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Abstract

Dynamical engineering systems are controlled systems that evolve in
continuous time over �nite time intervals, but also in continuous inter-
action with environments of intrinsic variability. In this paper, the com-
plexity of these systems is treated by introducing an approach based on
controlled Stochastic Di¤erential Equations with Markovian Switchings
(SDEMS ). Technical conditions for the existence and uniqueness of so-
lution for controlled SDEMS equations are provided. The rule and not
the exception is to deal with nonlinear SDEMS that doesn�t have closed
solutions. Then, a numerical approximation to the exact solutions based
on the Euler-Maruyama (EM) method is proposed. Convergence in strong
sense and stability are provided. Promising applications for selected in-
dustrial biochemical systems are showed.

Keywords:Markov chains, stochastic dynamical systems, numerical ap-
proaches for SDE.

* Corresponding author : jaimehector.canada@uc3m.es. Av. Univer-
sidad 30, 28911, Leganés, Madrid. Spain.

Acknowledgements: The authors would like to thanks the support
research provided by the Spanish Ministry of Education and Science
under project 2007/04438/001.

1 Introduction

System of relevant importance in many branches of engineering are controlled
dynamical systems (in what follows engineering systems) that evolve in contin-
uous time over �nite time intervals, which are also in constant interaction with
their environments. In industrial scenarios, the system environments have a high
degree of heterogeneity. In other words, they are intrinsically "noisy". Even
though a wide class of this noise is spurious, with null e¤ects in the dynamics of
the system, does exist other classes of variability that a¤ects the behavior of the
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systems in a complex and unpredictable way, for example the "structural noise".
Furthermore, in engineering systems, as a result of the medium heterogeneity
and the system-environment interactions, frequently emerge a more complex
type of variability that can be considered as an "hybrid noisy dynamics". That
dynamics is a characteristic feature of engineering system that have its origin
when the evolution of the system (in a continuous-time) is modi�ed for unpre-
dictable changes governed by discrete events such as changes in the physical
medium properties, the operation conditions; control decisions, the presence of
regimes, the interaction with other engineering systems, among others. Events
of this nature are associated with abrupt and/or structural changes in the dy-
namics of the system. In summary, engineering systems are complex systems
that requires more sophisticated tools of description and analysis beyond the
scope of deterministic models. More realistic models for the description of engi-
neering systems allow us for example, to design better control protocols during
its operation.
Two examples allow us to illustrate the ideas previously discussed. The

�rst one is related to the extraction equipments used in the petroleum indus-
try. The dynamics of these equipments depends on the underground oil �ow.
The �uid dynamics is governed by di¤usion phenomena (connected with di¤u-
sion parameters in the models) that are sensible to changes in the properties
of the porous medium or the chemical properties of the �uids. The complexity
and unpredictablility of these changes makes very di¢ cult to have a realistic
description of the di¤usion dynamics. In consequence, the control operation
of the extraction equipment would be very limited at least noise e¤ects would
be taken into account. The second one is concerned about biochemical indus-
trial reactors (bioreactors) used to produce pharmaceuticals. The bioreactors
are systems extremely sensible to environmental �uctuations (temperature, pH,
concentrations of nutrients, etc.) because of the sensibility of the microorgan-
isms that carry out the chemical transformations from the initial material to the
�nal product (connected with kinetic parameters in the models). The persis-
tency of that �uctuations may produce microorganisms mutations that perturb
the chemical routes to the �nal product with the consequent changes of regimes
in the dynamics of the system. If that �uctuations are not considered it is not
possible to take the correct control decisions according with the regime that
govern the dynamics of the system.
This paper is concerned with modelling noisy engineering system typical

of industrial scenarios. We face that problem by consider them as Stochastic
Dynamical Systems (see: [1]), in particular systems governed by Stochastic Dif-
ferential Equations (SDE ). We consider an approach based on Stochastic Di¤er-
ential Equations with Markovian Switchings (SDEMS) (see: [15]). The resulting
models are named controlled SDEMS. Our work o¤er a systematic treatment
with emphasis in structural and abrupt noise. This approach allow us to treat
noisy aspects, but also the hybrid nature of these systems by incorporating
Markov chains to model discret-time events embedded in the continuous-time
dynamics of the system. With this approach we o¤er a more complete descrip-
tion of engineering systems that is not possible using the classics SDE models
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(see for example: [12] and [18]). Even though this problem has been studied
in the context of the hybrid systems area, where does exist vast literature in
theory and applications topics (see: [6]), our treatment is more suitable in the
context of the SDE. The advantage of the SDE approach is that allow us to
preserve the intrinsic properties of the systems under analysis, but at the same
time to introduce the stochastic process elements that deal with the uncertainty.
The SDEMS models was �rst treated in the SDE area in [15], and has been

applied successfully in economy an �nance (see for example: [3]). Nowadays,
as far as we know, does not exist applications developed in engineering areas,
with the exception of [8], which is focused in the manufacturing systems control
area. Furthermore, in engineering the rule and not the exception is to deal
with nonlinear systems, but also with manipulable (controllable) systems. With
respect to the �rst point, that means that we deal with nonlinear SDEMS :
Then, we need to implement numerical methods of approximation to the exact
solutions. In this paper, we propose an approach based on the original Euler-
Maruyama (EM) method (see: [16] and [10]). Aspects related to convergence in
strong sense and local stability are considered to guarantee a well de�ned and
reliable approximated solution. The second point is detailed as follows.
Most of the engineering systems are driven by external agents, through input-

a¢ ne variables to the system (input parameters in the models). For one side we
have control variables, related with "intelligent" controllers that act over the sys-
tems with a given protocol. . For the other side there exists exogenous variables
(environmental variables), related with the "uncontrollable" and unpredictable
complex system environment. We remark that this paper is not devoted to
�nd optimal strategies of control, but our results may be easily translated to
the optimization context. The model proposed in this paper to incorporate the
control variables to the original SDEMS models. As a result we have controlled
SDEMS models for which technical conditions of existence and uniqueness of
the solutions are provided.
On the other hand, we provide of dynamics to the physical system parame-

ters that usually are considered �xed in many applications. Notice that these
parameters play a fundamental role in modeling because they concentrate rel-
evant information about the physical laws that govern the system like those
concerning thermodynamics, equilibrium, among others. In a few words, physi-
cal system parameters work as sensors of change into the fundamental dynamics
of the system. These parameters will be referred as structural parameters in our
model.
The main contribution of this paper is to provide an uni�ed framework to

model engineering systems for which di¤erent sources of variability (intrinsic and
external) are considered as well as the e¤ect of external controllers. We provide
mathematical and numerical results that let us to obtain numerical solutions
for dynamical systems that evolve as controlled SDEMS.
Finally, we highlight the potential utility of the controlled SDEMS models

trough an application in the biochemical engineering area.
This paper is organized as follows: Section 2 introduces the model ap-

proach based in controlled SDEMS models and include proofs for the existence
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and uniqueness conditions of the solution. Section 3 describes the numerical
approximation scheme based in the EM-based method. Section 3 shows an ap-
plication of our model to the biochemical engineering area. Section 4 summarizes
conclusions and future lines of research.

2 The model and the mathematical support

We model a noisy engineering system as a set of controlled SDEMS denoted as
follows

dx(t) = f (x(t); ut; r(t)) dt+ g(x(t); ut; r(t))dBt; t 2 [t0; T ] (1)

where xt is the state variable taking values in Rn; ut = u(�) is a given control
protocol taking values in a compact set U � R that may depends on the state
of the system and other elements; r(t) is a continuous time Markov chain that
governs discrete events in the dynamics of the system; fBt; t � 0g is a standard
Brownian motion taking values in Rm.
The dynamics of the system is characterized by the drift function, f : Rn �

U � S ! Rn and the di¤usion function, g : Rn � U � S ! Rn�m.
With more detail, discrete events are driven by a stochastic process r(�) �

fr(t); t � 0g, here assumed a right continuous-time homogeneous Markov chain
on the probability space (
;F ; P ) ; with values in a �nite state space S =
f1; 2; � � �; Ng and with generator � =

�

ij
�
N�N given by

P fr(t+� = jjr(t) = ig =
�


ij�+ o(�) if i 6= j
1 + 
ii�+ o(�) if i = j

�
where � > 0: Here 
ij � 0 is the transition rate from i to j if i 6= j while


ii = �
X
j 6=i

ij (2)

We assume that the Markov chain r(�) is Ft-adapted and independent of the
Brownian motion B(�):
Notice that (1) can be regarded as a system of N equations

dx(t) = f (x(t); ut; i) dt+ g (x(t); ut; i) dBt; 1 � i � N:

switching from one to another state i according to the evolution of the Markov
chain r(�). Notice also that (1) is an autonomous system (not depends explicitly
on time).
A process fx (t)gt0�t�T that satis�es (1) is a stochastic process that is said

to be Ft-adapted if for every t; x(t) is Ft -measurable. With this assumption
we provide the following de�nition.
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De�nition 1 Given an control protocol u(�) in [t0; T ], a Rn-valued stochastic
process fx(t)gt0�t�T is called a solution of the equation (1) if it has the following
properties

fx (t)gt0�t�T (I)

is continuous and Ft-adapted.

f (x (t) ; ut; r(t))t0�t�T 2 L
1 ([t0; T ] ;Rn) (II)

fg (x (t) ; ut; r(t))gt0�t�T 2 L
2
�
[t0; T ] ;Rn�m

�
(III)

the equation

x(t) = x(t0) +

tZ
t0

f (x(s); us; r(s)) ds+

tZ
t0

g (x(s); us; r(s)) dBs (IV)

holds with probability 1. A solution fx (t)gt0�t�T is said to be unique if any
other solution fx (t)gt0�t�T is indistinguishable from the former. To ensure the
uniqueness of the solution we need to guarantee some conditions with respect to
the functions f , g and the Markov chain as we will show in Theorem 1.

De�nition 2 Every sample path of r(�) is a right-continuous step function with
a �nite number of simple jumps on [t0; T ]. So there is a sequence f�kgk�0 of
stopping times such that (i) for almost every ! 2 
 there is a �nite

_

k =
_

k(!)

for t0 = �0 < �1 < � � � < �_
k
= T and �_

k
= T if k >

_

k (ii) r(�) is a random
constant where r(t) = r(�k) on �k � t < �k+1.

Theorem 1 Assume that functions f(x; u; i) and g(x; u; i) from De�nition 1
are measurable and satis�es, for some positive constants K and K; the following
properties

(a) (Lipschitz condition) for all x, y 2 Rn, u 2 U and i 2 S

jf(x; u; i)� f(y; u; i)j+ jg(x; u; i)� g(y; u; i)j � K jx� yj (3)

(b) (Linear growth condition) for all (x; u; ; i) 2 Rn � U � S

jf(x; u; i)j2 + jg(x; u; i)j2 � K
�
1 + jxj2

�
(4)

In addition, the Markov chain r(�) is such that the joint process (x(�); r(�))
satis�es the Feller property. Then, there is a solution x(t) of the equation (1)
and, moreover, this is unique.
Proof. The main ideas of this proof are borrowed from [2] and [15]. First, with
the aid of the Picard iterative scheme, we will prove existence; after that we
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will prove uniqueness. We start considering (1) on the interval [�0; �1] = [t0; �1]
(From De�nition 2). It yields

dx(t) = f(x(t); ut; r0)dt+ g(x(t); ut; r0)dBt (5)

Existence: In engineering systems, the initial conditions x(t0) = x0 are bounded
by physical constraints, so we have the case

E
h
jx0j2

i
� 1

Let us begin an iterative procedure with x(t0) = x0 and let us de�ne, for n � 1;
t 2 [t0; �1] and a control protocol ut on the same time interval

xn(t) = x0 +

Z t

t0

f
�
xn�1(s); u

n�1
s ; r0

�
ds+

Z t

t0

g
�
xn�1(s); u

n�1
s ; r0

�
dBs (6)

By virtue of the inequality ja+ b+ cj2 � 3(jaj2 + jbj2 + jcj2) and linear growth
condition (b), it follows from (6) that

E
h
jxn(t)j2

i
� K1

�
1 + sup

t0�t��1
E
h
jxn�1(t)j2

i�
so it yields

E
h
jxn(t)j2

i
� 1

Notice that this is true for n = t0 as was discussed above. Now, the idea is to
show that xn(t) converges uniformly on [t0; �1] to a solution x(t) of (5). To do
that, let us de�ne

zn+1(t) =

Z t

t0

[f (xn(s); us; r0)� f (xn�1(s); us; r0)] ds+

+

Z t

t0

g (xn(s); us; r0)� g (xn�1(s); us; r0) dBs

By virtue of the inequality ja+ bj2 � 2(jaj2+ jbj2); Shwarz�s inequality, integral
stochastic properties and Lipschitz condition

E
h
jzn+1(t)j2

i
� L

�Z t

t0

E jzn(t)j2 ds
�

with L = 2(�1 � t0 + 1)K
2
: For iteration on this inequality, using the Cauchy

formula we get

E
h
jzn+1(t)j2

i
� Ln

Z t

t0

(t� s)�1
(n� 1)! E jz2(t)j

2
ds

Now, under the assumption the linear growth condition (b),

E jZ2(t)j2 = E jx1(t)� x0(t)j2 � L(�1 � t0)
�
1 + E

h
jx0j2

i�
6



then

sup
t0�t��1

E
h
jzn+1(t)j2

i
� [C(L (�1 � t0))n]

n!
; n � 0 (7)

by using (6) we have that

sup
t0�t��1

jzn+1(t)j �
Z t

t0

��f (xn(s); uns ; r0)� f �xn�1(s); un�1s ; r0
��� ds

+ sup
t0�t��1

����Z t

t0

�
g (xn(s); u

n
s ; r0)� g

�
xn�1(s); u

n�1
s ; r0

��
dBs

����
If we use the Ito�s integral properties, inequality ja+ bj2 � 2(jaj2 + jbj2) and
Lipschitz condition (a) we get

E

�
sup

t0�t��1
jzn+1(t)j2

�
� 2(�1 � t0)K

2
Z t

t0

E jxn(s)� xn�1(s)j2 ds

+8K
2
Z t

t0

E jxn(s)� xn�1(s)j2 ds

this result in addition with (7) yields

E

�
sup

0�t��1
jzn+1(t)j2

�
�
�
C1(L (�1 � t0))n�1

�
n� 1! ; n � 0

Since
P1

n=1
[C1(L(�1�t0))n�1]

n�1! � 1, the Borel-Cantelli lemma and the Weier-
strass�s criteria ensure convergence of the series

1X
n=1

P

�
sup

t0�t��1
jzn+1(t)j > n�2

�
� C1

1X
n=1

�
(L (�1 � t0))n�1n4

�
n� 1!

which implies that, the limit expression

lim
n!1

 
x0(t) +

nX
i=1

(xi(t)� xi�1(t))
!
= lim

n!1
xn(t) = x(t)

holds with probability 1, uniformly in [t0; �1]. Since x(t) is the limit of a sequence
of nonaticipating-functions and the uniform limit of a sequence of continuous
functions, it is itself a nonanticipating and continuous. The right hand member
of (5) becomes a SDE, when we replace x(t) into it. But we need to show that
x(t) satisfy the equation

x(t) = x0 +

Z t

t0

f (x(s); us; r0) ds+

Z t

t0

g (x(s); us; r0) dBs (8)

for all t 2 [t0; �1] . Notice that it is true for t = t0; because xn(t0) = x0, (for
n � 0). Now we need to prove that for (t0; �1] : From (6), (5) and the Lipschitz
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condition (b) we getZ t

t0

jf (xn(s); uns ; r0)� f (x(s); us; r0)j ds �
Z t

t0

K jxn(s)� x(s)j dsZ t

t0

jg (xn(s); uns ; r0)� g (x(s); us; r0)j dBs �
Z t

t0

K jxn(s)� x(s)j dBs

By takin limit in the above expression we can conclude that, with probability 1

lim
n!1

Z t

t0

f (xn(s); u
n
s ; r0) ds =

Z t

t0

f (x(s); us; r0) ds

and

lim
n!1

Z t

t0

f (xn(s); u
n
s ; r0) ds =

Z t

t0

f (x(s); us; r0) dBs

holds. Therefore, x(t) is solution of (8.). If we repeat this procedure up to
the time interval [�k;T ] the proof of existence is completed.

Unique-
Uniqueness: Let x(t) and x(t) be two solutions of equation (5). We need to show
that

E jx(t)� x(t)j = 0 8t 2 [t0; �1]
from (5) we have

x(t)� x(t) =

Z t

t0

[f (x(s); us; r0)� f (x(s); us; r0)] ds+

+

Z t

t0

g (x(s); us; r0)� g (x(s); us; r0) dBs (9)

for s 2 [t0; t] By virtue of Lipschitz condition (a) implies

jf (x(s); us; r0)� f (x(s); us; r0)j+ jg (x(s); us; r0)� g (x(s); us; r0)j
� 2K jx(s)� x(s)j

which ensure the existence of the second moments of both integrals in (9).
Now, by virtue of the inequality ja+ bj2 � 2(jaj2 + jbj2) and the Ito�s integral
properties

E
h
jx(t)� x(t)j2

i
� 2(�1 � t0)

Z t

t0

E
h
jf (x(s); us; r0)� f (x(s); us; r0)j2

i
ds+Z t

t0

h
jg (x(s); us; r0)� g (x(s); us; r0)j2

i
ds

From Lipschitz condition (a) we get

E
h
jx(t)� x(t)j2

i
� L

Z t

t0

E
h
jx(s)� x(s)j2

i
ds
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with L = 2(�1 � t0 + 1)K
2
. By virtue of the Gronwall inequality we conclude

that
E
h
jx(t)� x(t)j2

i
= 0 8t 2 [t0; �1]

By applying of this procedure up to the time interval [�k; T ] the proof is com-
pleted.

Remark 1 The Lipschitz condition (a) from Theorem 1 does ensure that the
realizations of the stochastic process x(t) (the solution of (1)) does not diverge,
that is, the state variable does not go to in�nity in a �nite time interval. The
linear growth condition (b) from Theorem 1 allows at most linear increase of
function f and g in (1) with respect to x and guarantee that, with probabil-
ity 1, the solution x(t) does not explode in the interval t 2 [t0; T ] for a given
initial condition x0. In practice, to verify Lipschitz conditions for the equation
(1) could be troublesome. Fortunately a convenient su¢ cient condition comes
from the mean-value theorem of di¤erential calculus (see [1]). It is important to
say that these conditions are very restrictive. Many system of practical inter-
est in engineering does not verify these conditions. This problem is attempted
by relaxing the cited conditions or ensuring a su¢ cient regularity in the func-
tions (Drift and Di¤usion functions) that govern the dynamics of the system.
Remember that given conditions are su¢ cient but not necessary, so there are
others ways to guarantee that the solution of the problems we face are tractable.
Fortunately most of the equations that govern engineering systems are continu-
ous and derivable with su¢ cient regularity to ensure a well de�ned solution.

3 Numerical approximation

Most of the noisy engineering system are nonlinear. In consequence, we treat
with nonlinear controlled SDEMS that does not have closed solutions. Under
this scenario it is necessary to develop numerical approximations to the exact
solutions. We are interested in pathwise approximations, because we need to
describe the engineering systems through direct simulation. Many explicit and
implicit methods based on discrete time approximations (see [12]) has been
successfully implemented in many application of the SDE models (see [21]).
Recently, promising numerical approaches, based on the EM-method has been
proposed to treat with SDEMS models (see for instance [16]). Unfortunately,
as we will see later, this method result inappropriate for dealing with problems
of practical interest as in our case. Nevertheless, our proposal shares the sake
basis. i.e., the EM- method. Even tough this scheme have limitations related
to numerical e¢ ciency and accuracy for treating high nonlinear problems, in
weak and moderate nonlinear problems it give us valuable information about
the dynamics of the system. Our method is fast and relatively easy to imple-
ment, but also o¤er numerical local stability which is a very important property,
because guarantee that the method is not explosive or diverge on a given �nite
time interval [t0; T ] depending on the stepsize. Summarizing, in this section we
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detail our numerical approximation based on the EM-method as well as brief
comparative analysis with the original method proposed in (see [16]).
We propose a numerical approximation for the di¤usion process fx (t)gt0�t�T

(1) based on the EM-method. The method proposed is constructed as follows
For a given discretization t0 = �0 < �1 < � � � < �k < � � � < �N = T of the

time interval [t0; T ], an Euler-Maruyama approximation is a continuous time
stochastic process X = fX(t); t0 � t � Tg satisfying the iterative scheme

Xk+1 = Ii;j
�
r�k+1

�
+ f

�
Ii;j
�
r�k+1

�
; uk; r

�
k

�
�+ g

�
Ii;j
�
r�k+1

�
; uk; r

�
k

�
�wk;

for k = 1; 2; ::; N � 1

where

Ii;j
�
r�k+1

�
=

�
Xi
k if r�k+1 = r

�
k

Xj
k if r�k+1 = r

�
k

�
is the indicator function Ii;j ; with i 2 S, being the state of the Markov chain
at the k-th step, j 2 S � 1, being the new state of the Markov chain at the
k+1-th step and Xk = X(�k) the approximation at the discretization time �k:
Let X0 = x0; r�0 = r0 be the initial values of the state variable and the Markov
chain respectively.
We consider�k = �k+1��k for the k�th time increment and call � = max

k
�k

the maximum time step, at this case assumed constant (�k = �). We de�ne�
r�k = r (k�)

	
as a time discrete-time Markov chain with the one-step transition

probability matrix P (�) = (Pij(�))S�S = e��.(For details abut the Markov
chain computing see [16]). Also we de�ne uk = u (�k) as the control protocol at
the step k in the time discretization.

Remark 2 In this work we shall consider equidistant discretization times �k =
�0 +� with � = (T�t0)

N for some integer N large enough so that � 2 (0; 1) :

3.1 Strong convergence

Because we need to extract information about the dynamics of the system
through direct simulations with our models, we need to guarantee that our
numerical approach converges in strong sense to the exact solution. In other
words, we adopt the criteria that a discrete-time approximation X� with maxi-
mum step size � converges to x at time T if

lim
�!0

E
���x(T )�X�(T )

��� = 0 (10)

We show this property through the following result.

Theorem 2 If we assume (3) and (4) in Theorem 1, for a given control protocol
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u(�) in [t0; T ] and x, y 2 Rn. In addition

1: E
�
jX0j2

�
< 1

2: E
�
jx0 �X0j2

�1=2
� K1�

1=2

3: � = max�k = �

4: r�0 = r0

where K1 is a positive constant that does not depends on �. Then for the EM
approximation X� we have that

E
���x(T )�X�

��� � _
K�1=2 (11)

In reality this condition must holds for any time t 2 [t0; T ] but even more,
according with the evolution of the Markov chain we need to verify this condition
for the random partition of the �nite time interval according with De�nition 2.
Notice that the expressions (10) and (11) are equivalent at the limit condition
� ! 0
Proof. We �rst consider the evolution of system (1) on � 2 [�0; �1], with �0 =

t0. If we de�ne Z(t) = E

�
sup

t0�t��1

��xt �X�(t)
��2�, by using the methodology

proposed in [12] and [16] we get the following result

Z(t) � C1
��x0 �X�

0

��2 + C2 �1 + jx0j2� � + C3 Z t

t0

Z(v)dv (12)

Now, by applying the Gronwall inequality

Z(t) � exp
Z t

t0

dv
n
C3
��x0 �X�

0

��2 + C4 �1 + jx0j2� �o
In t = �1 we have

E

�
sup

t0�t��1

��xt �X�(t)
��2� = E h��x�1 �X�(�1)

��2i
then, from (12)

E
h��x�1 �X�(�1)

��2i � C5 ��x0 �X�
0

��2 + C6 �1 + jx0j2� �
taking the expected value

E
h��x�1 �X�(�1)

��2i � C5E h��x0 �X�
0

��2i+ C6 �1 + jx0j2� �
the square root yields

E
h��x�1 �X�(�1)

��2i1=2 � C7E h��x0 �X�
0

��2i1=2 + C8 �1 + jx0j2� �1=2
11



from the hypothesis (2)

C7E
h��x0 �X�

0

��2i1=2 + C8 �1 + jx0j2� �1=2 � K1�
1=2 + C8

�
1 + jx0j2

�
�1=2

therefore

E
h��x�1 �X�(�1)

��2i1=2 � K2�
1=2

By virtue of the Jensen inequality we conclude that

E
���x�1 �X�(�1)

��� � K3�
1=2

Note that constants C1 to C8 and K1 to K3 are positive constants. If we repeat
this procedure until �k = T , the proof will be completed.

3.2 Numerical stability

We say, from an intuitive point of view, that a method is numerically stable
in a �nite interval [t0; T ] if the propagation of an initial error of approximation
remains bounded on that interval, which means that the intrinsic structure of
the method avoids the growth of the error over the total time interval of interest.
We formalize this property through the following result.

Theorem 3 Let X� and x� be the discrete Euler-Maruyama approximation and
the corresponding exact solution of (1) for some maximum step size � > 0 start-
ing at time t0; X�

0 and x
�
0 respectively. We shall say that the Euler-Maruyama

approximation is numerically stable if for any �nite interval [t0; T ] there exist a
positive constant �0 such that for each � > 0 and each � 2 (0;�0) the following
condition holds

lim
jX�

0�x�0j!0

�
sup

t0�t�T
P
���X�

t � x�t
�� � ��� = 0

Proof. Assuming Lipschitz and linear growth conditions and in addition

sup
t0�t�T

E
�
jx(t)j2

�
<1

we �rst consider equation (1) on t 2 [�0; �1]. Now, according with Theorem
4.1 in ([15]) applied to this interval, we have the following result

Z(t) = sup
0�s�t

E
h��X�

s � x�s
��2i � ��X�

0 � x�0
��2 +K Z t

0

Z(s)ds

by virtue of the Gronwall inequality

sup
0�s�t

E
h��X�

s � x�s
��2i � expZ t

0

ds
��X�

0 � x�0
��2

12



by virtue of the Chevyshev Inequality, the above expression is equivalent to

P
���X�

t � x�t
��2 � �� � 1

�

��X�
0 � x�0

��2 t
by applying the corresponding limit

lim
jX�

0�x�0j!0

�
sup

t0�t�T
P
���X�

t � x�t
��2 � ��� � lim

jX�
0�x�0j!0

1

�

��X�
0 � x�0

��2 t = 0
then

lim
jX�

0�x�0j!0

�
sup

t0�t�T
P
���X�

t � x�t
��2 � ��� = 0

in consequence

lim
jX�

0�x�0j!0

�
sup

t0�t�T
P
���X�

t � x�t
�� � ��� = 0

the next step is to apply the same procedure to the interval t 2 [�1; �2] and so
on, up to the interval t 2 [�k+1; T ]. At this point the proof is completed by
ensuring stability en each interval determined by the evolution of the Markov
chain

Remark 3 The numerical stability criterion applies only to step sizes � > 0
that are less than some critical value �0, which will usually depends on the
interval [t0; T ], and the speci�c problem that we attempt to solve.

3.3 Numerical experiments

In this part of the paper we show some properties of our numerical approach
under the scope of numerical simulations.
Let wt be an scalar Brownian motion. Let r(t) be a right-continuous Markov

chain taking values in S = f1; 2g with the generator

� =
�

ij
�
2�2 =

�
�1 1

 �


�
where wt and r(t) are assumed to be independent.
We consider the one-dimensional stochastic di¤erential equation with Markov-

ian switchings
dx(t) = a(r(t))x(t)dt+ b(r(t))x(t)dBt (13)

that evolves in the �nite time interval [0; 1] ; where

a(1) = 1; a(2) = 2; b(1) = 2; b(2) = 1:

The equation (13) can be regarded as a set of two equations as follows

dx(t) = x(t)dt+ 2x(t)dBt (14)

dx(t) = 2x(t)dt+ x(t)dBt (15)

switching from one to the other according with the evolution of the Markov
chain r(t):

13



3.3.1 Results

The �rst exercise consists on simulate the exact solution of (13), the approximate
solution based on the EM-method proposed by Yuao and Mao in [16] and to
compare them with our method. Figure 1 shows one sample path of the process
(13) by using the exact solution, the Yuan and Mao approximation and our
method. The top panel illustrates the evolution of the geometric Brownian
motion with switchings based on the exact solution (continuos blue line) and
by using the Yuan and Mao approximation (dashed red line) ) for a stepsize
�t = 2�8. As we can observe their numerical approximation diverges from
the exact solution. The low panel shows the approximation of the EM-based
method proposed in this paper with respect to the exact solution. It is clear
that our method provides a so much better approximation to the exact solution
than the original method above cited (see upper panel). Nowadays, to verify
that this fact is more than a casualty we implement a second exercise. In this
exercise we o¤er a numerical test about strong convergence error between the
alternative methods of solution (numerical solutions). In this numerical test, we
focus on the endpoint t = T . We consider "the strong error measure" de�ned
by

estrong�t = E
���x(T )�X�

L

��� ; where L�t = T (16)

which evaluates the EM endpoint error in the strong sense (see [9]). We compute
1000 discretized Brownian paths over [0; 1], with �t = 2�10. For each path, the
EM-approximation is computed with 5 di¤erent stpesizes: �t = 2p�1�t for
1 � p � 5. The endpoint error in the sth sample path is stored and after all
the computations the mean value is calculated. According to Theorem 2 the
inequality

estrong�t � C�t1=2 (17)

holds. So, taking logs on basis 2, for the approximate equality in (17) we have
log2 e

strong
�t � log2 C +

1
2 log2�t , then we plots our approximation to e

strong
�t

against �t on a log-log scale. This procedure yields the strong convergence test
in Figure 2 and Figure 3. Simultaneously we have tested di¤erent values of 

related to the rate of transition (in the transition matrix) of the Markov chain
in order to shows the none dependence of the rate of convergence with respect
to this parameter.
Figure 2 shows strong convergence test for the Yuan and Mao approach.

The right upper panel corresponds to 
 = 0:5; the left upper panel correspond
to 
 = 1:5. From this Figure we appreciate clearly that the method diverges.
Figure 3 shows the strong convergence test for our method. The left upper panel
corresponds to 
 = 0:5; the right upper panel corresponds to 
 = 1:5. It is clear
from this Figure that our method converges with the order rate anticipated in
Theorem 2. This is an important results, because the order of convergence of
the EM-method in the SDE area, is preserved in the controlled SDEMS models,
so it is independent of the gamma values.

14
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Figure1. Comparison of the exact and the approximated solutions of the
geometric Brownian motion with Markovian switchings (13)
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Figure 2. Strong convergence test for the Yuan and Mao method proposed in [16].
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Figure 3. Strong convergence test for the EM-based method proposed in this paper.

4 Applications

In order to show the utility of the controlled SDEMS for modelling noisy
engineering systems, we have selected an application from the biochemical en-
gineering area. Two scenarios has been chosen for this purpose. In both cases
the application is concerned with a feedbatch biochemical reactor. These sys-
tems have a widely range of applications in the biochemical engineering area,
specially in industrial processes. For example, they are used for producing fuels,
pharmaceutical products, foods, among others products, but also they are used
for wastewater treatment.
In the �rst scenario we model the production of penicillin in a bioreactor

under a noisy environment that includes changes in structural parameters re-
lated to reaction kinetics. In the second scenario we model a bioreactor used to
wastewater treatment. In the last case we attempt to show the e¤ects of a noisy
environment that includes abrupt changes in input parameters (�ows and con-
centrations) as is common during the operation of these systems. Even tough
the industrial scales of the problems are di¤erent, the underlying principles that
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govern the behavior of the bioreactor are the same. We emphasize that these
systems are very challenging from the control point of view, so it is extremely
important to study its behavior under a noisy environments. The values of the
parameters used in both applications has been taken from [19].

4.1 Biochemical reactors (brief description)

A biochemical feedbatch reactor is an engineering systems where a chemical
transformation is carry out by biological entities. Brie�y, these equipments
consist of : (i) A mechanical vessel, that is a recipe where the biochemical reac-
tions are carried out by microorganisms that are previously cultivated. (ii) The
biological material that is transformed via speci�c reactions. (iii) An input con-
sisting on a �ux with nutrients and water meanly, that are added continuously
to the vessel during the system operation.

4.2 Scenario 1

We model a bioreactor for producing penicillin. The system is described as
follows

� State variables. x1: concentration of biomass (biological material), x2 :
concentration of substrate (nutrients), x3 : concentration of product (peni-
cillin) and x4 : Volume of reaction

� Input Parameters. F : Feed �ow rate and C : Inlet substrate concentration.

� Structural parameters. (�m, Km, Ki and �) : kinetic parameters; (Yx1
and Yx3): yield coe¢ cients.

Scienti�c basis: the pyshical interrelations between state variables is based
on the mass and energy balance equations.
Source of noise: we assume multiplicative noise in x1 and x3 as a prod-

uct of low concentrations and high sensibility between species in these type of
systems, additive noise is considered in x2 in order to model smooth and un-
predictable environmental �uctuations such as temperature, pH, among others.
In addition we model structural changes related to the biological activity of the
microorganisms concentrated in the kinetic parameter �m . We assume that
this parameter could take di¤erent values from a �nite �xed set according with
the evolution of a Markov chain.
Control protocol: In this system the control is given by the feed �ow rate

F:
Operation time: The time operation is equivalent to eight hours.
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Dynamics: the bioreactor dynamics is modeled as a controlled SDEMS as
follows

dx1(t) =

�
r(t)

Km + x2
x2(t)x1(t)�

F

x4
x1(t)

�
dt+ �1x1(t)dw1 (18)

dx2(t) =

��
r(t)

Km + x2(t)

1

Y1
x2(t)x1(t) +

v

Y3
x1(t)

�
+

F

x4(t)
(C � x2(t))

�
+ �2dw2

(19)

dx3(t) =

�
vx1(t)�

F

x4(t)
x3(t)

�
dt+ �3x3(t)dw3 (20)

dx4(t) = F (21)

The dynamics of the system drives a four-dimensional state variable x(t) 2
R4+;and it is in�uenced by a three-dimensional increment of the brownian motion
dw 2 R3. The drift function f : R4+ � U � S ! R4+ and the di¤usion function
g : R4�3 ! R4+ complete the description of he system. In a matricial way, the
elements of system (1) are summarized as follows

x(t) = (x1(t); x2(t), x3(t), x4(t))
T (22)

dw = (dw1, dw2, dw3)
T (23)

f =

2666664

�
r(t)

Km+x2
x2(t)x1(t)� F

x4
x1(t)

�h�
r(t)

Km+x2(t)
1
Y1
x2(t)x1(t) +

v
Y3
x1(t)

�
+ F

x4(t)
(C � x2(t))

i�
vx1(t)� F

x4(t)
x3(t)

�
F

3777775 (24)

g =

2664
�1x1 0 0
0 �2 0
0 0 �3x3
0 0 0

3775 : R4�3 ! R4+ (25)

The input parameters a¢ ne to the system are F and S, where

u = F 2 R+
Observe that the Markov chain r(t) is related to the structural parameter

�m, which measure the rate of growth of the microorganisms. In this example
we consider a two state Markov chain. We assume that the structural parameter
will take the values �m(1) = 0:53 and �m(2)=0:23 depending on the state of
the underlying Markov chain.
On the other hand, the vector parameter � = (�1, �2, �3) is related to the

intensity of the additive and multiplicative noise according with (22)-(25). Due
to the absence of noise in the state variable x4 (the volume of the bioreactor),
we have just a three dimensional increment of the brownian motion. In other
words, the dynamics of the volume of the bioreactor, determined by the feed
�ow rate F (control protocol), is assumed constant. In this case F = 0:5 lit:hr: .

18



Notice that in this modeling application we �x the behavior of the Markov
chain according to some design values. In practical applications the transition
states of the Markov chain should be estimated probably on line.

4.2.1 Lipschitz conditions

In order to apply our model approach it is necessary to ensure that functions
f and g in (24)-(25) verify the Lipschitz conditions. Fortunately these func-
tions are smooth enough to guarantee a well de�ned solution as is shown in
preliminary studies in [4].

4.2.2 Numerical Simulation

Our EM-method has been implemented according to the procedure described in
Section 2, with a stepsize�t = 2�9. The integration is carried out over the �nite
interval [0; T ] with T = 8:Table 1 provides the numerical values of structural
and input parameters. Table 2 we show the values of the initial conditions, also
Table 3 presents the noise intensity parameters � considered.

Parameter Value units
Km 1.2 g

lit:

Ki 22 g
lit:

Y1 0.4 none
Y3 1 none
v 0.5 lit:

hrs:

S 20 lit:
hrs:

F 0.5 lit:
hrs:

Table1.

State variable value units
x1(0) 1 g

lit:

x2(0) 0 g
lit:

x3(0) 0 g
lit:

x4(0) 2 lit:

Table 2.

Parameter value
�1 0.05
�2 0.05
�3 0.05
Table 3.
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Markov chain simulation: let r(t) be a right-continuous Markov chain
taking values in S = f1; 2g with the generator.

� =
�

ij
�
2�2 =

�
�1 1

 �


�
=

�
�1 1
0:5 �0:5

�
The one-step transition probability matrix considered is given by

P (�) = (Pij(�))2�2 = e
�� =

�
0:9980 0:0020
0:0010 0:9990

�
which is determined by the discrete Markov chain rk = r (k�), with� = 2�9

(the same value as the stepsize of integration).

Results Figure 1 shows the pro�les of the state variables related to the de-
terministic dynamics of the system (22)-(25). The idea is to have a point of
reference to compare the noisy scenarios with the deterministic case. The left
upper panel shows the biomass concentration dynamics, which is essential for
the production of the �nal product (penicillin). The right upper panel shows the
nutrients concentration dynamics. We observe a clear non-monotonic behavior
of this element. The lower panel shows the penicillin concentration dynamics.
Notice that the dynamics of the bioreactor volume is not included because it
has been considered �xed in this scenario.
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Fig1. State trajectories obtained with the deterministic model.
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Figure 2. One realization of the state trajectories obtained with the model (22)-(25).

Figure 2 shows the dynamics of the bioreactor under the e¤ects of structural
noise modeled as in (22)-(25). The left upper panel shows the biomass concen-
tration dynamics under the noisy environment induced. The pro�le shows the
existence of at least two regimes in the dynamics of this state variable. The
right upper panel shows the substrate concentration dynamics. We appreciate
the e¤ects of the structural noise induced by changes in the kinetic parameter.
It is clear that the structural noise induces a decrease in the biological activity.
Then the substrate is not pro�ted suitably. Therefore, the concentration of the
�nal product decreases as is showed in the lower panel. Of course we refer to
the quantitative level. In this case the maximum value is about 2.5 grlit instead
to 6.5 grlit as shows the Figure 1 (lower panel).
Summarizing, the simulated e¤ects of additive, multiplicative and structural

noise have serious e¤ects in the biological activity of the bioreactor as usually
occur in the reality. In industrial scenarios this kind of variability has tremen-
dous impact in cost and e¢ ciency of the processes. Strategies of control that
take into account these scenarios are necessaries to take better decisions about
the operation and yielding of these equipments.

4.3 Scenario 2

We model a feedbatch bioreactor used in waste-water treatment. In this case
the bioreactor is used for treating organic contaminants in industrial e­ uents.
Abrupt �uctuations arrives to this equipment as a product of changes in the
concentration of the organic material that is treated. The control action is

21



to increase or decrease the feed �ow-rate to face up to the variations on the
concentration above commented. We are not assuming an optimal strategy, but
in a second step it could be solved from the optimal control perspective. We
describe this system as follows

� State variables. x1: concentration of biomass, x2 : concentration of sub-
strate (residues), x3 : concentration of water treated and x4 : Volume of
reaction.

� Input Parameters. F : Feed �ow rate and C : Inlet substrate concentration.

� Structural parameters. (�m, Km, Ki and �) : kinetic parameters; (Yx1
and Yx3): yield coe¢ cients.

Scienti�c basis: pyshical interrelations between state variables is based on
the balance equations for mass and energy.
Source of noise: we assume additive noise in all the state variables be-

cause the system works at high levels of concentrations. The additive noise is
considered to model smooth and unpredictable environmental �uctuations such
as temperature, pH, among others. In addition, abrupt �uctuation are induced
through exogenous and control variables.
Control protocol: in this system the control is given by the feed �ow rate

F:
Operation time: eight hours.

Dynamics: the dynamics of the bioreactor is modeled as a controlled SDEMS.
We detail the model as follows
We have a four-dimensional state variable x(t) 2 R4+; and a four-dimensional

increment of the brownian motion dw 2 R3. The drift and the di¤usion functions
are f : R4+ � U � S ! R4+ and g : R4�4 ! R4+ respectively. The dynamics of
the systems is described as follows

x(t) = (x1(t); x2(t), x3(t), x4(t))
T (26)

dw = (dw1, dw2, dw3, dw4)
T (27)

f =

2666664

�
�m

Km+x2
x2(t)x1(t)� F (t)

x4
x1(t)

�h�
�m

Km+x2(t)
1
Y1
x2(t)x1(t) +

v
Y3
x1(t)

�
+ F (t)

x4(t)
(C(t)� x2(t))

i�
vx1(t)� F (t)

x4(t)
x3(t)

�
F (t)

3777775(28)

g =

2664
�1 0 0 0
0 �2 0 0
0 0 �3 0
0 0 0 �4

3775 (29)

The control protocol is u(C(t)) = F (t), where C(t) evolves as a two state
Markov chain. Notice that it is an ideal assumption that suggest an immediate
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response of the controller to the abrupt changes. So we have that C(1) = 20 g
lit: ;

C(2) = 30 g
lit: and F (1) = 0:53

lit:
hr: ; F (2) = 0:053

lit:
hr: .

The noise intensity parameters considered correspond to the four-dimensional
parameter � = (�1, �2, �3, �4) related with the additive noise previously de-
scribed. The same level of noise intensity is assumed for all the state variables
(see Table 4).

4.3.1 Lipschitzian conditions

From [4] we conclude that functions f and g exhibit enough regularity properties
to provide a well de�ned solution and a well suitable numerical approach.

4.3.2 Numerical simulation

For this scenario we have used the same technical consideration concerned to
the simulation details in the Scenario 1. The values of the structural parameters
and initial conditions remains unchanged. Table 4 shows the values of the noise
intensity parameter �:

Parameter Value
�1 0.05
�2 0.05
�3 0.05
�4 0.1
Table 4.

Results We summarize the results of the simulation of the Scenario 2 in Figure
3.
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Figure 3. One realization of the state trajectories obtained with the model (26)-(29)

The left upper panel shows one trajectory (realization) of the stochastic
process related to the biomass concentration dynamics. The right upper panel
shows one trajectory of the stochastic process related to the substrate concen-
tration dynamics followed during the operation of the bioreactor. The left lower
panel shows one trajectory (realization) of the stochastic process related to the
dynamics followed by the water treated concentration dynamics. The right lower
panel shows one realization of the stochastic process related to the dynamics of
the volume of the bioreactor.
It is clear that the system dynamics (26)-(29) re�ects the e¤ects of the noise

induced by the model in the bioreactor. However, in this case we observe that
the e¤ects are far from ones exhibited in Figure 2. The �rst pro�le corresponds
to the biomass concentration, which is directly related to biological activity in
the bioreactor. We note that this activity don�t re�ect any structural change
related with to the presence of regimes. The explanation of this fact is attributed
to the absence of structural noise in the system, this a¢ rmation is supported by
the dynamics of the substrate (level of nutrients). We observe that its behavior
is very similar to the deterministic case, even though we appreciate abrupt
disturbances in its behavior during the operation of the bioreactor. The e¤ects
of the noise in the dynamics of the water treated are negligible in this case, this
fact is reasonable given that there is not structural variations in the biological
activity but also due to the control strategy. In other words, the e¤ects of
additive and input parametric noise in macro-scale systems as a waste water
bioreactor are non relevant if they are not connected in some way with structural
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changes in the dynamics of the microorganisms and if the control action are
su¢ cient fast and right.

5 Conclusions

We provide a systematic treatment for engineering dynamical systems under
intrinsic and external noisy environments based on controlled SDEMS models.
This treatment allows to describe, from a modelling point of view, controlled
engineering dynamical systems in more realistic scenarios. The idea is to show
the �exibility of these models for capturing the e¤ects of structural or abrupt
changes in the behavior of engineering systems .
The methodology here proposed does not substitute other ones based on

measure and estimation to treat noise, however represents a valuable and promis-
ing complementary tool based on stochastic simulation, in the direction of gain
insight in this kind of phenomena.
Elementary applications in biochemical processes illustrate the di¤erent role

that play structural parameters and input parameters in the dynamics of the
system when this is a¤ected or is part of the noisy environment itself.
Two relevant aspects are considered in this work. The �rst one from a the-

oretical point of view and the second one is related to practical issues. In the
former, existence and uniqueness conditions for the mathematical solution of
the model are established. In the second one a numerical scheme based on the
EM- method is proposed to provide practical solutions (numerical solutions)
to the controlled SDEMS equations. In the theoretical context, Lipschitz con-
ditions are very restrictive for modeling medium and high nonlinear complex
engineering systems. Then, further research in this area should be developed in
order to relax that conditions. With respect to the numerical approximation, we
guarantee that the EM-scheme verify the convergence and stability properties
which are necessaries in order to have right approximations to the real solu-
tions (analytical solutions). The EM method is an ad hoc method to develop
numerical approximations to the SDEMS models, easy to implement and fast,
but in order to treat a more widely spectrum of nonlinear problems we need to
develop more e¢ cient and accurate schemes. These methods must also guar-
antee positivity conditions because we face problems where the state variables
represent physical variables that admit just positive values (i.e. Temperatures,
concentrations, pressures, etc.). It is very important to consider a more careful
treatment for the initial conditions in each regime. In practice we don�t know
exactly that conditions. So, the numerical approach may depends strongly of
this information.
Two main lines-research shall be followed in short and medium time. The

�rst one must be devoted to develop and implement a battery of well de�ned
numerical schemes, to face a widely type of nonlinear problems going from weak
to the high nonlinear level. Due to the complexity of the problems we treat, does
not exist "the best method". Numerical methods must to be adapted according
with the problem is faced up, so it is adviceable to have a battery of methods
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that can be used.
Second line will be devoted to implement optimal strategies of control over

these systems according to some e¢ ciency or optimally criteria. We want to
develop a practical algorithm to get optimal protocols in engineering noisy sys-
tems. Promising techniques based on iterative dynamic programming will be
explored.
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