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Linking Decision and Time Utilities 

 

Krzysztof Kontek
1
 

Abstract 

This paper presents the functional relationship between two areas of interest in contempo-

rary behavioral economics: one concerning choices under conditions of risk, the other concerning 

choices in time. The paper first presents the general formula of the relationship between decision 

utility, the survival function, and the discounting function, where decision utility is an alternative 

to Cumulative Prospect Theory in describing choices under risk (Kontek, 2010). The stretched 

exponential function appears to be a simple functional form of the resulting discounting function. 

Solutions obtained using more complex forms of decision utility and survival functions are also 

considered. These likewise lead to the stretched exponential discounting function. The paper 

shows that the relationship may also have other forms, including the hyperbolic functions typi-

cally used to describe the intertemporal experimental results. This solution has however several 

descriptive disadvantages, which restricts its common use in the description of lottery and in-

tertemporal choices, and in financial asset valuations.    

 

JEL classification: C91, D03, D81, D90, E43, G12 

 

Keywords: Discounted Utility, Hyperbolic Discounting, Decision Utility, Prospect Theory, Asset 

Valuation  

1 Introduction 

The Discounted Utility Model was introduced by Paul Samuelson in 1937. This model 

specifies a decision maker’s intertemporal preferences over consumption profiles. It assumes that 

an individual’s intertemporal utility function can be described by the following functional form: 

 ( ) ( ) ( )
0

,...,
T t

t

t T t k

k

U c c d k u c
−

+
=

=∑  (1.1) 

where  
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 ( ) 1

1

k

d k
ρ

 
=  + 

 (1.2) 

The function ( )t ku c +  is often interpreted as the individual’s cardinal instantaneous utility 

function, and d(k) as the individual’s discount function (Frederick et al., 2002). The model as-

sumes a constant discount rate of ρ, which implies that an individual’s intertemporal preferences 

are time-consistent. Empirical research has documented various inadequacies of the DU model as 

a descriptive model of behavior. First, experimentally observed discount rates are not constant 

but decrease over time. Furthermore, discount rates vary across different types of intertemporal 

choices: gains are discounted more than losses, small amounts more than large amounts, and ex-

plicit sequences of multiple outcomes differently than outcomes considered singly (Frederick et 

al., 2002).  

Several types of functions have been proposed to describe the observed phenomenon 

commonly referred to as hyperbolic discounting. A comprehensive review can be found in Doyle 

(2010) and Andersen et al. (2010). Only those most frequently used are mentioned below. The 

hyperbolic discounting function: 

 ( ) 1

1
d t

tα
=

+
 (1.3) 

is due to Mazur (1987). The model proposed by Loewenstein and Prelec (1992) and Myerson and 

Green (1995) generalizes the hyperbolic function: 

 ( )
( )

1

1
d t

t
βα

=
+

 (1.4) 

Another general form of the hyperbolic function: 

 ( ) 1

1
d t

tβα
=

+
 (1.5) 

was analyzed by Rachlin (2006). A quasi-hyperbolic model was proposed by Laibson (1997): 

 ( )
1 0

0t

if t
d t

if tβ δ
=

= 
>

 (1.6) 

where β and δ are constants between 0 and 1. The constant sensitivity discounting function:  

 ( ) ( )t
d t e

βα−
=  (1.7) 

was proposed by Read (2001) and Ebert and Prelec (2007).  
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It was Prelec and Loewenstein (1991) who first noticed that risk taking and discounting 

behavior exhibit a number of parallels. For a long time, however, research on time discounting 

was conducted independently of research on lottery behavior. It is only recently that a common 

approach has attracted significant interest. Halevy (2008) showed that diminishing impatience 

may be a consequence of nonlinear probability weighting. Saito (2008, 2009) proposed a model 

in which a failure of expected utility captured by the Allais paradox is equivalent to a failure of 

exponential discounting captured by hyperbolic discounting. Walther (2008) stated that the S-

shape of the probability weighting function induces imputed hyperbolic discount rates. Epper et 

al. (2009) showed that people’s risk behavior is a significant determinant of their time discount-

ing behavior.  

It would seem, however, that no simple direct functional link between these two areas of 

interest has so far been presented. This may be due to Prospect Theory, which consists of the 

value and the probability weighting functions; this two-equation form may create some problems 

in capturing the link to the time domain. It may also be a corollary of the functional form of the 

probability weighting proposed by Tversky and Kahneman (1992), which is unfriendly to trans-

form. It appears, moreover, that hyperbolic functions make the functional link more difficult to 

establish; however, the term “hyperbolic discounting” has dominated the literature to such an 

extent that other types of descriptive function are considered far more rarely.  

This paper presents such a link between the decision and time utilities.  

2 Basic Model 

The essence of time discounting is that an immediate reward is preferred over a future re-

ward of the same magnitude. A plausible explanation of this behavior is the risk that the future 

reward will not be realized. This type of problem may be analyzed using survival functions
2
, a 

basic failure analysis tool. The survival function ( )S t  expresses the probability p that the time of 

failure (death) T is later than some specific time t:  

 ( ) [ ]S t p T t= >  (2.1) 

The probability of survival is thus complementary to the probability of failure. It follows 

that the expectation of a future reward may be regarded as equivalent to taking part in lottery 
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whose probability of winning is expressed by the survival function. For t = 0, the probability of 

survival and the probability of winning the lottery assume a value of 1. The probability of win-

ning the lottery decreases over time, as does the probability of survival. As t approaches infinity, 

the probability of survival, and consequently the probability of winning the lottery, approach 0. 

There are several theories describing lottery behavior, of which the best known is Pros-

pect Theory (Kahneman, Tversky, 1979, 1992). In this paper, however, Decision Utility Theory 

(Kontek, 2010) is used. This theory is an alternative to Prospect Theory, but has been proved to 

present several descriptive advantages over Cumulative Prospect Theory, especially in the case of 

multi-outcome lotteries. The theory makes no use of the probability weighting function concept, 

but rather distinguishes decision utility from perception utility. Decision utility describes how 

decisions are made under conditions of risk, whereas perception utility describes how people per-

ceive different welfare or income levels. The basic model is expressed as: 

 ( )p D r=  (2.2) 

where p denotes probability, D denotes decision utility and r denotes the framed (relatively ex-

pressed, normalized) outcome defined as: 

 
( ) ( )
( ) ( )

min

max min

v ce v P
r

v P v P

−
=

−
 (2.3) 

where v denotes perception utility, ce denotes the certainty equivalent, Pmax = Max(x) is the max-

imum lottery outcome, and Pmin = Min(x) is the minimum lottery outcome. Decision Utility The-

ory postulates a double S-shaped decision utility curve similar to the one hypothesized by 

Markowitz (1952), and applies the expected decision utility value similarly to Expected Utility 

Theory. 

Equation (2.2) directly expresses the probability of winning the lottery so it can be imme-

diately compared with the probability of survival (2.1).  

 ( ) ( )D r S t=  (2.4) 

Equation (2.4), which states that decision utility equals the survival function, presents the 

connection between the two areas of interest, i.e. lottery and time decision making. Probability, 

which is the link between the two, disappears as a result from considerations. This solution can 

be inverted to give: 

 ( ) ( )1r t D S t−=     (2.5) 
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Equation (2.5) describes the relatively expressed outcome over the interval [0,1] as a func-

tion of time. This is the general form of the time discounting function r(t) expressed in terms of 

the decision utility D and survival function S. 

3 Basic Functional Form 

The functional form of the discounting function (2.5) depends on the forms used to de-

scribe the survival function (2.1) and decision utility (2.2). Their simple forms will be considered 

first, before discussing more complex ones in Point 5. Let us assume that the pace at which the 

survival function decreases depends on its actual value and the failure function
3
 ( )h t : 

 
( ) ( ) ( )

d S t
S t h t

dt
= −  (3.1) 

Let us assume the simplest case, so that the failure rate is constant over time: 

 ( ) 1
h t

τ
=  (3.2) 

Solving the differential equation (3.1) with the condition ( )0 1S t = =  results in the fol-

lowing exponential survival function, which holds for 0t ≥ : 

 ( )
t

S t e τ−=  (3.3) 

The constant τ is the time after which the probability of survival (obtaining the reward) 

reduces to 1/e.  

Decision utility will be described using the form proposed by Prelec (1998, 2000). This 

was originally intended to describe the probability weighting function: 

 ( ) ( )
1

lnr
D r e

α− −
=  (3.4) 

Decision utility is linear for α = 1 (Figure 3.1, left). For α < 1, the decision utility curve 

assumes an S-type shape. This reflects risk seeking below 1 /r e=  and risk aversion above this 

value
4
. For α > 1, the decision utility curve assumes an inverse S-shape. This describes the oppo-

site, quite unusual behavior.  

Despite its limited descriptive capabilities, this single-parameter form appears to be ade-

                                                 
3
 The term “hazard function” is also used. 

4
 Using the form (3.4), the point 1 /r e=  happens to be the aspiration level, according to Decision Utility Theory. 

This provides a plausible psychological explanation of risk attitudes.  
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quate to proceed further. The inversed decision utility, required in (2.5), has a symmetrical form: 

 ( ) ( )1 ln p
D p e

α
− − −

=  (3.5) 

Its shape is presented in Figure 3.1 (right)
5
. 

 
Figure 3.1The shape of the decision utility curves (left) and the inversed decision utility curves (right) using 

Prelec’s functional form for different values of α. 

Substituting (3.3) and (3.5) in (2.5) results in: 

 ( )
ln

t

e

tr e

α

τ
  
  
  
   

−
− −

=  (3.6) 

which, after simplification, leads to the time discounting function: 

 ( )
t

tr e

α

τ
 
 
 

−
=  (3.7) 

The function (3.7) is known as the stretched exponential function
6
 and is essentially the 

same as (1.7). Its shape is presented in Figure 3.2 (left). For α = 1, the shape is exponential. For α 

< 1, the curve falls faster than exponentially for t < τ, but slower for t > τ. For α > 1, it exhibits 

                                                 
5
 The shape of the inversed decision utility resembles the one of the probability weighting function. However both 

concepts lead to very much different model properties, especially in the case of multi-outcome lotteries (Kontek, 

2010).  
6
 This function has been used in physics since 1854. The name was coined to describe longer than exponential de-

cays. In the present context, in which the initial part of the curve is of most interest, “condensed exponential” might 

have been a more appropriate name. 
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the opposite behavior. The curves for all values of α intersect at t = τ. At this point, the discount-

ing function assumes a value of 1/e. 

The shape of the discounting function corresponds with that of the decision utility func-

tion. The case of α < 1 is considered first. For t < τ, the discounting function assumes values 

greater than 1/e, for which decision utility demonstrates an attitude of risk aversion. Therefore the 

discounting function falls faster than exponentially. For t > τ, the discounting function assumes 

values less than 1/e, for which decision utility demonstrates a risk seeking attitude. The discount-

ing function therefore falls slower than exponentially. For α > 1, this reasoning is reversed. 

 

Figure 3.2The shape of the stretched exponential function for different values of α (left). The shape of the 

stretched exponential function compared with the general hyperbolic function (1.4).  τ = 3 is assumed. 

The same α parameter controls the shape of both curves. The greater the difference be-

tween α and 1, the greater the departure from both the linear shape of decision utility and the ex-

ponential shape of the discounting function. The clear link between decision and time utility has 

been presented. The greater the curvature of decision utility, the greater the magnitude of the so 

called “hyperbolic discounting”. 

The shape of the stretched exponential function for α = 0.5 is compared with the general 

hyperbolic function (1.4) (see Figure 3.2, right). The shapes are clearly similar. This may indicate 

that the hyperbolic function, which gave “hyperbolic discounting” its name, was mistakenly as-

sumed to describe the experimental results, and that the phenomenon can be better explained us-

ing a more or less “stretched” exponential function. This observation will be further discussed in 

the next Points. 
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4 Hyperbolic Functions 

Specific functional forms of decision utility and the survival functions have been assumed 

in the considerations presented so far in order to determine the time discounting function (the 

stretched exponential one). Let us now approach the problem from the opposite direction. Let us 

consider the hyperbolic discounting function (1.3): 

 ( ) 1

1

t
t

r

τ

=
+

 (4.1) 

and determine the functional form of the decision utility that corresponds with (4.1). According 

to (2.5), this should satisfy: 

 11

1

t

D e
t

τ

τ

−−  
=  

 +
 (4.2) 

Although a general rule for determining 1D−  seems unobtainable, the sought function can 

be deduced:  

 ( )1 1

1 ln
D p

p

− =
−

 (4.3) 

In order to verify the result, (4.3) and (3.3) are substituted into (2.5) leading to the desired form: 

 ( ) 1 1

11 ln
t

r t
t

e τ

τ
−

= =
+−

 (4.4) 

The form (4.3) is unable to describe different lottery behaviors as it has no parameters. 

Therefore the general hyperbolic function (1.4) is next considered: 

 ( ) 1

1

r t
t

α

τ

=
 + 
 

 (4.5) 

 for which the decision utility function D has to satisfy: 

 11

1

t

D e
t

τ
α

τ

−−  
=  

   + 
 

 (4.6) 

The desired function can be deduced analogously to (4.3): 
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 ( )
( )

1 1

1 ln
D p

p
α

− =
−

 (4.7) 

The functional form of decision utility can thus be determined: 

 ( )
1

1 rD r e
α

−
−=  (4.8) 

The shape of decision utility (4.8) is plotted for several values of α (see Figure 4.1, left). 

The corresponding shape of the discounting function (4.5) is presented in Figure 4.1 (right). 

   
Figure 4.1Decision utility (4.8) and the corresponding hyperbolic discounting function (4.5) for several values 

of α. τ = 3 is assumed for the discounting function. 

As in the case considered in Point 3, the same α parameter controls the shape of the both 

decision utility and discounting functions. However, this model does not have such attractive 

properties as the one already presented. First, (4.8) has limited capabilities to model the shape of 

the function; varying the α parameter merely shifts the decision utility curve, and a linear and an 

inverse S-shaped decision utility can not be described. Second, the exponential discounting func-

tion may be described by only using (4.5) in the limiting case when α and τ approach infinity. 

Third, the discounting function does not assume a constant value at t = τ for different values of α: 

this means that τ cannot be unequivocally interpreted in this model. Further limitations of this 

solution are encountered in financial asset valuations (see Point 7).  

Let us repeat the presented approach using another general form of the hyperbolic func-

tion (1.5): 

 ( ) 1

1

r t
t

α

τ

=
 +  
 

 (4.9) 



 10 

The decision utility function D needs to satisfy: 

 11

1

t

D e
t

τ
α

τ

−−  
=  

   +  
 

 (4.10) 

The inversed decision utility is deduced to be: 

 ( )
( )

1 1

1 ln
D p

p
α

− =
+ −

 (4.11) 

This leads to the decision utility functional form: 

 ( )

1

1
1

rD r e

α
−

 − − 
 =  (4.12) 

The shape of the decision utility curve (4.12) for several values of α, together with the 

corresponding shape of the discounting function (4.9) is presented in Figure 4.2.  

   

Figure 4.2 Decision utility (4.12) and the corresponding hyperbolic discounting function (4.9) for several val-

ues of α. τ = 3 is assumed for the discounting function. 

In this case, the plots more closely resemble those considered in Point 3, but this result is 

not entirely satisfactory either. First, the decision utilities intersect at the point 1 / 0.37p e= ≈  

and r = 0.5, which describes very unlikely behavior (as the probability of winning the lottery is 

typically greater than the relative certainty equivalent). Second, the linear decision utility cannot 

be described using (4.12). Third, (4.9) cannot describe the exponential discounting, even in limit-

ing cases. Fourth, the “hyperbolic” shape only obtains for α < 1, which is a very inconvenient 

attribute in financial applications (see Point 7). 
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5 More Advanced Forms 

The stretched exponential discounting function (3.7) has been derived using the simple 

functional forms of decision utility and the survival function. It is interesting to check the result 

using their more advanced forms. First, the two-parameter function proposed by Prelec (2000) is 

used to describe decision utility: 

 ( )

1

ln r

D r e

α

β

 
−  

 
−

=  (5.1) 

The inversed decision utility is given by: 

 ( ) ( )1 ln p
D p e

α
β− − −

=  (5.2) 

Substituting (5.2) and the exponential survival function (3.3) into (2.5) results in: 

 ( )
t

tr e

α
β

τ
 
 
 

−
=  (5.3) 

As one of the parameters β or τ appears to be redundant, (5.3) can be presented as:  

 ( ) '
t

tr e

α

τ
 
 
 

−
=  (5.4) 

where 
1

' ατ τ β
−

= . Despite using a more complex functional form of decision utility, the resulting 

discounting function thus remains the stretched exponential function.  

More complex forms of the survival function can also be used. Let us assume that it is de-

scribed using the Weibull distribution, which has an additional β parameter to cater for a variable 

failure rate. The complementary cumulative Weibull distribution is a stretched exponential func-

tion, quite coincidentally to the considerations presented so far. The Weibull survival function is 

therefore expressed as:   

 ( )
t

S t e

β

τ
 
 
 

−
=  (5.5) 

For β = 1, the Weibull survival function reduces to the exponential, which has already 

been considered (see (3.3)). Substituting (5.5) and Prelec’s basic form (3.5) into (2.5) leads to: 

 ( )
'

t

tr e

α

τ
 
 
 

−
=  (5.6) 

which is another stretched exponential function with 'α α β= . The stretched exponential dis-
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counting function thus remains a solution when more complex functional forms of decision utility 

and the survival function are used.  

Obviously, this should not be treated as a general rule, as Prelec’s functions are not the 

only means of describing decision utility, and the Weibull distribution is not the most advanced 

form of describing survival functions. Let us assume the cumulative beta distribution to describe 

the inversed decision utility function: 

 ( ) ( )1 , ,D p I p α α− =  (5.7) 

where I denotes a regularized incomplete beta function (cumulative beta). Only a single parame-

ter α is used to model the curvature of the decision utility function with an intersection point of r 

= 0.5 rather than r = 1/e as in the case of Prelec’s function (3.4). Substituting (5.7) and (3.3) into  

(2.5) gives: 

 ( ) , ,
t

r t I e τ α α
− 

=  
 

 (5.8) 

which is a possible form of the time discounting function.  

6 Time Utility 

The present value of a future outcome will now be calculated. We refer to the definition of 

the relative outcome r (2.3). Please note that the minimum outcome assumes a value of 0 in the 

presented considerations. Therefore (2.3) simplifies to: 

 
( )
( )

v PV
r

v P
=  (6.1) 

where PV denotes the present value of a future outcome P, and v is the perception utility. Thus:  

 ( ) ( )v PV v P r=  (6.2) 

As r describes the discounting function, it follows that:  

 ( ) ( ) ( )v PV v P r t=  (6.3) 

Assuming that perception utility can be described using Steven’s power law, and that the 

discounting function is described using the stretched exponential function, (6.3) can be presented 

as:   

 

t

PV P eγ γ

α

τ
 
 
 

−
=  (6.4) 



 13 

where γ denotes the power coefficient. This allows the present value to be determined in absolute 

terms: 

 

'
t

PV P e

α

τ
 
 
 

−
=  (6.5) 

where ' /α α γ= . Including the power perception utility thus leads to the stretched exponential 

discounting function once more. More complex outcome pattern will be analyzed in the Point 7. 

7 Behavioral Present Value of Future Cash Flows 

The discounting function is of great importance in financial valuations, in which the Dis-

counted Utility model (1.1) is usually used. Let us verify this model using behavioral discounting 

functions. Let us assume a continuous, constant future cash flow of C whose behavioral present 

value can be calculated using the stretched exponential function: 

 
0

1
1

t

PV C e dt C

α

τ τ
α

 ∞ − 
   = = Γ + 

 ∫  (7.1) 

where Γ  is the gamma function. For α = 1, i.e. the exponential discounting, (7.1) reduces to Cτ. 

Using the hyperbolic function, the integral does not converge: 

 
0

1

1

PV C dt
t

τ

∞

= = ∞
+

∫  (7.2) 

This precludes this function from being used in financial applications, as the perceived 

price of perpetual bonds (like British Consols) would be infinite. Using the general hyperbolic 

discounting function (4.5) results in: 

 
0

1

1
1

PV C dt C
t

α

τ
α

τ

∞

= =
− + 

 

∫  (7.3) 

which only has a finite value for α > 1. This restricts the use of this function in asset valuations. It 

also limits the possible shapes of the decision utility curve. Using the other general hyperbolic 

function (4.9) results in: 

 
0

1

sin1

PV C dt C
t

α

π τ
π

α
ατ

∞

= =
 +  
 

∫  (7.4) 
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which likewise only holds for α > 1. However, the discounting function (4.9) presents the re-

versed “hyperbolic” shape for such parameter values (see Figure 4.2). To put it another way, the 

“hyperbolic” discounting described by (4.9) always results in an infinite integral value. 

The verification of the functions used to describe “hyperbolic” discounting presented here 

have not as yet been presented in the behavioral literature on the subject. The finite integral for 

all values of α demonstrates a major advantage of the stretched exponential function over hyper-

bolic functions. The latter appear to have limited applications outside the laboratory. 

This remark does not exhaust the topic of behavioral discounting in financial applications. 

One of the most intriguing subjects to be found under this heading is the shape of yield curves, 

which present the relation between the interest rate and the time to maturity. These curves typi-

cally indicate an increasing interest rate for longer maturity periods. This means, a premium is 

paid for lending money for a longer time7. This starkly contradicts the decreasing discount rate 

established experimentally by behavioral economics. A detailed discussion of this reversed pat-

tern (which is “normal” in the financial world) is beyond the scope of this paper. Nevertheless, it 

is worth noting that the hyperbolic functions (4.1) and (4.5) are unable to describe this phenome-

non, as their discount (failure) rates only ever decrease over time.  

8 Conclusions 

This paper presented a simple functional link between the lottery and time decision mak-

ing theories. This was done using Decision Utility Theory (Kontek, 2010). Decision utility was 

assumed to be equal the survival function, with probability being the link between the two areas 

of decision making. This general formula allowed the time discounting function to be determined. 

The stretched exponential function appeared to be its simple functional form. This function also 

resulted when more advanced forms of decision utility and survival function were used. How-

ever, other forms of the relationship, including hyperbolic functions, are possible. Unfortunately, 

these come up against many descriptive and practical hurdles. The stretched exponential function 

thus not only captures the relationship between lotteries and time decision making, but appears to 

be the most versatile in valuing financial assets. 

 

                                                 
7
 Therefore this pattern is called the “normal yield curve”. Flat and decreasing interest rates are met less frequently. 

The latter pattern is called the “inverted yield curve”. 
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