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1 Introduction

Since the seminal work of Ramsey [12], optimal growth models have played a central
role in modern macroeconomics. Classical growth theory relies on the assumption
that labor is supplied in fixed amounts, although the original paper of Ramsey did
include the disutility of labor as an argument in consumers’ utility functions. Subse-
quent research in applied macroeconomics (theories of business cycles fluctuations)
have reassessed the role of labor-leisure choice in the process of growth. Nowadays,
intertemporal models with elastic labor continue to be the standard setting used to
model many issues in applied macroeconomics.

Lagrange multiplier techniques have facilitated considerably the analysis of con-
strained optimization problems. The applications of those techniques in the analysis
of intertemporal models inherits most of the tractability found in a finite setting.
However, the passage to an infinite dimensional setting raises additional questions.
These questions concern both the extension of the Lagrangean in an infinite di-
mensional setting as well as the representation of the Lagrange multipliers as a
summable sequence.

Our purpose is to prove existence of competitive equilibrium for the basic neo-
classical model with elastic labor using some recent results (see Le Van and Saglam
[8]) concerning the existence of Lagrange multipliers in infinite dimensional spaces
and their representation as a summable sequence and using less stringent assump-
tions.

Previous work addressing existence of competitive equilibrium issues in intertem-
poral models attacks the problem of existence from an abstract point of view. Fol-
lowing the early work of Peleg and Yaari [11], this approach is based on separation
arguments applied to arbitrary vector spaces (see Bewley [2], Bewley [3], Aliprantis
et al. [1], Dana and Le Van [4]). The advantage of this approach is that it yields
general results capable of application in a wide variety of specific models but they
require a high level of abstraction and some strong assumptions.

Le Van and Vailakis [9], in order to prove the existence of competitive equi-
librium in a model with one representative agent and elastic labor supply impose
relatively strong assumptions 1. In this paper, the existence of equilibrium cannot
be established by using marginal utilities since we may have boundary solutions.

Recently, Le Van et al [10] extend the canonical representative Ramsey model
to include heterogeneous agents and elastic labor supply where supermodularity is
used to establish the convergence of optimal paths. The novelty in their works is
that relatively impatient consumers have their consumption and leisure converging
to zero and any Pareto optimal capital path converges to a limit point as time tends
towards infinity. However, if the limit points of the Pareto optimal capital paths are
not bounded away from zero, then their convergence results do not ensure existence
of equilibrium.

To obtain the convergence results, they impose strong assumptions which are
not used in our paper 2. Following the Negishi approach, our strategy for tackling

1They used assumptions
u(ε,ε)

ε
→ +∞ as ε → 0 for the proof ct > 0, lt > 0 and ucc

uc
≤ ucl

ul
for

the proof kt > 0 for all t.
2Le Van et al [10] assumed the cross-partial derivative ui

cl has constant sign, ui
c(x, x) and

ui
l(x, x) are non-increasing in x, production function F is homogenous of degree α ≤ 1 and FkL ≥ 0
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the question of existence relies on exploiting the link between Pareto-optima and
competitive equilibria. We show that there exists a Lagrange multiplier as a price
system such that together with the Pareto-optimal solution they constitute an equi-
librium with transfers. These transfers depend on the individual weights involved
in the social welfare function. An equilibrium exists provided that there is a set of
welfare weights such that the corresponding transfers equal zero.

The organization of the paper is as follows. In section 2, we present the model
and provide sufficient conditions on the objective function and the constraint func-
tions so that Lagrangean multipliers can be presented by an l1+ sequence. We
characterize some dynamic properties of the Pareto optimal paths of capital and
of consumption-leisure. In particular, we prove that the optimal consumption and
leisure paths of the most impatient agents will converge to zero in the long run,
with a very elementary proof compared to the one in Le Van et al, [10] which uses
supermodularity for lattice programming. In section 3, we prove the existence of
competitive equilibrium by using the Negishi approach and the Brouwer fixed point
theorem.

2 The model

We consider an intertemporal model with m ≥ 1 consumers and one firm. The
preferences of each consumer take additively form:

∑∞
t=0 βt

iu
i(ci

t, l
i
t) where βi ∈

(0, 1) is the discount factor (i = 1, ..., m). At date t, agent i consumes the quantity
ci
t, spends a quantity of leisure lit and supplies a quantity of labor Li

t and normalized
as lit+Li

t = 1. Production possibilities are presented by the gross production function
F and a physical depreciation δ ∈ (0, 1). Denote F (kt,

∑m
i=1 Li

t) + (1 − δ)kt =
f(kt,

∑m
i=1 Li

t).
We next specify a set of restrictions imposed on preferences and production

technology.3 The assumptions on period utility function ui : R+ × [0, 1] → R+ are
as follows:

U1: ui is continuous, concave, increasing on R+ × [0, 1] and strictly increasing,
strictly concave on R++ × (0, 1).

U2: ui(0, 0) = 0.

U3: ui is twice continuously differentiable on R++× (0, 1) with partial derivatives
satisfying the Inada conditions: limc→0 ui

c(c, l) = +∞, ∀l ∈ (0, 1] and liml→0 ui
l(c, l) =

+∞, ∀c > 0.

We extend the utility functions on R2 by imposing ui(c, l) = −∞ if (c, l) ∈
R2 \ {R+ × [0, 1]}.

The assumptions on the production function F : R2
+ → R+ are as follows:

F1: F is continuous, concave, increasing on R2
+ and strictly increasing, strictly

concave on R2
++.

(assumptions U4, F4, U5, F5 )
3We relaxed some important assumptions in the literature. For example, Bewley [2] assumes

that the production set is a convex cone (Theorem 3 , page 525). Also, he assumes the strictly

positiveness of derivatives of utility functions on RL
+ ( Bewley [2], strictly monotonicity assumption,

page 240). In our model, the utility functions may not be differentiable in R+ × [0, 1] (only

differentiable on R+ × (0, 1)) from which many difficulties arise when we deal with boundary

points.
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F2: F (0, 0) = 0.

F3: F is twice continuously differentiable on R2
++ with partial derivatives satisfying

the Inada conditions: limk→0 Fk(k, L) = +∞, ∀L > 0, limk→+∞ Fk(k, m) < δ and
limL→0 FL(k, L) = +∞, ∀k > 0.

We extend the function F over R2 by imposing F (k, L) = −∞ if (k, L) /∈ R2
+.

For any initial condition k0 ≥ 0, when a sequence k = (k0, k1, k2, ..., kt, ...)
such that 0 ≤ kt+1 ≤ f(kt,m) for all t, we say it is feasible from k0 and we
denote the class of feasible capital paths by Π(k0). Let (c1, c2, ..., ci, ..., cm) where
ci = (ci

0, c
i
1, ...c

i
t, ...) denote the vector of consumption and (l1, l2, ..., li, ..., lm) where

li = (li0, l
i
1, ...l

i
t, ...) denote the vector of leisure of all agents at date t. A pair of

consumption-leisure sequences (ci
, li) =(ci

t, l
i
t)
∞
t=0 is feasible from k0 ≥ 0 if there

exists a sequence k ∈ Π(k0) that satisfies ∀t,
m∑

i=1

ci
t + kt+1 ≤ f(kt,

m∑

i=1

(1− lit)) and 0 ≤ lit ≤ 1.

The set of feasible from k0 consumption-leisure is denoted by
∑

(k0). Assumption
F3 implies that

fk(+∞,m) = Fk(+∞,m) + (1− δ) < 1,

fk(0,m) = Fk(0,m) + (1− δ) > 1.

It follows that there exists k > 0 such that: (i) f(k,m) = k , (ii) k > k implies
f(k, m) < k, (iii) k < k implies f(k, m) > k. Therefore for any k ∈ Π(k0), we have
0 ≤ kt ≤ max(k0, k). Thus, a feasible sequence k is in l∞+ which in turn implies that
any feasible sequence (c, l) belongs to l∞+ × [0, 1]∞.

In what follows, we study the Pareto optimum problem. We obtain that the
Lagrange multipliers are in l1+. Then these multipliers will be used to define prices
and wages systems for the equilibrium.

Let ∆ = {η1, η2, ..., ηm|ηi ≥ 0 and
∑m

i=1 ηi = 1}. Given a vector of welfare
weights η ∈ ∆, define the Pareto problem

max
m∑

i=1

ηi

∞∑
t=0

βt
iu

i(ci
t, l

i
t)

s.t.

m∑

i=1

ci
t + kt+1 ≤ f(kt,

m∑

i=1

(1− lit)),∀t

ci
t ≥ 0, lit ≥ 0, lit ≤ 1, ∀i, ∀t

kt ≥ 0, ∀t and k0 given.

Note that, for all k0 ≥ 0, 0 ≤ kt ≤ max(k0, k), then 0 ≤ ci
t ≤ f(max(k0, k), m)

∀t, ∀i = 1...m. Therefore, the sequence (ui)n =
∑n

i=1 βt
iu

i(ci
t, l

i
t) is increasing and

bounded and will converge. Thus we can write

m∑

i=1

ηi

∞∑
t=0

βt
iu

i(ci
t, l

i
t) =

∞∑
t=0

m∑

i=1

ηiβ
t
iu

i(ci
t, l

i
t).

Let x = (c,k, l) ∈ (l∞+ )m × l∞+ × (l∞+ )m.
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Define

F(x) = −
∞∑

t=0

m∑

i=1

ηiβ
t
iu

i(ci
t, l

i
t)

Φ1
t (x) =

m∑

i=1

ci
t + kt+1 − f(kt,

m∑

i=1

(1− lit))

Φ2i
t (x) = −ci

t

Φ3
t (x) = −kt

Φ4i
t (x) = −lit

Φ5i
t (x) = lit − 1

Φt = (Φ1
t ,Φ

2i
t , Φ3

t+1,Φ
4i
t , Φ5i

t ), ∀t,∀i = 1...m

The Pareto problem can be written as:

minF(x)

s.t.Φ(x) ≤ 0,x ∈ (l∞+ )m × l∞+ × (l∞+ )m

where:

F : (l∞+ )m × l∞+ × (l∞+ )m → R ∪ {+∞}
Φ = (Φt)t=0...∞ : (l∞+ )m × l∞+ × (l∞+ )m → R ∪ {+∞}

Let C = dom(F) = {x ∈ (l∞+ )m × l∞+ × (l∞+ )m|F(x) < +∞}
Γ = dom(Φ) = {x ∈ (l∞+ )m × l∞+ × (l∞+ )m|Φt(x) < +∞, ∀t}.

The following theorem follows from Theorem1 and Theorem2 in Le Van and Saglam
[8].

Theorem 1 Let x, y ∈ (l∞+ )m × l∞+ × (l∞+ )m, T ∈ N .

Define xT
t (x,y) =

{
xt if t ≤ T

yt if t > T

Suppose that two following assumptions are satisfied:
T1: If x ∈ C, y ∈ (l∞+ )m × l∞+ × (l∞+ )m satisfy ∀T ≥ T0, xT (x,y) ∈ C then

F(xT (x,y)) → F(x) when T →∞.

T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0, then

a) Φt(xT (x,y)) → Φt(x)as T →∞
b) ∃Ms.t.∀T ≥ T0, ‖Φt(xT (x,y))‖ ≤ M

c) ∀N ≥ T0, lim
t→∞

[Φt(xT (x,y))− Φt(y)] = 0

Let x∗ be a solution to (P) and x ∈ C satisfy the Strong Slater condition:

sup
t

Φt(x) < 0.

Suppose xT (x∗,x) ∈ C ∩ Γ. Then, there exists Λ ∈ l1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (l∞)m × l∞ × (l∞)m

and ΛΦ(x∗) = 0.
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Obviously, for any η ∈ ∆, an optimal path will depend on η. In what follows,
if possible, we will suppress η and denote by (c∗i,k∗,L∗i, l∗i) any optimal path for
each agent i. The following proposition characterize the Lagrange multipliers of the
Pareto problem.

Proposition 1 If x∗ = (c∗i,k∗, l∗i) is a solution to the Pareto problem:

max
∞∑

t=0

m∑

i=1

ηiβ
t
iu

i(ci
t, l

i
t) (Q)

s.t.
m∑

i=1

ci
t + kt+1 ≤ f(kt, L

∗
t ), ∀t ≥ 0

ci
t ≥ 0, lit ≥ 0, lit ≤ 1, ∀i, ∀t

kt ≥ 0, ∀t and k0 given.

Then there exists, ∀i = 1...m, λ = (λ1
, λ2i, λ3, λ4i, λ5i) ∈ l1+× (l1+)m× l1+× (l1+)m×

(l1+)m λ 6= 0 such that

∞∑
t=0

m∑

i=1

ηiβ
t
iu

i(c∗it , l∗it )−
∞∑

t=0

λ1
t (

m∑

i=1

c∗it + k∗t+1 − f(k∗t , L∗t ))

+
∞∑

t=0

m∑

i=1

λ2i
t c∗it

∞
+

∑
t=0

λ3
t k
∗
t

∞
+

∑
t=0

m∑

i=1

λ4i
t l∗it +

∞∑
t=0

m∑

i=1

λ5i
t (1− l∗it )

≥
∞∑

t=0

m∑

i=1

ηiβ
t
iu

i(ci
t, l

i
t)−

∞∑
t=0

λ1
t (

m∑

i=1

ci
t + kt+1 − f(kt, Lt))

+
∞∑

t=0

m∑

i=1

λ2i
t ci

t

∞
+

∑
t=0

λ3
t kt

∞
+

∑
t=0

m∑

i=1

λ4i
t lit +

∞∑
t=0

m∑

i=1

λ5i
t (1− lit) (1)

λ1
t

[
m∑

i=1

c∗it + k∗t+1 − f(k∗t ,

m∑

i=1

L∗it )

]
= 0 (2)

λ2i
t c∗it = 0, ∀i = 1...m (3)

λ3
t k
∗
t = 0 (4)

λ4i
t l∗it = 0, ∀i = 1...m (5)

λ5i
t (1− l∗it ) = 0, ∀i = 1...m (6)

0 ∈ ηiβ
t
i∂1u

i(c∗it , l∗it )− {λ1
t}+ {λ2i

t }, ∀i = 1...m (7)

0 ∈ ηiβ
t
i∂2u

i(c∗it , l∗it )− λ1
t ∂2f(k∗t , L∗t ) + {λ4i

t } − {λ5i
t }, ∀i = 1...m (8)

0 ∈ λ1
t ∂1f(k∗t , L∗t ) + {λ3

t} − {λ1
t−1} (9)

where, L∗t =
∑m

i=1 L∗it =
∑m

i=1(1− l∗it ), ∂ju(c∗it , l∗it ), ∂jf(k∗t , L∗t ) respectively denote
the projection on the jth component of the subdifferential of function u at (c∗it , l∗it )
and the function f at (k∗t , L∗t )

4

4For a concave function f defined on Rn, ∂f(x) denotes the subdifferential of f at x. We have

to write the first-order conditions by the subgradient set since at the point (0, 0), the functions ui

and f are not assumed to be differentiable.
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Proof : We show that the Strong Slater condition holds. Since fk(0,m) > 1,5for
all k0 > 0, there exists some k̂ ∈ (0, k0) such that: 0 < k̂ < f(k̂, m) and 0 < k̂ <

f(k0, m).Thus, there exists two small positive numbers ε, ε1 such that:

0 < k̂ + ε < f(k̂,m− ε1) and 0 < k̂ + ε < f(k0,m− ε1).

Denote x = (c,k, l) where c = (ci)m
i=1, and

ci = (ct
i)t=0,...∞ = (

ε

m
,

ε

m
,

ε

m
, ...)

l = (l
i
)m
i=1, where

l
i
= (lt

i
)t=0,...∞ = (

ε1

m
,
ε1

m
,
ε1

m
, .....).

and k = (k0, k̂, k̂, ...). We have

Φ1
0(x) =

m∑

i=0

ci
0 + k1 − f(k0,

m∑

i=1

(1− li0))

= ε + k̂ − f(k0,m− ε1) < 0

Φ1
1(x) =

m∑

i=0

ci
1 + k2 − f(k1,

m∑

i=1

(1− li1))

= ε + k̂ − f(k̂, m− ε1) < 0

Φ1
t (x) = ε + k̂ − f(k̂, m− ε1) < 0, ∀t ≥ 2

Φ2i
t (x) = −ct

i = − ε

m
< 0, ∀t ≥ 0,∀i = 1...m

Φ3
0(x) = −k0 < 0;

Φ3
t (x) = −k̂ < 0 ∀t ≥ 1.

Φ4i
t (x) = −ε1

m
< 0, ∀t ≥ 0, ∀i = 1...m

Φ5i
t (x) =

ε1

m
− 1 < 0, ∀t ≥ 0, ∀i = 1...m

Therefore the Strong Slater condition is satisfied.
It is obvious that, ∀T, xT (x∗,x) belongs to (l∞+ )m × l∞+ × (l∞+ )m.

As in Le Van and Saglam [8], Assumption T2 is satisfied. We now check As-
sumption T1.

For any x̃ ∈ C, ˜̃x ∈ (l∞+ )m × l∞+ × (l∞+ )m such that for any T, xT (x̃, ˜̃x) ∈ C we
have

F(xT (x̃, ˜̃x)) = −
T∑

t=0

m∑

i=1

ηiβ
t
iu

i(c̃i
t, l̃

i
t)−

∞∑

t=T+1

m∑

i=1

ηiβ
t
iu

i(
˜̃
ci
t,

˜̃
lit).

As ˜̃x ∈ (l∞+ )m × l∞+ × (l∞+ )m, sup
t
| ˜̃ct| < +∞ , there exists a > 0, ∀t, | ˜̃ct| ≤ a. Since

β ∈ (0, 1), as T →∞ we have

0 ≤
∞∑

t=T+1

m∑

i=1

ηiβ
t
iu

i(
˜̃
ci
t,

˜̃
lit) ≤ u(a, 1)

∞∑

t=T+1

m∑

i=1

ηiβ
t
i = u(a, 1)

m∑

i=1

∞∑

t=T+1

ηiβ
t
i → 0

5Assumption fk(0, 1) > 1 is equivalent to the Adequacy Assumption in Bewley [2], see Le Van

and Dana [6] Remark 6.1.1. This assumption is crucial to have equilibrium prices in l1+ since

it implies that the production set has an interior point. Subsequently, one can use a separation

theorem in the infinite dimensional space to derive Lagrange multipliers.
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where u(a, 1) = max{ui(a, 1), i = 1, ..., m}. Hence, F(xT (x̃, ˜̃x)) → F(x̃) when
T →∞. Taking account of the Theorem 1, we get (1) - (6).

Obviously, ∩m
i=1ri(dom(ui)) 6= ∅ where ri(dom(ui)) is the relative interior of

dom(ui). It follows from the Proposition 6.5.5 in Florenzano and Le Van [5], we
have

∂

m∑

i=1

ηiβ
t
iu

i(c∗it , l∗it ) = ηiβ
t
i

m∑

i=1

∂ui(c∗it , l∗it )

We then get (7) - (9) as the Kuhn-Tucker first-order conditions.

Remark 1 1. 1. It is easy to prove that ηi = 0 ⇒ c∗it = 0, l∗it = 0, ∀t.
2. For any optimal solution (c∗i,k∗, l∗i), we have for any t, any i, ∂1u

i(c∗it , l∗it ) 6=
∅, ∂2u

i(c∗it , l∗it ) 6= ∅, ∂1f(k∗t , L∗t ) 6= ∅, ∂2f(k∗t , L∗t ) 6= ∅, where L∗t = m−∑
i l∗it .

3. We have c∗it > 0 iff l∗it > 0. In this case, ∂1u
i(c∗it , l∗it ) = {ui

c(c
∗i
t , l∗it )}, ∂2u

i(c∗it , l∗it ) =
{ui

l(c
∗i
t , l∗it )}.

4. For any k0 > 0, there exists t with
∑

i c∗it > 0 and hence
∑

i l∗it > 0 (if
not, the value of the Pareto problem is null which is a contradiction).

Let us denote I = {i |ηi > 0}, β = max{βi|i ∈ I}, I1 = {i ∈ I | βi = β} and
I2 = {i ∈ I | βi < β}.

In the following proposition, we will prove the positiveness of the optimal capital
path.

Proposition 2 If k0 > 0, the optimal capital path satisfies k∗t > 0, ∀t.

Proof : Let k0 > 0 but assume that k∗1 = 0. From (9), L∗1 = 0. This implies∑
i c∗i1 = 0 and l∗i1 = 1,∀i: a contradiction with (7). Hence k∗1 > 0. By induction,

k∗t > 0,∀t > 0.

Remark 2 From (9) and Proposition 2, if k0 > 0, we have L∗t > 0 for any t ≥ 0.
Hence, for any t ≥ 0, ∂1f(k∗t , L∗t ) = {fk(k∗t , L∗t )}, ∂2f(k∗t , L∗t ) = {fL(k∗t , L∗t )}.

Proposition 3 Let k0 > 0. (a) With any η ∈ ∆, there exists a unique solution to
the Pareto problem

(
(c∗i), (l∗i),k∗

)
. We have:

For any t ≥ 0,

λ1
t (η) ∈ ∩i∈I ηiβ

t
i∂1u

i(c∗it , l∗it ) (10)

λ1
t (η)fL(k∗t , L∗t ) ∈ ∩i∈I ηiβ

t
i∂2u

i(c∗it , l∗it ) (11)

and for any t ≥ 1,

0 ∈ λ1
t (η)∂1f(k∗t , L∗t )− λ1

t−1(η) (12)

7



(b) Conversely, if the sequences c∗i, l∗i,k∗,L∗ satisfy

∀t ≥ 0, L∗t =
∑

i

(1− l∗it )

∑

i

c∗it = f(k∗t , L∗t )− k∗t+1

k∗0 = k0

and if there exists λ1 ∈ l1+ which satisfies (10), (11) and (12), then c∗i, l∗i,k∗

solve the Pareto problem with weights η and λ1 is an associated multiplier.

Proof : (a) For any ct ≥ 0, we have

ηiβ
t
iu

i(c∗it , l∗it )− ηiβ
t
iu

i(ct, l
∗i
t ) ≥ (λ1

t − λ2i
t )(c∗it − ct)

≥ λ1
t (c

∗i
t − ct) + λ2i

t ct ≥ λ1
t (c

∗i
t − ct)

If ct < 0,, then ui(ct, l
∗i
t ) = −∞, and the inequality still holds. Thus, λ1

t (η) ∈
ηiβ

t
i∂1u

i(c∗it , l∗it ), ∀i.
Similarly, we can prove λ1

t (η)fL(k∗t , L∗t ) ∈ ∩i∈I ηiβ
t
i∂2u

i(c∗it , l∗it ).
We have from (9),

λ1
t (η) [f(k∗t , L∗t )− f(k, L∗t )] ≥ [λ1

t−1 − λ3
t ](k

∗
t − k)

≥ λ1
t−1(k

∗
t − k) + λ3

t k ≥ λ1
t−1(k

∗
t − k), if k ≥ 0.

If k < 0, then f(k, L) = −∞ and the inequality still holds.
(b) The proof is easy.

When m > 1 we introduce an additional assumption which, together with U1,
U2, U3, F1, F2, F3 , will ensures positiveness of the total optimal consumptions
for any period.

U4: There exists an agent i with a utility function which satisfies limc→0+
ui(c,0)

c =
+∞.

Proposition 4 Add U4. Assume k0 > 0. Then
∑

i c∗it > 0 (and hence
∑

i l∗it > 0)
for any t.

Proof : Assume the contrary. There exist t with c∗it = l∗it = 0 for every i ∈ I. Take
i which satisfies U4. Then for any c > 0,

ηiβ
t
i

[
ui(0, 0)− ui(c, 0)

] ≥ −λ1
t c

since λ1 ∈ ηiβ
t
i∂1u

i(0, 0) from Proposition 3. We then obtain

λ1
t ≥ ηiβ

t
i

ui(c, 0)
c

, ∀c > 0

and λ1
t ≥ ηiβ

t
i lim

c→+∞
ui(c, 0)

c
= +∞

contradicting λ1 ∈ l1.

We now show that the consumption and leisure paths of all agents with a dis-
count factor less than the maximum one converge to zero. The proof is very simple
compared to the one in Le Van et al [10] which uses the supermodular structure
inspired by lattice programming.
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Proposition 5 If (k∗, c∗i, l∗i) denotes the optimal path starting from k0, then ∀i ∈
I2, c∗it −→ 0 and l∗it −→ 0.

Proof : Consider problem Rt

Vt(kt, kt+1) = max
m∑

i=1

ηiβ
t
iu

i(ci
t, l

i
t)

s.t.
m∑

i=1

ci
t + kt+1 ≤ F (kt,

m∑

i=1

(1− lit)) + (1− δ)kt .

It is easy to see that the Pareto problem is equivalent to

max
∞∑

t=0

Vt(kt, kt+1)

s.t. 0 ≤ kt+1 ≤ F (kt, m) + (1− δ)kt, ∀t ≥ 0

k0 is given.

Observe that

Vt(kt, kt+1) = βt max
m∑

i=1

ηi

(
βi

β

)t

ui(ci
t, l

i
t)

s.t.
m∑

i=1

ci
t + kt+1 ≤ F (kt,

m∑

i=1

(1− lit)) + (1− δ)kt .

Denote Zt =
(
ηi(βi

β )t
)
. From Berge Theorem, the strict concavity and the increas-

ingness of the utility functions, the optimal c∗i, l∗i are continuous with respect
to (Zt, kt, kt+1). Denote these functions by

(
Γi(Zt, k∗t , k∗t+1), Λ

i(Zt, k∗t , k∗t+1)
)
i
.

Let κ∗, ξ∗ denote the limit points of k∗t , k∗t+1 when t → +∞. Then, for i ∈ I2,
Γi(Zt, k∗t , k∗t+1) converges to Γi(0I2 , (ηi)i∈I1 , κ

∗, ξ∗) = 0, and Λi(Zt, k∗t , k∗t+1) con-
verges to Λi(0I2 , (ηi)i∈I1 , κ

∗, ξ∗) = 0.

3 Existence of competitive equilibrium

Let us give the characterization of equilibrium. For each consumer i, let αi > 0
denote the share of the profit of the firm which is owned by consumer i. We have∑m

i=1 αi = 1. Let ϑi > 0 be the share of the initial endowment owned by consumer
i. Obviously,

∑m
i=1 ϑi = 1. Clearly, ϑi k0 is the endowment of consumer i.

Definition 1 Let k0 > 0. A competitive equilibrium for this model consists of a
sequence of price p∗ = (p∗t )

∞
t=0 for the consumption good, a wage sequence w∗ =

(w∗t )∞t=0 for the labor, a price r for the initial capital stock k0 and an allocation
{c∗i,k∗, l∗i,L∗i} such that

i)

c∗ ∈ l∞+ , l∗i ∈ l∞+ ,L∗i ∈ l∞+ ,k∗ ∈ l∞+ ,

p∗ ∈ l1+\{0},w∗ ∈ l1+\{0}, r > 0.

9



ii)For every i, (c∗i, l∗i) is a solution to the problem

max
∑∞

t=0 βt
iu

i(ci
t, l

i
t)

s.t
∑∞

t=0 p∗t c
i
t +

∑∞
t=0 w∗t lit ≤∑∞

t=0 w∗t +ϑirk0 + αiπ∗

where π∗ is the maximum profit of the single firm.
iii) (k∗,L∗) is a solution to the firm’s problem

π∗ = max
∞∑

t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑

t=0

w∗t Lt − rk0

st 0 ≤ kt+1 ≤ f(kt, Lt), 0 ≤ Lt, ∀t

iv) Markets clear: ∀t,
m∑

t=1

c∗it + k∗t+1 = f(k∗t ,

m∑
t=1

L∗it ),

l∗it + L∗it = 1, L∗t =
m∑

t=1

Li∗
t and k∗0 = k0.

Now we define an equilibrium with transfers.

Definition 2 A given allocation {c∗i,k∗, l∗i,L∗i}, together with a price sequence
p∗ for consumption good, a wage sequence w∗ for labor and a price r for the initial
capital stock k0 constitute an equilibrium with transfers if

i)

c∗ ∈ (l∞+ )m, l∗ ∈ (l∞+ )m,L∗ ∈ (l∞+ )m,k∗ ∈ l∞+ ,

p∗ ∈ l1+\{0},w∗ ∈ l1+\{0}, r > 0

ii) For every i = 1...m, (c∗i, l∗i) is a solution to the problem

max
∞∑

t=0

βt
iu

i(ci
t, l

i
t)

st

∞∑
t=0

p∗t c
i
t +

∞∑
t=0

w∗t lit ≤
∞∑

t=0

p∗t c
∗i
t +

∞∑
t=0

w∗t l∗it

iii) (k∗,L∗) is a solution to the firm’s problem:

π∗ = max
∞∑

t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑

t=0

w∗t Lt − rk0

st 0 ≤ kt+1 ≤ f(kt, Lt), 0 ≤ Lt, ∀t

iv) Markets clear

∀t, ∑m
i=1 c∗it + k∗t+1 = f(k∗t ,

m∑

i=1

L∗it ),

L∗t =
∑m

i=1 L∗it , l∗it = 1− L∗it and k∗0 = k0

10



Before proving existence of an equilibrium, we will first prove that any x∗ =
(c∗i,k∗, l∗i), solution to the Pareto problem associated with k0 > 0 and η ∈ ∆ is an
equilibrium with transfers, with some appropriate prices (p∗t ) ∈ l1+ \ {0} and wages
(w∗t ) ∈ l1+ \ {0}.

The following result is required.

Proposition 6 Let k0 > 0. 1. For any ε > 0, there exists T such that, for any
η ∈ ∆,

+∞∑

T

λ1
t(η)

∑

i

c∗it ≤ ε

+∞∑

T

λ1
t(η)fL(k∗t , L∗t )

∑

i

l∗it ≤ ε

+∞∑

T

λ1
t(η)fL(k∗t , L∗t ) ≤ ε

2. There exists M such that, for any η ∈ ∆,

+∞∑
t=0

λ1
t(η)

∑

i

c∗it ≤ M

+∞∑
t=0

λ1
t(η)fL(k∗t , L∗t )

∑

i

l∗it ≤ M

+∞∑
t=0

λ1
t(η)fL(k∗t , L∗t ) ≤ M

Proof : 1. We know that there exists A such that c∗it (η) ≤ A, ∀t, ∀i, ∀η ∈ ∆.
Therefore

βT

1− β

∑

i

ui(A, 1) ≥
+∞∑

T

∑

i

ηiβ
t
i [u

i(c∗it , l∗it )− ui(0, 0)]

≥
+∞∑

T

λ1
t

∑

i

c∗it +
+∞∑

T

λ1
t fL(k∗t , L∗t )

∑

i

l∗it

Let ε > 0. There exists T such that βT

1−β ≤ ε. Hence,
∑+∞

T λ1
t(η)

∑
i c∗it ≤ ε,∑+∞

T λ1
t(η)fL(k∗t , L∗t )

∑
i l∗it ≤ ε, for any η.

We now prove that for T large enough,
∑+∞

T λ1
t(η)fL(k∗t , L∗t ) ≤ ε for any η.

We have ∑

i

c∗it = f(k∗t , L∗t )− k∗t+1

Since

f(k∗t , L∗t ) = f(k∗t , L∗t )− f(0, 0) ≥ fk(k∗t , L∗t )k
∗
t + fL(k∗t , L∗t )L

∗
t

we obtain by using (9):

T+τ∑

t=T

λ1
t

∑

i

c∗it ≥ λ1
T fk(k∗T , L∗T )k∗T − λ1

T+τk∗T+τ+1 +
T+τ∑

t=T

λ1
t fL(k∗t , L∗t )L

∗
t

11



Let τ → +∞. Since λ1 ∈ l1, and k∗t ≤ max{k0, k̄},∀t, we have

+∞∑

t=T

λ1
t

∑

i

c∗it ≥ λ1
T fk(k∗T , L∗T )k∗T +

+∞∑

t=T

λ1
t fL(k∗t , L∗t )L

∗
t

≥
+∞∑

t=T

λ1
t fL(k∗t , L∗t )L

∗
t =

+∞∑

t=T

λ1
t fL(k∗t , L∗t )(m−

∑

i

l∗it )

Hence, for T large enough,

m

+∞∑

t=T

λ1
t fL(k∗t , L∗t ) ≤

+∞∑

t=T

λ1
t

∑

i

c∗it +
+∞∑

t=T

λ1
t fL(k∗t , L∗t )

∑

i

l∗it ≤ ε

for any η.
2. Obviously:

+∞∑
0

λ1
t

∑

i

c∗it +
+∞∑
0

λ1
t fL(k∗t , L∗t )

∑

i

l∗it ≤ M1 =
1

1− β

∑

i

ui(A, 1)

+∞∑
t=0

λ1
t fL(k∗t , L∗t ) ≤ M2 =

2
m
× 1

1− β

∑

i

ui(A, 1)

Proposition 7 Let k0 > 0. Let (k∗, c∗,L∗, l∗) solve the Pareto problem associated
with η ∈ ∆. Take

p∗t = λ1
t , w∗t = λ1

t fL(k∗t , L∗t ) for any t

and r = λ1
0[Fk(k0, 0) + 1− δ].

Then {c∗,k∗,L∗,p∗,w∗, r} is an equilibrium with transfers .

Proof : i) We have

c∗ ∈ (l∞+ )m, l∗ ∈ (l∞+ )m,k∗ ∈ l∞+ ,p∗ ∈ l1+,w∗ ∈ l1+.

From Remark 1 statement 4, p∗ 6= 0, and together with Remark 2, w∗ 6= 0.
ii) We now show that (c∗i, l∗i) solves the consumer’s problem. Let (ci, li) satisfies

∞∑
t=0

p∗t c
i
t +

∞∑
t=0

w∗t lit ≤
∞∑

t=0

p∗t c
∗i
t +

∞∑
t=0

w∗t l∗it .

By the concavity of ui, we have:

∆ =
∞∑

t=0

βt
iu

i(c∗it , l∗it )−
∞∑

t=0

βt
iu

i(ci
t, l

i
t)

≥
∞∑

t=0

βt
iu

i
c(c

∗i
t , l∗it )(c∗it − ci

t) +
∞∑

t=0

βt
iu

i
l(c

∗i
t , l∗it ) (l∗it − lit).

Combining (3 ),(6) yields

∆ ≥
∞∑

t=0

(λ1
t − λ2i

t )
ηi

(c∗it − ci
t) +

∞∑
t=0

(λ1
t fL(k∗t , L∗t )− λ4i

t + λ5i
t )

ηi
(l∗it − lit)
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≥
∞∑

t=0

λ1
t

ηi
(c∗it − ci

t) +
∞∑

t=0

λ1
t fL(k∗t , L∗t )

ηi
(l∗it − lit) +

∞∑
t=0

λ5i
t (1− lit)

ηi

≥
∞∑

t=0

λ1
t

ηi
(c∗it − ci

t) +
∞∑

t=0

λ1
t fL(k∗t , L∗t )

ηi
(l∗it − lit)

=
∞∑

t=0

p∗t
ηi

(c∗it − ci
t) +

∞∑
t=0

w∗t
ηi

(l∗it − lit) ≥ 0.

This means (c∗i, l∗i) solves the consumer’s problem.
iii) We now show that (k∗,L∗) is solution to the firm’s problem. Since p∗t = λ1

t ,

w∗t = λ1
t fL(k∗t , L∗t ), we have

π∗ =
∞∑

t=0

λ1
t [f(k∗t , L∗t )− k∗t+1]−

∞∑
t=0

λ1
t fL(k∗t , L∗t ) L∗t − rk0.

Let :

∆T =
T∑

t=0

λ1
t [f(k∗t , L∗t )− k∗t+1]−

T∑
t=0

λ1
t fL(k∗t , L∗t ) L∗t − rk0

−
(

T∑
t=0

λ1
t [f(kt, Lt)− kt+1]−

T∑
t=0

λ1
t fL(k∗t , L∗t )Lt − rk0

)

By the concavity of f , we get

∆T ≥
T∑

t=1

λ1
t fk(k∗t , L∗t )(k

∗
t − kt)−

T∑
t=0

λ1
t (k

∗
t+1 − kt+1)

= [λ1
1fk(k∗1 , L∗1)− λ1

0](k
∗
1 − k1) + ...

+[λ1
T fk(k∗T , L∗T )− λ1

T−1](k
∗
T − kT )− λ1

T (k∗T+1 − kT+1).

By (4) and (9), we have: ∀t = 1, 2, ..., T

[λ1
t fk(k∗t , L∗t )− λ1

t−1](k
∗
t − kt)

= −λ3
t (k

∗
t − kt) = λ3

t kt ≥ 0.

Thus,
∆T ≥ −λ1

T (k∗T+1 − kT+1) = −λ1
T k∗T+1 + λ1

T kT+1 ≥ −λ1
T k∗T+1.

Since λ1 ∈ l1+, sup
T

k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1
T k∗T+1 = 0.

We have proved that the sequences (k∗,L∗) maximize the profit of the firm.
Finally, the market is cleared by the strict increasingness of the utility functions.

Let k0 > 0. We define:

φi(η) = {
∞∑

t=0

p∗t (η)c∗it (η)}+ {
∞∑

t=0

w∗t (η)l∗it (η)}−{
∞∑

t=0

w∗t (η)}−{ϑirk0} − {αiπ∗(η)}
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where

∀t, p∗t ∈ {λ1
t}, w∗t ∈ {λ1

t fL(k∗t , L∗t )}

π∗(η) =
∞∑

t=0

p∗t (η)[f(k∗t (η), L∗t (η))− k∗t+1(η)]−
∞∑

t=0

w∗t (η)L∗t (η)− rk0.

The correspondence φi is convex valued. Indeed, we know that c∗it , l∗it , k∗t , L∗t are
single-valued. If

∑
i c∗it > 0, then from Remark 1, we also have

∑
i l∗it > 0, and λ1

t

is also single-valued from (7). In this case, p∗t , w
∗
t are single-valued. If

∑
i c∗it = 0,

then p∗t c
∗i
t = 0, w∗t l∗it = 0. Let T = {t :

∑
i c∗it > 0}. We have

φi(η) =
∑

t∈T
{p∗t (η)c∗it (η) +

∑

t∈T
w∗t (η)l∗it (η)}−

+∞∑
t=0

{w∗t (η)}−{ϑirk0} − αi{π∗(η)}

where

∀t, p∗t = λ1
t , w∗t = λ1

t fL(k∗t , L∗t )

π∗(η) =
∑

t∈T
p∗t (η)[f(k∗t (η), L∗t (η))− k∗t+1(η)]−

∑

t∈T
w∗t (η)L∗t (η)− rk0.

The correspondence φi is uniformly bounded (see Proposition 6, statement 3).

Proposition 8 i) Let k0 > 0. Then for any η ∈ ∆, π∗(η) ≥ 0.

ii) If ηi = 0 then ∀t, c∗it = 0, l∗it = 0 and φi(η) < 0.

Proof : i) Let (k0, 0, 0, ...) ∈ Π(k0). Then

π∗(η) ≥ λ1
0(η)[F (k0, 0) + (1− δ)k0]− rk0

= λ1
0(η)[F (k0, 0) + (1− δ)k0]− λ1

0(η)[Fk(k0, 0) + 1− δ]k0

≥ 0.

ii) Let ηi = 0. From Remark 1, c∗it = l∗it = 0, ∀t. Now, we have

φi(η) =
∞∑

t=0

p∗t (η)c∗it (η) +
∞∑

t=0

w∗t (η)l∗it (η)−
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

= −
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η) ≤ −
∞∑

t=0

w∗t (η) < 0, since w∗ ∈ l1+ \ {0}.

We can now state our main result.

Theorem 2 Assume U1, U2, U3, F1, F2, F3. If m > 1, then add U4. Let
k0 > 0. Then there exists η ∈ ∆, η >> 0, such that φi(η) = 0, ∀i . That means
there exists an equilibrium.

Proof : When m = 1, the result follows Proposition 7. When m > 1, from Propo-
sition 3, for any t, there exists i with c∗it > 0, l∗it > 0. Obviously, ηi > 0. Then
p∗t = λ1

t = ηiβ
t
iucc

∗i
t , l∗it . The correspondence φi is single-valued. We now prove it

is continuous.
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Let ε > 0. Observe that

π∗(η) =
+∞∑
t=0

p∗t (η)
∑

i

c∗it −
+∞∑
t=0

w∗t (η)(m−
∑

i

l∗it )(η)− rk0.

From Proposition 6, there exists T such that, for any n,

|
∑

t≥T

p∗t (η
n)c∗it (ηn) +

∑

t≥T

w∗t (ηn)l∗it (ηn)

−
∑

t≥T

w∗t (ηn)−ϑirk0 − αi
∑

t≥T

p∗t (η
n)

∑

i

c∗it (ηn)

−
∑

t≥T

w∗t (ηn)(m−
∑

i

l∗it (ηn))− rk0| ≤ ε

and

|
∑

t≥T

p∗t (η)c∗it (η) +
∑

t≥T

w∗t (η)l∗it (η)

−
∑

t≥T

w∗t (η)−ϑirk0 − αi
∑

t≥T

p∗t (η)
∑

i

c∗it (η)

−
∑

t≥T

w∗t (η)(m−
∑

i

l∗it (η))− rk0| ≤ ε

Consider t ∈ {0, . . . , T − 1}. If c∗it (η) > 0, then

c∗it (ηn) → c∗it (η), l∗it (ηn) → l∗it (η), k∗t (ηn) → k∗t (η), p∗t (η
n) → p∗t (η), w∗t (ηn) → w∗t (η)

Since for any t, there exists i with c∗it > 0, we have p∗t (η
n) → p∗t (η) and w∗t (ηn) →

w∗t (η)
We have k∗t (ηn) → k∗t (η) > 0, L∗t (η

n) → L∗t (η) > 0.
The proof of the continuity of φi is complete.
Observe that

∑
i φi(η) = 0 for any η by Walras Law. Let us define T : ∆→∆,

T (η) = (T1(η), T2(η), ..., Tm(η)) where Ti(η) defined as

Ti(η) =
ηi + φ

′
i(η)

1 +
∑m

i=1 φ
′
i(η)

with φ
′
i(η) = −φi(η) if φi(η) < 0, and φ

′
i(η) = 0 if φi(η) ≥ 0. T is a continuous

mapping from the simplex into itself. By the Brouwer fixed point theorem, there
exists η ∈ ∆ such that T (η) = η. We have

ηi =
λi + φ

′
i(η)

1 +
∑m

i=1 φ
′
i(η)

⇔ ηi

m∑

i=1

φ
′
i(η) = φ

′
i(η) (13)

If ηi = 0, Proposition 8 (ii) implies that φi(ηi) < 0 and φ
′
i(η) > 0 :a contradiction

with (13). Thus, ηi > 0, ∀i. If
m∑

i=1

φ
′
i(η) > 0, then φ

′
i(η) > 0, ∀i. From the definition

of φ
′
i(η) this implies φi(η) < 0, ∀i. But this contradicts Walras Law which says

m∑
i=1

φi(η) = 0. Thus,
m∑

i=1

φ
′
i(η) = 0 which implies φ

′
i(η) = 0, ∀i. But in this case we

have φi(η) ≥ 0, ∀i. From Walras Law we have φi(η) = 0, ∀i.
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Remark 3 Existence of equilibrium can be obtained without U4 by assuming, as in
Bewley [2], that any consumer i has at each t an endowment ωi

t ≥ 0 which satisfies
O1:

∑m
i=1 ωi

t ∈ int l∞+
The feasible constraints become:

∀t ≥ 0,
∑

i

ci
t + kt+1 ≤

∑

i

ωi
t + f(kt, Lt)

The proof of existence of equilibrium is briefly given Appendix
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4 Appendix

Proof of the claim in Remark 3
Let α = inft

∑
i ωi

t.
(1) We can prove as in the proof of Proposition 6 that for any η ∈ ∆, any T

βT

1− β

∑

i

ui(A, 1) ≥
+∞∑

t=T

λ1
t

∑

i

c∗it ≥ α

+∞∑

T

λ1
t +

+∞∑

T

λ1
t fL(k∗t , L∗t )L

∗
t

or

2βT

1− β

∑

i

ui(A, 1) ≥
+∞∑

t=T

λ1
t

∑

i

(
c∗it + fL(k∗t , L∗t )l

∗i
t

) ≥ α

+∞∑

T

λ1
t + m

+∞∑

T

λ1
t fL(k∗t , L∗t ) (14)

Define p∗t (η) = λ1
t , w∗t (η) = λ1

t fL(k∗t , L∗t ). Inequality (14) shows that the sets
{p∗t (η)}η, {w∗t (η)}η are relatively weakly compact in l1.
(2) To prove that an equilibrium exists, it remains to prove that the correspon-
dences φi are usc. Since they are in fixed compact sets, we have just to check their
closedness.
Let ηn → η. Let zn

i ∈ φi(ηn). There exists p∗(ηn),w∗(ηn), c∗i(ηn), l∗i(ηn),k∗(ηn)
such that

zn
i =

∞∑
t=0

p∗t (η)c∗it (ηn) +
∞∑

t=0

w∗t (ηn)l∗it (ηn)−
∞∑

t=0

w∗t (ηn)−ϑir(ηn)k0 − αiπ∗(ηn)

where r(ηn) = p∗0(η
n)[Fk(k0, 0) + 1− δ].

We first have

c∗it (ηn) → c∗i(η), l∗it (ηn) → l∗it (η), k∗t (ηn) → k∗t (η)

Since the sets {p∗t (η)}η, {w∗t (η)}η are relatively weakly compact in l1, we can assume
that p∗(ηn), w∗(ηn) converge weakly to p̄ ∈ l1, w̄ ∈ l1 and w̄t = p̄tfL (k∗t (η), L∗t (η))
for any t. We can easily check that, for any t

0 ∈ ηiβ
t
i∂1u

i(c∗it (η), l∗it (η))− p̄t, ∀i = 1...m

0 ∈ ηiβ
t
i∂2u

i(c∗it (η), l∗it (η))− p̄t∂2f(k∗t (η), L∗t (η)), ∀i = 1...m

0 ∈ p̄t∂1f(k∗t (η), L∗t (η))− p̄t−1

That means, from Proposition 3, that p̄ is a multiplier associated with c∗i(η), l∗i(η),k∗(η)
and p̄t = p∗t (η), w̄t = w∗t (η), ∀t.
Define

zi =
∞∑

t=0

p̄tc
∗i
t (η) +

∞∑
t=0

w̄tl
∗i
t (η)−

∞∑
t=0

w̄∗t−ϑir̄k0 − αiπ∗(η)

where

π∗(η) =
∞∑

t=0

p̄t

[
f(k∗t (η), L∗t (η))− k∗t+1(η)

]−
∞∑

t=0

w̄tL
∗
t (η)− r̄k0

and r̄ = p̄0[Fk(k0, 0) + 1− δ]. Obviously, zi ∈ φi(η).
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Let ε > 0 be given. From inequality (14), there exists T such that for any n we
have:

|
∑

t≥T

p∗t (η
n)c∗it (ηn) +

∑

t≥T

w∗t (ηn)l∗it (ηn)

−
∑

t≥T

w∗t (ηn)−ϑirk0 − αi
∑

t≥T

p∗t (η
n)

∑

i

c∗it (ηn)

−
∑

t≥T

w∗t (ηn)(m−
∑

i

l∗it (ηn))− rk0| ≤ ε

and

|
∑

t≥T

p̄tc
∗i
t (η) +

∑

t≥T

w̄tl
∗i
t (η)

−
∑

t≥T

w̄t−ϑir̄k0 − αi
∑

t≥T

p̄t

∑

i

c∗it (η)

−
∑

t≥T

w̄t(m−
∑

i

l∗it (η))− r̄k0| ≤ ε

Consider t ∈ {0, . . . , T − 1}. One has: p∗t (η
n) → p̄t, w∗t (ηn) → w̄t, c∗it (ηn) → c∗it (η),

l∗it (ηn) → l∗it (η), k∗t (ηn) → k∗t (η). Thus, for n large enough, we have |zn
i − zi| ≤ 3ε.

That means zn
i → zi. The proof is complete.
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