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Abstract

Most empirical work in economic growth assumes either a Cobb-Douglas production func-
tion expressed in logs or a log-approximated constant elasticity of substitution specification.
Estimates from each are likely biased due to logging the model and the latter can also suffer
from approximation bias. We illustrate this with a successful replication of Masanjala and Pa-
pagerogiou (2004) and then estimate both models in levels to avoid these biases. Our estimation
in levels gives results in line with conventional wisdom.

1 Introduction

There has been a long standing tradition of estimating production functions in logs when studying

economic growth. For example, Mankiw, Romer and Weil (1992) derive the steady state level of

output per worker and estimate the parameters of their model using a log-linearized version of the

standard Cobb-Douglas (CD) production function. Mankiw et al. (1992), and other pioneering

papers in this field, have literally been cited thousands of times and an overwhelming majority of

these papers estimate the parameters of their models via ordinary least-squares (OLS), which is

possible when the CD model is expressed in logarithmic form. Although the CD production function

is relatively standard in this literature, other functional forms have been proposed. For example,

Duffy and Papageorgiou (2000) suggest using a constant elasticity of substitution (CES) production

function in place of the standard CD production function in order to capture nonlinearities in
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the growth process and potential heterogeneity across countries. CES production functions are

inherently nonlinear, but the authors take logs and linearize the CES production function using

a Taylor series expansion as in Kmenta (1967) in order to employ OLS.1 A wide range of papers

are now using CES production functions to study growth (for example, Backus, Henriksen and

Storesletten (2008), Duffy, Papageorgiou and Perez-Sebastian (2004), and Klump, McAdam and

Willman (2007)).2

Although popular in economic growth, estimating CD and CES models in logs may lead to

unnecessary biases. First, both the CD and CES models estimated in logs can produce biased

estimates because the expected value of the logarithm of the error term generally depends upon

the regressors. This point has been argued compellingly by Santos Silva and Tenreyro (2006) in

the context of the gravity model of trade.3 A second bias can also arise with CES models when

they are approximated. For example, it is well known that the Kmenta approximation can suffer

from omitted variable bias. Specifically, the Kmenta approximation does not guarantee that the

underlying CES parameters are consistently estimated because the approximation is a Taylor series

expansion and the remainder term becomes an omitted variable in the regression context. This

point was laid out in Thursby and Lovell (1978) and by others. While these past papers have made

an impact in the empirical international trade and productivity literatures, these potential biases

appear to be ignored or are not considered to be too problematic by many growth economists.

Here we showcase each of these biases by replicating Masanjala and Papagerogiou (2004) who

estimate both CD and CES models in logs. We then estimate their models in levels, both with and

without using an approximation, via non-linear least-squares (NLLS) and Poisson pseudo-maximum

likelihood estimation (PPML). The approximated models avoid the bias due to logging. When we

estimate the models in levels without an approximation, we avoid both the bias due to estimating

the model in logs as well as the approximation bias. Although we find minimial bias due to logging

the model in the CD case, we find substantial bias in the log-approximated model in the CES case.

1The authors also estimate nonlinear versions of their models using non-linear least-squares. These models do not
use Taylor series expansion, but in their paper they are estimated in logs.

2The Journal of Macroeconomics in 2008 devoted a special issue (Volume 30, Issue 2) to the CES production
function and its impact on the theory and empirics of economic growth.

3See Papke and Wooldridge (1996) and Manning and Mullahy (2001) for related discussion.
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On the other hand, we are unable to find substantial bias in the approximated CES model. When

estimating the levels model without an approximation, we are able to consistently estimate the

parameters of interest and these results are in line with conventional wisdom.

We should point out here that we are making several assumptions when claiming to consistently

estimate the parameters of the model. First, we are assuming that the CD or CES model is the

correct parametric specification. That being said, we perform functional form specification tests

and are unable to reject the models estimated in levels. Second, we assume that there are no

omitted variables which may bias our results. In other words, we are completely ignoring the issue

of endogeneity of the regressors in this article. While our proposed estimation strategy may help

with biases, estimating cross-country production functions in levels (as opposed to growth rates)

potentially amplifies the endogeneity problem which is severe in this line of work. Third, although

we allow for heterogeneity in the shares of physical and human capital in the CES model, we do not

allow for parameter heterogeneity. There is good reason to believe that the parameters of the model

may vary drastically across different groups of countries. We urge readers to consider the potential

impact of each of these caveats, and perhaps others (for example, see Durlauf, Johnson and Temple

(2005)), when interpreting our results. Even with these potential problems in our estimates, we

still advocate for estimating models in levels, but suggest that practitioners be cautious of other

potential biases in their own work.

The remainder of the paper is organized as follows: Section 2 shows the potential biases asso-

ciated with estimating production functions. The third section describes estimation in logs while

Section 4 estimates each of our production functions in levels. The final section concludes.

2 Biases in Growth Models

Approximating a function using a Taylor series expansion is well known to economists. What is

often ignored in many applications is the bias associated with the remainder term. Since this term is

omitted in estimation, the resulting estimators will likely suffer from omitted variable bias (similar

to Heckman’s selectivity bias). Although this approximation bias has been emphasized by several
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authors (for example, Byron and Bera (1983) and Thursby and Lovell (1978)), it is largely ignored

in the growth literature (for an exception see Temple (2001), pages 914-915).

Consider the CES production function in Masanjala and Papagerogiou (2004). Given that

the CES production function is nonlinear, Masanjala and Papagerogiou (2004) use the Kmenta

(1967) approximation in order to estimate several of their models. This approximation is based

on the elasticity of substitution (σ) being equal to unity (equations (4) and (6) in Masanjala and

Papagerogiou (2004)). The approximation error here (the remainder term in the Taylor series

expansion) is non-zero (function of x) and likely grows when σ deviates from 1.4 This source of

bias is addressed in Thursby and Lovell (1978) in the context of CES production functions. The

other source of bias is due to the non-constant (function of x) mean of the error term when using

logs. This is addressed by Santos Silva and Tenreyro (2006) in the context of gravity models,

but it also applies here. They suggest estimating models in levels to avoid the potential bias and

inconsistency associated with an error term whose conditional mean is a function of x.

Here we address biases in the estimates of CES production functions (although the arguments

provided here are also applicable for other parametric functions) arising from both problems.5 To

distinguish between the models in level and logarithmic form, with and without approximation

error, we write the CES production function in levels as

y = f (x, θ) + u, (1)

where y is a scalar output, x is a vector of inputs and θ is a vector of unknown parameters. Here we

assume that f (x, θ) has a CES form and that E(u|x) = 0. We allow the error term u to be either

homoskedastic or heteroskedastic. We can rewrite (1) as y ≡ f (x, θ) η and express it in logarithmic

form, viz.,

ln y = ln f (x, θ) + ln η, (2)

4The remainder term will also vary with the values of the regressors. See Thursby and Lovell (1978) for details
on the bias associated with the Kmenta approximation.

5Noting that CD is a special case of CES when σ = 1, the CD model will not suffer from approximation bias as it
does not require the Kmenta approximation. Logging both sides of the equation makes the CD production function
linear in parameters.
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where η = (1 + u/f (x, θ)), and E(η|x) = 1. We can also use a linear or quadratic approximation

of f (x, θ) at σ = 1 and write it as

y = f0 (x, θ) + r (x, θ) + u, (3)

where f0 (x, θ) is a linear or quadratic approximation of f (x, θ) at σ = 1 and r (x, θ) is the

approximation error (it contains higher order terms in the Taylor series expansion). The models in

(1) and (3) are referred to as models in levels.

We can take a linear or quadratic approximation of (2) to get

ln y = ln f0 (x, θ) +R (x, θ) + ln η, (4)

where ln f0 (x, θ) is a log-linear or log-quadratic approximation of ln f (x, θ) at σ = 1 and R (x, θ)

is the approximation error. We refer to the models in (2) and (4) as the log and log-approximated

models, respectively.

Note that there are two sources of bias in estimating (4): (i) the deterministic terms R (x, θ)

might not be zero (and might not converge to a constant as the sample size increases) and (ii) the

expectation of the random term E(ln η) is almost always a function of x.6 Each will cause bias

and inconsistency if (4) is estimated using (linear or nonlinear) least-squares methods. That is,

the least-squares estimator will suffer from bias and inconsistency arising from both sources. If the

approximated non-log model in (3) is estimated using NLLS, it will obviously not suffer a bias due

to logging the model, but it will suffer from omitted variable bias (due to excluding the r (x, θ)

term). Using NLLS or PPML on (1) will avoid biases from both sources.7

6Expanding ln η = ln [1 + u/f(x, θ)] =
[
u/f(x, θ)− 1

2
u2/(f(x, θ))2 + 1

3
u3/(f(x, θ))3 − ...

]
and then taking expec-

tations of both sides shows that E(ln η) is a function of x. In the special case where u is heteroskedastic and the form
is such that u = f(x, θ)v where v has zero mean and higher order moments that do not depend on x, then E(ln η)
will be a constant. Otherwise, E(ln η) will be a function of x and we will refer to this as the bias associated with
logging the model.

7Although the consistency of both estimators does not depend on the form of heteroskedasticity of u, the primary
difference between the two is that PPML makes an assumption on the form of the conditional variance whereas the
NLLS estimator does not. For more details see Cameron and Trivedi (2005) and Gourieroux, Monfort and Trognon
(1984).
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3 Estimation in Logs

Using the computing environment R (R Development Core Team (2009)) we were able to success-

fully replicate all of the tables and figures in Masanjala and Papagerogiou (2004). Given the specific

interest of this paper, we solely present the replication results for the input shares obtained from

the basic Solow growth model (without human capital) and its extended counterpart (with human

capital).8 In the CD version of the model, α and β are the actual shares of physical and human

capital, respectively. In the CES case, α and β are distribution parameters which can be used to

calculate the shares of physical and human capital.9 In the CD model, the elasticity of substitution

parameter σ is unity and this parameter is allowed to differ from unity in the CES specification.

Our Tables 1 and 2 present the results for the basic and extended Solow models, respectively.

The replication results correspond to the rows which are listed as “OLS (Log)” or “NLLS (Log).”

Specifically, we report the implied α and σ in Table 1 and the implied α, β and σ in Table 2. Each

of our parameter estimates as well as our heteroskedastic robust standard errors for the log models

are identical to those reported in Masanjala and Papagerogiou (2004).

By construction, the shares for the CD production function are constant across countries and

their values are reported in the tables. On the other hand, the shares for the CES production

function are heterogeneous. Masanjala and Papagerogiou (2004) report the shares for each country

for each estimation method. To conserve space, we decided to simply plot the kernel densities of

these shares in Figures 1 and 2 for the basic Solow and the extended Solow models, respectively.

In Figure 1, the solid line represents the kernel density for the shares of physical capital from the

log-approximated CES production function. The estimated density is relatively flat and roughly

covers the range 0.3 to 1.0. The wide range likely represents heterogeneity across countries as the

authors argue, but it may also be due to biases in their setup. In Figure 2 we see that the shares for

physical capital have a mode near 0.26. Conventional wisdom suggests that these shares should be

near one-third and this downward bias is perhaps due to the problems associated with logging the

model and the Taylor series expansion as discussed above. For human capital, the log-approximated

8These correspond to the estimates of equations 1, 2, 4 and 6 in Table I of Masanjala and Papagerogiou (2004).
All other replicated tables and figures are available upon request.

9See pages 177-179 in Masanjala and Papagerogiou (2004) for the exact form of the shares.

6



density extends from roughly 0.2 to 0.4. This partially overlaps the range of 1/3 to 1/2 which some

authors consider to be “sensible” (for example, Mankiw et al. (1992)).

To get a feel of whether either model is correctly specified we performed RESET tests (Ramsey

(1969)) on each logged model. In each case we reject the null that the proposed model is correctly

specified. While the rejection of the RESET test does not point us in any particular direction, the

results of this section suggest that there may be room for improvement and hence we now consider

estimation of the CD and CES production functions in levels.

4 Estimation in Levels

Given the possible biases due to logging the model, we decided to estimate both the CD and CES

models in levels. For the CD model, there is no need for an approximation as the elasticity of

substitution is equal to unity. In the CES case, we will also consider the model with the Taylor

series expansion around σ = 1. Our presumption is that NLLS and PPML estimation will be

consistent in the CD case. On the other hand, the estimators from equation (3) will suffer from

approximation bias in the CES framework whereas the estimators of equation (1) will be immune

to both biases.

4.1 Cobb-Douglas

The top panels of Tables 1 and 2 give the results for the CD specification. We see that with the

basic Solow model (Table 1), the implied share of physical capital (α) is relatively constant across

estimation procedures. Our initial expectation was that the NLLS and PPML estimates would be

significantly different from the log-linear estimates. This does not appear to be the case in either

table. Specifically, this was our expectation because, as argued in Section 2, E(ln η|x) is a function

of x.

This unexpected result likely occurs because either E(ln η|x) is close to a constant, the het-

eroskedasticity of u is close to the specific form mentioned above or some combination thereof.

Given that the parameter estimates from the logged model are similar to those from the NLLS and
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PPML estimators, some may take this to mean that the CD model estimated in logs is appropri-

ate. We do not oppose this possibility, but note that it would be impossible to determine this in

practice unless the level model is also estimated. Further, formal tests should also be performed

before making this conclusion. For example, we also performed the RESET test on the CD model

estimated via NLLS and PPML and were unable to reject the null in either case. This evidence

suggests that the CD model is correctly specified and that we should estimate the model in levels.

However, we choose to reserve judgement until we view the results from the CES specification.

4.2 Constant Elasticity of Substitution

The estimates for the CES production functions can also be found in Tables 1 and 2. The bottom

panel in first table gives the results for the CES specification without human capital and the

second table gives the estimates incorporating human capital. For the basic Solow model (Table

1), we see large differences between the logged and level methods. Recall that the log model is

subject to two biases (logging and approximation). The levels estimators (NLLS and PPML) with

approximation are subject to approximation bias whereas the remaining estimators should not

suffer from either. The implied value of α for the logged estimator is much smaller than that of

any other estimation method. Hence, it appears that the combination of logging the model and the

Taylor series expansion cause biases in these estimates. This is in contrast to the CD production

function, where logging the function did not make major differences in the parameter estimates.

Figure 1 clearly shows the difference in each of the estimators. Again, this figure plots the

kernel densities for the shares of physical capital. The logged estimator potentially suffers from two

separate biases whereas the estimator from equation (3) suffers from approximation bias. The bias

due to logging appears to be obvious here and the approximation bias appears to be minimal.10

The lack of a large approximation bias is likely due to the estimated value of σ being near unity.

Thursby and Lovell (1978) show that the bias will grow as the estimated value of σ deviates from

unity (the PPML estimate of σ is 1.037).

As compared to the CD case, we see larger differences between the NLLS and PPML estimators

10Note that although the parameter estimates don’t differ significantly, there is a substantial decrease in the
variability of the physical capital shares when we switch from the NLLS (Approximated) to the NLLS estimator.
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(approximated or not) in the CES case. However, none of these parameter estimates (across

estimation methods) are statistically different from one another. Another interesting result is that

we fail to reject the null that σ is different from unity in nearly each model (NLLS approximated

being the exception). In other words, each of our models point to CD as the preferred functional

form. The most compelling results come from the PPML estimator. The PPML CD and CES

implied α and σ are not statistically different from one another and are nearly identical.

The results for the basic Solow CES model are interesting, but may suffer from an omitted

variable bias due to the exclusion of human capital. The bottom panel of Table 2 gives the results

for the extended Solow CES model. Again, we see substantial differences between the implied

estimates of α, β and σ between the logged and level models. We again conclude that the logged

model is likely biased. This is supported by a rejection of the RESET test.

Again, the models estimated in levels, whether or approximated or not, do not have significant

differences in their parameter estimates. The only qualitative difference is that the NLLS estimators

reject the null that σ = 1 and the PPML estimators do not. Thus, the evidence in favor of CD is

mixed in the extended CES case. The RESET test does not help us pick between level estimators

as it again fails to reject any of the models estimated in levels.11

We argue that logging a model or using approximations can lead to biases, but the question

should be, what type of difference does correcting these biases make in terms of explaining the

economics. The most striking economic evidence can be found in Figure 2. In the first panel we

see the kernel density estimates for the shares of physical capital. Conventional wisdom suggests

that the share devoted to physical capital should be near one-third. In the panel we see that

the density of estimated shares obtained from the log-linearized method has a mode less than 1/3

and the approximated NLLS estimator gives physical capital shares larger than one-third. On

the other hand, the mode for the shares of physical capital from the level NLLS estimator are

essentially centered around what is hypothesized. The level and approximated PPML physical

capital shares are slightly less than 1/3 and show much less variation. It is unclear which level

estimator is preferable in this situation without examining mean squared error, but it should be

11It is worth noting that the PPML estimator has the largest p-value for the RESET test.
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obvious that both level estimators are intuitively more plausible than the logged model. This figure

shows the biases due to logging and approximation, but it also shows how avoiding these biases

validates conventional thought. In contrast, the shares of human capital show a substantial amount

of overlap amongst estimators.

In conclusion, for the CD case, for this particular sample of data, given the estimation strategies

that we have employed, we recommend estimating the CD model in levels with human capital

included in the model. In the CES case, the log-approximated model introduces bias. Estimation

of CES should, where possible, use a level estimator. We have mixed evidence that the elasticity

of substitution is equal to unity here. If it is not different from one, we should switch to the CD

model. It would be interesting to see how these results translate to a larger sample with more up

to date data.

We feel it imperative that in applied work, authors should estimate the model which is consistent

under the most general conditions and then make attempts to identify a more parsimonious, efficient

model. In this particular scenario, there is some evidence to suggest that the CD model is the

preferred specification. However, in practice, this is not necessarily going to hold true for all

datasets.

5 Conclusion

In this paper we were able to successfully replicate Masanjala and Papagerogiou (2004). Along

the way we pointed out known potential biases due to logging the model and using Taylor series

expansions to approximate functional forms. To avoid these biases, we estimated their models in

levels. We showed that with this particular paper, elimination of these biases led to conclusions

which were in line with conventional wisdom.

We again note that logging a model and approximating a functional form need not lead to

significant biases in practice. However, given the computing speed and canned statistical packages

available today, the cost of estimating models in levels has been greatly reduced. Therefore, we

advocate estimating cross-country production functions in levels as a way to avoid potential and
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unnecessary biases.

Again, as noted in the introduction, our results depend upon several assumptions. When esti-

mating models in levels authors should still be concerned with correct functional form specification,

omitted variable bias, parameter heterogeneity as well as other possible biases. Controlling for each

of these could potentially change the results of this experiment.
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Table 1: Growth Model with Physical Capital

Implied α Implied σ

Basic CD

OLS (Log) 0.5981∗∗∗ 1

(0.0170)

NLLS 0.5907∗∗∗ 1

(0.0254)

PPML 0.6057∗∗∗ 1

(0.0165)

Basic CES

OLS (Log) 0.4984∗∗∗ 1.5425

(0.0500) (0.5574)

NLLS (Approximated) 0.7009∗∗∗ 0.9499⋆⋆⋆

(0.0229) (0.0055)

PPML (Approximated) 0.6376∗∗∗ 0.9623

(0.0936) (0.0736)

NLLS 0.7486∗∗∗ 0.8354

(0.1192) (0.1122)

PPML 0.6172∗∗∗ 0.9813

(0.0457) (0.0745)

1. The numbers in the parentheses are
heteroscedastic-robust standard errors.
2. ∗ ∗ ∗(⋆ ⋆ ⋆): statistically different from 0(1) at
the 1% level.
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Table 2: Growth Model with Physical and Human Capital

Implied α Implied β Implied σ

Extended CD

OLS (Log) 0.3082∗∗∗ 0.2743∗∗∗ 1

(0.0465) (0.0356)

NLLS 0.2845∗∗∗ 0.3091∗∗∗ 1

(0.0831) (0.0751)

PPML 0.3028∗∗∗ 0.3005∗∗∗ 1

(0.0545) (0.0464)

Extended CES

NLLS (Log) 0.2395∗∗∗ 0.3582∗∗∗ 1.1894⋆⋆⋆

(0.0484) (0.0512) (0.0337)

NLLS (Approximated) 0.4295∗∗∗ 0.2773∗∗∗ 0.9219⋆⋆⋆

(0.0693) (0.0611) (0.0138)

PPML (Approximated) 0.2796∗∗∗ 0.3140∗∗∗ 1.0590

(0.0649) (0.0564) (0.0918)

NLLS 0.3928∗∗∗ 0.2851∗∗∗ 0.8381⋆

(0.1185) (0.0705) (0.0962)

PPML 0.2851∗∗∗ 0.3105∗∗∗ 1.0369

(0.0650) (0.0551) (0.0582)

1. The numbers in the parentheses are heteroscedastic-robust
standard error.
2. ∗(⋆),∗∗(⋆⋆),∗ ∗ ∗(⋆ ⋆ ⋆): statistically different from 0(1) at
the 10%, 5%, and 1% level, respectively.
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Figure 1: Physical Capital Shares in the Basic CES Model
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Figure 2: Physical and Human Capital Shares in the Extended CES Model
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