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leads to higher within and between team payoffs/productivity inequality. We investigate this 
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1 Introduction

This paper studies an economy with an implicit market for productive time.

The scarce resource in this market is the time each agent can dedicate to

production. Agents can dedicate their productive time to their own produc-

tion (autarky), buy (part of the) productive time from helpers and herewith

increase their own production, or sell (part of) their productive time to a

leader, hence giving up own production. Since helping time of better helpers

is more e¢ cient, the hedonic equilibrium price for productive time compen-

sates i) forgone own production and ii) helping ability. This implicit market

for productive time gives rise to teams�formation. These teams have a hi-

erarchical organization with a leader at the top producing output with the

help of helpers below.

There are many examples of goods and services produced with teams

organized that way. We may think for instance of a lawsuit. The defence

of a case is performed by a leading lawyer who receives full credit for the

outcome of the trial. The leading lawyer however might receive help from

other lawyers at his/her �rm to prepare a trial. The opportunity cost of

spending productive time helping the leading lawyer requires a compensating

wage. Similarly, such an organization is encountered in architect o¢ ces whose
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aim is to obtaining large projects by assigning a team of architects to a leading

architect. The leading architect receives full credit for the success of the

project while the time devoted by helping architects to the project generates

an opportunity cost that requires a compensating wage. Yet another example

is Haute Couture. A Haute Couture collection is generally fashioned by a

group of stylists assisting a couturier. The couturier takes full credit for

the success of the collection while the time devoted by a stylist in assisting

the couturier is associated with the opportunity cost of not working at her

own collection. This opportunity cost requires a compensation. Yet, we can

also think of the music industry and the formation of bands or even consider

certain sports such as professional road cycling and the structure of teams.

The existence of an implicit market for productive time raises many in-

teresting questions about the structure of such an economy. For instance,

who becomes a leader and who becomes a helper? Are leaders better than

helpers? Are better helpers assigned to more able leaders? How does the

distribution of payo¤s look like? Is there more inequality in payo¤s with

hierarchical organization than with autarky?

We develop a theoretical model in which the distribution of roles (lead-

ers, helpers and self-production), the assignment of leaders to helpers, and
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the distribution of payo¤s (the hedonic price for productive time) are en-

dogenously determined. The primitives of the model are the distribution of

ability, the shape of the surplus function of teams and the e¢ ciency of helping

time. We show that under mild conditions, an equilibrium in this economy

exists, is optimal and assignment is so that i) within teams the better rider

becomes the leader, ii) better helpers are matched with better leaders and iii)

some form of strati�cation arises: more able agents either become leaders or

helpers and less able agents either become a helper or ride individually. The

model can be used to study the link between hierarchical organization and

productivity and/or payo¤s inequality. For instance, we show that relative

to autarky, hierarchical organization leads to greater payo¤s/performance

inequality.

The model developed in this paper is most closely related to the one-

sided assignment1 models in a knowledge economy studied by Garicano and

his various coauthors. In particular, Garicano and Rossi-Hansberg (2006),

present an economy in which hierarchical organization arises as an e¢ cient

way of sharing knowledge. The scarce resource in this model is knowledge.

1This contrasts with two-sided assignment models studied in Tinbergen (1956), Becker
(1973), Rosen (1974) and Sattinger (1993) among others where agents on one side of the
market (workers, women, buyers) meet agents on the other side of the market (�rms, men,
sellers).

5



Agents can buy knowledge either directly by learning, which is costly, or

indirectly by "hiring" more knowledgeable agents to solve problems they

cannot solve themselves. In these hierarchical organizations, output is merely

produced by workers helped by more knowledgeable agents called managers.

This contrasts sharply with the economy depicted in this paper where a

team�s output is primarily generated by the leader, the most able agent of

the team, with the help of helpers that forgo own production. The di¤erences

between the two models is also salient in the strati�cation that arises in

equilibrium. In Garicano and Rossi-Hansberg (2006), a strict strati�cation

arises with production workers at the bottom of the distribution of ability,

self-employed in the middle and managers (helpers) at the top. Our model

allows for a more general form of strati�cation in equilibrium: while leaders

are more able than self-employed, some helpers may be more able than some

leaders (of di¤erent helpers). Similarly, self-employed agents could be less or

more able than helpers depending on the primitives of the model.

We investigate empirically the question of whether performance inequal-

ity is larger in an economy with hierarchical organization or in autarky by

considering the evolution of performance in road cycling. Especially the orga-

nization of teams for the Tour de France strikes us as the relevant framework
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to investigate such a relationship for at least four reasons. First, considering

sport allows us to have an observed measure of the productivity and hence of

its inequality. In cycling, productivity corresponds to the velocity (average

speed) of a rider. The higher the velocity, the higher the probability to win

the race and to earn large prizes for the team. Second, even though road

cycling essentially sanctions an individual performance, the peloton (group

of riders) is organized into teams which allows for strategic behavior within

teams. Within team organization is hierarchical and is built around a leader2

who is exposed in the media and helpers. Third, teams are of �xed size (9

riders) allowing us to abstract from the extensive margin and focus on help-

ing time. Finally, as we will argue below, incentives to organize teams in

the Tour de France have tremendously increased over time (since the end

of the 60�s and the transition from national teams to trade teams). The

Tour de France provides us an exceptional example of a change in market

structure from low to high hierarchical organization, herewith allowing us to

evaluate the speci�c role of increased hierarchical organization, alongside in-

ternationalization and technological progress, in the evolution of performance

inequality.

2The most famous ones are at the moment Lance Armstrong, Alberto Contador and
Andy Schlek.
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Anticipating on our results we show that the bulk of the overall increase

in velocity inequality is due to the rise in within team inequality. This result

points toward specialization, that is increased help intensity of helpers to

their leaders, as the explanation for the rise in velocity inequality among the

peloton.

The remainder of the paper is organized as follows. Section 2 proposes a

theoretical model that introduces hierarchical organization arising from the

existence of an implicit market for productive time. Section 3 studies the

example of professional road cycling and in particular the Tour de France.

Section 4 concludes.

2 Theoretical model

2.1 Set up

We present the model using the analogy to the Tour de France but one

could also replace riders by "agents" throughout this section. Let riders be

endowed with one unit of time and with ability z, z 2 Z where Z = [z; z]

with 0 < z � z <<1,3 drawn from a distribution with PDF d(z) and CDF

3We could work with unbounded support for z without changing much of the model
but this would require to write down boundary conditions for the functions f and v in our
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D(z). We assume that ability is unidimensional and measured in terms of

velocity (kilometers per hour) that is, z is the total distance of the Tour

divided by the time it would take rider z to cover this distance when riding

individually. The mass of riders is assumed to be 1 and D is continuous with

respect to Lebesgue measure.

In this economy, riders decide either to ride individually or to coordinate

their e¤orts within teams. The number of riders in a team is �xed exoge-

nously by rules and for the sake of simplicity we assume it is equal to 2.4

Within each team, one rider becomes the helper of the other. The two riders

must decide who becomes the leader and who becomes the helper. The dis-

tribution of roles within teams is endogenous to the model. Conditions under

which the most able rider becomes the leader are given below in Proposition

3.

In case riders coordinate their e¤orts, the helper will devote s 2 [0; 1] unit

of time to his leader. Let ph(zh; s) = zh � sazh be the velocity of a helper of

ability zh when providing helping time s to his leader. The decrease in the

standing assumptions below.
4This assumption restricts the extensive margin compared to Garicano and Hubbard

(2006) who study leverage in a knowledge economy. However, this does not seem to be
restrictive in our case since the number of riders in each team participating in the Tour is
�xed to 9 by rules.
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helper�s velocity resulting from one additional unit of time spent helping his

leader is proportional to his own ability and equal to azh.5 Similarly, let the

velocity of a leader with ability zl, helped by a helper of ability zh providing

helping time s be pl(zl; s) = zl + f(zh)s with (zl; zh) 2 Z2, where f(zh) is

a twice di¤erentiable continuous function. The function f(zh) indicates the

increase in the velocity of a leader per unit of helping time provided by a

helper of ability zh. If s = 0, even though riders are in the same team, both

riders bike individually and their respective velocity is simply pl(zl; 0) = zl

and ph(zh; 0) = zh.

Throughout this paper we maintain the following assumptions about the

e¢ ciency of helping time.

Condition 1 Standing Assumptions I (SA I, hereafter)

1. Helping time is strictly e¢ cient for the leader�s velocity, f(y) > 0 for

all y 2 Z but strictly costly for the helper�s velocity, 1 > a > 0,6

5Note that all that matters in this economy is the relative shape of the loss of helpers�
velocity to the gain in leaders�velocity. Assuming a linear shape for the drop in helpers�
velocity, i.e. az, is without loss of generality since the properties of the gain in leaders�
velocity, i.e. the function f() below are de�ned relative to a.

6For a = 1, ph(zh; 1) = 0. This is unrealistic since during the Tour, riders that do
not �nish within a certain interval of time after the stage winner are disquali�ed, i.e.
pi(zi; s) > pmin where pmin is the velocity below which riders are disquali�ed. This rule
is either a constraint on a or a constraint on the helping time riders can provide. In the
remaining of the paper, we assume for simplicity that a is low enough, a < 1, so that
ph(zh; 1) is always large enough for the helper not to be disquali�ed.
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2. The marginal e¢ ciency of helping time for leaders is lower than the

marginal cost for helpers, f(x)�f(y)
x�y � a for all (x; y) 2 Z2 with x > y.7

3. Better riders are also better helpers, f 0(y) > 0 for all y 2 Z.

Note that intuitively, f(y) � f(x) � a(y � x) is the net gain of velocity

in team < x; y > obtained if rider x is re-assigned from being the helper to

being the leader. SA I.2 therefore stipulates that the net gain is positive if x

is the better rider.

Let v(p) be a continuous and twice di¤erentiable function mapping rider�s

velocity p into money prizes. The function v could change over time to

capture for instance a convexi�cation of money prizes; the winner takes it

all.

Throughout this paper we maintain the following assumptions about the

reward function.

Condition 2 Standing Assumptions II (SA II, hereafter))

1. v(0) = 0,

2. Rewards v(:) are strictly increasing in velocity v0(z) > 0,

7Note that writing x = y + h the constraint becomes f(y+h)�f(y)
h � a. This must hold

for all h > 0 and all y 2 Z. Hence, by de�nition, we have limh!0
f(y+h)�f(y)

h = f 0(y) � a
for all y 2 Z.
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3. Rewards v(:) are convex in velocity, i.e. v
00
(z) � 0 for all z 2 Z,

4. 0 < v0(z) <<1 for all 0 < z <<1.

Note that the assumption of convexity of the reward function is more

than supported by empirical data on the distribution of prizes by rank in the

�nal classi�cation, see Figure 6.

Let Y the surplus of a team be given by the sum of all prizes won

by its riders. Formally, let Y (zl; zh; s) = v(zl + f(zh)s) + v(zh(1 � s)).

Let wh(zh; s) be the payo¤s of a helper zh providing helping time s and

let wl(zl; s) be the payo¤s of a leader zl enjoying s helping time from her

helper. Without managers, total surplus is split among the riders so that

Y (zl; zh; s) = wh(zh; s)+wl(zl; s). It is further assumed that riders maximize

their own payo¤s.

2.2 Feasible teams

Some general results about feasible teams are helpful to characterize the

equilibrium of this model. First, it can be shown that Proposition 3 is true

under SA I and SA II.

Proposition 3 Under SA I and SA II, the surplus of all feasible teams
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(zl; zh) 2 Z2, with zl � zh, is maximized when zl, i.e. the most able rider,

becomes the leader and zh, i.e. the least able rider, becomes the helper.

Proof. See Appendix B

The intuition is the following. From SA I.2, the net gain of velocity

in a team hzl; zhi is larger if the best rider is re-assigned from being the

helper to being the leader. Hence, as long as rewards are convex as stated in

SA II.3, a team�s surplus is greater when the less able rider helps the most

able one. Denoting (zl; zh) the transportation plan8 connecting helpers to

leaders in equilibrium, from Proposition 3 we already know that (zl; zh) = 0

for zl < zh.

Another interesting pattern of the model is the strategy within teams.

How much help intensity to ask/o¤er? To answer this question, �rst note

that, within teams, riders will always choose s so as to maximize their team�s

surplus, i.e. s�(zl; zh) = argmaxs Y (zl; zh; s). Indeed, suppose that both rid-

ers choose s0 6= s�(zl; zh) and that the helper receives payo¤s w0h and the

leader payo¤s w0l = Y (zl; zh; s
0) � w0h. Since by de�nition Y (zl; zh; s0) �

Y (zl; zh; s
�(zl; zh)), both riders could increase their team�s surplus by set-

8The transportation plan (x; y) is the density of equilibrium pairs formed with a leader
of ability x and a helper of ability y.
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ting s = s�(zl; zh). Splitting the additional surplus Y (zl; zh; s�(zl; zh)) �

Y (zl; zh; s
0) among them will increase both riders�payo¤s. For all feasible

teams, we therefore always have s = s�(zl; zh). The arguments of s� will be

dropped when unambiguous.

Under our standing assumptions, the following proposition shows that

the decision about how much helping time to provide simpli�es considerably

for all feasible teams.

Proposition 4 Under SA I and SA II, for all feasible teams (zl; zh) 2

Z2, with zl � zh, optimal helping time s�(zl; zh) is strictly convex so that

s�(zl; zh) =
�
1 i¤ Y (zl;zh;1)>Y (zl;zh;0)

0 otherwise .

Proof. See Appendix B

Intuitively, the convexity of the reward function in assumption SA II.3

carries on to the relationship between teams� surplus and helping time as

long as helping time is e¢ cient and a > 0 as in SA I.1. In other words, if v

is su¢ ciently convex given f and a, then for all feasible teams s�(zl; zh) = 1.

Reciprocally, if f is su¢ ciently small relative to a given v, then for all feasible

teams s�(zl; zh) = 0.

Finally, for notational convenience, note that; since from Proposition 4,

s� = 1 if Y (zl; zh; 1) > Y (zl; zh; 0) and 0 otherwise, the surplus of a team can
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be written as:

Y (zl; zh; s
�) = s� � Y1(zl; zh) + (1� s�)Y0(zl; zh),

where Y1(zl; zh) = v(zl + f(zh)) + v(zh(1� a)) and Y0(zl; zh) = v(zl) + v(zh).

Similarly, the payo¤s functions can be written as:

wi(zi; s
�) = s� � wi1(zh) + (1� s�)� w0(zh); i = h; l,

where w0(z) are the payo¤s of an individual rider. Hence, w0(z) = v(z)

independently of the ability of his team mate.

2.3 Riders�problem

Riders maximize their payo¤s. The problem of a rider z is therefore to choose

the role (leader, helper or individual rider) that maximizes her payo¤s:

max fwl1(z); wh1(z); v(z)g

The leader�s problem is to �nd a helper zh that maximizes her payo¤s.

15



This problem reads as:9

max
zh
[Y1(zl; zh)� wh1(zh)]

The �rst order condition to the leader�s problem yields:

w0h1(zh) = v
0(zl + f(zh))f

0(zh) + (1� a)v0(zh(1� a)) > 0 (1)

From our standing assumptions SAI and SAII we already know that the

equilibrium payo¤s function for helpers is strictly increasing in helpers�abil-

ity.10

Symmetrically, the helper�s problem is to �nd a leader zl that maximizes

her payo¤s. This problem reads as:

max
zh
[Y1(zl; zh)� wl1(zl)]

9We refer the reader to Appendix A for a formal presentation of the second order
conditions to the leader�s and helper�s optimization problem.
10As shown in Appendix A, the second order conditions to the riders� problem also

indicates that the payo¤s functions are strictly convex.
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The �rst order condition to this problem is:

w0l1(zl) = v
0(zl + f(zh)) > 0 (2)

From our standing assumptions SAI and SAII, it follows that the equi-

librium payo¤s function for leaders is strictly increasing in leaders�ability.

The �rst order conditions pin down the slopes of the payo¤functions. The

level of these two functions wl1(z) and wh1(z) together with the slopes will de-

termine the setH � Z of riders for which wh1(z) = max fwl1(z); wh1(z); v(z)g

(the set of helpers), the set L of riders for whichwl1(z) = max fwl1(z); wh1(z); v(z)g

(the set of leaders) and the set I � ZnH [ L of riders for which v(z) =

max fwl1(z); wh1(z); v(z)g (the set of individual riders).

Note here that w0l1(zl) � v0(zl) > 0 for all zl 2 Z under SA I and SA

II, while without further restrictions on the primitives of the model, it is

impossible to conclude about the sign of w0h1(zh)� v0(zh).
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2.4 Equilibrium

Let L � Z be the set of leaders and H � Z be the set of helpers.11 Let

(zl; zh) with zl 2 L and zh 2 H be a transportation plan.

De�nition 5 A feasible assignment in this economy is a tuple (L;H; ) so

that:

1. (zl; zh) � 0 for all (zl; zh) 2 L�H,

2.
R
H
d(zl; zh) = D(zl), 8zl 2 L,12

3.
R
L
d(zl; zh) = D(zh), 8zh 2 H,

4.
R
H
dD(zh) � D(H) = D(L) �

R
L
dD(zl).

Let � be the set of feasible assignments and let �L�H be the set of feasible

transportation plans given sets L and H. In other words, the set �L�H is the

set of measures whose marginals are D(H) and D(L) respectively.

De�nition 6 An equilibrium in this economy consists of:

11Note that we do not impose the set of leaders and helpers to be disjoint. Self-matches
could indeed arise in equilibrium if Y1(z; z) � 2v(z).
12Note that conditions 2 and 3 take into account the possibility that H and L are not

disjoint sets. In this case, self-matches arise in the interval H \ L and one (randomly
chosen) rider become the leader and the other the helper.

18



� two payo¤s functions wh1(zh) and wl1(zl) and,

� a feasible assignment (L;H; ) so that:

� riders choose a role (helper, leader or individual rider) and their even-

tual leader or helper so as to maximize their own payo¤s.

The following two propositions show important characteristics of the equi-

librium assignment.

Proposition 7 Under SA I and SA II, in equilibrium, more able leaders are

matched with more able helpers.

Proof. See Appendix B

This result essentially follows from the convexity of the reward function

v and the fact that better helpers also happen to be better riders.

Proposition 8 Under SA I and SA II, there is the following strati�cation

in equilibrium: i) there are no leaders of ability lower than z(l1) and ii) there

are no individual riders of ability higher than z(l1).

Proof. See Appendix B

Several special cases are worth noting. First, suppose that z(l1) > z.

In that case, all riders prefer riding individually than becoming a leader.
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Since, there are no leaders there cannot be any helper either. All riders ride

individually. This case arises when v(:) is not convex enough given f(:) and

a.

Second, suppose that z(l1) < z. This means that all riders prefer riding

individually than becoming a helper. Since there are no helpers there cannot

be any leader either. All riders ride individually.

Finally, as soon as z(l1) 2 (z; z), there will be intervals of helpers and

leaders. In particular, a perfectly strati�ed equilibrium could arise. We could

have for instance riders of ability z 2
�
z; z(l1)

�
becoming individual riders,

riders z 2 z(l1); z(l2)] becoming helpers and riders of ability z 2
�
z(l2); z

�
becoming leaders. Similarly, we could have a strati�cation where riders of

ability z 2
�
z; z(h1)

�
become helpers, riders of ability z 2

�
z(h1); z(l1)

�
become

individual riders and riders of ability z 2
�
z(l1); z

�
become leaders.

2.5 Existence, uniqueness and optimality

To study the properties of an equilibrium in this economy it is useful to write

the social planner�s problem associated. This problem reads as:

max
(L;H;)2�

Z
L�H

Y1(zl; zh)d(zl; zh) +

Z
ZnH[L

v(z)dD(z)
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We �rst show that an optimal assignment (L;H; ) exists.

Proposition 9 Under SA I and SA II, an optimal assignment (L;H; ) ex-

ists.

Proof. First note that
R
ZnH[L v(z)dD(z) does not depend on  but merely

on the feasible sets L and H. Hence, given the sets L and H, the problem

simpli�es to:

max
2�L�H

Z
L�H

Y1(zl; zh)d(zl; zh)

This is the classical Monge-Kantorovich transportation problem. Theo-

rem 4.1 in Villani (2009) indicates that if i) Y1(zl; zh) is upper semicontinuous

and ii) �L�H is compact then there exists an optimal  in this problem (con-

ditional on L � Z and H � Z in our case).

Condition i) is met since from SA I and II, Y1(zl; zh) is continuous. Con-

dition ii) is also met. To see this, note that since Z is compact, H and L are

also compact so that D(z) for all z 2 H and D(z) for all z 2 L are tight. It

follows from Lemma 4.4 in Villani (2009) that �L�H is also tight and hence

compact by Prokhorov�s Theorem. Condition ii)therefore holds.

As a result, for each pair of feasible sets L and H, there exists an optimal

transportation plan, say �L�H . Since the sets (L;H) of feasible helpers and
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leaders is compact, we conclude that there exists an optimal assignment�
L;H; �L�H

�
solution of:

max
(L;H)2Z2

Z
L�H

Y1(zl; zh)d
�
L�H +

Z
ZnH[L

v(z)dD(z)

As noted in the proof of Proposition 9, the social planner�s problem is in

fact related to the Primal Program of the Monge-Kantorovich transportation

problem. The associated dual program is:

min
wl;wh

Z
Z

wl(z)dD(z) +

Z
Z

wh(z)dD(z)

s:t:

wi(z) � v(z) i = h; l (i)

wl(zl) + wh(zh) � Y1(zl; zh) for all zl; zh 2 Z2 (ii)

Constraint i)in the dual program corresponds to the condition of indi-

vidual rationality (riders always have the option of remaining unmatched).

Constraint ii) guarantees that an outcome is not blocked by any coalition. If
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ii) is not satis�ed, a pair zl and zh can always break up and reunite splitting

Y1(zl; zh) in such a way that both are better o¤ (zl gets more than wl(zl) and

zh gets more than wh(zh)).

A fundamental theorem of duality asserts that a feasible tuple ((wh; wl); )

produces
R
Z
wl(z)dD(z)+

R
Z
wh(z)dD(z) =

R
L�H Y1(zl; zh)d(zl; zh)+

R
ZnH[L v(z)dD(z)

i¤ (zl; zh) solves the primal program and (wh(z); wl(z)) solves the dual pro-

gram.

This result allows us to prove the following proposition.

Proposition 10 A feasible tuple ((wh(z); wl(z)); ) that solves both the pri-

mal and dual program maximizes riders payo¤s.

Proof. Suppose that (wh(z); wl(z)) solves the dual program and  solves the

primal program. Then,

Z
Z

wl(z)dD(z)+

Z
Z

wh(z)dD(z) =

Z
L�H

Y1(zl; zh)d(zl; zh)+

Z
ZnH[L

v(z)dD(z)
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and hence:

wh(zh) + wl(zl) = Y1(zl; zh) for  � a:e: (zl; zh)

and

wl(z) = wh(z) = v(z) for d� a:e: z 2 ZnH [ L

Take a leader z�l 2 L that is matched with a helper z�h 2 H in equilibrium

(i.e. so that (z�l ; z
�
h) > 0). The riders of this team get respectively wh(z

�
h) =

Y1(z
�
l ; z

�
h)�wl(z�l ) andwl(z�l ) = Y1(z�l ; z�h)�wh(z�h). Since (wh(z); wl(z)) solves

the dual program, the feasibility constraints are satis�ed so that wl(z�l ) �

Y1(z
�
l ; zh) � wh(zh) for all zh 2 Z and wh(z�h) � Y1(zl; z

�
h) � wl(zl) for all

zl 2 Z. It follows that helper z�h maximizes the payo¤s of leader z
�
l and

leader z�l maximizes the payo¤s of helper z
�
h.

A direct corollary of Proposition 10 is:

Corollary 11 The pair of payo¤s functions (wl; wh) that maximizes riders�

payo¤s is Pareto Optimal.

Proof. A feasible tuple ((wh(z); wl(z)); ) that solve the primal and dual

program maximizes riders�payo¤s from Proposition 10. Since  solves the

primal program (the social planner�s problem), the pair of equilibrium payo¤s
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(wl; wh) maximizing riders payo¤s also maximizes social welfare.

2.6 Comparative statics

In an economy without coordination (where helping time is 0 for all teams),

performance inequality will be lower, measuring inequality by the range. This

result is obvious for two reason. First, from Proposition 3, in an economy with

coordination within teams, the most able rider becomes leader of the team.

Second, from Proposition 8, there is a strati�cation so that at the top of the

distribution of ability, riders either become leaders or helpers. Combining

these two results indicate that the most able riders in this economy must

necessarily be leaders. The performance at the top of the distribution in

this economy must therefore be larger ceteris paribus than in the economy

without coordination. Similarly, from proposition 8 we know that riders at

the bottom of the distribution of ability either become a helper or ride on

their own. Hence the performance at the bottom of the distribution of ability

is at most equal to that of a ceteris paribus same economy without teams.

It follows that the range will be larger in the economy with teams ceteris

paribus.
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3 Empirical evidence

3.1 Organization

Team organization in road cycling racing

Road cycling racing is an individual sport where the �rst to cross the

�nish line wins. However, unlike most individual sports, road cycling riders

have traditionally been grouped into teams (usually 9 riders). Teams�tactics

(organization) has become an important aspect of the sport. Tactics turns

out to be inherent in this sport since the aerodynamic bene�t of drafting,

following as closely as possible the slipstream of the rider in front, can save as

much as 40% of the energy compared to riding alone. Some teams therefore

designate a leader and have the remaining riders serve as a "wind shield" for

their leader to spare energy until critical moments of the race (�nal climb

during a mountain stage for instance). Helpers also play the role of a donkey

during races, carrying food and water to their leader, or exchange their wheels

or even bike in case of a mechanical problem of their leader during the course.

The organization of teams is especially important during stage races.

History13 of the Tour de France

13See McGann and McGann (2006) for a detailed account of the history of the Tour de
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The Tour de France constitutes the single most important event in road

cycling racing.14 The �rst Tour de France took place in 1903, as an attempt

from the French journal "L �Auto" to boost its sales, and has been taking

place every July ever since.15 Since the end of World War II, the Tour

consists of a three weeks competition covering about 3,500 kilometers in 20

to 22 stages, including individual or team time trials and mountain stages.

Originally, and similarly to most other single-day races of the season (such

as the oldest race Liège-Bastogne-Liège), the �rst Tours were opened to all

riders and most of them were enrolled in trade teams. However, the organizer

of the Tour, Henri Desgrange, insisted that while riders could compete in the

name of their sponsors, no cooperation or tactics would be allowed between

these riders. Henri Desgrange, who set the �rst World Hour Record, wanted

the Tour to be The ultimate test for a rider�s endurance and character and

remain an individual achievement. According to Henri Desgrange, riders

ought to consider everyone as a rival whether they had the same sponsor or

not. However, in 1929, the Belgian rider Maurice De Waele, sponsored by the

France.
14In 2008, the winner of the Tour de France received e450,000 in prize money or 5

times more than the winner of the Giro (e90,000). That year, the total prize money
distributed on the Tour de France amounted to e3,269,760 or 2.4 times more than on the
Giro (e1,380,010).
15Except for breaks during World War I and World War II.
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French bicycle company Alcyon, won the Tour with the �illegal�help of his

team mates even though he was ill. This event marked Henri Desgrange, "My

Tour has been won by a corpse," and led him to deny participation to trade

teams, only national and regional teams were allowed from 1930 until 1961.

The hierarchical organization within teams became more di¢ cult since most

riders belonged to rival trade teams for the rest of the season. The loyalty

of riders was sometimes questionable, within and between teams, leading to

an ine¢ cient organization as can testimony several famous events.16

This situation was hard to accept for sponsors since they paid the salaries

of riders the whole year long but were denied publicity from the season�s ma-

jor event.17 At the beginning of the 1960s, sales of bicycles had fallen dra-

matically and as the media exposure of the Tour was growing bigger thanks

to live television broadcast,18 sponsors (predominantly cycles manufactur-

ers) pressured the organizers to come back to trade teams. By the end of the

16In 1959, the french team was made up of many strong riders such as Raphaël Gémini-
ani, Henri Anglade and Jacques Anquetil. The French team was full of internal rivalries.
Part of team decided to help spanish rider Federico Bahamontes win rather than Henri
Anglade in the hope to win more fees during the post-Tour criteriums as Bahamontes was
a much poorer rider on �at closed circuits than Anglade.
17Trades were partly accommodated for with the authorization for the riders to put their

respective trades name on their jersey and the introduction of the caravan. The caravan
consists in a trade parade preceding the riders during the tour de France. This caravan is
praised by the spectators and reached an height between the 30s and the 60s.
18The �rst live coverage from the side of the road was from the Aubisque, one of the

most famous climb in the Pyrenees, on July 8th, 1958.
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1960s, trade teams were back in and for good.

The media exposure of the Tour de France has grown ever since and

so have the stakes. Figure 1 shows the evolution of the total prize money,

corrected for in�ation, distributed on the Tour since 1950. The total prize

money were roughly steady from 1950 to 1971 and started increasing ever

since, at 3% per year between 1971 and 1985 and 5% thereafter. Another

remarkable evolution has been the evolution of the share of these prizes at-

tributed to the winner in the �nal classi�cation as shown in Figure 2. The

average share of prizes allocated to the winner was about 4.5% between 1950

and 1975. It increased to an average of 6.8% between 1975 and 1985. Since

1985, the winner goes home with about 15% of the total amount of money

prizes distributed during the Tour de France.19

We argue that up until the end of the 1960s, the organization within

teams was initially limited while since then, for the many reasons mentioned

above (from national teams to trade teams, media exposure (intrinsic utility),

increasing stakes and convexi�cation of the payo¤s by rank), the organization

of teams has progressively changed towards more specialization and more

helping intensity of helpers towards their leaders.

19It should be noted that the prizes won by each rider of a team are usually pooled
together and redistributed within the team.
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This makes the Tour de France a very well-suited market to investigate

the link between team organization and performance inequality. Indeed,

the organization structure of road cycling resembles that of many industries

with an implicit market for productive time. However, in contrast to most of

these industries, road cycling in the Tour de France presents a clear change

in the structure of incentives that allows us to appreciate and evaluate the

impact of the hierarchical organization on, in particular, inequality. Another

advantage of the Tour de France is that road cycling o¤ers the possibility

to observe directly productivity via the velocity (average speed during the

race) of each rider.20 Using the example of the tour de France, it is possible

1) to detect if hierarchical organization has or not an impact on inequality

compared to autarky and 2) to evaluate the relative e¤ect of hierarchical

e¤ect vs. globalization on equality.

3.2 Inequality

Figures 3 shows the evolution of the velocity distribution over time in the

�nal classi�cation of the Tour de France. The �gure clearly indicates a surge

in inequality, represented here by the volatility of the velocity distribution.

20Faster riders are ranked �rst and earn higher premia for their team.
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This movement appears at the end of the 1960s. It is noticeable that this

in�ection turns out to be synchronous to the authorization of trade teams to

participate and the increase in the prize money distributed.

To have a better insight of this remarkable development, we have also

represented in Figure 4 the evolution of the velocity density over time and

in Figure 5 the evolution of the cumulative distribution of velocity. Inter-

estingly enough, it appears in Figure 4 that the higher velocity inequality

takes the form of a progressive modi�cation of the shape of the distribution.

While it was unimodal for the 1950s and 1960s, it progressively moves to a

bimodal shape from the 1970s on. This indicates that a small group of top

riders have improved their velocity (relative to the contemporaneous mean

velocity) while the bulk of the riders have seen their performance deteriorate.

Hence the inequality within the peloton is rising but in a very peculiar way.

Figure 5 con�rms this21 but also informs us about the proportion of riders

that have increased their performance relative to the contemporaneous mean

velocity. This part can be found as the �xed point of the CDF and roughly

corresponds to 0:6 � 0:7. This means that 30 � 40% of the riders improved

their performances relative to the contemporaneous mean.

21The twist of the cumulative distribution over time indicates the movement towards
bimodality.
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Figures 4 and 5 clearly indicate that inequality has strongly increased

in the peloton of the Tour de France since the end of 1960s. Our intuition

is that the modi�cation of the organization of teams impacted positively

the inequality. In the empirical part of the paper that follows, we test this

hypothesis against alternative explanations such as the internationalization

of riders, technological development and di¢ culty.

3.3 Empirical analysis

3.3.1 Data

For the empirical exercise, our main source of data is from http://www.tour-

giro-vuelta.net/, a website managed by Michiel van Lonkhuyzen. To correct

for eventual mistakes or/and omission (a few distances and winning times),

we cross checked with additional sources, in particular Wikipedia for the

total distance and the winning time and http://www.ledicodutour.com/ for

the general classi�cation of the tour de France. Our database covers the Tour

de France for the period 1947-2008, i.e. 62 observations.
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3.3.2 Methodology

For each participant appearing in the �nal classi�cation of any Tour, we

calculate his average velocity as the total distance of the tour divide by his

�nishing time. This enables us to derive a distribution of velocity for each

tour as well as its associated measures of volatility. In particular, we consider

the range (velocity of the winner - velocity of the last rider) that constitutes

an e¢ cient estimate of volatility at time t (Parkinson, 1980).22 For robustness

purposes we also consider the range at speci�c parts of the distribution. The

reduced range, de�ned as the di¤erence between the volatility of the top and

bottom 5% riders, is considered in order to control for extreme behavior: the

high volatility observed in some year could be due to exceptional cluster of

gifted riders such as the couple Hinault and Lemond in 80�s or Armstrong and

Ulrich in the early 2000�s. Similarly, asymmetric ranges (upper and lower)

are introduced to disentangle the factors a¤ecting the leaders and the helpers.

These fours variables (range, restricted range, upper range and lower range)

constitute the dependent volatility variables to be explained.

The �rst candidate to explain the rise in overall inequality which forms

our main hypothesis, is specialization: an increase in help intensity provided

22More precisely he showed that Range
2
t

4 ln 2 converges to the spot volatility at time t.
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by helpers to their leaders hence sacri�cing their own velocity to the pro�t

of that of their leaders. To this aim, we consider a proxy of spot volatility

within team. This within team volatility is proxied by the range within team

(denoted as specialization). A positive sign in the regression would indicate

that a higher specialization within team increases the volatility of the whole

distribution.

The second candidate to explain a change in volatility is internationaliza-

tion. While early on, participants of each Tour were primarily French or from

a core country (Belgium, the Netherlands, Luxembourg and Switzerland), in

2008, 38 nationalities were represented at the start of the Tour de France.

This dramatic globalization of the sport might have lead to an increase in

the volatility of the velocity. To capture the potential e¤ect of globalization,

we consider 5 variables: i) the percentage of riders from the core countries

(1-globalization), ii) from France (%French), iii) from Italy (%Italian), iv)

from Spain (%Spanish), and v) the number of nationalities represented at

the start of each tour (number nat.).

The third candidate is technological development. While it is indisputable

that technology has changed the sport and improved velocity, one might

argue that it has had an heterogenous treatment e¤ect improving velocity
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of higher ability riders relatively more and hence increasing the volatility of

velocity. We de�ne technological progress loosely as the type of bicycle and

gear used, training methods and nutrition. We try and capture the e¤ect

of technological progress by including a trend in the regression and allowing

for potential structural breaks in it by applying the Bai and Perron�s (1998)

test.

Finally, we added several other control variables such as the di¢ culty of

a particular tour (as proxied by the failing rate, i.e. the percentage of riders

�nishing), the direction of the tour de France (Pyrenees before or after the

Alps) and the percentage of riders participating for the �rst time.

3.3.3 Results

We estimate the following model using OLS technique.

TRjt = �0 + �1WRt +Xt� + ut

where TRjt 2 fRange, reduced Range, lower Range, Upper Rangeg, WRt

is the within team range at Tour t and Xt are control variables including a

time trend, the number of countries represented, the percentage of French

riders, the percentage of Spanish riders, the percentage of Italian riders, the
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percentage of riders from one of the core countries and a measure of the

di¢ culty of the Tour. ut is a random shock.

Misspeci�cation tests for autocorrelation (LM of Godfrey, 1978), het-

eroscedasticity (Breusch-Pagan, 1979), normality (Jarque and Bera, 1980)

and structural break (Chow test with an unknown break date à la Andrews,

1993) are performed and support the idea of a correct speci�cation. Fur-

thermore, the presence of a unit root has been tested for each endogenous

variable and rejected.23

The main results of our four regressions are reported in Tables 1. The

adjusted R-squares providing information on the quality of the regressions

are extremely high (higher than 80%) for all range variables except for the

lower range (around 60%). Our set of variables seems to constitute an ad-

equate space to analyze the volatility. More importantly, the signs of the

estimators are in line with our theoretical model. For all measures of overall

volatility considered, the volatility within team has a positive impact. This

result provides a strong support for specialization as an explanation for the

rise in performance inequality among riders in the tour de France. Another

remarkable result is that not only the sign but also the magnitude of the

23All the tests are available upon request from the authors.
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elasticity is robust to our choice of volatility,24 ranging from 0.48 to 0.65.

Regarding the other candidates, we notice that although Globalization

has the right sign (negative: a higher percentage of core countries riders in-

duces a lower volatility), it has a lower impact and is not signi�cant. Finally,

the other four variables, i.e. percentage of riders from France (%French),

from Italy (%Italian), from Spain (%Spanish), and the number of nationali-

ties represented in the tour (number nat.) are also not signi�cant. The trend,

representing the technological progress in a wide sense, is not signi�cant. A

similar result holds for the di¢ culty variable.25 To summarize our results, it

appears that hierarchical organization is the key variable that explains the

rise in productivity inequality in the Tour de France.26

3.4 Can the model reproduce the stylized facts?

To evaluate the empirical prediction of the model, we propose the following

test for the impact of hierarchies on productivity inequality. Consider N

24It is noticeable that a simple t-test would lead to not reject the equality between these
coe¢ cients.
25We only report here the results for the di¢ culty variable. All other appear as not

signi�cant but are not reported to save space. They are available upon request from the
authors.
26To assess the robustness of our results, the same empirical analysis is performed for

the Italian Giro and the Spanish Vuelta. Results are available in Addendum 1. It turns
out that �ndings are similar to those obtained for the Tour de France.
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teams and suppose that each team has only one leader and all 9 riders of

each team �nish the tour. We also assume that initially, riders are assigned

at random to teams and help intensity is zero for every rider (autarky). This

means that the �nal classi�cation re�ects the true distribution of ability. In

particular, the velocity of the N th rider relative to that of the N + 1th rider

re�ects their ability di¤erential. Following, for instance, a convexi�cation

of the reward function, suppose that the new equilibrium exhibits a strict

strati�cation of riders: all N leaders are strictly better than any of the 8�N

helpers. In the �nal classi�cation, the �rst riders are the leaders of the various

teams and the last 8�N riders are their helpers (or riders riding individually).

The performance of all leaders increases while the performance of all helpers

decreases holding everything else constant. The model has three important

predictions. First, the within team range increases in all teams. Second, the

overall range increases too. Third and most importantly, the performance

of the N th rider (the least able leader) increases while the performance of

the N + 1th rider (the best helper) decreases. This means that at constant

distribution of ability, we should observe a movement of riders above the

100 �
�
1� N

9N

�
= 100 � 8

9
� 90th quantile away from riders below the 90th

quantile.
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Figure 5 clearly shows that the distribution becomes more unequal over

time but it is striking to see that all curves in all panels seem to be twisting

clock wise with a twisting point at the 60th quantile. Although the model

would have predicted this pattern with a twisting point at the 90th quantile,

one should bear in mind that 1) we have assumed a strict strati�cation which

is only a special case in the economy depicted above and 2) the model depicts

economies without performance shocks (no sickness during the tour, no falls,

no exclusion for doping etc.) and with perfect information about ability for

all riders. With this in mind, we take the results presented in Figure 5 as

supporting our hypothesis that the increase in the volatility of velocity is

primarily due to an increase in the hierarchical organization of the team and

help intensity.

4 Conclusion

This paper investigates the relationship between hierarchical organization

and performance inequality within and between organizations. An equilib-

rium theory of the organization of work in an economy with an implicit

market for productive time is �rst presented. In this economy, agents have
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limited productive time and can choose to produce in autarky, buy produc-

tive time from helpers to increase own production or, sell their productive

time to a leader and thereby give up own production. This implicit market

gives rise to the formation of teams, organized in hierarchies with one leader

at the top and helpers below. We prove that an equilibrium exists and is

e¢ cient and show that relative to autarky, hierarchical organization leads to

higher within and between team payo¤s/productivity inequality.

To illustrate the main prediction of our theoretical model, i.e. team orga-

nization increases performance inequality, we propose an empirical analysis

in the context of professional road cycling. Considering such a framework

is novel in this literature and has several key advantages compared to other

markets that make road cycling the most appropriated framework to study

the existence of an implicit market for productive time. The two main key

advantages of road cycling relative to other economies (i.e. layer suits as

used by Garicano and Hubbard, 2009) is that i) road cycling exhibits a clear

change in the incentives to organize work within team since the end 60�s and

ii) a direct measure of individual productivity is available in that sector via

riders�velocity. Range regressions�s results robustly show that leaders�ve-

locity increased signi�cantly (economically and statistically) more than that
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of helpers, supporting hence the model�s prediction of a positive relationship

between hierarchical organization and productivity inequality.
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Appendix A: Second order conditions:

The second order condition to the leader�s problem reads as:

w00h1(zh) > v
00
(zl + f(zh)) (f

0(zh))
2
+ v

0
(zl + f(zh))f

00
(zh) + (1� a)2v

00
(zh(1� a))(3)

if 0 < v(zl + f(zh))� v(zl)� v(zh) + v(zh(1� a))

and

w
00

0 (zh) > v00(zh) > 0 otherwise.

Similarly, the second order condition to the helper�s problem reads as:

w00l1(zl) > v
00
(zl + f(zh)) (4)

if v(zl + f(zh))� v(zl) > v(zh)� v(zh(1� a))

and

w
00

0 (zl)� v00(zl) > 0 otherwise.

An important remark is that our standing assumptions SAI and SAII

imply that w00i1(zi) > 0 for i = l; h so that equilibrium payo¤s functions are

convex.
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Appendix B: Proofs of propositions

We begin with Lemma 12 that will be used in the proof of Proposition 3.

Lemma 12 Under SA II, we have v(x2 +�2)� v(x2) � v(x1 +�1)� v(x1)

for all x2 � x1 � 0 and �2 � �1 � 0.

Proof. Since from SA II.2, v0(z) > 0 for all z � 0, it follows that v(x2+�2) �

v(x2 +�1) for all �2 � �1 � 0.

It remains to show that v(x2 +�1)� v(x2) � v(x1 +�1)� v(x1) for all

x2 � x1 � 0 and �1 � 0.

Write g�(x) � v(x + �) � v(x) with � � 0. By de�nition we have

g0�(x) = v
0(x+�)� v0(x).

Since v
00 � 0 from SA II.3, v0 is increasing over x so that g0�(x) = v

0(x+

�)� v0(x) � 0. It follows that g�1(x2) = v(x2+�1)� v(x2) � v(x1+�1)�

v(x1) = g�1(x1) for x2 � x1.

Proof of proposition 3: More able riders become leaders.

Proof. Take a team of riders with respective ability x and y with x � y

without loss of generality. This team�s surplus is Y (x; y) � maxs v(x +

f(y)s)+v(y(1�as)) when x is the leader and Y (y; x) � maxs v(y+f(x)s)+

45



v(x(1�as)) when y is the leader. To prove that x will always be the leader we

need to prove that Y (x; y) � Y (y; x). Denote s0 = s�(y; x) = argmaxs v(y+

f(x)s) + v(x(1 � as)) and denote s1 = s�(x; y) = argmaxs v(x + f(y)s) +

v(y(1� as)). By de�nition we have:

Y (x; y) = v(x+ f(y)s1) + v(y(1� as1)) � v(x+ f(y)s0) + v(y(1� as0))

Hence, it is enough to prove that v(x + f(y)s0) + v(y(1� as0)) > v(y +

f(x)s0) + v(x(1 � as0)) for all 1 � s0 � 0. Rearranging terms, we aim at

proving that the following inequality holds for all s0 and x � y:

v(x+ f(y)s0)� v(y + f(x)s0) � v(x(1� as0))� v(y(1� as0)) (5)

Write x1 = y(1 � as0) and x1 + �1 = x(1 � as0) where �1 = x � y +

as0(y � x) and x2 = y + f(x)s0 and x2 + �2 = x + f(y)s0 where �2 =

x � y + s0(f(y) � f(x)). Note that x2 � x1 for all y 2 Z and s0 2 [0; 1].

Inequality 5 can be written as:

v(x2 +�2)� v(x2) � v(x1 +�1)� v(x1) with x2 � x1
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Following Lemma 12, a su¢ cient condition for this inequality to hold is

�2 � �1. Replacing �1 and �2 by their expression in terms of x and y and

rearranging yields:

�2 � �1 , a(x� y) � f(x)� f(y)

Hence, from SA I.2 we have v(x+f(y)s0)+v(y(1�as0)) � v(y+f(x)s0)+

v(x(1� as0)) for all s0 and x � y. This means that Y (x; y) � Y (y; x) for all

x � y. The surplus of a team is therefore always higher when the most able

rider is helped by the least able one.

Proof of Proposition 4: conditions for a corner solution of s�(x; y).

We begin with the proof of Lemma that will be useful to prove Proposition

4.

Lemma 13 Under SA I and SA II, for all feasible teams (zl; zh) 2 Z2, the

surplus function Y (zl; zh; s) is a strictly convex function of helping time on

s 2 [0; 1].

Proof. Take a team of riders with respective ability x and y and with

x � y without loss of generality. From Proposition 3, rider x becomes the
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leader and rider y the helper. This team�s surplus is therefore Y (x; y; s) =

v(x+ f(y)s)+ v(y(1� as)). The slope of the surplus with respect to helping

time obtains as:

@Y (x; y; s)

@s
= v0(x+ f(y)s)f(y)� v0(y(1� as))ay

The curvature of the surplus with respect to helping time is given by:

@2Y (x; y; s)

@s2
= v

00
(x+ f(y)s) (f(y))2 + v

00
(y(1� as)) (ay)2

From SA I.1 and SA II.3, we have @2y(x;y;s)
@s2

> 0. The surplus function

Y (x; y; s) is strictly convex on s 2 [0; 1].

We can now prove Proposition 4.

Proof. Take a team of riders with respective ability x and y with x � y

without loss of generality. From proposition 3, rider x becomes the leader

and rider y the helper. This team has surplus equal to Y (x; y; s) = v(x +

f(y)s) + v(y(1 � as)). From Lemma 13, we know that Y (x; y; s) is strictly
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convex in s on s 2 [0; 1] for all x and y. This means that:

s�(x; y) =

�
1 i¤ Y (x; y; 1) > Y (x; y; 0)

0 otherwise

Using the de�nition of Y and rearranging yields:

s�(x; y) =

�
1 i¤ v(x+ f(y))� v(x) > v(y)� v(y(1� a))

0 otherwise

Proof of Proposition 7: Under SA I and SA II, in equilibrium, more able

leaders are matched with more able helpers.

Proof. By the implicit function theorem, write zh = zh(zl) the solution of

Equation 1 and zl = zl(zh) the solution of Equation 2.

First, suppose that zh(zl) and zl(zh) are di¤erentiable. Then, totally

di¤erentiating Equation 1 with respect to zl and Equation 2 with respect to

zh and rearranging yields:

z0h(zl) =
v
00
(zl + f(zh))f

0(zh)

w00h1(zh)� v
00(zl + f(zh)) (f 0(zh))

2 + v0(zl + f(zh))f
00(zh) + (1� a)2v00(zh(1� a))

z0h(zl) =
v
00
(zl + f(zh)) f

0(zh)

w00l1(zl)� v
00(zl + f(zh))
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From the second order conditions in Equations 3 and 4, the denominators

are strictly positive. Hence, z0h(zl)) > 0 since v
00
(zl + f(zh(zl)))f

0(zh(zl)) > 0

from SA I.3 and SA II.3 and z0l(zh)) > 0 since v
00
(zl(zh) + f(zh))f

0(zh) > 0

from SA I.3 and SA II.3.

Suppose now that zh(zl) and zl(zh) are not di¤erentiable. We can still

prove that in equilibrium, more able leaders get more able helpers. Take two

teams that arise in equilibrium say (xi; yi), i = 0; 1 where xi is the ability of

the leader and yi the ability her helper. Without loss of generality, suppose

that x1 = x0+ h with h > 0. From the second order conditions in Equations

3 and 4, we know that the wage pro�les are steeper than the productivity

pro�les. Formally, and using the helper�s problem for instance, we have that:

lim
h!0

w0l(x0 + h)� w0l(x0)
h

= w
00

l (x0) > v
00
(x0) = lim

h!0

v0(x0 + h+ f(y0))� v0(x1 + f(y0))
h

Using the �rst order condition in Equation 2 to replace w0l(:) obtains:

lim
h!0

v0(x0 + h+ f(y1))� v0(x0 + f(y0))
h

> lim
h!0

v0(x0 + h+ f(y0))� v0(x1 + f(y0))
h

,

y1 > y0
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It follows that in equilibrium, more able leaders are matched with more

able helpers.

Proof of proposition 8: Under SA I and SA II, in equilibrium, no riders of

ability lower than z(l1) become leaders and no riders of ability higher than

z(l1) rider on their own.

Proof. Take any rider of ability z 2 Z. The payo¤s of this rider are wl1(z)

as a leader, wh1(z) as a helper and w0(z) � v(z) as an individual rider. A

payo¤s maximizing rider will therefore choose the role leading to W (z) =

max fwl1(z); wh1(z); v(z)g. We are looking for the upper envelop W (z) of

the graph of payo¤s fwl1(z); wh1(z); v(z)g in z.

Without further restrictions, we already know from the �rst order con-

ditions that leaders�payo¤s function wl1(z) is strictly steeper than that of

individual riders v(z), i.e. w0l1(z) = v0(z + f(zh)) > v0(z) from SA II. Let

z(l1) be the ability of riders so that wl1(z(l1)) = v(z(l1)). This implies that

wl1(z) < v(z) � W (z) for all z < z(l1) and W (z) � wl1(z) > v(z) for all

z > z(l1). It follows that in equilibrium, there are no leaders of ability lower

than z(l1) and no individual riders of ability higher than z(l1). Stated other-

wise, riders of ability lower than z(l1) either become a helper or an individual
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rider, i.e. wl1(z) < W (z) for all z < z(l1), while riders of ability higher than

z(l1) either become a helper or a leader, i.e. w0(z) < W (z) for all z > z(l1).
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