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Abstract 
 
We develop the absorbing Markov chain (AMC) for describing in detail the network of paths 
through an industrial system taken by an embodied resource from extraction through 
intermediate products and finally consumer products.  We refer to this as a resource-specific 
network. This work builds on a recent literature in industrial ecology that uses an AMC to 
quantify the number of times a resource passes through a recycling sector before ending up 
in a landfill.  Our objective is to incorporate into that analysis an input-output (IO) table so 
that the resource paths explicitly take account of the interdependence of sectors through 
their reliance on intermediate products.  This feature makes it possible to track multiple 
resources simultaneously and consistently and to represent both resources and products in 
mixed units.  Hypothetical scenarios about technological changes and changes in consumer 
demand are analyzed using an IO model, and model solutions generate the AMC database. A 
numerical example is provided.   
 
AMC analysis describes the resource-specific networks using matrices that are derived not 
from the Leontief inverse but from a generalized variant of the Ghosh inverse matrix.  The 
Leontief inverse and especially the Ghosh inverse (although often not identified as such) 
have been used extensively to analyze ecological systems, and this paper extends these 
approaches for use in studying material cycles in industrial systems.  Constructing the AMC 
formalizes the resource-specific network analysis and generalizes the content and 
interpretation of the Ghosh matrix.  Path-based analyses derived from AMC theory are 
discussed in relation to the set of techniques called Structural Path Analysis (SPA). 
 
The paper concludes by identifying the three most critical enhancements to the IO model 
needed for analyzing material cycles: the simultaneous incorporation of waste-processing 
sectors, stock and flow relationships, and international trade.  The idea is to implement an 
AMC after each model extension.   The modeling framework is intended for analyses such 
as: tracking a resource extracted in one region to landfills in other regions, evaluating ways to 
intensify secondary recovery at key junctures in-between.  There are other ways, of course, to 
approach such an analysis, but the combination of an extended IO model and an AMC, 
representing both resources and products in mixed units, provides a comprehensive, 
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systematic and standardized approach that includes many features that are valued in 
industrial ecology and builds directly on a number of active research programs. 

 
Keywords: industrial ecology, hybrid model, resource network, Leontief 
matrix, Ghosh matrix, material cycles 
 
 
Introduction 

Objectives 

This paper presents a framework for quantifying various characteristics of the networks of 
paths through an economic system by which a resource is converted, process by process, 
into the products ultimately purchased by consumers. We will refer to this as a resource-specific 
network.  The approach is based on an absorbing Markov chain (AMC) constructed from an 
input-output (IO) database and is intended for use with an IO model that generates the 
required database under alternative assumptions about future production technologies and 
consumption choices.  The AMC takes as its starting point a small body of literature based 
on the use of Markov chains in material flow analysis (MFA).   

In a recent paper Yamada et al. (2006) developed an AMC (although not identified as such; 
see Duchin and Levine 2008) to calculate the average number of times a particular resource 
is used before ending in a landfill.  Matsuno et al. (2007) applied it to use of iron in Japan in 
2000.  The analysis is based on a state transition table, a square matrix that describes the 
flows of iron through 15 states: crude iron, a few steels and scraps, several product 
categories, exports and landfill.  The authors found that the average ton of iron was used 
2.67 times and that this figure is particularly sensitive to assumptions about the recovery rate 
of iron from products used in construction.  Eckelman and Daigo (2008) extended this 
AMC model to study global use of copper in 2000 using material flow data to construct the 
state transition table.  They found that a ton of copper is used on average 1.9 times before 
final disposal in a landfill of a product incorporating it.  While these results are interesting in 
their own right, the authors point out (p. 266) that they are only early examples of what can 
be learned from the application of Markov chains to MFA.   
 
In the studies cited, a separate transition table would be required for each resource to be 
tracked.  Second, there is no mechanism to assure consistency among transition tables for 
different resources under alternative scenarios about changes in resource productivity or 
substitution among resources.   These limitations can be overcome by including in the state 
transition table an IO table representing input requirements for intermediate products as 
well as any number of resources.  All resources can be represented in the same transition 
table because they all make use of the same inter-industry relationships.  When a new 
transition table is generated by analysis using an IO model, the flows of resources are 
consistent with each other.   
 
Incorporating the inter-industry relationships characteristic of IO models requires altering 
some assumptions.  While the transition tables in the studies cited above measure product 
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flows in units of total mass of a physically incorporated resource, we measure products in 
quantity (or money value) of product.  We represent the direct flows of resources into 
production sectors rather than total flows and use the IO model to estimate the total 
resource content.  To avoid double-counting of the resource contents of products, resources 
flow as inputs only to the industries that extract them while the output of an extraction 
industry is treated as a product.   

In this paper we make several simplifying assumptions and discuss ways to relax them in the 
concluding section.  First, we do not deal with waste treatment because both costs and time 
delays need to be introduced to do so adequately.  Second, we assume a one-region economy 
at one point in time.  Third, we represent resources embodied in products, meaning resource 
requirements for production, by contrast with the physically incorporated resources 
measured in MFA studies and specified in the transition tables of the studies cited above.  
Only part of the embodied resource content is actually physically incorporated, and only a 
portion of the latter is potentially recoverable after the useful life of the product is 
exhausted.  With additional parameters specifying the portions of required inputs that are 
physically incorporated in products and the portions of the latter that are potentially 
recoverable, it will be possible to deduce incorporated resources from required ones.  Both 
concepts are needed in order to evaluate the ability to meet resource demand with minimal 
extraction of virgin resources. 

By including an IO table, the transition table for our study provides comprehensive coverage 
of an economy.  The resulting AMC is able to describe the network for each resource from 
extraction through embodiment in intermediate products and ultimately in consumer 
products.  This network, as well as the individual paths of which it is composed, will be 
characterized by a number of measures including the average length of a path in the 
network.  This AMC generalizes and systematizes a number of earlier efforts in the analysis 
of interdependence and in particular of pathways in industrial systems and in ecosystems, 
which are described in the remainder of this section.   Subsequent sections describe the 
standard IO model with both product and resource flows and then the Markov chain, first in 
Markov notation and then rewritten in a notation more familiar from IO analysis, followed 
by a numerical illustration of the AMC.  Then the relationship between the AMC and the IO 
model is described with a focus on the Ghosh matrix and SPA. The paper concludes with 
next steps for enhancing the proposed framework and suggests the broader set of questions 
that will then be addressable. 
 
 
Background 
 
Since the early 1990s IO models have been combined with other techniques of industrial 
ecology for life-cycle assessment of products, starting from Cobas et al. (1995), Hendrickson 
et al. (1998), Joshi (2000), Yutaka et al. (2001), and more recent studies including Lenzen 
(2007).  Various chapters in Suh (2009) also describe the integration of MFA with IO.  
Waste input-output analysis (WIO), initiated by Nakamura et al. (2002, 2005, 2007, and 
2009), uses material flow data to incorporate wastes and waste-treatment sectors into an IO 
model and will be revisited in the concluding section. 
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Both IO models and AMCs have been applied to study interdependence and flows of energy 
and materials through ecosystems, providing concepts and methods relevant to closing 
material cycles in an industrial system.  Following Hannon’s (1973) initial use of IO models 
to study interdependence in ecosystems, Patten (1982) developed environ analysis to study 
both upstream and downstream flows in ecosystems.  While he called it an extension of IO 
analysis, it is actually closer to an AMC.  Bailey et al. (2004a, b) demonstrated the applicability 
of environ analysis to industrial systems and recognized that “ecological input-output 
analysis, as applied to industrial systems, provides answers to different questions than does 
traditional economic input-output analysis (even when physical flows are integrated).”  
Markov chains also have a history of explicit applications in systems ecology to track energy 
and biomass flows (Higashi et al., 1993a; Leguerrier et al., 2006), including determining 
measures of nutrient recycling, of throughput (Barber, 1978a, b), and of trophic position 
(Levine 1980).  The existence of a relationship between AMCs and IO models was noted by 
Higashi et al. (1993b) and made more explicit by Suh (2005), who developed a model that 
generalizes and formalizes seemingly disparate analyses of ecosystems and economic 
systems. 

Structural Path Analysis (SPA) consists of a number of network algorithms that have been 
applied to the IO representation of an industrial system for evaluating the influence of one 
economic sector on another.  Well-known applications are those of Defourny and 
Thorbecke (1984), Khan and Thorbecke (1989), Treloar (1997), Sonis and Hewings (1998), 
Peters and Hertwich (2006) and, as applied to ecosystems, Lenzen (2007).   Suh (2005) 
points out some similarities between SPA and environ analysis.  We discuss the relationship 
of SPA to the analysis based on an AMC of an economy in a later section. 

 
The Standard Input-Output Model 

We start with an economy described in terms of its consumption pattern and its production 
technologies including resource requirements.   We use the term resources to designate all 
factor inputs, including labor and capital as well as the natural resources that are our focus of 
attention.  For simplicity, we assume that all domestic final demand corresponds to 
consumption, leaving the subjects of trade and investment to the concluding section.  We 
also defer until the final section discussion of recycling sectors. 

The vector y quantifies the consumption demand for each good, and two matrices of 
technical coefficients, A and F, quantify intermediate inputs and resource requirements, 
respectively, per unit of output.  Assuming values for these under some scenario, values are 
obtained for the vectors x of total output 
 
   x = (I – A)-1y,       (1) 
 
and φ of resources  
                                    φ = Fx         
                                        = F(I – A)-1y.      (2) 
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The vector φ can be disaggregated to a matrix that describes the use of resources throughout 
the economy in two complementary ways, 
 

Φ = F x̂        (3) 
 
and        
 

   Φ
~

= F(I – A)-1 ŷ ,      (4) 

 

where yx ˆandˆ  are diagonal matrices based on x and y respectively. Φ describes the 

distributions of resources among total outputs while Φ
~

 describes the distributions among 
consumption products.  The vectors of row totals of (3) and (4) are equal to each other and 
to φ, while column entries distinguish individual resources.  Columns cannot be added in 
either matrix as resources (in the numerators of the elements of F) will in general be 
measured in different units.  Scenarios specifying changes in y, A, or F will produce new 
solution vectors, x and φ.   
 

 
Absorbing Markov Chains 
 
For any system represented by n states, the parameters of an AMC are the probabilities of 
directly transitioning from one state to another; they are contained in an n x n transition 
matrix M.  The entries in the ith row of M describe the likelihood of transitioning from state 
i to each other state, such that the row sum equals 1.0.   Transition probabilities may also be 
interpreted in a non-stochastic manner (Kemeny and Snell, 1976, p 206).  In our AMC, 
states represent resources, intermediate products, and consumption goods, and mij is the 
proportion of the ith resource or product outflow going directly to state j.  The results of the 
IO model, x and φ, as well as A, F, and y, are used to calculate a transition flow table, and 
the transition matrix is derived by taking row-wise percentages.  (Thus the row for steel, for 
example, would show the portion of steel output delivered to construction, to the 
automobile industry, etc.)  The AMC is a specific type of Markov chain containing absorbing 
states, which once entered cannot be exited, and configured such that one of these absorbing 
states must eventually be entered.  Consumption goods are treated here as absorbing states, 
while resources and intermediate products are transient states. 

 
 
The Fundamental Matrix  
 
The M matrix is put into canonical form with the transient states first and can be partitioned 
as follows: 
 











I0

RQ
M .      (5) 
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The proportions of direct flows among the transient states (resources and intermediate 
products) are represented by the matrix designated Q, and those from transient to absorbing 
states (products to consumers) by the matrix R.  If state i is an absorbing state, mij = 0 for j 
≠ i, and mii = 1.0, since the consumer goods by definition will not re-enter the economy.  
The 0 matrix and the identity matrix I (in the 2nd row of M) reflect these properties.   Note 
that each row sum of M equals 1.0.  
 
The analysis proceeds by calculating two key matrices.  The fundamental matrix of an 
absorbing chain (Kemeny and Snell, 1976), N, is defined as 
 

N = I + Q + Q2 +  …     = (I – Q)-1.   (6) 
 
Like the Leontief inverse matrix, (I – A)-1, the fundamental matrix of an AMC captures 
indirect as well as direct effects, as they are both examples of the principle of transitive 
closure (as observed by Harary et al., 1965; Patten and Finn, 1979).   
 
N is of particular interest for the analysis of resource-specific networks because its ijth 
element is the average number of times transient state j is encountered in transitioning from 
transient state i to an absorbing state, for example the average number of times a ton of 
crude iron passes through a transportation sector (embodied in some product) before it ends 
up in a consumer good.  The resource-specific network for resource i consists of all the 
paths taken by any portion of that resource embodied in products.  Each path has a length, 
the number of transitions from one state to another, or branches, that it contains.  The 
average path length for resource i, σi , is the sum over all paths of each path’s length 
multiplied by the portion of resource it carries. From the description of N above, and noting 
that every time a transient state is encountered and then exited a branch must be 
transitioned, σi can be conveniently computed as the ith row sum of N. 
 
The other matrix of interest in an AMC analysis is B, where 
 
     B = NR,      (7) 
 
where R contains the direct proportions of flows from each transient state to each absorbing 
state (i.e., from an intermediate product to a consumer good).   B represents the ultimate 
distribution of every embodied resource (and every embodied intermediate product) among 
the products comprising the basket of goods delivered to consumers, and its row sums are 
equal to 1.0. 
 
 
Resource-Specific Networks 
 
The structure of a resource-specific network, composed of nodes joined by branches, 
determines the paths through the network traversed by some portion of the resource.  
Whole paths or individual nodes and branches can be characterized using the Q, R, N and B 
matrices.  For example, note that nijqjk is the average number of times that the branch jk, 
where j and k are intermediate products, is traversed by the embodied resource i before it 
ends up in a consumption product, and nijrjm is the average number of transitions by 
embodied resource i of branch jm where m is a particular consumption good. Therefore, if 
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in̂ is the diagonal matrix formed from the ith row of N, the average number of times that a 

unit of embodied resource i makes these particular transitions can be determined by 

calculating 
in̂ Q and 

in̂ R.  Particular transitions may be of interest for various reasons, for 

example to associate a geographic distance or a transport cost with them.  Alternatively, 
comparing 2 resource-specific networks, possibly for the same raw material from two 
different sources, may be revealing. 
 
It is also possible to describe the network for a given resource i that is eventually embodied 
in a specific consumer product j.  For example, qijbjk is the portion of resource i that is 
ultimately embodied in consumer good k if it first is embodied in intermediate product j, and  

ik

jkij

ij/k
b

bq
q       (8) 

(derived in Kemeny and Snell, 1976) is that fraction of the flow of resource i ultimately 
embodied in consumer good k that first is directly embodied in intermediate product j, say 
the proportion of the coal eventually embodied in consumer cars that is first embodied in 
steel.  Eq. 8 defines an element of the matrix  
 

k

1

kk QbbQ
 ˆ

,      (9) 

 
where the vector bk is the kth column of B, measuring the portions of all resources that end 
up embodied in consumer good k.  The corresponding fundamental matrix is 
 

     

k

1

k

1

kk

Nbb

)Q(IN








    (10) 

 
with elements   

     ij

ik

jk

ij/k n
b

b
n  .     (11) 

The row sums of Nk form the vector σk, and its ith element provides the relevant measure for 
the ith resource and kth consumer product.  If, for example, 20% of raw coal ends up 
embodied in consumer automobiles (bjk) but only 5% of steel (bik) does, then the coal 
embodied in cars on average passes through the steel sector 4 times (bjk/bik) as often as the 
average ton of coal. 

The Q, R, N and B matrices are as central to AMC analysis as are A, F, (I – A)-1, and Φ to 
IO models, and we next demonstrate the basic relationships between them. 
 
 
The AMC Model in IO Notation 
 
We first define a matrix of inter-industry product flows denoted (using the notation of Suh 
2005) as 
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XxA
1 ˆ        (12) 

 

with coefficients ija =  xij/xi, where X, the intersectoral flow matrix, is 

 

   xAX ˆ        (13) 
 

and x̂ is the diagonal matrix formed from x.    
 
We also define 
 

F φ̂ -1Φ       (14) 

 

with coefficients rjf =  φrj/φr, and right side matrices as defined in (2) and (3).  Both A  and 

F  are matrices of row-wise coefficients, by contrast with A and F. A is called the Ghosh 
matrix to distinguish it from A, the Leontief matrix, to which it related to as 
 

xAx

XxA

1

1

ˆˆ

ˆ








       (15) 

 

F , a new construction, is defined similarly relative to F, that is 
 

.ˆˆ

ˆ

xFφ

ΦφF

1

1








       (16) 

 

While A  and F do not enter into the standard IO model, their definition is readily 
understood in an IO framework.  The AMC can be rewritten in terms of these 2 matrices. 
 
Ordering the transient states such that the resources precede the products reveals that both 
R and Q have well-defined, highly-sparse structures when applied to the industrial system.  
R measures in its rows the distribution of first the resources and then the products directly 
to consumers.  Since resources are delivered only to extraction sectors, the top block of rows 
of R consists of zeroes. The lower block must be a diagonal matrix with the portions of 
output delivered directly to consumers down the diagonal.   Thus Rx is defined in the 
following way: 
 












yx

0
R

1 ˆˆ
 =  









xR

0
.     (17) 

 
Q must contain in each row the portions of the corresponding resource or product delivered 
directly as input to each resource or product.  The two left-hand quadrants of Q must 
consist of all zeroes, as neither resources nor intermediate products flow to resources.  The 
top right-hand quadrant shows the distribution of resources directly to extraction sectors, 



 

10 

 

and thus is the matrix we called F , while the sub-matrix in the lower right represents the 

distribution of intermediate products, or A : 
 

    









A0

F0
Q .      (18) 

 
 
From R and Q so transcribed, we can determine 
 






























1

1

xxxφ

φxφφ1

)A(I0

)A(IFI

NN

NN
Q)(IN  ,    (19) 

 
where N is a simple example, due to the sparseness of Q, of a Miyazawa (1976) inverse, and 
 





































yx)A(I

yx)A(IF

RN

RN

B

B
NRB

1

1

xxx

xφx

x

φ

ˆˆ

ˆˆ
1

1

.   (20) 

 

We can readily rewrite Φ
~

(from Eq. 4) in terms of the Bφ matrix.  Making use of Eq. (16) 
and (20), we obtain 
 

xxφ ΦBBFφBφΦ  ˆˆ
~

.    (21) 

 
Thus we see that Bx , the AMC matrix that distributes products to consumers, is also 

precisely the object that governs the transformation between the more familiar matricesΦ  

and Φ
~

 from IO Eq. (3) and (4).  Likewise, Bφ distributes resources among consumer 
products. 
 
For further insight into N note that from Eq. (20) 
 

Bφ = Nφx Rx and Bx = Nxx Rx.         (22)  
 

Let ijb and  ijn  represent the typical elements of Bφ (or Bx) and Nφx (or Nxx), respectively.  

Then 
 

j

j

ijij
x

y
nb          (23) 

 
or   
 

j

j

ijij
y

x
bn   .       (24) 
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Each element of B, ijb , represents the fraction of resource i that is ultimately embodied in 

consumer product j, and xj/yj, is the output multiplier for industry j. Thus nij is the product 
of two well-defined quantities, and the AMC row sum, 
   

 
j j

j

ij

j

iji
y

x
bnσ ,                                      (25) 

      
 
known to be the average path length of embodied resource i before it is ends up in a 
consumer good, can be expressed as the average output multiplier for products weighted by 
the fraction of i embodied in each consumer product.  An increase in output multiplier, 
implying that a greater portion of output is retained within the production network, leads to 
an increase in average path length.  This will be illustrated in a numerical example. 
 

 
Application of the Absorbing Markov Chain 
 
We next carry out computations for a baseline and two alternative scenarios using an IO 
model of an economy with three resources and three products.  A network model of the 
economy is depicted in Figure 1 in terms of the algebraic notation.  Each branch has a 

weight determined by the coefficients of F (distributing resources among sectors), A  
(distributing intermediate products), and R (distributing products to consumers): 

RE1

C2

P1 P3

P2

RE3

Figure 1: AMC Coefficients for Resources 

and Products and Consumption Demand of Products 

In a  Three-Product, Three-Resource Economy

a21

a12

a13

a31

a23

a32 a33

a22

a11

r22r11 r33

f31f11
f13

f33

f12
f32

RE2

f21

f22

f23

C1 C3

_

_

_ _

_
_

_

_

_

_

_

_

_

_

_

_
_ _

 
 
The first scenario assumes changes in consumer demand, y, while the second represents 
changes in the production technologies represented in A and F.  Each calculation yields 
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values for x and φ, from which new versions of A , F , and R are calculated.  The AMC 
results for the scenarios are then compared.  
 
 
Baseline Scenario 
 
Consider an economy with three resources (RE), three intermediate products (P), and three 
consumption goods (C) 
 

P1, C1 agriculture  RE1 labor 
P2, C2 manufacturing  RE2 ore 
P3, C3 mining    RE3 land 

 
and the following values for the baseline scenario: 
 
 



















1

20

10

y , 



















05.030.00

20.050.010.0

015.005.0

A , and 



















50.0000.2

00.300

25.050.050.1

F . 

Comparing columns of A shows that manufacturing (the sector producing the second 
product) is much more interconnected than the other sectors, and according to F all sectors 
use labor while only the mining sector inputs crude ore and only manufacturing requires no 
land.   
 
The IO model applied to these data yields these results 
 



















0.17

5.50

5.18

x  and



















5.45

0.51

25.57

φ ,           

 

which are used with the original data to compute A  and F as well as Q, R, N and B. 
 
 































05.0891.00|000

067.05.0037.0|000

0409.005.0|000

|

187.00813.0|000

0.100|000

074.0441.0485.0|000

Q , 































059.000

0396.00

00541.0

000

000

000

R , 
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211.1228.2086.0|000

168.0375.2092.0|000

073.0024.1092.1|000

|

285.0249.1904.0|100

211.1228.2086.0|010

199.0709.1576.0|001

N  ,































524.3

635.2

188.2

438.3

524.4

484.3

σ  and 































071.0882.0046.0

010.0941.0050.0

004.0405.0590.0

017.0495.0489.0

071.0882.0046.0

012.0677.0311.0

B . 

 
 
The 6 rows and columns of Q and N, as well as the six rows of the R and B matrices, 
correspond to the three resources and the three intermediate products. The three columns of 
the R and B matrices correspond to the consumption demand for products.  The rows of B 
indicate the portion of each resource and each intermediate product that ultimately is utilized 
in satisfying consumer demand for each product. The first column shows that 31.1% of 
labor but only 4.6% of ore goes toward satisfying the consumer demand for agricultural 
consumer products. 
 
Figure 2 illustrates the resource-specific network for ore (RE2) using values taken from the 
N, Q, and R matrices.  In this figure each branch weight measures the number of times an 
average unit of ore traverses that branch.  The node weights (underlined italics) sum to 
4.524, as do the branch weights. Figure 2 indicates that the primary branches utilized by 
flows of embodied ore are RE2 to P3, P3 to P2, P2 to P2 and P2 to C2 -- ore from mining to 
manufacturing to manufactured consumer goods -- contributing 4.075/4.524 or 90% of the 
overall average path length for ore.  Figure 2 also shows that 2.228/4.524 = 49% of the 
average path length for embodied ore is associated with node P2, manufacturing.  We could 
also quantify the network and paths for only that ore that is eventually embodied in 
manufactured consumer goods. 
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C2

P1 P3

P2

Figure 2: Resource-Specific Network for Embodied Ore Showing

Average Number of Times a Unit of Embodied Ore Enters or Exits

Each Transient Node and Traverses Each Branch

0.082

0.035 0.149

1.079
0.061

1.114

0.004

0.8820.047

RE2

1.0

C1 C3

0.071

1.0

0.086

2.228

1.211

 
 
Alternative Scenarios 
 
Now we assume that consumer demand for manufactured goods quadruples to 80 units, 
compute new output levels and resource requirements (x and φ) using the IO model, 
compute the AMC transition table, and then calculate new Q, R, N and B matrices.  As a 
result the vector of average path lengths is σ = [3.816  4.597  4.147 | 2.977  2.589  3.597]T, 
showing that all average path lengths increase relative to the baseline except for that of 
manufactured goods.  This exception is explained by the fact that a larger share of 
manufactured goods is going directly to consumers.  The branches RE2 to P3, P3 to P2, P2 to 
P2 and P2 to C2 now constitute 4.265/4.597 = 93% of the average path length for ore,  and 
passing through node P2 (manufacturing) represents 51% of  that average path length, 
reflecting the increased amount of manufacturing activity. 
 
Finally, assume all inputs to mining double except for ore, due to decreased ore quality.  
Computing the AMC for this scenario results in σ = [4.232  5.330  4.252 | 2.678  3.394  
4.330]T, an increase in path lengths by an average of nearly 25% relative to the baseline.  The 
decline in mining productivity requires that more work be done to satisfy the same 
consumption demand, which increases the amount of interdependency. 
 
These examples demonstrate the mechanics of applying an AMC to results obtained with the 
IO model.  The impacts naturally depend on the numerical values of the parameters and 
exogenous variables, but it will also be possible to state propositions and theorems 
generalizing some of the results independent of specific numerical values.  In particular, 
reduced efficiency requires more work and therefore longer average path lengths, while 
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increased consumer demand for a product shortens the average path length for delivering 
that product while increasing that for other products.  The questions that can be addressed 
are much more interesting, of course, when the scope of the model is broader and the 
relation of output to demand is not linear, the subject of the concluding section. 
 
 

The AMC, the Ghosh Model, and Structural Path Analysis 
 

The Ghosh matrix, A , the row-based matrix calculated from an IO flow table, describes the 
allocation of demand for a particular good across all using sectors and is used in the Ghosh 

model (Ghosh 1958), TT
v)A(Ix  , or  

 
1TT

)A(Ivx
 ,         (26) 

 
where v is the vector of value-added, or the total money value of all resource inputs, x is the 
vector of total output in money values, and the right side matrix is the Ghosh inverse, the 
AMC matrix Nxx (see Eq. 19).  The Markovian interpretation of Nxx naturally holds in the 
special case when all variables are measured in a common unit, here money value: in Eq. 26, 
xi is the sum of all sectors’ resource costs, vj, each weighted by the average number of times 
that sector’s embodied output is used by sector i, (nxx)ji for sector j.  However, the AMC 
provides more a general in that the interpretation of Nxx is not limited to cases where all 
products are measured in a single unit.    
 

F was not utilized by Ghosh, and neither it nor its product with the Ghosh inverse, Nx (see 
Eq. 19), has ever to our knowledge been used in either economic or ecosystem analysis.  We 

have seen that Nx has an analogous interpretation to Nxx: the ith row sum of Nx (minus 
1.0, for its transition from the state of resource into the product of the relevant resource-
extraction industry) measures the average number of transactions involving transitions from 
one sector to another by a unit of embodied resource i, for any number of resources 
measured in any units.   
  
Suh (2005) recognized the use of both Ghosh and Leontief matrices in the ecological studies 
and the relationship of the former to AMCs.  He also pointed out both the limitations of 
requiring all variables to be measured in a single unit and that SPA has been applied to the 
Ghosh inverse in ecosystem analysis, although not formalized by that name (Suh 2005, Suh 
and Kagawa 2005).  SPA includes a number of different algorithms to identify the most 
influential paths by pruning less important ones and has been applied to decomposing the 
Leontief inverse to identify inputs with the greatest impact on the money value of a 
consumer good.  In this paper the AMC characterizes paths downstream from resources to 
consumer products along resource-specific networks, and characterizing the transitions and 
path lengths for the entire network or individual paths, nodes, and branches.  Of course, it 
would be possible to apply one or more of the existing SPA algorithms to the Markov N 
matrix, and some might wish to further extend the meaning of SPA to include the ways in 
which we have analyzed the N matrix. 
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Next Steps 
 
Industrial ecologists have expressed interest in analyzing scenarios about closing the material 
loops in an industrial system using IO models (MacLean et al. 2009), and the AMC analysis 
can be applied to more elaborated models than the standard IO framework used in our 
illustrative numerical example.  We mention the 3 most important elaborations. 
 
First, waste-processing sectors need to be incorporated into the IO model.  This has been 
accomplished for the static, one-region case by the Waste Input-Output model of Nakamura 
et al. (2002, 2005, 2007, and 2009).  Second, a model of the world economy is required since 
material cycles are global in scope.  The World Trade Model (Duchin 2005, Stromman and 
Duchin 2006) can play this role but requires waste-processing sectors and dynamics.  Third, 
a dynamic model is called for to characterize both landfills and the stocks of secondary 
sources of resources.  A dynamic IO model exists (Duchin and Szyld 1998) with some but 
not all of the necessary features; it is for a single region and without waste-processing 
sectors.  
 
The intention is to incorporate waste-processing sectors and stocks of durable goods and of 
infrastructure with an IO model of the world economy for scenario analysis, taking account 
of both resource requirements (embodied resources) and resources physically incorporated 
in products and potentially available for recovery and representing landfills (rather than 
delivery to consumers) as absorbing states.  The AMC for this extended framework would 
then be analyzed to describe global, resource-specific networks.   One could compare 
networks for different resources, or a single resource from different sources (such as iron 
from China and iron from Brazil), with regard to passage through waste-processing sectors 
and landfills in different regions of the world under alternative assumptions about 
technologies, consumer demand, and parameters governing the processing of wastes.  For 
example, average path lengths over selected branches could be combined with external 
information, such as distances between regions, to determine the total distance traveled by a 
resource contained in internationally traded products between specific regions.   
 
Many steps are needed to achieve the full integration of the models identified, but two next 
ones may be indicated: (1) applying an AMC analysis to scenario outcomes from the World 
Trade Model to examine the paths and path lengths of embodied resources across 
geographic regions and (2) introducing waste-processing sectors into this model.   
Increasingly detailed, environmentally-extended IO databases for past years also need to be 
compiled as a point of departure for building scenarios about the future, and fortunately that 
work, also, is in progress (see Tukker et al. 2009). 
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