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Université Lille III, EQUIPPE-GREMARS, Université
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Abstract

Numerous time series admit weak autoregressive-moving average (ARMA)
representations, in which the errors are uncorrelated but not necessarily in-
dependent nor martingale differences. The statistical inference of this general
class of models requires the estimation of generalized Fisher information ma-
trices. We give analytic expressions and propose consistent estimators of
these matrices, at any point of the parameter space. Our results are illus-
trated by means of Monte Carlo experiments and by analyzing the dynamics
of daily returns and squared daily returns of financial series.

Key words: Asymptotic relative efficiency (ARE), Bahadur’s slope,
Information matrices, Lagrange Multiplier test, Nonlinear processes, Wald
test, Weak ARMA models.

1. Introduction

The class of the standard ARMA models with independent errors is often
judged too restrictive by practitioners, because they are inadequate for time
series exhibiting a nonlinear behavior. Even when the independence assump-
tion is relaxed and the errors are only supposed to be martingale differences,
the ARMA models remain often unrealistic because such models postulate
that the best predictor is a linear function of the past values.
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Boubacar Mainassara), mailto:carbon.michel@videotron.ca (M. Carbon),
mailto:christian.francq@univ-lille3.fr (C. Francq)



The class of the so-called weak ARMA models with uncorrelated but not
necessarily independent errors is much more general and accommodates many
nonlinear data-generating processes (see Francq, Roy and Zakoïan, 2005, and
the references therein).

For standard ARMA models, it is well known that the asymptotic vari-
ance of the least squares estimator (LSE) is of the form σ2J−1

θ0
, where σ2

is the variance of the errors and Jθ0 is an information matrix depending on
the ARMA parameter θ0 (see e.g. Brockwell and Davis, 1991). For weak
ARMA models, the asymptotic variance of the LSE takes the sandwich form
J−1

θ0
Iθ0J

−1
θ0

where Iθ0 is a second information matrix depending on θ0 and on
fourth-order moments of the errors. The estimation of the asymptotic in-
formation matrices Jθ0 and Iθ0 is thus necessary to evaluate the asymptotic
accuracy of the LSE of weak ARMA models.

In the framework of (Gaussian) linear processes, the problem of comput-
ing the Fisher information matrices and of their inverses has been widely
studied. Various expressions of these matrices have been given by Whittle
(1953), Siddiqui (1958), Durbin (1959) and Box and Jenkins (1976). McLeod
(1984), Klein and Mélard (1990, 2004) and Godolphin and Bane (2006) have
given algorithms for their computation. For few particular cases of weak
ARMA models, the matrices Iθ0 and Jθ0 have been computed by Francq
and Zakoian (2000, 2007) and Francq, Roy and Zakoian (2005). In all the
above-mentioned references, the information matrices are always computed
at the true parameter value θ0. For some applications, in particular to de-
termine Bahadur’s slopes under alternatives, it is necessary to compute the
information matrices at θ 6= θ0.

The aim of the present paper is to compute and estimate the information
matrices Jθ and Iθ at a point θ which is not necessarily equal to θ0.

The rest of the paper is organized as follows. In Section 2, we present
the weak, strong and semi-strong ARMA representations and recall results
concerning the estimation of the weak ARMA models. Section 3 displays
the main results. We describe how to obtain numerical evaluations of Iθ
and Jθ, up to some tolerance, and we propose consistent estimators for these
information matrices. Section 4 studies the finite sample behavior of the
estimators and compare the Bahadur slopes of two versions of the Lagrange
multiplier test for testing linear restrictions on θ0. For the latter application,
it is necessary to compute Jθ at θ 6= θ0. Concluding remarks are proposed in
Section 5. The proofs of the main results are collected in the appendix.
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2. Notations

We first introduce the notions of weak and strong ARMA representa-
tions, which differ by the assumptions on the error terms. We then recall
results concerning the estimation of the weak ARMA models, and introduce
extended information matrices.

2.1. Strong, semistrong and weak ARMA representations

For a linear model to be quite general, the error terms must be the linear
innovations, which are uncorrelated by construction but are not indepen-
dent, nor martingale differences, in general. Indeed, the Wold decomposition
(see Brockwell and Davis (1991), Section 5.7) stipulates that any purely non
deterministic stationary process can be expressed as

Xt =

∞
∑

ℓ=0

ϕℓǫt−ℓ, (ǫt) ∼ WN(0, σ2), (1)

where ϕ0 = 1,
∑∞

ℓ=0 ϕ
2
ℓ < ∞, and the notation (ǫt) ∼ WN(0, σ2) signifies

that the linear innovation process (ǫt) is a weak white noise, that is a station-
ary sequence of centered and uncorrelated random variables with common
variance σ2. In practice the sequence ϕℓ is often parameterized by assuming
that Xt admits an ARMA(p, q) representation, i.e. that there exist integers
p and q and constants a01, . . . , a0p, b01, . . . , b0q, such that

∀t ∈ Z, Xt −
p
∑

i=1

a0iXt−i = ǫt +

q
∑

j=1

b0jǫt−j . (2)

This representation is said to be a weak ARMA(p, q) representation under the
assumption (ǫt) ∼ WN(0, σ2). For the statistical inference of ARMA mod-
els, the weak white noise assumption is not sufficient and is often replaced
by the strong white noise assumption (ǫt) ∼ IID(0, σ2), i.e. the assump-
tion that (ǫt) is an independent and identically distributed (iid) sequence
of random variables with mean 0 and common variance σ2. Sometimes an
intermediate assumption is considered for the noise. The sequence (ǫt) is
said to be a semistrong white noise or a martingale-difference white noise,
and is denoted by (ǫt) ∼ MD(0, σ2), if (ǫt) is a stationary sequence satisfying
E (ǫt | ǫu, u < t) = 0 and Var(ǫt) = σ2. An ARMA representation (2) will be
called strong under the assumption (ǫt) ∼ IID(0, σ2) and semistrong under
the assumption (ǫt) ∼ MD(0, σ2).
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Obviously the strong white noise assumption is more restrictive than
that of semistrong white noise, and the latter is more restrictive than the
weak white noise assumption, because independence entails unpredictabil-
ity and unpredictability entails uncorrelatedness, but the reverses are not
true. Consequently the weak ARMA representation are more general that
the semistrong and strong ones, what we schematize by

{Weak ARMA} ⊃ {Semistrong ARMA} ⊃ {Strong ARMA}. (3)

Any process satisfying (1) is the limit, in L2 as n→ ∞, of a sequence of pro-
cesses satisfying weak ARMA(pn, qn) representations (see e.g. Francq and
Zakoïan, 2005, page 244). In this sense, the subclass of the processes admit-
ting weak ARMA(pn, qn) representations is dense in the set of the purely non
deterministic stationary processes. Simple illustrations that the last inclusion
of (3) is strict are given by the vast class of volatility models. Indeed GARCH-
type models are generally martingale differences (because financial returns
are generally assumed to be unpredictable) but they are not strong noises
(in particular, because of the volatility clustering, the squared returns are
predictable). Many nonlinear models, such as bilinear or Markov-switching
models, illustrate the first inclusion in (3), since they admit weak ARMA
representation (see Francq, Roy and Zakoïan, 2005, section 2.3) which are
not semistrong, because the best predictor is generally not linear when the
data generating process (DGP) is nonlinear. To fix ideas, we give below
a simple illustrative example, which was not given by the above-mentioned
references.

Example 2.1 (Integer-valued AR(1) and MA(1)). McKenzie (2003)
reviews the literature on models for integer-valued time series. Let ◦ be the
thinning operator defined by

a ◦X =

X
∑

i=1

Yj,

where (Yj) is an iid counting series, independent of the integer-valued random
variable X, with Bernoulli distribution of parameter a ∈ [0, 1). The integer-
valued autoregressive (INAR) model of order 1 is given by

∀t ∈ Z, Xt = a ◦Xt−1 + Zt (4)
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where Zt is an integer-valued iid sequence, independent of the counting series,
with mean µ and variance σ2. Clearly the best predictor of Xt is linear since
E (Xt | Xu, u < t) = aXt−1 + µ. Moreover we have Var (Xt | Xu, u < t) =
(1 − a)aXt−1 + σ2. We thus have the semistrong AR(1) representation

Xt = aXt−1 + µ+ ǫt, (ǫt) ∼ IID

(

0,
aµ

1 − a
+ σ2

)

.

Similarly to (4) the integer-valued moving-average INMA(1) is defined by

∀t ∈ Z, Xt = Zt + a ◦ Zt−1.

Straightforward computations show that EXt = µ(1 + a), Var(Xt) = σ2 +
a(1 − a)µ + a2σ2 and Cov(Xt, Xt−1) = aσ2, from which we deduce the weak
MA(1) representation

Xt = µ(1 + a) + ǫt + bǫt−1, (ǫt) ∼ WN
(

0, σ2
ǫ

)

,

where b ∈ [0, 1) and σ2
ǫ > 0 are solutions of b/(1 + b2) = ρX(1) and

(1 + b2)σ2
ǫ = Var(Xt). This MA(1) representation is not semistrong because

E(Xt | Xt−1 = 0) = E(Xt | Zt−1 = 0) = µ does not coincide with the linear
prediction given by the MA(1) model when a 6= 0.

Finally we have shown that an INMA(1) is a weak MA(1) and that a
INAR(1) is a semistrong AR(1).

2.2. Estimating weak ARMA representations

We now present the asymptotic behavior of the LSE in the case of weak
ARMA models. The LSE is the standard estimation procedure for ARMA
models and it coincides with the maximum-likelihood estimator in the Gaus-
sian case. It will be convenient to write (2) as φ0(B)Xt = ψ0(B)ǫt, where
B is the backshift operator, φ0(z) = 1 −∑p

i=1 a0iz
i is the AR polynomial

and ψ0(z) = 1 +
∑q

j=1 b0jz
j is the MA polynomial. The unknown parame-

ter θ0 = (a01, . . . , a0p, b01, . . . , b0q) is supposed to belong to the interior of a
compact subspace Θ∗ of the parameter space

Θ :=
{

θ = (θ1, . . . , θp+q) = (a1, . . . , ap, b1, . . . , bq) ∈ R
p+q :

φ(z) = 1 −
p
∑

i=1

aiz
i and ψ(z) = 1 +

q
∑

i=1

biz
i

have all their zeros outside the unit disk} .
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Since θ ∈ Θ, the polynomials φ0(z) and ψ0(z) have all their zeros outside the
unit disk. We also assume that φ0(z) and ψ0(z) have no zero in common, that
p+q > 0 and a2

0p +b20q 6= 0 (by convention a00 = b00 = 1). These assumptions
are standard and are also made for the usual strong ARMA models.

For all θ ∈ Θ, let

ǫt(θ) = ψ−1(B)φ(B)Xt = Xt +

∞
∑

i=1

ci(θ)Xt−i.

Given a realization of length n, X1, X2, . . . , Xn, ǫt(θ) can be approximated,
for 0 < t ≤ n, by et(θ) defined recursively by

et(θ) = Xt −
p
∑

i=1

θiXt−i −
q
∑

i=1

θp+iet−i(θ)

where the unknown starting values are set to zero: e0(θ) = e−1(θ) = . . . =
e−q+1(θ) = X0 = X−1 = . . . = X−p+1 = 0. The random variable θ̂n is called
LSE if it satisfies, almost surely,

Qn(θ̂n) = min
θ∈Θ∗

Qn(θ), Qn(θ) =
1

2n

n
∑

t=1

e2t (θ).

The asymptotic behavior of the LSE is well known in the strong ARMA
case, i.e. under the assumption (ǫt) ∼ IID(0, σ2). This assumption being
very restrictive, Francq and Zakoïan (1998) considered weak ARMA repre-
sentations of stationary processes satisfying the following assumption.

A1 : E|Xt|4+2ν <∞ and
∑∞

k=0 {αX(k)} ν
2+ν <∞ for some ν > 0,

where αX(k) , k = 0, 1, . . . , denote the strong mixing coefficients of the pro-
cess (Xt) (see e.g. Bradley, 2005, for a review on strong mixing conditions).
As noted by Francq and Zakoïan (2005), Assumption A1 can be replaced by

A1’ : E|ǫt|4+2ν <∞ and
∑∞

k=0 {αǫ(k)}
ν

2+ν <∞ for some ν > 0.

A straightforward extension of Francq and Zakoïan (1998) thus gives the
following result.
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Lemma 2.1 (Francq and Zakoïan, 1998). Let (Xt) be a strictly station-
ary and ergodic process satisfying the weak ARMA model (2) with (ǫt) ∼
WN(0, σ2). Under the previous assumptions and Assumption A1 or A1’,

√
n
(

θ̂n − θ0

)

d
; N (0,Ω = J−1IJ−1) as n→ ∞, (5)

where I = Iθ0, J = Jθ0 = J∗
θ0

, with

Iθ =
+∞
∑

h=−∞

Cov

{

ǫt(θ)
∂ǫt(θ)

∂θ
, ǫt−h(θ)

∂ǫt−h(θ)

∂θ′

}

,

Jθ = E
∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
, J∗

θ = Eǫt(θ)
∂2ǫt(θ)

∂θ∂θ′
+ E

∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
.

In the strong ARMA case, we have I = Is := σ2J and Ω = Ωs := σ2J−1. In
the semistrong ARMA case, i.e. under the assumption (ǫt) ∼ MD(0, σ2), we
have

I = Iss := Eǫ2t
∂ǫt(θ0)

∂θ

∂ǫt(θ0)

∂θ′
.

Note that we introduce the two versions Jθ and J∗
θ because the following two

estimators of J can be considered

Ĵn =
1

n

n
∑

t=1

∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
, Ĵ∗

n =
1

n

n
∑

t=1

et(θ̂n)
∂2et(θ̂n)

∂θ∂θ′
+ Ĵn. (6)

The matrices Jθ, J
∗
θ and Iθ can be called information matrices. As we will see

in Section 4.2 they determine the asymptotic behavior of test procedures on
θ0. They are also involved in other inference steps, such as in portmanteau
adequacy tests (see Francq, Roy and Zakoian, 2005).

3. Main results

McLeod (1978) gave a nice expression for J , as the variance of a VAR
model involving only the ARMA parameter θ0 (see (8.8.3) in Brockwell and
Davis, 1991). Francq, Roy and Zakoïan (2005) obtained an expression of I
involving the ARMA parameter θ0 and the fourth-order moments of the weak
noise (ǫt) (with their notations, J = Λ

′
∞Λ∞ and I = Λ

′
∞Γ∞,∞Λ∞ where Λ∞

depends on θ0 and Γ∞,∞ depends on moments of (ǫt)). For certain statistical
applications, it is interesting to obtain similar expressions for Iθ, Jθ and J∗

θ

when θ 6= θ0. This is the subject of the next subsection.
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3.1. Theoretical expressions for the information matrices

3.1.1. Matrix Jθ

Differentiating the two sides of the equation φ(B)Xt = ψ(B)ǫt(θ), for
i, k = 1, . . . , p and j, ℓ = 1, . . . , q, we obtain

−Xt−i = ψ(B)
∂

∂ai

ǫt(θ), 0 = ǫt−j(θ) + ψ(B)
∂

∂bj
ǫt(θ)

0 = ψ(B)
∂2

∂ai∂ak
ǫt(θ), 0 =

∂

∂ai
ǫt−j(θ) + ψ(B)

∂2

∂bj∂ai
ǫt(θ)

0 =
∂

∂bℓ
ǫt−j(θ) +

∂

∂bj
ǫt−ℓ(θ) + ψ(B)

∂2

∂bj∂bℓ
ǫt(θ).

We thus have

∂

∂ai

ǫt(θ) = −ψ−1(B)Xt−i = −ψ−1φ−1
0 ψ0(B)ǫt−i := −

∞
∑

h=0

cahǫt−i−h

∂

∂bj
ǫt(θ) = −ψ−2φ−1

0 φψ0(B)ǫt−j := −
∞
∑

h=0

cbhǫt−j−h,

∂2

∂bj∂ai
ǫt(θ) = ψ−2φ−1

0 ψ0(B)ǫt−i−j :=
∞
∑

h=0

cab
h ǫt−i−j−h,

∂2

∂bj∂bℓ
ǫt(θ) = 2ψ−3φ−1

0 φψ0(B)ǫt−j−ℓ :=

∞
∑

h=0

cbbh ǫt−j−ℓ−h,

and ∂2ǫt(θ)/∂ai∂ak = 0. Moreover

ǫt(θ) = ψ−1φ−1
0 φψ0(B)ǫt :=

∞
∑

h=0

chǫt−h.

The following result immediately follows.
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Proposition 3.1. The elements of the matrix Jθ and J∗
θ are given by

Jθ(i, k) = J∗
θ (i, k) = σ2

∞
∑

s=0

cas+k−ic
a
s ,

Jθ(p+ j, p+ ℓ) = σ2

∞
∑

s=0

cbs+ℓ−jc
b
s,

J∗
θ (p+ j, p+ ℓ) = σ2

∞
∑

s=0

cs+j+ℓc
bb
s + Jθ(p+ j, p+ ℓ),

Jθ(i, p+ ℓ) = σ2
∞
∑

s=max{0,i−ℓ}

cas+ℓ−ic
b
s,

J∗
θ (i, p+ ℓ) = σ2

∞
∑

s=0

cs+i+ℓc
ab
s + Jθ(i, p+ ℓ),

for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.

On the web page of the authors, programs written in R are available
for computing the information matrices defined in this paper, as well as
their estimates. For example, the following function infoJ() computes Jθ

when, in R language, θ0<-c(ar0,ma0) and θ<-c(ar1,ma1). The truncation
parameter M is discussed in Section 3.2 below. This function uses the function
prod.poly() which makes the product of the 2 polynomials, and the function
ARMAtoMA() of the package stats.

# Product of 2 polynomials

prod.poly<- function(a,b) {

p<-length(a); q<-length(b)

if(p<=0|q<0)stop("a or b is invalid")

c<-rep(0,(p+q))

for(h in 2:(p+q)){

imin<-max(1,h-q); imax<-min(p,h-1)

for(i in (imin:imax))c[h]<-c[h]+a[i]*b[h-i]

}

c[2:(p+q)]

}

# Computation of the information matrix J at \theta=(ar1,ma1)

infoJ<- function(ar0,ma0,ar1,ma1,M=200){

p<-length(ar1); q<-length(ma1); p0<-length(ar0); q0<-length(ma0)

matJ.theta<-matrix(0,nrow=(p+q),ncol=(p+q))

if(p>0){ # c_h^a + top-left corner of J

p1<-p0+q

if(p1==0) ar2 <- c()

if(p1>0) ar2 <- -prod.poly(c(1,-1*ar0),c(1,ma1))[2:(p1+1)]
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ch.a<-c(1,ARMAtoMA(ar =ar2, ma=ma0, M))

for(i in (1:p)){

for(k in (1:p)){

matJ.theta[i,k]<-sum(ch.a[(abs(k-i)+1):(M+1)]*ch.a[1:(M-abs(k-i)+1)])

}

}

}

if(q>0){ # c_h^b + bottom-right corner of J

p1<-p0+2*q

if(p1==0) ar2 <- c()

if(p1>0) ar2 <- -prod.poly(prod.poly(c(1,ma1),c(1,ma1)),c(1,-1*ar0))[2:(p1+1)]

q1<-p+q0

if(q1==0) ma2 <- c()

if(q1>0) ma2 <- prod.poly(c(1,-1*ar1),c(1,ma0))[2:(q1+1)]

ch.b<-c(1,ARMAtoMA(ar =ar2, ma=ma2, lag.max=M))

for(j in (1:q)){

for(l in (1:q)){

matJ.theta[p+j,p+l]<-sum(ch.b[(abs(l-j)+1):(M+1)]*ch.b[1:(M-abs(l-j)+1)])

}

}

}

if(p>0&q>0){ # cross blocks

for(i in (1:p)){

for(l in (1:q)){

indmin1<-max(0,i-l)+l-i+1

indmin2<-max(0,i-l)+1

indmax1<-M-max(0,i-l)

indmax2<-indmax1-l+i

matJ.theta[i,p+l]<-sum(ch.a[indmin1:indmax1]*ch.b[indmin2:indmax2])

matJ.theta[p+l,i]<- matJ.theta[i,p+l]

}

}

}

matJ.theta

}

3.1.2. Matrix Iθ
We now search similar tractable expressions for Iθ. Let

Γ(m,m′) =
+∞
∑

h=−∞

Cov (ǫtǫt−m, ǫhǫh−m′) . (7)

In the strong case, we have

Γ(0, 0) = µ4 − σ4, Γ(m,m) = Γ(m,−m) = σ4, Γ(m′, m′′) = 0, (8)

with µ4 = Eǫ41, m 6= 0 and |m′| 6= |m′′|. Simplifications may also hold in
semistrong cases. Indeed, consider the case (ǫt) ∼ WN (0, σ2

ǫ ) under the
following symmetry assumption

Eǫt1ǫt2ǫt3ǫt4 = 0 when t1 6= t2, t1 6= t3 and t1 6= t4. (9)
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A similar assumption is made in Francq and Zakoian (2009b). In this paper,
it is shown that, in particular, GARCH models with fourth-order moments
and symmetric innovations satisfy (9). Many other martingale differences
satisfy this assumption. In this semistrong case, we have

Γ(0, 0) =
∞
∑

h=−∞

Cov(ǫ2t , ǫ
2
t−h), Γ(m,m) = Eǫ2t ǫ

2
t−m, Γ(m′, m′′) = 0 (10)

when m 6= 0 and |m′| 6= |m′′|.
Example 3.1. For a GARCH(1,1) model of the form

{

ǫt =
√
htηt, t = 1, 2, . . .

ht = ω + αǫ2t−1 + βht−1, (ηt) ∼ IID (0, 1)

with ω > 0, α ≥ 0, β ≥ 0 and α2Eη4
1 + β2 + 2αβ < 11 we obtain

Γ(0, 0) = Eν2
t

(1 − β)2

(1 − α− β)2 ,

Γ(1, 1) = Eν2
t

(

α +
α2(α + β)

1 − (α+ β)2

)

+
(

Eσ2
t

)2

Γ(m,m) = (α + β)Γ(m− 1, m− 1) + ωEσ2
t , m > 1,

with Eν2
t = Eη4

1 (Eσ4
t + 1 − 2Eσ2

t ),

Eσ2
t =

ω

1 − α− β
, Eσ4

t =
ω2(1 + α + β)

(1 − α2Eη4
1 − β2 − 2αβ)(1 − α− β)

.

Proposition 3.2. The elements of the matrix Iθ are given by

Iθ(i, k) =

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4

Γ(h2 + i− h1, h4 + k − h3),

Iθ(j, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
b
h2
ch3c

b
h4

Γ(h2 + j − h1, h4 + ℓ− h3),

Iθ(i, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

b
h4

Γ(h2 + i− h1, h4 + ℓ− h3),

1The latter conditions and necessary and sufficient for the existence of a nonanticipa-
tive stationary solution with fourth-order moments (see e.g. Example 2.3 in Francq and
Zakoian, 2010).
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for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.

Note that c0 = 1 and that, at θ = θ0, we have ch = 0 for h > 0. The
expression of I = Iθ0 thus simplifies to that given in Francq, Roy and Zakoian
(2005). There is also a slight simplification in the strong and semistrong
ARMA cases because, in view of (8) and (10), Iθ is then obtained by summing
over 3 indices instead of 4.

3.1.3. Examples of analytic and numerical computations of Jθ and Iθ
Let us compute the information matrices of an ARMA(1,1) model at

the point θ∗ = (a, 0)′ when θ0 = (0, b0)
′ (i.e. the DGP is a MA(1)). We

have ǫt(θ) =
∑∞

h=0(−b)h(Xt−h − aXt−h−1). It follows that ǫt(θ
∗) = ǫt +

(b0 − a)ǫt−1 − ab0ǫt−2, ∂ǫt(θ
∗)/∂a = −ǫt−1 − b0ǫt−2, ∂ǫt(θ

∗)/∂b = −ǫt−1 −
(b0 − a)ǫt−2 + ab0ǫt−3, ∂

2ǫt(θ
∗)/∂a2 = 0, ∂2ǫt(θ

∗)/∂a∂b = ǫt−2 + b0ǫt−3 and
∂2ǫt(θ

∗)/∂b2 = 2ǫt−2 + 2(b0 − a)ǫt−3 − 2ab0ǫt−4.
Thus

Jθ∗ = σ2

(

1 + b20 1 + b0(b0 − a)
1 + b0(b0 − a) 1 + (b0 − a)2 + a2b20

)

,

J∗
θ∗ = Jθ∗ + σ2

(

0 −ab0
−ab0 −2ab0

)

.

Now assume that ǫt is the weak white noise considered by Romano and
Thombs (1996), defined by

ǫt = ηtηt−1 · · · ηt−k, (ηt) ∼ IID N (0, 1), k ≥ 0. (11)

It seems impossible to obtain Iθ∗ explicitly, but the information matrices can
be obtained explicitly at θ0:

Jθ0 = J∗
θ0

=

(

1 1
1 1/(1 − b20)

)

,

Iθ0 = 3k

(

1 1

1 1−(b2/3)k+1

1−b2/3
+ b2(k+1)

3k(1−b2)

)

.

Note that Iθ0 = Jθ0 in the strong case (i.e. when k = 0). For more complex
models or at some point θ∗ 6= θ0 the evaluation of these information matrices
is not feasible analytically but they can be easily obtained numerically. For

12



instance, on this example with k = 3, θ0 = (0, 0.5)′ and θ∗ = (−0.4,−0.5)′,
we have

Jθ∗ =

(

2.33 4.33
4.33 11.25

)

, J∗
θ∗ =

(

2.33 6.33
6.33 17.65

)

, Iθ∗ =

(

1161.92 2177.66
2177.66 4187.63

)

.

3.2. Approximation of the information matrices by finite sums

In practice the infinite sums involved in Jθ, J
∗
θ and Iθ are truncated.

This section concentrates on the choice of the truncation parameter for Iθ,
the problem being similar, and somewhat simpler, for the other matrices.
Matrix Iθ is truncated by the matrix IM

θ of M4 terms, defined by

IM
θ (i, k) =

M
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4

Γ(h2 + i− h1, h4 + k − h3),

when 1 ≤ i ≤ k ≤ p, and whose the other elements are defined similarly.
The following proposition defines a value of M such that IM

θ be equal to Iθ
up to an arbitrarily small tolerance number ε. Let the matrix norm defined
by ‖A‖ =

∑

i,j |A(i, j)| with obvious notations.

Proposition 3.3. Let ρ be the inverse of the largest modulus of the zeroes
of the polynomials φ0 and ψ, let

Γ = max
m,m′≥0

|Γ(m,m′)| , π =

(

1 +

q
∑

j=1

|b0j |
)

max
i=0,...,p

|ai|

with |a0| = 1, and let

K =
√

2(p+ q + 1)πΓ
1/4
(−2(p+ 2q − 1)

log ρ

)(p+2q−1)

ρ −0.5−(p+2q−1)/ log ρ.

For all ε > 0, if

M ≥Mǫ :=
log

√
ε(1 −√

log ρ)2/K2

log ρ

then
∥

∥Iθ − IM
θ

∥

∥ ≤ (p+ q)2ε.

13



3.3. Estimation of the information matrices

Let Jθ,n and J∗
θ,n be defined as in (6), replacing θ̂n by θ in Ĵn and Ĵ∗

n, so

that Ĵn = Jθ̂n,n and Ĵ∗
n = J∗

θ̂n,n
. The following result shows that an estimator

of Jθ∗ is trivially deduced from one of θ∗.

Proposition 3.4. Under the assumptions of Lemma 2.1, as n→ ∞,

if θ∗n → θ∗ a.s. then Jθ∗n,n → Jθ∗ and J∗
θ∗n,n → J∗

θ∗ a.s.

The estimation of the long-run variance Iθ is more complicated. In the
literature, two types of estimators are generally employed: Heteroskedastic-
ity and Autocorrelation Consistent (HAC) estimators (see Newey and West
(1987) and Andrews (1991) for general references, and Francq and Zakoian
(2007) for an application to testing strong linearity in weak ARMA models)
and spectral density estimators (see e.g. den Haan and Levin (1997) for a
general reference and Francq, Roy and Zakoian (2005) for estimating I in
the present context). We will extend the results of Francq, Roy and Zakoian
(2005) for estimating Iθ when θ is not necessarily equal to θ0.

3.3.1. An estimator based on a spectral density form for Iθ
Note (2π)−1Iθ∗ is the spectral density at frequency 0 (see Brockwell and

Davis (1991) p. 459) of the process

∇t = St −ESt, St = ǫt(θ
∗)
∂ǫt(θ

∗)

∂θ
. (12)

For any given θ∗ ∈ Θ, St is a measurable function of {Xu, u ≤ t}. Let Ŝt be
obtained by replacing the unknown initial values {Xu, u ≤ 0} by 0 and θ∗ by
θ∗n in St. Let also

∇̂t = Ŝt −
1

n

n
∑

t=1

Ŝt.

The stationary process (∇t) admits the Wold decomposition ∇t = ut +
∑∞

i=1Biut−i, where (ut) is a (p + q)-variate weak white noise with covari-
ance matrix Σu. Assume that Σu is non-singular, that

∑∞
i=1 ‖Bi‖ < ∞, and

that det (Ip+q +
∑∞

i=1Biz
i) 6= 0 when |z| ≤ 1. Then (∇t) admits an AR(∞)

representation of the form

A(B)∇t := ∇t −
∞
∑

i=1

Ai∇t−i = ut, (13)
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such that
∑∞

i=1 ‖Ai‖ <∞ and det {A(z)} 6= 0 for all |z| ≤ 1, and we obtain

Iθ = A−1(1)ΣuA
′−1(1). (14)

In the framework of univariate linear processes with independent innovations,
Berk (1974) showed that the spectral density can be consistently estimated
by fitting autoregressive models of order r = r(n), whenever r → ∞ and
r3/n → 0 as n → ∞. It can be shown that this result remains valid for
the multivariate linear process (∇t), though its innovation (ut) is not an
independent process. Another difference with Berk (1974), is that (∇t) is
not directly observed and is replaced by (∇̂t).

Consider the regression of ∇t on ∇t−1, . . . ,∇t−r defined by

∇t =

r
∑

i=1

Ar,i∇t−i + ur,t, ur,t ⊥{∇t−1 · · ·∇t−r} . (15)

The LSE’s of Ar = (Ar,1 · · ·Ar,r) and Σur
= Var(ur,t) are defined by

Âr = Σ̂∇̂,∇̂r
Σ̂−1

∇̂r

and Σ̂ur
=

1

n

n
∑

t=1

(

∇̂t − Âr∇̂r,t

)(

∇̂t − Âr∇̂r,t

)′

where ∇̂r,t = (∇̂′
t−1 · · · ∇̂′

t−r)
′,

Σ̂∇̂,∇̂r
=

1

n

n
∑

t=1

∇̂t∇̂
′

r,t, Σ̂∇̂r
=

1

n

n
∑

t=1

∇̂r,t∇̂
′

r,t,

with by convention ∇̂t = 0 when t ≤ 0, and assuming Σ̂∇̂r
is non singular

(which holds true asymptotically).
Under mild regularity conditions (the precise statement of the result and

its proof are available from the authors under request), it can be shown that
if θ∗n → θ∗ almost surely,

Iθ∗n,n = Â−1
r (1)Σ̂ur

Â′−1
r (1) → Iθ∗ (16)

in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.
For the implementation of Iθ∗n,n, AR(r) models are obtained recursively

for r = 0, 1, . . . , rmax (with rmax = 15 for the forthcoming applications),
using the efficient Whittle’s (1963) generalization of the Durbin-Levinson
algorithm, described for instance in Brockwell and Davis (1991) Theorem
5.2.1. The order r is then selected using the AIC criterion.
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4. Applications

A first set of experiments illustrates the finite sample behavior of our
estimators of the information matrices Iθ∗ , Jθ∗ and J∗

θ∗ , for strong and weak
ARMA models. We then study the impact of the estimator of J , i.e. the
effect of choosing Ĵn or Ĵ∗

n defined by (6), on the asymptotic behavior of
tests of linear restrictions on the ARMA parameters. For this study it will
be necessary to evaluate Jθ∗ at θ∗ 6= θ0. Finally, an application to financial
data is presented.

4.1. Finite sample behavior of estimators of the information matrices

To investigate the finite sample performance of the estimators, we simu-
lated N = 1, 000 independent trajectories of size n = 1, 000 and n = 10, 000
of an ARMA(1,1) model with parameter θ0 = (0.5, 0.7), in which the noise is
defined by (11). Note that when k = 0 in (11), the ARMA model is strong,
whereas the model is weak when k > 0.

4.1.1. Estimating the information matrices at a given point θ∗

The information matrices Jθ∗ , J
∗
θ∗ and Iθ∗ have been computed and esti-

mated at 3 points θ∗ chosen randomly in (−1, 1) × (−1, 1). The estimators
are Jθ∗,n, J

∗
θ∗,n and Iθ∗,n defined in Proposition 3.4 and (16). Table 1 displays

the average, over the N replications, of the relative estimation errors

‖Jθ∗,n − Jθ∗‖
‖Jθ∗‖

,

∥

∥J∗
θ∗,n − J∗

θ∗

∥

∥

‖J∗
θ∗‖

and
‖Iθ∗,n − Iθ∗‖

‖Iθ∗‖
.

From Table 1, one can note that: 1) although the information matrices vary
a lot with θ∗, the relative errors are not very sensitive to the value of θ∗;
2) as expected the relative errors decrease when n increases; 3) it is more
difficult to estimate the information matrices when k is large; 4) it is easier
to estimate Jθ∗ than J∗

θ∗ , and easier to estimate J∗
θ∗ than Iθ∗ .

4.1.2. Estimating the asymptotic variance of the LSE

Several estimators of the asymptotic variance Ω involved in (5) can be
considered. In view of Proposition 3.4 and (16), two estimators that are
consistent under very general assumptions are

Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
and Ω̂∗ = J∗−1

θ̂n,n
Iθ̂n,nJ

∗−1

θ̂n,n
.
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Table 1: Average relative error for the estimators of the information matrices, over
N = 1000 replications.

n = 1, 000 n = 10, 000
k θ∗ Jθ∗ J∗

θ∗ Iθ∗ Jθ∗ J∗
θ∗ Iθ∗

(-0.9,-0.7) 0.10307 0.13466 0.34958 0.03472 0.04466 0.13070
0 (0.5,-0.6) 0.07817 0.10840 0.28935 0.02635 0.03655 0.11602

(0.7,0.9) 0.16050 0.23238 0.62677 0.05105 0.07239 0.35446
(-0.9,-0.7) 0.15183 0.17483 0.54247 0.04835 0.05592 0.23380

1 (0.5,-0.6) 0.13454 0.15691 0.52612 0.04225 0.04979 0.22927
(0.7,0.9) 0.19607 0.25395 0.81663 0.06119 0.08024 0.41813

(-0.9,-0.7) 0.24941 0.26726 1.01021 0.07945 0.08502 0.48073
2 (0.5,-0.6) 0.23188 0.25324 1.02312 0.07372 0.08064 0.48426

(0.7,0.9) 0.25566 0.29135 0.88026 0.08983 0.10374 0.52578
(-0.9,-0.7) 0.36007 0.37685 1.13567 0.13339 0.13941 0.80758

3 (0.5,-0.6) 0.34200 0.36553 1.11668 0.12598 0.13487 0.80077
(0.7,0.9) 0.38990 0.41912 1.35145 0.13595 0.14663 0.76092

(-0.9,-0.7) 0.49452 0.50613 1.19581 0.20527 0.21180 1.11480
4 (0.5,-0.6) 0.47746 0.49784 1.19473 0.19569 0.20733 1.10979

(0.7,0.9) 0.54117 0.55883 1.95453 0.21114 0.21816 1.07556
(-0.9,-0.7) 0.67610 0.68923 1.42507 0.31757 0.32562 1.66401

5 (0.5,-0.6) 0.66101 0.68331 1.44809 0.30515 0.32038 1.67812
(0.7,0.9) 0.69161 0.70621 1.77970 0.29799 0.30403 1.15614

In view of the consistency of the LSE stated in Lemma 2.1 and Proposi-
tion 3.1, the matrix J can be estimated by plugging. We then define the
alternative estimator

Ω(θ̂n) = J−1

θ̂n
Iθ̂n,nJ

−1

θ̂n
.

Other estimators of Ω that should be consistent in the strong ARMA case
are defined by

Ω̂s = σ̂2J−1

θ̂n,n
and Ωs(θ̂n) = σ̂2J−1

θ̂n
, with σ̂2 =

1

n

n
∑

t=1

e2t (θ̂n).
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Finally, in the semi-strong case, an estimator is given by

Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
, Îss =

1

n

n
∑

t=1

e2t (θ̂n)
∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
.

Table 2 indicates that, for all the consistent estimators (i.e. all estimators
when k = 0, and Ω̂, Ω̂∗, Ω(θ̂n) and Ω̂ss when k > 0) the relative errors
decrease when n increases. As expected from Table 1, the estimation of the
asymptotic matrices becomes more difficult when k increases. When k > 0
the estimator Ω̂ss is much more accurate than Ω̂s and Ωs(θ̂n) (which are
actually not consistent in this semi-strong setting) and also slightly more
accurate than the other ones. In the strong case (i.e. when k = 0 in (11)),
the estimators Ω̂s and Ωs(θ̂n) are much more accurate than the other ones,
but they are not consistent when k > 0 (the relative errors are almost the
same for n = 1, 000 and n = 10, 000). This not surprising, because the noise
defined in (11) is a semistrong one.

Table 2: Relative error of the asymptotic variance matrices of the LSE. The number
of replications is N = 1000.

n k Ω̂ Ω̂∗ Ω(θ̂n) Ω̂s Ω̂s(θ̂n) Ωss

0 0.13327 0.18264 0.15751 0.06353 0.07496 0.09014
1 0.35768 0.36452 0.42471 0.47470 0.48099 0.24168
2 0.52599 0.53392 0.65840 0.79349 0.79581 0.43806

1, 000 3 0.69808 0.70883 0.84601 0.92835 0.92945 0.62591
4 0.83908 0.85469 0.97604 0.97497 0.97583 0.76076
5 0.92800 0.92828 0.95288 0.99173 0.99213 0.87238
10 1.00805 0.99961 0.99892 1.00006 0.99983 1.02399
0 0.04344 0.05567 0.05006 0.02002 0.02327 0.02906
1 0.14336 0.14478 0.16351 0.47000 0.47020 0.08734
2 0.31212 0.31412 0.35461 0.79448 0.79442 0.23533

10, 000 3 0.50658 0.51049 0.58767 0.92943 0.92913 0.43183
4 0.65129 0.66057 0.78561 0.97604 0.97626 0.62521
5 0.76824 0.77414 0.88845 0.99198 0.99212 0.72576
10 0.99694 0.99672 0.99761 0.99996 0.99996 0.99331
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4.2. Bahadur’s slopes of two versions of the Lagrange-Multiplier test

Let R be a given matrix of size s0 × (p+ q) and rank s0, and let r0 and r1
be given vectors of size s0 such that r1 6= r0. Consider the testing problem

H0 : Rθ0 = r0 against H1 : Rθ0 = r1. (17)

When the model is much simpler under the null than under the alternative,
the Lagrange-Multiplier (LM) test is very attractive because, contrary to
other tests, in particular the Wald and Likelihood-Ratio tests, the LM pro-
cedure only requires the estimation of the ARMA model under H0 (see Engle
(1984) for a general presentation of these tests). Let λ ∈ R

s0 be a Lagrange
multiplier and let θ̂c

n be the LSE constrained by H0:

(θ̂c
n, λ̂) = arg min

θ∈Θ,λ∈Rs0
Qn(θ) − λ′(Rθ − r0).

For simplicity, consider the strong ARMA case. The asymptotic variance of
the LSE can then be estimated either by

Ω̂c = σ̂2c
(

Ĵc
n

)−1

or Ω̂∗c = σ̂2c
(

Ĵ∗c
n

)−1

where

Ĵc
n =

1

n

n
∑

t=1

∂ǫt(θ̂
c
n)

∂θ

∂ǫt(θ̂
c
n)

∂θ′
, Ĵ∗c

n =
1

n

n
∑

t=1

ǫt(θ̂
c
n)
∂2ǫt(θ̂

c
n)

∂θ∂θ′
+ Ĵc

n

and σ̂2c = n−1
∑n

t=1 e
2
t (θ̂

c
n). This leads to two versions of the LM statistic

LM :=
n

σ̂2c

∂Qn(θ̂c
n)

∂θ′

(

Ĵc
n

)−1 ∂Qn(θ̂c
n)

∂θ
,

LM
∗ :=

n

σ̂2c

∂Qn(θ̂c
n)

∂θ′

(

Ĵ∗c
n

)−1 ∂Qn(θ̂c
n)

∂θ
.

The two versions have the same asymptotic distribution under the null:

LM
d→ χ2

s0
and LM

d→ χ2
s0

under H0

but behaves differently under the alternative:

LM

n
→ c := D′

θc
0

(

σ2cJθc
0

)−1
Dθc

0
,

LM
∗

n
→ c∗ := D′

θc
0

(

σ2cJ∗
θc
0

)−1

Dθc
0
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under H1 as n→ ∞, where

Dθ = Eǫt(θ)
∂ǫt(θ)

∂θ
, σ2c = Eǫ21(θ

c
0)

when θ̂c
n → θc

0 a.s., where θc
0 is such that Jθc

0
and J∗

θc
0

are positive-definite.
Note that Jθc

0
is always positive-semidefinite, but this is not the case for

J∗
θc
0
. When J∗

θc
0

is not positive-definite, the LM
∗-test (i.e. the test of rejection

region {LM
∗ ≥ χ2

1(1−α)}, where α is the asymptotic level and χ2
k(α) denotes

the α-quantile of the chi-square distribution with k degrees of freedom) may
be inconsistent.

Thanks to the computation of Section 3, for any given alternative, we are
able to determine which version is consistent and we are able to compute
the Bahadur slopes. We now give a simple example in which hand-made
computation of Bahadur’s slopes is possible.

4.2.1. Testing an AR(1) against an ARMA(1,1)

We now consider an ARMA(1,1) model and we test for an AR(1). We
thus have R = (0, 1), r0 = 0 and θc

0 = (ac
0, 0)′ where

ac
0 = arg min

a
E(Xt − aXt−1)

2 = ρ(1),

where ρ(h) = γ(h)/γ(0) and γ(h) = Cov(Xt, Xt−h) denote respectively the
autocorrelation and autocovariance of (Xt) at lag h. Standard computations
show that the constrained estimator satisfies

θ̂c
n =

(

âc

0

)

,
∂Qn(θ̂c

n)

∂θ′
=

(

0

λ̂

)

with

âc =

∑n
t=2XtXt−1
∑n

t=2X
2
t−1

, λ̂ = âc 1

n

n
∑

t=3

XtXt−2 − (âc)2 1

n

n
∑

t=3

Xt−1Xt−2.
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Other tedious computations show that

σ2c =
{

1 + (ac
0)

2} γ(0) − 2ac
0γ(1),

Dθc
0

= −E (Xt − ac
0Xt−1)

(

Xt−1

Xt−1 − ac
0Xt−2

)

=

(

0

− (ac
0)

2 γ(1) + (ac
0) γ(2)

)

,

Jθc
0

=

(

γ(0) γ(0) − ac
0γ(1)

γ(0) − ac
0γ(1) γ(0) + (ac

0)
2 γ(0) − 2ac

0γ(1)

)

,

J∗
θc
0

= Jθc
0
+ E(Xt − ac

0Xt−1)

(

0 Xt−2

Xt−2 2 (Xt−2 − ac
0Xt−3)

)

= Jθc
0
+

(

0 γ(2) − ac
0γ(1)

γ(2) − ac
0γ(1) 2

{

1 + (ac
0)

2} γ(2) − 2ac
0 {γ(1) + γ(3)}

)

.

The Bahadur slopes of the two versions of the LM tests are thus

c =
(ac

0γ(1) − γ(2))2 γ(0)

{γ2(0) − γ2(1)}σ2c

and, under the assumption that the denominator is strictly positive,

c∗ =
(ac

0γ(1) − γ(2))2 γ(0)
{

γ2(0) + 2γ(0)γ(2) − 2γ(0)γ(3)
ac
0

− γ2(2)
ac2
0

− 4γ2(1) + 4γ(1)γ(2)
ac
0

}

σ2c
.

In particular, it follows that, in the Bahadur sense, the LM
∗ version is more

efficient than the LM one for MA(1) alternatives of the form Xt = ǫt +
b0ǫt−1. Moreover, the asymptotic relative efficiency c∗/c tends to infinity as
|b0| approches 1. For strong ARMA(1,1) alternatives of the form

Xt − 0.5Xt−1 = ǫt + b0ǫt−1, ǫt iid N (0, 1), (18)

tedious computations show that the LM
∗ version is inconsistent for b0 ≤

−0.5807... but is more efficient than the LM version when b0 > −0.5807....
Figure 1 shows the percentage of Bahadar asymptotic relative efficiency
(ARE) gain of LM

∗ with respect to LM, as measured by 100(c∗ − c)/c,
when b0 varies from -0.45 to 0.55.
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Figure 1: Relative improvement (in percentage) of the Bahadur slope of the LM
∗

test with respect to that of the LM-test, when the null is AR(1) and the alternative
is the ARMA(1,1) model (18).

4.2.2. Finite sample comparison of the two versions

In order to determine whether the ARE computed in the previous section
provide valuable insights on the actual behavior of the two tests, we simulated
N = 1 000 independent trajectories of size n = 100, n = 1 000 and n =
10 000 of the ARMA(1,1) models (18). Table 3 displays the averaged p-
values of the LM and LM

∗ tests of the null hypothesis of an AR(1), i.e.
H0 : b0 = 0. The two lines in bold correspond to the null hypothesis H0. For
the line b0 = 0, the DGP is an AR(1) and the test statistics LM and LM

∗

are asymptotically χ2
1-distributed because

Jθc
0

= J∗
θc
0

= γ(0)

(

1 1 − a2
0

1 − a2
0 1 − a2

0

)

, a0 = 1/2,

is invertible and the arguments of Section 4.2.1 apply. For the line b0 = −0.5,
the DGP is a white noise, which can also be written as an ARMA(1,1) with
a0 = b0 = 0, but the arguments of Section 4.2.1 do not apply because

Jθc
0

= J∗
θc
0

= γ(0)

(

1 1
1 1

)

is singular. As expected, the average p-value of the LM and LM
∗ tests are

close to 0.5 when b0 = 0. We also note the average p-value of the LM-test is
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close to 0.5 when b0 = −0.5, and is close to zero under the alternative when
n is large. In accordance with the theoretical results of the previous section,
we also note that the LM

∗-test is inconsistent for b0 < −0.5 because the p-
values do not tend to zero as n increases. When n is small and b0 > 0.5, the
p-values of the LM

∗-test are slightly smaller than those of the LM-test, but
these p-values tend rapidly to zero as n increases. For an easier comparison
of the empirical behavior of the two tests, Table 4 reports the averages of
the estimated Bahadur slopes LM/n and LM

∗/n. As expected from the
asymptotic theory illustrated by Figure 1, the LM

∗ statistic is in average
larger than the LM statistic for alternatives such that b0 > −0.5. Note also
that the LM statistic is always positive, whereas negative values of LM

∗ are
observed, because Ĵc

n is semi-definite positive, whereas it is not the case for
Ĵ∗c

n .
To conclude this section, although the LM

∗ version may be asymptoti-
cally more efficient in Bahadur’s sense than the LM version for particular
alternatives, the LM version seems globally preferable because it is unbiased
and consistent for a larger set of alternatives.

4.3. Testing weak ARMA models for stock returns

We now consider an application to the daily returns of 10 stock market
indices (CAC, DAX, FTSE, HSI, Nikkei, NSE, SMI, SP500, SPTSX and
SSE). The observations cover the period from the starting date of each index
to July 26, 2010. In Financial Econometrics, the returns are often assumed to
be martingale increments, and the squares of the returns have often second-
order moments close to those of an ARMA(1,1) (which is compatible with a
GARCH(1,1) model for the returns).

We will test these hypotheses by fitting weak ARMA models on the re-
turns and on their squares. In view of Section 4.1.2, let Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
,

Ω̂s = σ̂2J−1

θ̂n,n
and Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
. We will consider three versions of the

Wald test of the null hypothesis defined in (17). Under the assumptions of
Proposition 3.4 and the assumption that I and Iss are invertible, the Wald
statistics

WS = n(R0θ̂n − r0)
′(R0Ω̂sR

′
0)

−1(R0θ̂n − r0),

WSS = n(R0θ̂n − r0)
′(R0Ω̂ssR

′
0)

−1(R0θ̂n − r0),

WW = n(R0θ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0θ̂n − r0)
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Table 3: Averages of the p-values of LM and LM
∗ for testing the null hypothesis

of an AR(1), i.e. H0 : b0 = 0, in the ARMA(1,1) model (18). The number of
replications is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗

-0.9 0.14185 0.82045 0.00000 0.98700 0.00000 1.00000
-0.8 0.19998 0.78249 0.00028 0.94300 0.00000 1.00000
-0.7 0.32798 0.77807 0.00917 0.81042 0.00000 0.98900
-0.6 0.46288 0.81641 0.18710 0.67573 0.00004 0.61900
-0.5 0.49549 0.85000 0.50789 0.84556 0.51899 0.85018
-0.4 0.48500 0.77410 0.29030 0.48105 0.00252 0.01066
-0.3 0.46271 0.65144 0.14221 0.13635 0.00000 0.00000
-0.2 0.44848 0.50338 0.15298 0.14171 0.00000 0.00000
-0.1 0.49491 0.51222 0.29239 0.28933 0.00368 0.00345
0.0 0.50143 0.49780 0.51095 0.50941 0.51854 0.51830
0.1 0.44112 0.42938 0.17563 0.17287 0.00003 0.00003
0.2 0.29159 0.27676 0.00483 0.00388 0.00000 0.00000
0.3 0.14343 0.12986 0.00005 0.00000 0.00000 0.00000
0.4 0.05982 0.04610 0.00000 0.00000 0.00000 0.00000
0.5 0.01696 0.01194 0.00000 0.00000 0.00000 0.00000
0.6 0.00752 0.00758 0.00000 0.00000 0.00000 0.00000
0.7 0.00227 0.01223 0.00000 0.00000 0.00000 0.00000
0.8 0.00156 0.01510 0.00000 0.00000 0.00000 0.00000
0.9 0.00112 0.01109 0.00000 0.00000 0.00000 0.00000

asymptotically follow a χ2
s0

distribution under H0. At the asymptotic level
α, each Wald test consists in rejecting H0 when its statistic is greater than
χ2

s0
(1 − α).

4.3.1. Testing a white noise against an AR(1)

In this section, we fit AR(1) models on each series of daily returns, and
we apply the above-mentioned Wald tests for testing the hypothesis that
the returns constitute a white noise. This testing problem can be trivially
written under the form (17). Table 5 displays the p-values of the standard and
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Table 4: Estimated Bahadur slopes of the LM and LM
∗ tests, when the null

hypothesis is an AR(1) and the alternative is the ARMA(1,1) model (18). The
number of replications is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗

-0.9 0.04712 4.17203 0.03717 -0.05981 0.03631 -0.04923
-0.8 0.03654 -0.13111 0.02654 5.93785 0.02589 -0.04407
-0.7 0.02320 0.98988 0.01376 -0.03605 0.01269 -0.04327
-0.6 0.01280 -0.00635 0.00404 0.01628 0.00313 0.00297
-0.5 0.01035 -0.00211 0.00102 0.00020 0.00010 0.00001
-0.4 0.01050 -0.01204 0.00269 0.00062 0.00186 0.00449
-0.3 0.01282 0.00389 0.00482 0.00794 0.00425 0.00591
-0.2 0.01240 0.01819 0.00487 0.00600 0.00417 0.00471
-0.1 0.01060 0.00009 0.00271 0.00287 0.00180 0.00185
0.0 0.01036 0.00721 0.00092 0.00095 0.00008 0.00008
0.1 0.01393 0.01720 0.00422 0.00438 0.00335 0.00343
0.2 0.02607 0.03886 0.01600 0.01750 0.01510 0.01627
0.3 0.04626 0.05910 0.03781 0.04417 0.03660 0.04254
0.4 0.07466 0.22160 0.06637 0.08452 0.06550 0.08327
0.5 0.10383 0.17138 0.09796 0.13724 0.09764 0.13601
0.6 0.13199 0.28353 0.12860 0.19518 0.12850 0.19402
0.7 0.15988 0.28823 0.15401 0.25127 0.15339 0.24780
0.8 0.17431 0.34168 0.16972 0.29062 0.17080 0.28910
0.9 0.18064 0.33781 0.17949 0.31841 0.18062 0.31362

modified Wald tests. For the NSE, SMI, SP500 and SPTSX series, the white
noise hypothesis is rejected by the WS test at the nominal level α = 5%.
This is not surprising because the WS test required the iid assumption and,
in particular in view of the so-called volatility clustering, it is well known that
the strong white noise model is not adequate for these series. By contrast,
the white noise hypothesis is not rejected by the modified tests based on
WSS and WW . To summary, the outputs of Table 5 are in accordance with
the common belief that these series are not strong white noises, but could be
weak white noises (or even martingale increments).
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We now turn to the dynamics of the squared returns.

Table 5: For standard and modified versions of Wald tests, p-values of the null
hypothesis that the returns are white noises. The p-values which are less than
α = 5% are displayed in bold.

Returns Length n WS WSS WW

CAC 5154 0.386 0.570 0.486
DAX 4966 0.343 0.521 0.349
FTSE 6647 0.705 0.857 0.760
HSI 5849 0.144 0.631 0.356
Nikkei 6530 0.057 0.328 0.159
NSE 1990 0.038 0.250 0.082
SMI 4963 0.035 0.264 0.060
SP500 15237 0.000 0.073 0.019
SPTSX 2665 0.042 0.321 0.105
SSE 2716 0.707 0.781 0.758

4.3.2. Testing the ARMA(1, 1) model for the squared returns

We fitted ARMA(p, q) models with p = 1 and q > 1, or q = 1 and p > 1,
on the squares of the previous daily returns, and we applied Wald tests for
testing the null hypothesis of an ARMA(1, 1) model. The p-values of the
standard and modified Wald tests are displayed in Table 6. The standard
Wald test frequently rejects the ARMA(1,1) model. The validity of this test is
however questionable, because the assumption of iid linear innovations is not
very plausible, as well for the squared returns than for the returns themselves
(as was discussed in the previous section). If the returns are assumed to follow
a GARCH(1,1), which is one of the most widely used model for such series,
then the squared returns follow a semi-strong ARMA(1,1), and higher-order
powers follow ARMA models which are only weak (see e.g. the comments on
Table 2 in Francq and Zakoïan, 2008). The tests based on the statistics WSS

and WW thus appear as more reliable, a priori. These tests also frequently
reject the ARMA(1,1) model in favor of more complex models. This leads us
to reconsider the common belief that the GARCH(1,1) model is sufficient to
capture the dynamics of most financial returns, and that higher-order models
would be unnecessarily complicated. Francq and Zakoïan (2009a) drew the
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same conclusion from parametric tests on GARCH models. The advantage
of the present study is that it leads to reconsider not only the GARCH(1,1)
model, but also any parametric model leading to a weak ARMA(1,1) for the
squares.

5. Conclusion

The asymptotic variance of the LSE of ARMA models depend on infor-
mation matrices I and J computed at the true value of the parameter θ0.
It is sometime necessary to evaluate these matrices at some point θ 6= θ0.
In the case of strong ARMA models, Iθ and Jθ depend only on θ0 and on
the moments σ2 = Eǫ2t and µ4 = Eǫ4t of the iid noise ǫt. In the much more
general case of weak ARMA models, Iθ also depends on the autocovariances
of the weak white noise ǫ2t .

We proposed here algorithms for the exact computation of Iθ and Jθ

from the model, and for the estimation of these matrices from the data. It is
possible to define estimators of the information matrices which are consistent
in the general weak case, or in the more restrictive semi-strong case, or only in
the strong case. Simulations experiments confirmed the domain of validity
of the different estimators, and also that an efficiency loss is the price to
pay for having more robust estimators. As an illustration of the interest
of considering Iθ and Jθ at θ 6= θ0, we computed and compared Bahadur’s
slopes of two versions of the Lagrange-Multiplier test for testing general linear
restriction on θ0 in the strong ARMA case. The two versions are based on
two estimators Ĵc

n and Ĵ∗c
n of J under the null. The standard estimator of J

is Ĵc
n, whereas Ĵ∗c

n contains an extra term which is asymptotically negligible
under the null but may have importance under the alternative. We showed,
analytically and also by means of simulations, that the version based on
Ĵ∗c

n may be asymptotically much more efficient than the standard version,
but is consistent for a narrower set of alternatives. Applying different Wald
tests based on different estimators of the information matrices, and applying
them for testing weak ARMA specifications on daily stock returns and on
their squares, we reconsidered models such as the popular GARCH(1,1) for
which the squares follow a weak ARMA(1,1).
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Table 6: As Table 5, but for the null hypothesis that the squared returns follow an
ARMA(1, 1) model.

Alternative Returns WS WSS WW

CAC 0.000 0.228 0.167
DAX 0.000 0.013 0.000
FTSE 0.767 0.949 0.962
HSI 0.000 0.351 0.000

ARMA(2, 1) Nikkei 0.483 0.922 0.940
NSE 0.027 0.485 0.570
SMI 0.589 0.886 0.803
SP500 0.014 0.641 0.503
SPTSX 0.009 0.472 0.443
SSE 0.042 0.281 0.139
CAC 0.000 0.288 0.064
DAX 0.000 0.060 0.013
FTSE 0.828 0.957 0.941
HSI 0.000 0.005 0.000

ARMA(1, 2) Nikkei 0.594 0.936 0.938
NSE 0.053 0.305 0.191
SMI 0.668 0.897 0.863
SP500 0.069 0.737 0.793
SPTSX 0.001 0.312 0.571
SSE 0.040 0.067 0.025
CAC 0.003 0.617 0.228
DAX 0.000 0.012 0.000
FTSE 0.000 0.396 0.181
HSI 0.000 0.000 0.000

ARMA(1, 3) Nikkei 0.000 0.419 0.000
NSE 0.286 0.742 0.621
SMI 0.000 0.328 0.041
SP500 0.000 0.000 0.000
SPTSX 0.000 0.001 0.000
SSE 0.006 0.022 0.001
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A. Proofs

Proof of Proposition 3.3. The first result follows from (7) and

Iθ(i, k) =

+∞
∑

h=−∞

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4

Cov (ǫt−h1ǫt−h2−i, ǫt−h−h3ǫt−h−h4−k) .

The other results follow similarly. 2

Proof of Proposition 3.3. Let c̃h = ch for 0 ≤ h ≤ M and c̃h = 0 for
h > M . Similarly, we defined c̃ah and c̃bh. For 1 ≤ i ≤ k ≤ p, we have

Iθ(i, k) − IM
θ (i, k) =

∞
∑

h1,h2,h3,h4=0

{

(ch1 − c̃h1)c
a
h2
ch3c

a
h4

+ c̃h1(c
a
h2

− c̃ah2
)ch3c

a
h4

+c̃h1 c̃
a
h2

(ch3 − c̃h3)c
a
h4

+ c̃h1 c̃
a
h2
c̃h3(c

a
h4

− c̃ah4
)
}

Γ(h2 + i− h1, h4 + k − h3).

Note that if
max

i=1,...,k
|ρi| ≤ ρ < 1

then for all |z| ≤ 1,

1
∏k

i=1(1 − ρiz)
=

∞
∑

h=0

dhz
h, with |dh| ≤ (h+ 1)k−1ρh.

Note also that

φ(z)ψ0(z) =

(

1 −
p
∑

i=1

aiz
i

)(

1 +

q
∑

j=1

b0jz
j

)

=

p+q
∑

ℓ=0

πℓz
ℓ,

where, with the convention a0 = −1, b00 = 1 and ai = 0 for i < 0,

|πℓ| =

∣

∣

∣

∣

∣

q
∑

j=0

b0jaℓ−j

∣

∣

∣

∣

∣

≤ π.

We thus have

max
{

|ch| , |cah| ,
∣

∣cbh
∣

∣

}

≤ (p+ q + 1)π(h+ 1)k0ρh ≤ K0ρ
h/2

with

k0 = p+ 2q − 1, K0 = (p+ q + 1)π

(−2k0

log ρ

)k0

ρ −0.5−k0/ log ρ.
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We then obtain

∣

∣Iθ(i, k) − IM
θ (i, k)

∣

∣ ≤ 4Γ

(

K

1 − ρ1/2

)4

ρ(M+1)/2

and the result follows. 2

In the following proofs, K and ρ denote generic constant such as K > 0
and ρ ∈ (0, 1), whose exact values are unimportant.
Proof of Proposition 3.4. Note that because the roots ψ and φ0 are
outside the unit circle,

max
{

|cah| ,
∣

∣cbh
∣

∣ ,
∣

∣cab
h

∣

∣ ,
∣

∣cbbh
∣

∣

}

≤ Kρh. (19)

Because Θ∗ is compact, this inequality holds uniformly in θ ∈ Θ∗. Note that
this entails the existence of Jθ∗ and J∗

θ∗ . The ergodic theorem then shows
that

Jθ∗,n → Jθ∗ and J∗
θ∗,n → J∗

θ∗ a.s. (20)

By the previous arguments, for all i, i = 1, . . . , p+ q, we have

E sup
θ∈Θ∗

∥

∥

∥

∥

∂

∂θ

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

∥

∥

∥

∥

<∞. (21)

A Taylor expansion yields

Jθ∗n,n(i, j) = Jθ∗,n(i, j) + (θ∗n − θ∗)′
1

n

n
∑

t=1

∂

∂θ

{

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

}

(θ∗∗)

for some θ∗∗ between θ∗n and θ∗. The consistency of Jθ∗n,n follows from (20),
(21) and the convergence of θ∗n to θ∗. The consistency of J∗

θ∗n,n is shown
similarly. 2
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Computing and estimating information

matrices of weak ARMA models:

complementary result

A. Asymptotic properties of the spectral density estimator of the
long-run variance Iθ∗

Theorem A.1. Let the assumptions of Lemma 2.1 be satisfied. Assume
that the process (∇t) defined by (12) admits the AR(∞) representation (13),
where ‖Ai‖ = o (i−2) as i → ∞, the roots of det(A(z)) = 0 are outside the
unit disk, and Σu is non-singular. Assume moreover that E|ǫt|8+4ν <∞ and
∑∞

k=0{αǫ(k)}ν/(2+ν) <∞ for some ν > 0. Then, if θ∗n → θ∗ almost surely,

Iθ∗n,n = Â−1
r (1)Σ̂ur

Â′−1
r (1) → Iθ∗

in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.

The proof of Theorem A.1 is based on a series of lemmas. We use the
multiplicative matrix norm defined by: ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ̺1/2(A′A),

where A is a d1×d2 matrix, ‖x‖ is the Euclidean norm of the vector x ∈ R
d2 ,

and ̺(·) denotes the spectral radius. This norm satisfies

‖A‖2 ≤
∑

i,j

a2
i,j (22)

with obvious notations. This choice of the norm is crucial for the following
lemma to hold (with e.g. the Euclidean norm, this result is not valid). Let

Σ∇,∇r
= E∇t∇′

r,t, Σ∇ = E∇t∇′
t, Σ∇r

= E∇r,t∇′
r,t.

In the sequel, K and ρ denote generic constant such as K > 0 and ρ ∈ (0, 1),
whose exact values are unimportant.

Lemma 1. Under the assumptions of Theorem A.1,

sup
r≥1

max
{

∥

∥Σ∇,∇r

∥

∥ ,
∥

∥Σ∇r

∥

∥ ,
∥

∥

∥
Σ−1

∇r

∥

∥

∥

}

≤ ∞.
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Proof. We readily have

‖Σ∇r
x‖ ≤ ‖Σ∇r+1

(x′, 0′p+q)
′‖ and ‖Σ∇,∇r

x‖ ≤ ‖Σ∇r+1
(0′p+q, x

′)′‖

for any x ∈ R
(p+q)r. Therefore

0 < ‖Var (∇t)‖ =
∥

∥Σ∇1

∥

∥ ≤
∥

∥Σ∇2

∥

∥ ≤ · · ·

and
∥

∥Σ∇,∇r

∥

∥ ≤
∥

∥Σ∇r+1

∥

∥ .

Let f(λ) be the spectral density of ∇t. Because the autocovariance function
of ∇t is absolutely summable, ‖f(λ)‖ is bounded by a finite constant K, say.
Denoting by δ = (δ′1, . . . , δ

′
r)

′ an eigenvector of Σ∇r
associated with its largest

eigenvalue, such that ‖δ‖ = 1 and δi ∈ R
p+q for i = 1, . . . , r, we have

∥

∥Σ∇r

∥

∥ = ̺1/2(Σ2
∇r

) = ̺(Σ∇r
) = δ′Σ∇r

δ

=

r
∑

j,k=1

δ′j

∫ π

−π

ei(k−j)λf(λ)d(λ)δk ≤ 2πK.

By similar arguments, the smallest eigenvalue of Σ∇r
is greater than a positive

constant independent of r. Using the fact that ‖Σ−1
∇r
‖ is equal to the inverse

of the smallest eigenvalue of Σ∇r
, the proof is completed. 2

Denote by ∇t(i) the i-th element of ∇t.

Lemma 2. Under the assumptions of Theorem A.1, there exits a finite con-
stant K1 such that for m1, m2 = 1, . . . , p+ q

sup
s∈Z

∞
∑

h=−∞

|Cov {∇1(m1)∇1+s(m2),∇1+h(m1)∇1+s+h(m2)}| < K1.

Proof. Without loss of generality, we can take the supremum over the
integers s > 0, and write the proof in the case m1 = m2 = m. In view of
(19), we have

∞
∑

h=−∞

|Cov {∇1(m)∇1+s(m),∇1+h(m)∇1+s+h(m)}|

≤ K8
∞
∑

h1,...,h8=0

ρ
∑8

i=1 hi

∞
∑

h=−∞

|Cov (Y1,h1,h2Y1+s,h3,h4, Y1+h,h5,h6Y1+s+h,,h7,h8)|

2



where
Yt,h1,h2 = ǫt−h1ǫt−h2−m − Eǫt−h1ǫt−h2−m.

A slight extension of Corollary A.3 in Francq and Zakoian (2010) concludes.
2

Let Σ̂∇r
, Σ̂∇ and Σ̂∇,∇r

be the matrices obtained by replacing ∇̂t by ∇t

in Σ̂∇̂r
, Σ̂∇̂ and Σ̂∇̂,∇̂r

.

Lemma 3. Under the assumptions of Theorem A.1,
√
r‖Σ̂∇r

− Σ∇r
‖,√

r‖Σ̂∇−Σ∇‖, and
√
r‖Σ̂∇,∇r

−Σ∇,∇r
‖ tend to zero in probability as n→ ∞

when r = o(n1/3).

Proof. For 1 ≤ m1, m2 ≤ p + q and 1 ≤ r1, r2 ≤ r, the element of the
{(r1 − 1)(p+ q) +m1}-th row and {(r2 − 1)(p+ q) +m2}-th column of Σ̂∇r

is of the form n−1
∑n

t=1 Zt where Zt = ∇t−r1(m1)∇t−r2(m2). By stationarity
of (Zt), we have

Var

(

1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
K1

n
, (23)

where, by Lemma 2, K1 is a constant independent of r1, r2, m1, m2 and r, n.
In view of (22) and (23) we have

E
{

r‖Σ̂∇ − Σ∇‖2
}

≤ E
{

r‖Σ̂∇,∇r
− Σ∇,∇r

‖2
}

≤ E
{

r‖Σ̂∇r
− Σ∇r

‖2
}

≤ K1(p+ q)2r3

n
= o(1)

as n→ ∞ when r = o(n1/3). The result follows. 2

We now show that the previous lemma applies when ∇t is replaced by
∇̂t.

Lemma 4. Under the assumptions of Theorem A.1,
√
r‖Σ̂∇̂r

− Σ∇r
‖,

√
r‖Σ̂∇̂−Σ∇‖, and

√
r‖Σ̂∇̂,∇̂r

−Σ∇,∇r
‖ tend to zero in probability as n→ ∞

when r = o(n1/3).

Proof. We first show that the replacement of the unknown initial values
{Xu, u ≤ 0} by zero is asymptotically unimportant. Let Σ̂∇r,n

be the ma-

trix obtained by replacing et(θ
∗
n) by ǫt(θ

∗
n) in Σ̂∇̂r

. Because ǫt(θ) and their

3



derivatives have ARMA representations (see Section 3), it is easy to show
that

sup
θ∈Θ∗

|et(θ) − ǫt(θ)| ≤ Kρt, sup
θ∈Θ∗

∥

∥

∥

∥

∂

∂θ
et(θ) −

∂

∂θ
ǫt(θ)

∥

∥

∥

∥

≤ Kρt.

It can be deduced that ‖Σ̂∇̂r
− Σ̂∇r,n

‖ = OP (rn−1). We thus have

√
r‖Σ̂∇̂r

− Σ̂∇r,n
‖ = oP (1). (24)

Taylor expansions around θ∗ yield

|ǫt(θ∗n) − ǫt(θ
∗)| ≤ rt ‖θ∗n − θ∗‖ ,

∣

∣

∣

∣

∂ǫt(θ
∗
n)

∂θm
− ∂ǫt(θ

∗)

∂θm

∣

∣

∣

∣

≤ st ‖θ∗n − θ∗‖

with rt =
∥

∥

∂
∂θ′
ǫt(θ)

∥

∥, st =
∥

∥

∥

∂2

∂θ′∂θm
ǫt(θ)

∥

∥

∥
where θ and θ are between θ∗n and θ∗.

Define Zt as in the proof of Lemma 3, and let Zt,n be obtained by replacing
∇t(m) by ∇t,n(m) = ǫt(θ

∗
n)∂ǫt(θ

∗
n)/∂θm in Zt. We have

|∇t(m) −∇t,n(m)| ≤ rt ‖θ∗n − θ∗‖
∣

∣

∣

∣

∂

∂θm
ǫt(θ

∗)

∣

∣

∣

∣

+ st ‖θ∗n − θ∗‖ |ǫt(θ∗n)|

:= ‖θ∗n − θ∗‖ dt,n,m,

and thus

|Zt − Zt,n| ≤ ‖θ∗n − θ∗‖Dt,n,m1,m2,r1,r2,

where

Dt,n,m1,m2,r1,r2 = |dt−r1,n,m1∇t−r2(m2)| + |∇t−r1,n(m1)dt−r2,n,m2| .
Note that E |Dt,n,m1,m2,r1,r2| ≤ K for some constant K independent of
n, r1, r2, m1 and m2. Thus

‖Σ̂∇r,n
− Σ̂∇r

‖2 ≤ r2 ‖θ∗n − θ∗‖2OP (1).

Since ‖θ∗n − θ∗‖ = OP

(

n−1/2
)

, we obtain for r = o(n1/3)

√
r‖Σ̂∇r,n

− Σ̂∇r
‖ = oP (1). (25)

By Lemma 3 , (24) and (25) show that
√
r‖Σ̂∇̂r

− Σ∇r
‖ = oP (1). The other

results are obtained similarly. 2

Write A∗
r = (A1 · · ·Ar) where the Ai’s are defined by (13).

4



Lemma 5. Under the assumptions of Theorem A.1,
√
r ‖A∗

r − Ar‖ → 0,

as r → ∞.

Proof. Recall that by (13) and (15)

∇t = Ar∇r,t + ur,t = A∗
r∇r,t +

∞
∑

i=r+1

Ai∇t−i + ut := A∗
r∇r,t + u∗r,t.

Hence, using the orthogonality conditions in (13) and (15)

A∗
r −Ar = −Σu∗

r ,∇r
Σ−1

∇r
(26)

where Σu∗

r ,∇r
= Eu∗r,t∇′

r,t. Using arguments and notations of the proof of
Lemma 2, there exists a constant K2 independent of s and m1, m2 such that

E |∇1(m1)∇1+s(m2)| ≤ K4
∞
∑

h1,...,h4=0

ρh1+···+h4‖ǫ1‖4
4 ≤ K2.

By the Cauchy-Schwarz inequality and (22), we then have
∥

∥Cov
(

∇t−r−h,∇r,t

)∥

∥ ≤ K2r
1/2(p+ q).

Thus,

‖Σu∗

r ,∇r
‖ = ‖

∞
∑

i=r+1

AiE∇t−i∇′
r,t‖ ≤

∞
∑

h=1

‖Ar+h‖
∥

∥Cov
(

∇t−r−h,∇r,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Ar+h‖. (27)

Note that the assumption ‖Ai‖ = o (i−2) entails r
∑∞

h=1 ‖Ar+h‖ = o(1) as
r → ∞. The lemma therefore follows from (26), (27) and Lemma 1. 2

The following lemma is similar to Lemma 3 in Berk (1974).

Lemma 6. Under the assumptions of Theorem A.1,
√
r‖Σ̂−1

∇̂r

− Σ−1
∇r
‖ = oP (1)

as n→ ∞ when r = o(n1/3) and r → ∞.

5



Proof. We have
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
=

∥

∥

∥

{

Σ̂−1

∇̂r

− Σ−1
∇r

+ Σ−1
∇r

}{

Σ∇r
− Σ̂∇̂r

}

Σ−1
∇r

∥

∥

∥

≤
(∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥

)∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
.

Iterating this inequality, we obtain

∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
≤

∥

∥

∥
Σ−1

∇r

∥

∥

∥

∞
∑

i=1

∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

i ∥
∥

∥
Σ−1

∇r

∥

∥

∥

i

.

Thus, for every ε > 0,

P
(√

r
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
> ε
)

≤ P







√
r

∥

∥

∥
Σ−1

∇r

∥

∥

∥

2 ∥
∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

1 −
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥

> ε and
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
< 1







+P
(√

r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
≥ 1
)

≤ P







√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
>

ε
∥

∥

∥
Σ−1

∇r

∥

∥

∥

2

+ εr−1/2

∥

∥

∥
Σ−1

∇r

∥

∥

∥







+P

(√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
≥
∥

∥

∥
Σ−1

∇r

∥

∥

∥

−1
)

= o(1)

by Lemmas 3 and 1. This establishes Lemma 6. 2

Lemma 7. Under the assumptions of Theorem A.1,

√
r
∥

∥

∥
Âr − Ar

∥

∥

∥
= oP (1)

as r → ∞ and r = o(n1/3).

Proof. By the triangle inequality and Lemmas 1 and 6, we have

∥

∥

∥
Σ̂−1

∇̂r

∥

∥

∥
≤
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥
= OP (1). (28)

6



Note that the orthogonality conditions in (15) entail that Ar = Σ∇,∇r
Σ−1

∇r
.

By Lemmas 1, 3, 6, and (28), we then have

√
r
∥

∥

∥
Âr −Ar

∥

∥

∥
=

√
r
∥

∥

∥
Σ̂∇̂,∇̂r

Σ̂−1

∇̂r

− Σ∇,∇r
Σ−1

∇r

∥

∥

∥

=
√
r
∥

∥

∥

(

Σ̂∇̂,∇̂r
− Σ∇,∇r

)

Σ̂−1

∇̂r

+ Σ∇,∇r

(

Σ̂−1

∇̂r

− Σ−1
∇r

)∥

∥

∥
= oP (1).

2

Proof of Theorem A.1. In view of (14), it suffices to show that Âr(1) →
A(1) and Σ̂ur

→ Σu in probability. Let the r × 1 vector 1r = (1, . . . , 1)′ and
the r(p + q) × (p + q) matrix Er = Ip+q ⊗ 1r, where ⊗ denotes the matrix
Kronecker product and Id the d×d identity matrix. Using (22), and Lemmas
5, 7, we obtain

∥

∥

∥
Âr(1) −A(1)

∥

∥

∥
≤

∥

∥

∥

∥

∥

r
∑

i=1

Âr,i −Ar,i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

r
∑

i=1

Ar,i − Ai

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

=
∥

∥

∥

(

Âr − Ar

)

Er

∥

∥

∥
+ ‖(A∗

r − Ar)Er‖ +

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

≤ √
p+ q

√
r
{∥

∥

∥
Âr − Ar

∥

∥

∥
+ ‖A∗

r −Ar‖
}

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

= oP (1).

Now note that
Σ̂ur

= Σ̂∇̂ − ÂrΣ̂
′
∇̂,∇̂r

and, by (13)

Σu = Eutu
′
t = Eut∇′

t = E

{(

∇t −
∞
∑

i=1

Ai∇t−i

)

∇′
t

}

= Σ∇ −
∞
∑

i=1

AiE∇t−i∇′
t = Σ∇ − A∗

rΣ
′
∇,∇r

−
∞
∑

i=r+1

AiE∇t−i∇′
t.

7



Thus,

∥

∥

∥
Σ̂ur

− Σu

∥

∥

∥
=

∥

∥

∥
Σ̂∇̂ − Σ∇ −

(

Âr − A∗
r

)

Σ̂′
∇̂,∇̂r

−A∗
r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)

+
∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

≤
∥

∥

∥
Σ̂∇̂ − Σ∇

∥

∥

∥
+
∥

∥

∥

(

Âr −A∗
r

)(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+
∥

∥

∥

(

Âr −A∗
r

)

Σ′
∇,∇r

∥

∥

∥
+
∥

∥

∥
A∗

r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

. (29)

In the right-hand side of this inequality, the first norm is oP (1) by Lemma 3.
By Lemmas 5 and 7, we have ‖Âr−A∗

r‖ = op(r
−1/2) = op(1), and by Lemma 3,

‖Σ̂′
∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(r
−1/2) = op(1). Therefore the second norm in the right-

hand side of (29) tends to zero in probability. The third norm tends to zero
in probability because ‖Âr−A∗

r‖ = op(1) and, by Lemma 1, ‖Σ′
∇,∇r

‖ = O(1).
The fourth norm tends to zero in probability because, in view of Lemma 3,
‖Σ̂′

∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(1), and, in view of (22), ‖A∗
r‖2 ≤∑∞

i=1 Tr(AiA
′
i) <∞.

Clearly, the last norm tends to zero, which completes the proof. 2
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