(2), DGP 4, hold
out sample m = 70, models estimated with lag length p = 2

Model prior, δk = 0.2

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.990 0.992 0.990 0.990 0.995 0.990 0.988 0.988
2 1.002 1.001 0.996 1.000 0.992 1.009 1.005 0.998
3 0.995 0.998 0.996 0.995 0.995 0.997 1.003 1.004
4 0.991 0.990 0.991 0.991 0.991 0.991 0.992 0.993
5 0.991 0.989 0.988 0.986 0.982 0.993 0.988 0.986
6 1.008 1.007 1.006 1.006 1.002 1.012 1.014 1.010
7 1.009 1.011 1.014 1.011 1.000 1.013 1.016 1.010
8 1.009 1.011 1.012 1.009 1.001 1.010 1.011 1.007
9 1.009 1.009 1.012 1.010 1.005 1.013 1.015 1.009

10 1.004 1.001 1.003 1.002 0.999 1.003 1.006 1.002
11 1.001 0.998 1.001 1.001 0.999 1.002 1.006 1.002
12 0.999 0.996 0.999 0.997 0.997 0.998 1.001 0.999

Model prior, δk = 0.5

Predictive likelihood evaluated at horizon
h 1 2 3 4 8 1− 4 1− 8 1, 4, 8
1 0.992 0.992 0.990 0.989 0.996 0.988 0.985 0.982
2 0.998 0.996 0.991 0.995 0.990 1.007 1.004 0.996
3 0.987 0.989 0.989 0.989 0.988 0.995 1.002 1.002
4 0.982 0.986 0.986 0.988 0.987 0.988 0.992 0.992
5 0.983 0.982 0.981 0.980 0.978 0.988 0.986 0.984
6 1.002 1.002 1.002 1.003 0.999 1.009 1.013 1.008
7 1.004 1.007 1.013 1.011 0.998 1.012 1.015 1.008
8 1.006 1.010 1.014 1.011 1.001 1.011 1.012 1.008
9 1.005 1.006 1.013 1.013 1.005 1.012 1.014 1.009

10 0.999 0.998 1.003 1.003 0.999 1.002 1.006 1.003
11 0.997 0.997 1.002 1.003 0.999 1.002 1.006 1.002
12 0.994 0.993 0.998 0.998 0.996 0.996 1.000 0.998
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