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The mistake here is that a seller can increase her revenue by encompassing the increase
in the buy price with an increase in her reserve price so that the minimum of the bidders’
types that enters the auction remains the same. This is actually the main argument in
the proof of my version of Theorem 1.

In the remaining of this note, I prove my version of Theorem 1. I shall not follow
Shunda’s approach. He finds that there is a monotone relationship between the buy price
B∗ and the threshold v∗ for any given reserve price r. Thus, instead of solving for the
optimal buy price B∗ and reserve price r, he solves for the optimal threshold v∗ and reserve
price r. I find more natural to solve directly for the optimal buy price B∗ and reserve
price r. My approach also avoids the complex computations in which Shunda made his
mistake.

The expected revenue of the seller with a reserve price r and buy price B∗ ≥ r is (see
the details in Appendix A):∫ v∗

v

(
β(y)− 1− F (y)

f(y)(1 + ε)

)
dF (y)n + β(v∗)(1− F (v∗)n), (1)

where v, v∗ and β(y) denote the minimum type that participates in the auction, the
minimum type that exercises the buy price in equilibrium, and the maximum willingness
to pay of a bidder with type y for some given reserve price r and buy price B∗, respectively.1

That is:2

v ≡ max{v,min{v, (1 + ε(1− λ))r − ε(1− λ)B∗}}. (2)

v∗ is equal to v in case B∗ < β(v),3 and it is defined in case B∗ ≥ β(v) as the unique
solution in [v, v) to:∫ v∗

v
F (y)n−1dy =

(
1− F (v∗)n

n(1− F (v∗))

)
(β(v∗)−B∗)(1 + ε), (3)

if, ∫ v

v
F (y)n−1dy < (β(v)−B∗)(1 + ε),

and v∗ ≡ v otherwise. Finally,

β(y) ≡ y + ε(λr + (1− λ)B∗)
1 + ε

. (4)

The seller chooses (r,B∗) to maximize Equation (1) subject to the constraint that
B∗ ∈ [r, γ(r)] where γ(r) is a function implicitly defined by the unique solution to:∫ v

max{v,min{v,(1+ε(1−λ))r−ε(1−λ)γ}}
F (y)n−1dy =

(
v + ε(λr + (1− λ)γ)

1 + ε
− γ
)

(1 + ε). (5)

1As Shunda (2009), I do not make explicit the dependence of v, v∗ and β(y) on r and B∗ to shorten
the notation.

2These definitions differ from Shunda’s (2009) in that I make explicit the boundary cases. Although
they are not essential for my arguments, I include them for the sake of completeness. In any case, boundary
cases are trivial but in the case B∗ < β(v) that I explain more carefully in Footnote 3.

3To see why, note first that the constraint that r ≤ B∗ means that B∗ < β(v) can only occur when
r < β(v), and hence when v = v. Second, v = v and B∗ < β(v) means that B∗ < β(v) and hence a bidder
with type v makes strictly positive profits exercising the buy price. Thus, it is optimal for her to do so
since both the auction and stay out give her zero payoffs, and as a consequence v∗ = v.
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For any given reserve price r, γ(r) is an equilibrium threshold value such that buy prices
greater than γ(r) imply that v∗ = v, and hence no bidders’ types exercise the buy price,
and buy prices less than γ(r) imply that v∗ < v, and hence an open set of bidders’ types
exercise the buy price.

The constraint B∗ ≥ r is explicit in Shunda (2009). The constraint B∗ ≤ γ(r) is
without loss of generality under Shunda’s assumption in the first full paragraph in page
655 of his paper. To see why, note that Shunda’s assumption implies that the auctioneer
does not find it profitable to fix a buy price strictly larger than B(v, r), and B(v, r) = γ(r).

The following proposition implies Theorem 1:

Proposition 1. Any reserve price and buy price (r,B∗) such that B∗ < γ(r), i.e. auction
configurations in which some open set of bidders’ types exercise the buy price in equilibrium,
is suboptimal for a risk neutral seller. Moreover, the seller’s expected revenue is maximized
by setting (r,B∗) such that B∗ = γ(r), i.e. an auction configuration in which there is no
open set of bidders’ types that exercise the buy price in equilibrium maximizes the seller’s
expected revenue.

Proof. The first claim in Proposition 1 is obviously true when (r,B∗) induces v = v. This
is because v∗ ≥ v and v = v imply that v∗ = v and hence the seller gets zero revenue.4

In the case in which (r,B∗) induces a threshold v < v, we shall show that there exists
a reserve price r̃ ≥ r and a buy price B̃∗ = γ(r̃) that (i) induce the same threshold v as
(r,B∗) and (ii), give strictly greater expected revenue to the seller.

Claim (i) is obviously true if (r,B∗) induces v = v, as in this case (r̃, B̃∗) = (r, γ(r))
also induces v = v. Otherwise, claim (i) can be derived from the following three facts.
First, B∗ < γ(r); second, γ′(r̂) ≤ 1 for r̂ ≥ r, since by the implicit function theorem
applied to Equation (5),5

γ′(r̂) =
ελ+ (1 + ε(1− λ))F (ṽ)n−1

1 + ελ+ ε(1− λ)F (ṽ)n−1
= 1−

1− F (ṽ)n−1

1 + ελ+ ε(1− λ)F (ṽ)n−1
≤ 1,

for ṽ = max{v, (1 + ε(1−λ))r̂− ε(1−λ)γ(r̂)}; and third, the set of reserve prices and buy
prices that induce the same threshold v as (r,B∗), see Equation (2), is a straight line with
slope:

1 + ε(1− λ)
ε(1− λ)

= 1 +
1

ε(1− λ)
> 1.

These three facts imply that the function γ crosses with the set of reserve prices and buy
prices that induce the same threshold v as (r,B∗) to the right and above of (r∗, B∗) as
illustrated in Figure 1.

Claim (ii) follows from claim (i), Equation (1) and the following four facts. First, by
definition of γ, a reserve price r̃ and a buy price B̃∗ = γ(r̃) induce a threshold v∗ = v.
Second, Equation (1) is increasing in v∗, since it is concave in v∗ with a zero differential at
v∗ = v (see the details in Appendix B.) Third, B̃∗ = γ(r̃) > B∗ since γ is increasing and

4The inequality v∗ ≥ v is a direct consequence of B∗ ≥ r. See the definition of v∗ and Footnote 3.
5The expression above is correct only up to the point in which ṽ = v. For higher values of r̂, γ′(r̂) = λε

1+λε
.

This is irrelevant for our arguments because the graph of γ crosses with the set of reserve prices and buy
prices that induce the same threshold v as (r,B∗) before this point is reached, and in any case the property
that γ′(r̂) ≤ 1 is verified.
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γ(r)
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B̃∗ = γ(r̃)
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{(r�, B∗�) : v constant}

Figure 1: Illustration of the proof of claim (i) in the proof of Proposition 1.

γ(r) > B∗. Four, β increases with B∗ and r as can be easily deduced from its definition
in Equation (4).

To complete the proof of the proposition requires to show that the seller’s optimization
problem has a solution. Since the seller’s expected revenue is continuous in r and B∗, it
is sufficient to show that the constraint set {(r,B∗) ∈ R2

+ : B∗ ∈ [r, γ(r)]} is compact.
To prove this, it is sufficient to show that the constraint set is contained in [0, v]2. That
this last claim is true can be deduced from the fact that the definition of γ implies6 that
γ(r) < r if r > v. �

Appendix A

In this appendix, I show that the seller’s expected revenue when she posts a reserve price
r and a buy price B∗ ≥ r is equal in equilibrium to Equation (1). Shunda (2009) shows,
see the last line of page 654, that this expected revenue is equal to:

rnF (v)n−1(F (v∗)− F (v))

+
∫ v∗

v
β(y)n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+B∗(1− F (v∗)n). (6)

This makes the cases v = v∗ = v and v = v∗ = v direct. In the remaining cases, note

6The left hand side of Equation (5) is non negative and as a consequence we can deduce from the right
hand side that γ(r) ≤ v+λεr

1+λε
. This is, γ(r) is less or equal than a convex combination between v and r.

Hence γ(r) < r if r > v.
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that integrating by parts the integral and using that β(v) = r if v ∈ (v, v), one can show
that the first two terms are equal to:∫ v∗

v
β(y)dF (y)n −

∫ v∗

v
n
F (v∗)− F (y)

1 + ε
F (y)n−1dy =∫ v∗

v

(
β(y)− 1− F (y)

f(y)(1 + ε)

)
dF (y)n + n

1− F (v∗)
1 + ε

∫ v∗

v
F (y)n−1dy.

This completes the proof if v∗ = v. Otherwise, note that v∗ ∈ (v, v) verifies Equation (3)
from which one can deduce that the last term in Equation (6) is equal to:

β(v∗)(1− F (v∗)n)− n(1− F (v∗))
1 + ε

∫ v∗

v
F (y)n−1dy,

as desired.

Appendix B

The first derivative of Equation (1) with respect to v∗ is equal to:(
β(v∗)− 1− F (v∗)

f(v∗)(1 + ε)

)
nF (v∗)n−1f(v∗)− β(v∗)nF (v∗)n−1f(v∗) +

1
1 + ε

(1− F (v∗)n)

=
1

1 + ε

(
1 + (n− 1)F (v∗)n − nF (v∗)n−1

)
,

that is equal to zero when v∗ = v. The second derivative is equal to:

− 1
1 + ε

n(n− 1)F (v∗)n−2f(v∗) (1− F (v∗)) ,

that is negative.
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