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Abstract

Scienti�c research and private-sector technological innovation are di¤erent in terms
of objectives, constraints, and organizational forms. For example, the for-pro�t ob-
jective that drives private-sector innovation is absent from much of scienti�c research,
and individual researchers have many times more control in scienti�c research than in
private-sector innovation. These di¤erences and the lack of any obvious objective that
would drive the direction of scienti�c research raise the possibility that the direction
of scienti�c research is exogenous in the sense that it may not be in�uenced by factors
such as the quality of research opportunities and the expected bene�t from research
that not only drive private-sector innovation but also in part determine the socially
optimal allocation of research. Alternatively, some�yet largely unexplored�mechanisms
drive also the direction of scienti�c research to respond to these factors. In this paper
we test these two competing hypotheses of scienti�c research. In particular, we examine
whether the composition of medical research responds to changes in disease prevalence
and research opportunities. The extent of inventive activity is measured from the
MEDLINE database on 16 million biomedical publications. We match these data with
data on disease prevalence. We develop and apply a method for estimating the quality
of research opportunities from structural productivity parameters. Our results show
that the direction of medical research responds to changes in disease prevalence and
research opportunities.

JEL Classi�cation: O31, O33, I12, L65.
Keywords: Scienti�c Research, Private-Sector Innovation, Induced Innovation,

Research Opportunity, Technological Opportunity, Non-Pro�t Incentives, Medicine.

�We thank Ian Cockburn, Amy Finkelstein, Raphael Godefrey, Darius Lakdawalla, Neeraj Sood, Scott
Stern, Bruce Weinberg, an anonymous referee, and participants at the NBER Summer Institute 2008 Pro-
ductivity meeting for helpful comments. Previous versions of this paper are titled �Is Medicine an Ivory
Tower? Induced Innovation, Technological Opportunity, and For-Pro�t vs. Non-Pro�t Innovation.�

yStanford University School of Medicine, CHP/PCOR, 117 Encina Commons, Stanford, CA 94305-6019.
Email: jay@stanford.edu. Bhattacharya thanks the National Institute on Aging for funding his work on this
paper.

zUniversity of Waterloo, Department of Economics, 200 University Avenue West, Waterloo, ON N2L
3G1. Email: packalen@uwaterloo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6530968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Scienti�c research and private-sector technological innovation are di¤erent in terms of objec-

tives, constraints, and organizational forms. For example, the for-pro�t objective that drives

private-sector innovation is absent from much of scienti�c research. This particular di¤erence

is important in part because other di¤erences are likely linked to it. For example, Aghion et

al. (2008) view the fact that individual researchers have much more authority in scienti�c

research than in private-sector innovation as the de�ning characteristic of academia, and

conjecture that this di¤erence is a consequence of the non-pro�t nature of scienti�c research.

The lack of for-pro�t incentives in much of scienti�c research is important on its own

because a key virtue of for-pro�t allocation is that decisions made by for-pro�t �rms must

necessarily respond to changes in the market, or else risk failure. As we discuss below,

there is abundant evidence that for-pro�t producers innovate according to market demand.

Non-pro�t allocation, on the other hand, imposes looser budget constraints (Lakdawalla

and Philipson, 2006). In principle at least, the looser constraints could divorce production

decisions from demand. For example, the choice of topics in scienti�c research might be

mainly driven by the prospect of in�uencing other scientists (e.g. Dasgupta and David,

1994, and Saha and Weinberg, 2008) rather than the expected bene�t to society.

These di¤erences between scienti�c research and private-sector innovation and the lack

of any obvious objective that would drive the direction of scienti�c research raise the pos-

sibility that the allocation of scienti�c research e¤ort across research �elds is exogenous in

the sense that it may not be in�uenced by factors such as the quality of research oppor-

tunities and the expected bene�t from research that drive private-sector innovation and in

part determine the socially optimal allocation of research. Alternatively, some�yet largely

unexplored�mechanisms drive also the direction of scienti�c research to respond to these

factors, as has been argued by Rosenberg (1982).

In this paper we examine the determinants of the direction of medical research to test
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these two competing hypotheses of scienti�c research. In particular, we examine whether the

composition of medical research responds to changes in disease prevalence and the quality

of research opportunities.

The focus on medicine is virtuous in part because, while there may be good reasons to

insulate some markets from the vagaries of the market, academic medicine is not such a

market. Despite the evident importance that the producers of academic medicine should

respond to the market (that is, to the epidemiology of patient health), there is little extant

evidence that they do and the view of academic medicine as an �ivory tower�that does not

respond to changes in the needs of the population persists.

Our results show that the direction of medical research responds to exogenous changes in

disease prevalence, which we refer to as �the induced innovation e¤ect�. For example, we �nd

that population aging induced increases in the prevalence of a disease increase the extent of

medical research on the disease. Our results also show that the direction of medical research

also responds to changes in the quality of research opportunities: an increase in the quality of

research opportunities in research on a disease increases the extent of research on the disease.

We refer to this as the �research opportunity e¤ect�. Our econometric identi�cation of this

e¤ect relies on our analysis of a formal model of the optimal allocation of research e¤ort. We

also develop and apply a method for measuring the research inputs associated with di¤erent

research opportunities from textual information in research publications.

To our knowledge our study is the �rst study of scienti�c research that identi�es the

research opportunity e¤ect, and the �rst study of scienti�c research that uses exogenous

variation to identify the induced innovation e¤ect. We review the related literature in Sec-

tion 2.2. The empirical analysis is facilitated by the disease-level match between a medical

vocabulary and data on disease prevalence which we have constructed for the purposes of this

study. This match enables us to use the massive indexed MEDLINE database on 16 million

biomedical publications to measure innovation in medicine. To our knowledge our study is
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the �rst to take advantage of the disease-level panel nature of this database which is rich in

its information content and thereby has great potential for future research on innovation.

2 Background

2.1 Incentives in Academic Medicine

A comprehensive analysis of how the incentives and constraints faced by academic medical

researchers are di¤erent from those faced by researchers in the industry is beyond the scope

of this paper. Any analysis of these di¤erences is complicated by the intertwined nature of

industrial R&D and academic research. Nevertheless, to take one step in this direction, in

the Background Appendix we examine the many connections between industrial R&D and

academic research in the biomedical sector. The discussion is relegated to an appendix to

emphasize the fact that this discussion is not one of our main contributions.

In our view in each case the balance of this evidence indicates that despite the connec-

tion, pharmaceutical innovation re�ects largely the functioning of for-pro�t incentives and

biomedical publications re�ect largely the functioning of non-pro�t incentives. Yet, we em-

phasize that medicine is not a perfect test case for analyzing the determinants of non-pro�t

production of knowledge as there are important interactions between private sector inno-

vation and academic research. Moreover, as we have indicated above, di¤erences between

industry and academia are not limited to di¤erences in for-pro�t status. Hence, any results

on scienti�c research will not necessarily extend to non-pro�t production of other types of

knowledge.

2.2 Related Literature

Only a handful of studies have examined the determinants of scienti�c research and non-

pro�t innovation in general. Rosenberg (1982) emphasizes that private-sector technological
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innovation yields important inputs to scienti�c research and�building on prior empirical

analyses on the determinants of private-sector technological innovation�conjectures that also

the direction of scienti�c research is in part driven by the quality of research opportunities

and the expected rewards from research. Lichtenberg (1999) and Lichtenberg (2006) �nd

a positive correlation between public biomedical funding and both disease prevalence and

disease severity and between cancer prevalence and the number of biomedical publications.

In contrast with these two analyses, we use exogenous variation in disease prevalence to

identify the induced innovation e¤ect, and we estimate also the research opportunity e¤ect.

Finkelstein (2004) �nds that the impact of vaccine policies on the number of new patent

applications is small and statistically insigni�cant for both non-pro�t and for-pro�t entitites.

The literature on the determinants of the direction of private-sector technological inno-

vation is more extensive. The induced innovation hypothesis originated in Hicks (1932) and

Schmookler (1966). Recent empirical studies of the induced innovation hypothesis in the

pharmaceutical industry include Acemoglu and Linn (2004), which we discuss below, Finkel-

stein (2004), Lichtenberg and Waldfogel (2003) and Yin (2008). Our research opportunity

concept corresponds to the technological opportunity concept examined by Scherer (1965)

and Schmookler (1966) as well as more recently by Popp (2002).

The studies most closely related to ours are Popp (2002) and Acemoglu and Linn (2004).

Popp (2002) uses data on energy prices and patenting activity across energy technologies

over time and �nds a positive relationship between innovation and both energy prices and

technological opportunity. In contrast with this analysis, our main focus is on scienti�c

research, we use data on biomedical publications to measure inventive activity, and we cal-

culate the quality of opportunities from structural parameters. Acemoglu and Linn (2004)

use changes in the age demographics of the population to identify a positive the induced

innovation e¤ect for pharmaceutical innovation.1 In contrast with this analysis, we examine

1DellaVigna and Pollet (2007) exploit changes in the demographics of aging to study stock market returns.
Newell, Ja¤ee and Stavins (1999) exploit the changes in energy prices and changes in the cost and energy
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academic medical research, we use changes in both age demographics and obesity to identify

the induced innovation e¤ect, and we determine also the research opportunity e¤ect.2

The methodology that we use to estimate the quality of research opportunities builds

on the methodology developed in the studies on patenting by Caballero and Ja¤e (1993),

Ja¤e and Trajtenberg (1996) and Popp (2002). While these analyses rely on a reduced-form

estimation method, we derive the estimating equation from a model the bene�t from medical

research. We discuss the di¤erences between the two approaches in Section 4.2.2. The main

advantage of our more structured approach is that the probability that a given knowledge

cohort is used in research depends not only on the quality of that knowledge cohort but also

on the quality of other existing knowledge cohorts.

An additional methodological innovation in our analysis is that while in these existing

analyses the opportunity variable is constructed from citations in patent data, we construct

the opportunity variable from textual information in publications data. Because the proposed

method does not rely on citations data, it expands the set of circumstances in which a

measure of the quality of research opportunities can be constructed. Even when citation data

is available, the set of research inputs captured by citations alone is limited. For example,

citations in scienti�c publications seldom capture research inputs generated by private-sector

technological innovation, which role Rosenberg (1982) emphasized. The proposed method

thus also expands the set of research inputs which the constructed opportunity variable can

re�ect. In related existing research Azoulay et al. (2007a, 2009) determine the patentability

of a scientist�s research by comparing the textual content of the scientist�s publications with

the content of publications by scientists who have obtained patents.3

e¢ ciency of air conditioners to examine the e¤ect of energy prices on the direction of technological change.
2The previous of this paper (Bhattacharya and Packalen, 2008a) included estimates of the induced in-

novation e¤ect in pharmaceutical innovation. For presentational clarity, we omit these analyses here. The
analyses of aging and obesity induced innovation are related to the empirical studies on preference exter-
nalities by Waldfogel (2003) and George and Waldfogel (2003). In a companion paper (Bhattacharya and
Packalen, 2008b) we calculate the welfare e¤ect of the induced innovation externality of obesity. The reader
is also referred to this companion paper for references to the medical and economic literatures on obesity.

3Our analysis also complements the graphical analysis of topic bursts by Mane and Börner (2004).
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3 Theory

In this section we present a model of medical research and solve for the socially optimal

outcome in the model. The analysis yields a description of how the socially optimal allocation

of research across diseases is in�uenced by the quality of research opportunities and disease

prevalence. The analysis also yields a relationship that enables us to estimate the structural

productivity parameters that determine the quality of research opportunities in each disease,

as well as a relationship that describes how the quality of research opportunities variable can

be constructed from these productivity parameter estimates.

Our theoretical analysis re�ects our focus on examining whether the direction of scienti�c

research responds to changes in two characteristics�the quality of research opportunities and

the expected bene�t from research�that in part determine the socially optimal allocation.

The analysis is agnostic about why scienti�c research would respond to changes in these two

characteristics. We sidestep this question because the data that we use does not enable us

to di¤erentiate between di¤erent theories of scienti�c research such as altruism and prestige

maximization (see e.g. Merton 1973 [1942], Glaeser, 2003, Stern 2004). These speci�c

mechanisms are important but so is understanding the relationship between the direction of

scienti�c research and characteristics that determine the socially optimal allocation.

3.1 A Model of the Social Bene�t from Medical Research

3.1.1 Three Characteristics of Each Unit of Research

We assume that each unit of research is identi�ed by three characteristics: the disease i

which the research examines, the year t in which the research is conducted, and the cohort

f of the research opportunities that are pursued in the research. The measurement and role

of the opportunity cohort f in the analysis is explained shortly. These assumptions are, of

course, simpli�cations as a research project in medicine does not necessarily examine only
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one disease and a research project may rely on opportunities that do not all belong to the

same opportunity cohort f . The discussion of how we address these issues in our empirical

analysis is postponed until Section 5.3.

3.1.2 Determinants of the Bene�t from Research

Consider next the bene�t of research on disease i in year t that pursues research opportunities

in the opportunity cohort f . We assume that this bene�t depends on three factors: 1) the

extent of research, 2) the number of people who bene�t from the research, and 3) the quality

of the research opportunities. We assume that the bene�t from research does not depend on

the severity of the disease because we lack of a source of exogenous variation in severity over

time, because most research is incremental and thus need not bear a relationship with the

harm from the disease to each in�icted individual, and because this assumption is consistent

with the �ndings in Acemoglu and Linn (2004).

The �rst factor, the extent of the research e¤ort on disease i in year t that pursues

research opportunities in cohort f , is denoted by Nitf . The second factor, the expected

number of people with the disease i in year t; is denoted by Mit. The third factor, the

quality of research opportunities, captures the idea that the bene�t from an inframarginal

unit of research is higher when the inputs to the research process provide the researchers

fertile applications compared to when the inputs to the research process hold only potential

for average or below average applications.

3.1.3 Measurement of Research Opportunities from Research Inputs

Inputs to the research process can be tangible or intangible. Tangible research inputs in

medicine include approved drugs developed by pharmaceutical companies. The properties

of such drugs are examined in drug-related post-approval medical research. Ideas are an

example of intangible research inputs, some of which are recorded as citations in publications.
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However, from the perspective of an econometrician, the more important distinction is

whether the presence of a particular set of research inputs can be measured. In what follows

we refer to the set of observable characteristics of the opportunities pursued in research

as �research inputs�. The discussion of how we measure research inputs in our empirical

analysis is postponed until Section 5.3.

3.1.4 Measurement of the Cohort of Research Opportunities

There are alternative ways of assigning a cohort to each research input. For example, when

research inputs are ideas that are measured from citations, a natural choice for the cohort

f of each research input is the year of publication of the cited publication. An alternative

method is to set the cohort f of a research input as the year in which the research input

was �rst applied either in medical research. The discussion of how we measure the cohort of

research inputs in our empirical analysis is postponed until Section 5.3.

3.1.5 Determinants of the Quality of Research Opportunities

For a given disease i, year t, and opportunity cohort f combination, the quality of research

opportunities depends on two factors: 1) the baseline productivity of research inputs in the

opportunity cohort f in research on the disease i, which we denote by �if , and 2) the elapsed

time t�f since the initial discovery of the research inputs in cohort f . The �rst factor re�ects

the fact that the productivity of research inputs in cohort f in research on a disease i will

be low if the research inputs in the particular cohort f are relatively unsuitable for research

on that particular disease. Such scenario is captured by a low value of the parameter �if .

The second factor re�ects the fact that both the di¤usion and exhaustion of knowledge is

generally gradual: the productivity of research inputs in cohort f in research will be low both

if the elapsed time t� f from the year of discovery f of these research inputs is very high�so

that most of the potential of that research input cohort has already been exhausted�and if
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the elapsed time t� f since the discovery of the ingredients is very low�so that most of the

potential of that research input cohort has yet to be fully revealed to the researchers.

3.1.6 Functional Form for the Bene�t from Research

We assume a speci�c functional form for the bene�t from research on disease i in year t that

relies on research inputs associated with the opportunity cohort f , namely

Mit �
�
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf

	
� ln (Nitf ) ; (1)

where "itf denotes other factors that in�uence the bene�t from research. We assume that the

variable "itf is observable to medical researchers but is unobservable to the econometrician.

The factor
�
1� e��2(t�f)

�
represents the lag between the discovery of the research inputs in

cohort f and the time at which the full potential of the these research inputs in medical

research is revealed. The factor e��1(t�f) represents the eventual decay in the usefulness of

the research inputs in cohort f in medical research as the associated research opportunities

are gradually exhausted.4

The total bene�t from research on the disease i in year t is the sum of the bene�t (1)

over all available research input cohorts f0 through t:

Mit

tX
f=f0

�
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf

	
� ln (Nitf ) : (2)

The overall bene�t from research in year t is the sum of the bene�t (2) from research on

disease i over all diseases:

X
i

Mit

tX
f=f0

�
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf

	
� ln (Nitf ) : (3)

4We do not model explicitly the e¤ect that the amount of research in the preceding years may have on
the bene�t from research in a given year. This assumption is innocuous if marginal research in each year
does not in�uence the quality of research opportunities in future years.
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3.2 Socially Optimal Allocation

3.2.1 Optimal Allocation across Opportunity Cohorts f within Disease i

LetN�
itf denote the optimal allocation of research e¤ort on disease i that relies on opportunity

cohort f in year t. The �rst-order conditions for the optimum imply that

p�itf =
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itfPt

f 0=f0
f�if 0 � e��1(t�f 0) � [1� e��2(t�f 0)] + "itf 0g

; (4)

where p�itf �
N�
itfPt

f 0=f0
N�
itf 0
.5 Equation (4) states that the share of research on disease i that

relies on opportunity cohort f is equal to the ratio of the quality of the opportunity cohort f

in research on the disease i and the sum of the qualities of all available research opportunity

cohorts f0 through t in research on the disease i:

3.2.2 Optimal Allocation across Diseases

When the allocation of research across opportunity cohorts f within a disease is optimal,

using the previous de�nition p�itf � N�
itf=

Pt
f 0=f0

N�
itf 0 and the de�nition Nit �

Pt
f=f0

N�
itf ,

the expression (3) for the overall bene�t from research can be rewritten as

X
i

Mit

tX
f=f0

�
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf

	
� ln

�
Nit � p�itf

�
: (5)

The �rst-order conditions for the optimal allocation of research e¤ort across diseases imply

that

Nit =

 X
i

Nit

!
�

Mit

Pt
f=f0

�if � e��1(t�f) �
�
1� e��2(t�f)

�
+ "itfP

iMit

Pt
f=f0

f�if � e��1(t�f) � [1� e��2(t�f)] + "itfg
(6)

5The �rst-order condition for the optimum is Mit � �if �
e��1(t�f)�[1�e��2(t�f)]+"itf

N�
itf

= Mit � �if 0 �
e��1(t�f

0)�
h
1�e��2(t�f

0)
i
+"itf0

N�
itf0

for all (i; t; f; f 0) : Denoting citf � �if � e��1(t�f)�
�
1� e��2(t�f)

�
+ "itf this

condition can be rewritten as citf �N�
itf 0 = N

�
itf � citf 0 for all (i; t; f; f 0) : Taking the sum of both sides of

the equation citf �N�
itf 0 = N

�
itf � citf 0 over all f 0 2 ff0; :::; tg gives citf �

Pt
f 0=f0

N�
itf 0 = N

�
itf �

Pt
f 0=f0

citf 0
for all (i; t; f) : Rearranging and using the de�nitions of citf and p�itf gives the relationship (4) in the text.
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holds for all (t; i).

The factor
Pt

f=f0
f�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itfg in equation (6) is the sum of

the qualities of available research opportunity cohorts in the disease i in year t, and we use

this sum as a measure of the quality of research opportunities in research on the disease i in

year t: Denoting this measure of the quality of research opportunities by Kit, we can rewrite

equation (6) as Nit =
P

iNit=
�P

iMit

Pt
f=f0

Kit

�
�Mit �Kit: Assuming that Nit > 0 and

Kit > 0 for all (i; t) this can be rewritten as

lnNit = lnKit + lnMit + ut; (7)

where ut � ln
hP

iNit=
�P

iMit

Pt
f=f0

Kit

�i
.

3.3 Implications for Empirical Analysis

3.3.1 Two Determinants of the Direction of Medical Research

Equation (7) describes a proportional relationship between research e¤ort in a disease and

the quality of research opportunities, and a proportional relationship between the research

e¤ort in a disease and disease prevalence. With a di¤erent functional form for the overall

bene�t from research both relationships would still be positive but non-proportional. We

allow for this possibility in our empirical framework (see Section 6).

3.3.2 Estimation of the Quality of Research Opportunities

Equation (4) describes a relationship between the parameters �if ; �1 and �2 that govern

quality of research opportunities variableKit and the probability p�itf that research on disease

i in year t relies on research inputs in the research input cohort f . In Section 4 we explain

how we use this predicted relationship to estimate the parameters �if , �1 and �2 and how

the measure of the quality of research opportunities is calculated from these estimates.
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3.3.3 Implications when the Quality of Research Opportunities is not Estimated

As we explain in Section 5.3, we limit the scope of the analysis by constructing a measure of

the quality of research opportunities only for drug-related medical research. When the role

of research opportunities is omitted from the model�similar to Acemoglu and Linn (2004)�

the theoretical analysis describes a proportional relationship between the extent of research

e¤ort on each disease and disease prevalence. Of course, di¤erent assumptions about the

preferences would again imply that the relationship is positive but non-proportional. We

allow for this possibility in the empirical analysis.

3.3.4 Changes in the Composition of Research across Types of Research

What this model of medical research and the discussion so far has not considered is that a

factor that changes disease prevalence may also change the type of medical research on a

disease. For example, while population aging increases the prevalence of many diseases it

may also shift research e¤ort away from a more general type of drug-related medical research

on those diseases and toward research that is more focused on the physiology of those diseases

in the old-age population. Similarly, while an increase in obesity increases the prevalence

of many diseases it may also shift research e¤ort away from a more general type of drug-

related research on those diseases and toward research that is focused on the physiology of

those diseases in the obese. As a result, changes in disease prevalence may not in�uence the

amount of drug-related research as much as is implied by the above model. The estimated

disease prevalence e¤ect on drug-related research may even negative if the change in disease

prevalence a¤ects the composition of research within the disease but does not a¤ect the

measure of total amount of research on the disease.6 We allow for these possibilities in the

empirical analysis.

6Even when the total research e¤ort in the disease changes, our measure of total research e¤ort in a
disease (publications) may not change if one type of research (say, research that examines the physiology
of the disease in a subpopulation) requires more inputs than another type of research (say, drug-related
research on the disease).
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4 Estimation of the Quality of Research Opportunities

4.1 Calculation of the Quality of Research Opportunities

As was explained in the discussion preceding equation (7), a measure of the quality of research

opportunities in research on the disease i in year t is given by the expression

Kit �
tX

f=f0

�
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf

	
; (8)

where the parameters �if specify the baseline productivity of the research opportunity cohort

f in research on disease i, the parameter �1 governs the eventual decay in the research

potential of the research input in any given cohort, the parameter �2 governs the rate at

which the full potential of research inputs in any given cohort is revealed to researchers, and

"itf denotes other factors that in�uence the productivity of research that relies on research

inputs in the cohort f . We assume that E["itf ] = 0 and that "itf is independent and

identically distributed.

Provided we can obtain estimates �̂if and �̂1; �̂2 of the parameters �if ; �1 and �2, we

can thus calculate an estimate of the quality of research opportunities in disease i in year t

using the formula

K̂it � E[Kitj�̂if ; �̂1; �̂2] �
tX

f=f0

�̂if � e��̂1(t�f) �
h
1� e��̂2(t�f)

i
: (9)

The econometric challenge is to estimate the parameters �if , �1 and �2.

We emphasize that our calculation of the measure of the quality of research opportunities

from the estimates of these parameters is standard. Popp (2002), Caballero and Ja¤e (1993)

and Ja¤e and Trajtenberg (1996) each use either the equation (9) or a close equivalent. The

di¤erence between our approach and these existing approaches lies in how these parameters

are estimated.
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4.2 Estimation of the Structural Productivity Parameters

4.2.1 The Estimating Equation

The theoretical analysis in Section 3.1 predicts that when the allocation of research e¤ort

across opportunity cohorts f within disease i is socially optimal, the relationship (4) holds

between the probability p�itf that research on disease i in year t relies on the research op-

portunity cohort f and the unknown productivity parameters �if ; �1 and �2. Existing

analyses calculate the probabilities p�itf �
N�
itfPf

f 0=f0
N�
itf 0

from citations in patent data whereas

we calculate these probabilities from textual information in publications data (see Section

5.3).

With observations on the probabilities p�itf , the relationship (4) can be used as the basis

for obtaining estimates of the parameters �if ; �1 and �2. Denoting �it � 1=[
Pt

f=f0
f�if �

e��1(t�f) �
�
1� e��2(t�f)

�
+ "itfg] the relationship (4) may be rewritten as

p�itf=�it = �if � e��1(t�f) �
�
1� e��2(t�f)

�
+ "itf : (10)

When t� f0 is large, we have that
Pt

f=f0
"itf � 0. Applying this simpli�cation modi�es the

de�nition of �it as follows:

�it � 1=
"

tX
f=f0

�if � e��1(t�f) �
�
1� e��2(t�f)

�#
(11)

and also modi�es the relationship (4) as follows:

p�itf =
�if � e��1(t�f) �

�
1� e��2(t�f)

�
+ "itfPt

f=f0
�if � e��1(t�f) � [1� e��2(t�f)]

: (12)

The above equation forms our estimating equation for the parameters �if and the parameters

�1 and �2 that govern the quality of opportunities.

14



4.2.2 Comparison with the Reduced-Form Estimation Approach

Using patent citation data on technological innovation, Popp (2002), Caballero and Ja¤e

(1993) and Ja¤e and Trajtenberg (1996) estimate the parameters �if , �1 and �2 that govern

the the quality of opportunities using the reduced-form empirical model

p�itf = �if � e��1(t�f) �
�
1� e��2(t�f)

�
+ "itf : (13)

Hence, the di¤erence between this existing approach and our structural approach to estimat-

ing the parameters �if , �1 and �2 is that in our estimation approach the probability that

research relies on a given opportunity cohort f depends not only on the quality of the oppor-

tunity cohort f but also on the quality of other available opportunity cohorts�as is indicated

by the presence of the denominator in our estimating equation (12)�whereas in these prior

estimation approaches the probability that research relies on an opportunity cohort f only

depends on the quality of the opportunity cohort f and not on the quality of other available

opportunity cohorts. This feature is the main advantage of our estimation approach relative

to prior approaches to estimating the quality of research opportunities.

An added advantage of our more structured approach is that potential limitations in

empirical work become more transparent. For example, the analysis reveals that if the

expression (2) is not a good representation of the true bene�t from research, the measure of

the quality of research opportunities variable Kit would likely be in�uenced by the extent of

research Nit on the disease (see Section 7.1.2). It is therefore important to examine whether

such potential reverse causality in�uences estimates of the �research opportunity e¤ect�. We

are not aware of this issue having been considered in existing work. Also other identifying

assumptions become more transparent. The quality of research opportunities variable is

calculated under the assumption that allocation across cohorts within diseases is optimal,

whereas the research opportunity e¤ect itself refers to allocation across diseases.
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4.2.3 An Iterative Estimation Procedure

In our empirical analysis the number of parameters aif is over 5000 because we have 127

separate diseases and f ranges from 1960 to 2002. Estimating the parameters aif and

the parameters �1 and �2 using non-linear least squares and the equation (12) is therefore

computationally quite demanding. Instead, we �rst estimate the parameters �1 and �2 using

non-linear least squares applied to the equation (10) while assuming �xed values for the

parameters �if and �it:7 We then estimate the parameters �if using the following iterative

procedure:

1. We start by calculating initial estimates of �it by plugging in the estimates of the

parameters �1 and �2 as well as arbitrary (starting) values of �if into the expression

(11).8

2. Using the estimates of the parameters �it and the estimates of the parameters �1 and

�2, we estimate the parameters �if by least squares applied to the equation (10) and

holding �it; �1 and �2 �xed.

3. We recompute the estimates of �it by plugging in the estimates of �if and the estimates

of �1 and �2 into the expression (11). If the new value of the estimate of �it is

su¢ ciently close to the old value, we declare convergence. If not, we iterate the previous

step until convergence.

This iterative procedure yields estimates of the parameters �if . We then generate our

estimate of the quality of research opportunities using the estimates �̂if ; �̂1 and �̂2 and the

formula (9).

7We assume that �if = 1 and �it = 1 for all i; t; f: The estimating equation therefore becomes p�itf =
e��1(t�f) �

�
1� e��2(t�f)

�
+ "itf : Omitting a multiplicative constant in this speci�cation is both innocuous

and necessary because the true value of the parameter �2 is typically very small and the variation in t � f
is limited which make the factor

�
1� e��2(t�f)

�
approximately equal to �2 � (t� f) in the sample.

8We assume that �if = 1 for all i; f:
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5 Data and Measurement of Variables

5.1 Publications Data

Wemeasure research e¤ort in medicine from the MEDLINE publications database on approx-

imately 16 million biomedical publications, generally from 1950 to the present. Publications

in this database are indexed by the 2007 version of the Medical Subject Headings (MESH)

vocabulary, which is a hierarchical medical vocabulary of over 20000 di¤erent terms. We use

these MESH codes to identify the disease or diseases examined in each publication.

We limit the analysis to the 127 diseases which we have matched to disease prevalence

data (see Section 5.2). To measure the extent of the total research e¤ort related to a disease

we count the number of publications that are matched to the disease. A publication may

be indexed to multiple diseases. We allow for this possibility by counting publications that

are matched to more than one disease the same way we would count the matches if each

match was from a separate publication. We construct three measures of drug-related medical

research, denoted DRUG 1, DRUG 2, and DRUG 3, and three measures of other medical

research, denoted OTHER 1, OTHER 2, and OTHER 3. The construction of these measures

is discussed in the Data Appendix.

5.2 Match of Publications Data and Disease Prevalence Data

An important contribution of our analysis is the construction of a match between the MED-

LINE publications data, which is indexed by the MESH medical vocabulary, and the disease

prevalence data (see Section 5.4), which is indexed by the ICD-9 disease classi�cation system.

We limit this matching e¤ort in several ways that are detailed in the Data Appendix. The

match, which we included in its entirety in the previous version of this paper (Bhattacharya

and Packalen, 2008a), yields 127 separate matches between a disease or a group of diseases

and a MESH entry/entries. The 127 diseases belong to 12 disease classes.
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5.3 Measurement of Research Inputs and their Cohort

5.3.1 Citation Based Approach to Measuring Research Inputs

Using patent data, existing research (e.g. Popp, 2002, Caballero and Ja¤e, 1993, and Ja¤e

and Trajtenberg, 1996) has relied on citations to previous patents to determine research

inputs and their cohort. In principle, an analysis of research inputs in scienti�c research could

similarly be based on citations in scienti�c publications. However, such citation data are not

widely available to researchers. Moreover, an important input in scienti�c research is private-

sector technological innovation (Rosenberg, 1982), and citations in scienti�c publications

would seldom reveal the presence of such inputs in scienti�c research.

5.3.2 Textual Information Based Approach to Measuring Research Inputs

An alternative approach is to determine research inputs and their cohorts from textual

information in research publications. This is the approach that we develop and apply here.

Related research by Azoulay et al. (2007a, 2009) is discussed at the end of Section 2.2.

To limit the scope of the required data extraction exercise, we construct the measure

of the quality of research opportunities only for drug-related medical research.9 Within

drug-related medical research, there are of course many di¤erent types of research inputs.

We focus on approved active ingredients (new drugs) as research inputs. To determine

which ingredients are used as research inputs in each medical research publication, we search

through the titles and abstracts of all publications in the MEDLINE publications database

for all approved active ingredients.10 The match of an ingredient name and a publication

9The measurement of research inputs associated with di¤erent research opportunities is considerably more
intense an exercise for non-drug-related �other medical research�than for drug-related medical research, as
only for drug-related research is an important subset of the research inputs associated with each research
opportunity easily available in the form of approved active ingredients (drugs).
10We identify active ingredients from the Federal Drug Administration (FDA) data on drug approvals

during 1939-2006. As we generally cannot distinguish between active ingredients and their derivatives in
the biomedical publications data, we consider the �rst word of each entry in the list of approved active
ingredients to be the ingredient name that we use in our study. This yields a list of 1448 ingredients. This
list includes the drugs that were in use pre-FDA. We do not use the drug approval year information in the
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indicates that the ingredient was an input to the research process that led to the publication.

It is important to note that pharmaceutical research that leads to the discovery of new

active ingredients precedes the type of drug-related medical research examined here. When

the active ingredient name is used in publications the intended therapeutic use of the drug is

already known and the associated patent application has already been �led.11 Consequently,

our measure of drug-related research captures applied drug-related medical research which

is mostly conducted by academic researchers and published in academic journals as opposed

to basic drug development research conducted by either pharmaceutical �rms or academics.

5.3.3 Measurement of the Cohort of Research Inputs in Our Analysis

We set the cohort f of each measured research input (active ingredient) to equal the year

before the year in which the research input is �rst mentioned in the publications data. We

lump together research inputs with the same cohort f . A publication may mention research

inputs from multiple cohorts. We count such multiple matches from one publication the

same way we would count the matches if each match was from a separate publication.

5.4 Measurement of Disease Prevalence

To construct population aging and obesity epidemic related measures of disease prevalence

over time we combine cross-sectional disease prevalence data with panel data on population

characteristics (see Section 6). We estimate cross-sectional disease prevalence for each age

and BMI group from the Medical Expenditure Panel Survey data for years 1996-2005. We

use the Surveillance Epidemiology and End Results data for years 1975-2004 to estimate the

share of people in each age group in each year. For each age group we use the National

Health Interview Survey data for years 1976-2005 to estimate the share of people in each

FDA data because that information is unreliable in this administrative data.
11Pharmaceutical manufacturers apply for an active ingredient name for a drug during phase I or phase

II clinical trials which happen after the pre-clinical testing has been completed and the drug has received an
investigational drug application.
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BMI group in each year. Details are relegated to the Data Appendix.

5.5 Sample Period

For reasons discussed in the Data Appendix, we set 1975-2005 as the sample period in the

regression analyses, and in estimating the quality of research opportunities we limit the range

of research input cohorts f to 1960-2001 and the range of publication years t to 1970-2002.

6 The Empirical Models

The empirical models that we apply are based on equation (7) and the associated discussion in

Section 3.3. We rely on population aging and obesity epidemic induced exogenous changes

in disease prevalence to identify the �induced innovation e¤ect� (see Section 7.2). The

construction of the population aging and obesity epidemic related disease prevalence variables

MAGING
it and MOBESITY

it is discussed below.12 The resulting regression model is

lnNit = �K ln K̂it + �A lnM
AGING
it + �O lnM

OBESITY
it + �i + �t + uit: (14)

The variable Nit is a measure of medical research e¤ort (publications) on the disease i in

year t: We construct a measure of the quality of research opportunities variable Kit only for

drug-related medical research (see Section 5.3.2). However, we include this variable also in

our analyses of other types of medical research because this strategy enables us to examine

whether the results on the �research opportunity e¤ect� in drug-related medical research

are a¤ected by reverse causality (see Section 7.1.2). The variable ut is the unobserved error

term. The parameters �i and �t represent disease and year �xed e¤ects, respectively. Using

this �xed e¤ects speci�cation the identifying variation for each parameter is the variation

in the regressor within each disease relative to the corresponding variation within all other

12See the Data Appendix to Section 5.4 for the derivation and rationale for this decomposition.
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diseases. We also employ an alternative �xed e¤ects strategy in which we include disease

�xed e¤ects �i and the disease-class speci�c year �xed e¤ects �d;t. Using this alternative

�xed e¤ects speci�cation the identifying variation for each parameter is the variation in the

regressor within each disease relative to the corresponding variation within all other diseases

in the same disease class. The parameters of interest will be di¤erent in the two �xed e¤ects

speci�cations if the elasticity of substitution of research e¤ort is di¤erent between diseases

within each disease class than it is between diseases in di¤erent disease classes.

The constructed population aging related disease prevalence variable

MAGING
it �

5X
j=1

3X
k=1

�i;j;k � sAGEj;t � sBMI
j;k;t0

; (15)

is the prevalence of disease i in year t when the body weight distribution in year t is set to be

the same as the body weight distribution is in the initial year t0 in the sample and only the

age distribution varies over time. Similarly, the constructed obesity epidemic related disease

prevalence variable

MOBESITY
it �

5X
j=1

3X
k=1

�i;j;k � sAGEj;t0
� sBMI

j;k;t : (16)

is the prevalence of disease i in year t when the age distribution in year t is set to be the

same as the age distribution is in the initial year t0 in the sample and only the body weight

distribution varies over time. A positive estimate of the parameter �A (parameter �O) is

therefore evidence of aging (obesity) induced research. The parameter �i;j;k is the prevalence

of disease i among people in the age group j who are in the Body-Mass-Index (BMI) group

k, the parameter sAGEj;t is the share of people in the age group j in year t; and the parameter

sBMI
j;k;t is the share people in the age group j who are in the BMI group k in year t:

13

13The parameters �i;j;k; s
AGE
j;t and sBMI

j;k;t are estimated from data on the disease prevalence and from data
on demographics (see Section 5.4). The age groups are 0-18, 18-35, 35-50, 50-65 and 65+. The BMI groups
are 18.5-25, 25-30 and 30-50. See the Data Appendix to Section 5.4 for an explanation on why age group 0-18
is excluded here and the implications. As we use disease and year �xed e¤ects we can ignore population size
and population growth in estimating disease prevalence. Due to space constraints and to keep the analysis
accessible we also relegate the discussion of several additional issues to the Data Appendix to Section 5.4.
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7 Identi�cation Strategy

7.1 Identi�cation of the Research Opportunity E¤ect

7.1.1 Correlated Unobservables

Variation in the quality of research opportunities is likely to be correlated with the variation

in the unobserved determinants of medical research over time. Accordingly, we employ �xed

e¤ects approaches in which the research opportunity e¤ect is identi�ed by comparing changes

in the quality of research opportunities across diseases (either across all diseases or across

diseases in the same disease class) with the corresponding changes in research e¤ort.

7.1.2 Reverse Causality

With a di¤erent functional form for the bene�t frommedical research the optimal distribution

of research e¤ort across opportunity cohorts within a disease would depend on the extent of

research on the disease. Consequently, changes in the level of research on a disease would

impact estimates of the quality of research opportunities. There might thus be a positive

empirical relationship between these two variables even if there was no causal e¤ect from the

quality of research opportunities on the extent of research e¤ort.

To address this potential concern we take advantage of the fact that we examine two cate-

gories of medical research, namely drug-related medical research and other medical research.

The unobserved e¤ects that in�uence the level of drug-related research e¤ort and the unob-

served e¤ects that in�uence the level of other types of medical research e¤ort are likely to be

correlated. Consequently, if there is indeed reverse causality from the level of drug-related

research e¤ort to the measure of quality of research opportunities in drug-related research,

this measure of the quality of research opportunities will likely also be correlated with the

level of other medical research. In contrast, if there is no reverse causality from the level

of drug-related research e¤ort to the measure of the quality of research opportunities, this

22



measure of the quality of research opportunities will likely be uncorrelated with the level of

other medical research. We can therefore test for the presence of reverse causality in our

estimates of the �research opportunity e¤ect� by including the estimate of the quality of

research opportunities in drug-related medical research also as a regressor in the analyses

of the determinants of other medical research. If the estimate of the research opportunity

parameter �K is close to zero when the dependent variable is a measure of other medical

research, it is an indication that a positive estimate of the coe¢ cient �K when the dependent

variable is a measure of drug-related medical research is not a result of reverse causality.

7.2 Identi�cation of Induced Innovation E¤ects

7.2.1 Exogenous Variation in Disease Prevalence

As is well recognized in the literature on induced innovation, the causal e¤ect of the poten-

tial market size on the extent of innovation cannot be inferred from the relationship between

observed innovation and the observed market size due to the endogeneity of the observed

market size. Acemoglu and Linn (2004) circumvent this problem by examining the relation-

ship between changes in pharmaceutical innovation and changes in potential market size that

are caused by population aging induced exogenous changes in disease prevalence. The key

conditions to the success of this identi�cation strategy are that the e¤ect of aging on disease

prevalence varies across diseases, the age demographics of the population have changed over

time, and the changes in the age demographics are mostly caused by changes in fertility and

are therefore mostly exogenous to the rate of pharmaceutical innovation.

We follow this general identi�cation strategy in our analysis. However, we take into

account both the e¤ect that the change in age demographics has had on disease prevalence

over time and the e¤ect that the obesity epidemic has had on disease prevalence over time.14

14Acemoglu and Linn (2004) use also changes in the share of income of each age group. As the changes
in income shares and the changes in population shares are relatively similar, it is not surprising that the
inclusion of income movements does not alter their results.
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The key conditions for using the obesity epidemic to identify the �induced innovation e¤ect�

are similar to the above mentioned conditions for the identi�cation of the �induced innovation

e¤ect� from population aging induced changes in disease prevalence. First, the e¤ect of

obesity on disease prevalence must vary across diseases. Second, the body weight distribution

in the population must have changed over time. And third, the obesity epidemic must

be mostly exogenous to the rate of medical innovation. Our discussion of the descriptive

statistics shows that the �rst two conditions hold (see Section 8.1). It is also reasonable

to expect that the third condition holds. We are certainly not aware of any empirical

research attributing the obesity epidemic�not to mention a non-negligible part of the obesity

epidemic�to pharmaceutical and other medical innovation that would have made being obese

or overweight more attractive choices compared to remaining normal weight.

7.2.2 Omission of Other Patient Population Characteristics

Of course, disease prevalence is not the only factor that in�uences the bene�t from med-

ical research, and aging and obesity are not the only factors that have in�uenced disease

prevalence. Potentially important omitted factors include changes in disease severity, which

exclusion from the analysis we have addressed in Section 3.1.2, and changes in insurance

coverage. Also, as a population becomes wealthier its willingness to invest in developing

treatments to diseases that a¤ect mainly �nancially vulnerable populations may change. It

is also possible that the attitudes toward these or other populations such as children change

over time for other not yet understood reasons and that these changes in�uence the allocation

of research. We do not dispute the existence of these other factors that potentially in�uence

the extent medical research. Our focus on population aging and the obesity epidemic in the

identi�cation of the induced innovation e¤ect is merely dictated by the availability of data

on how these factors have in�uenced disease prevalence over time and the fact that both of

these factors are known to have had a large impact on the prevalence of many diseases.
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8 Results

To shorten the length of the paper we refer the reader to the earlier version Bhattacharya

and Packalen (2008a) (hereafter BP (2008a)) for the �gures.

8.1 Descriptive Statistics

Figure 1a in BP (2008a) shows the age and body weight distributions during the sample

period. While the change has been gradual for both distributions, the change in the body

weight distribution began more recently. Figure 1b in BP (2008a) shows the e¤ect that the

changes in the two distributions have had on the prevalence of each disease from the beginning

of the sample period (1975) to the end of the sample period (2005). For both variables there

is considerable variation in the e¤ect (from -10% to +20%). These identifying variations are

also not too correlated for the e¤ects to be separately identi�ed in most cases.

Figure 2a in BP (2008a) depicts the count of all publications (All Publications) and

the count of publications with an abstract (Publications with an Abstract) by the year of

publication. The graph also shows the count of publications that are indexed with a disease

(Publications Indexed with a Disease) and the count of publications that are indexed with

a disease that is matched to an ICD-9 disease by our match (Publications Matched). A

publication may be indexed with more than one disease and, consequently, our match may

match a publication to more than one ICD-9 disease. Therefore, the count of matches

of publications to a disease (Publication-Disease Matches) is higher than the number of

publications matched to at least one disease (Publications Matched). Figures 2b and 2c in

BP (2008a) depict the count of matches to one of the 127 diseases for each of the three

measures of drug-related medical research in each year and for each of the three measures of

other medical research in each year.

The count of publications for each measure is an important determinant of the precision of

our estimates because the variance of the share of publications that are matched to a disease
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is expected to be inversely related to the count of publications that are matched to the

disease and the estimated e¤ects are identi�ed from the e¤ects on the share of publications

that are related to each disease. This is also the reason why we report weighted regression

results. While we do not report the unweighted regressions, the reported residual graphs

serve the same purpose and also show that the results are not the product of outliers.

8.2 Estimates of the Quality of Research Opportunities

To construct the measure of the quality of research opportunities K̂it using formula (9), we

�rst estimate the parameters �if and the parameters �1 and �2 using the procedure described

in Section 4.2. The estimates of the parameters �1 and �2 are �̂1 = 0:0628 (s.e. 0:0045) and

�̂2 = 0:003 (s.e. 0:0004): Figure 2d in BP (2008a) shows that the predicted probability that

is calculated based on the estimates �̂1 and �̂2 as a function of the ingredient age t�f tracks

the mean of the observed probability closely except for when the ingredient age is 35 and

over. The share of publications that use ingredients aged 35 and over is arti�cially in�ated

by the fact that the publications data consists mostly of publications published after 1950

and our methodology of assigning the year of discovery of each ingredient thus assigns the

year of discovery between 1950 and 1965 for a disproportionate number of ingredients, as

can be seen from Figure 2e in BP (2008a).

8.3 Induced Innovation and Research Opportunity E¤ects

8.3.1 All Medical Research

The count of all publications, denoted by NALL
it , that we use in this analysis corresponds to

the measure Publication-Disease Matches in Figure 2a in BP (2008a).15

15The observations are weighted by the total count of publications matched to the disease during the
sample period. That is, each observation is weighted by

P2005
t=1975N

ALL
it . The number of observations varies

across columns because an observation is omitted if either K̂it = 0 or NALL
it = 0:
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The results are shown in Table 1. Columns 1 and 2 show that aging-induced increases in

disease prevalence have increased the medical research e¤ort. In contrast, there is no evidence

of a corresponding e¤ect for obesity-induced changes in disease prevalence. Columns 3 and

4 show a positive relationship between the quality of research opportunities variable and

the amount of total research. We re-iterate that to limit the scope of our analysis we

have constructed the quality of research opportunities variable from research inputs that

are relevant only for drug-related research (see Section 5.3.2). Accordingly, we postpone

discussion of the magnitude of any research opportunity e¤ect estimates until the analysis

of the determinants of drug-related medical research.

Columns 3 and 4 also show that the inclusion of the quality of research opportunity

variable renders the e¤ect of aging-induced changes in disease prevalence statistically in-

signi�cant. However, as can be seen from Figure 3c in BP (2008a), which depicts the �xed

e¤ects speci�cation analyzed in column 3, with the exception of the outlier disease 299 there

is a robust positive relationship between aging-induced changes in disease prevalence and the

changes in the overall research e¤ort in the disease. Columns 5 and 6 show that when the

disease 299 and the two other children�s mental health diseases (314 and 315) are excluded,

the relationship between aging-induced changes in disease prevalence and the overall research

e¤ort is again statistically signi�cant.

Because the change in the age distribution has had such an unusual e¤ect on the predicted

disease prevalence for the disease 299 (see Figure 1.2) and because the dramatic increases

in the number of diagnoses and research interest in the children�s mental health diseases

have been well recognized but without agreement over the causes of this, in the subsequent

analyses we exclude the children�s mental health diseases.16

16Research on children�s mental health diseases has increased dramatically since the early 1990s and this
increase is undoubtedly tied with the increase in the number of diagnoses for these diseases during the same
period. While the unusual increase in the interest in these diseases is well known there is no agreement on
why the increase has occurred. One explanation is that the increase in the diagnoses and the increase in
research to the children�s mental health diseases are consequences of the availability of dramatically better
treatment options for these diseases, especially in the form of better knowledge of the e¤ects of several
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The magnitude of our estimates of the impact of aging-induced changes in disease preva-

lence on medical research in columns 5 and 6 is similar to the magnitude of the corresponding

estimate in Acemoglu and Linn (2004) for aging-induced pharmaceutical innovation. These

estimates in our study and in Acemoglu and Linn (2004) are larger than the estimates in

Finkelstein (2004) for the impact of vaccine policies on the number of new clinical trials.

As our estimates are obtained using a di¤erence-in-di¤erence methodology, the estimates

re�ect impacts on the composition of innovation rather than impacts on the total extent of

innovation. This is aspect of the applied methodology is also noted by Acemoglu and Linn

(2004) who emphasize that the response of innovation to changes in relative market sizes

across diseases can be quite di¤erent from the response of innovation to changes in the total

market size. For this reason we do not attempt to use our estimates to construct an estimate

of the dynamic welfare impact of induced medical research.

8.3.2 Drug-Related Medical Research

The results for the three measures of drug-related medical research are shown in Table 2.17

There is robust evidence across the three measures of drug-related medical research and the

two �xed e¤ects speci�cations for the hypothesis that the quality of research opportunities is

a determinant of the allocation of drug-related medical research e¤ort across diseases.18 As

expected, the estimates of this e¤ect are now larger compared to the case when the dependent

variable is constructed from all medical research (see Columns 3-6 in Table 1). However,

drugs such as methylphenidate (ritalin). Methylphenidate was discovered in the 1950s and our measure of
technological opportunity is unable to predict the increase in research to these diseases because the increase
happens 40 years after the discovery of the drug. An alternative explanation for why the disease 299 and to a
lesser extent also the two other children�s mental health diseases (314 and 315) are outliers is that during the
sample period there may have been a general disproportional increase in research to diseases that primarily
a¤ect the children. We plan to explore this possibility in future research.
17For the measure DRUG k, where k 2 f1; 2; 3g, each observation is weighted by

P2005
t=1975N

DRUG k
it .

18That this result is not a result of outliers can be seen from Figure 3d in BP (2008a). In this �gure the
horizontal axis is labeled as �Technological Opportunity Residual�as previously we referred to the quality
of research opportunities in scienti�c research as �the quality of technological opportunity�to emphasize its
similarity with the technological opportunity concept in research on private-sector technological innovation.
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the estimates of the research opportunity e¤ect remain considerably below the estimates

of the impact of aging-induced changes in disease prevalence. This can re�ect either the

possibility that the true response is indeed relatively weak, as changes in the quality of

research opportunities may be hard to identify at the time, or measurement error due to

the fact that the research opportunity variable is constructed from a relatively limited set

of research inputs. Nevertheless, our estimates of this e¤ect demonstrate�for the �rst time�

that also the direction of scienti�c research responds to changes in the quality of research

opportunities.

There is also robust evidence for aging-induced changes in the composition of drug-

related medical research across diseases. In contrast, there is no evidence for a positive

relationship between obesity-induced changes in disease prevalence and the amount of drug-

related medical research on the disease. If anything, the results suggest that there may be a

negative relationship between obesity-induced changes in disease prevalence and the extent

of drug-related medical research on a disease. A potential explanation for this result is that

changes in population demographics may change the composition of research across di¤erent

types of research within diseases (see Section 3.3.4). We examine this issue in Section 8.3.4.

8.3.3 Other Medical Research

The results for the three measures of other medical research are shown in Table 3.19 For

all speci�cations the estimate of the coe¢ cient on the measure of the quality of research

opportunities in drug-related research is much smaller than the estimates of the coe¢ cient

on the same variable are in the analyses of drug-related medical research. Moreover, the

relationship is also statistically insigni�cant, except in column 1 in which the dependent

variable is the most inclusive measure of other medical research and which is thus the most
19For the measure OTHER k, where k 2 f1; 2; 3g, each observation is weighted by

P2005
t=1975N

OTHER k
it .

There are fewer observations in columns 5 and 6 because the measure NOTHER 3
it is zero for some cells and

therefore the dependent variable log(NOTHER 3
it ) is not de�ned for those cells.
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likely of the three measures of other medical research to include also some drug-related

publications. The �nding of no relationship between the level of other medical research

and the measure of the quality of research opportunities in drug-related medical research is

evidence against the potential concern that reverse causality is the reason for the observed

positive relationship between the measure of the quality of research opportunities in drug-

related research and the extent of drug-related medical research (see Section 7.1.2).

The results reported in columns 1-4 also provide evidence of aging-induced changes in

the composition of other medical research across diseases but show no evidence of obesity-

induced changes in the composition of other medical research across diseases. The results for

surgery-related research (the measure OTHER 3 ) in columns 5 and 6 show that the relation-

ship between aging-induced changes in disease prevalence and the extent of surgery-related

research on the disease is positive but not statistically signi�cant. The results in columns

5 and 6 also suggest a possible negative relationship between obesity-induced changes in

disease prevalence and the extent of surgery-related research on the disease. A potential

explanation is again that changes in population demographics may change the composition

of research within diseases (see Section 3.3.4). We examine this possibility next.

8.3.4 E¤ects on the Composition of Medical Research Within Diseases

Changes in disease prevalence may have e¤ects also on the composition of research across

di¤erent types of research within a disease, and such changes in the composition of research

within diseases may in�uence the estimates of the determinants of the extent of research

e¤ort across diseases (see Section 3.3.4). Accordingly, in Table 4 we report estimates of the

determinants of the composition of research within diseases.

In the analyses reported in columns 1 and 2 the dependent variable is the logarithm of the

ratio of the most restrictive measure of drug-related research and all research.20 As expected,

20Each observation is weighted by
P2005

t=1975N
DRUG 3
it .
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the results indicate a positive relationship between the quality of research opportunities in

drug-related medical research on a disease and the share of medical research on the disease

that is drug-related. The results also indicate that aging has not shifted research away from

drug-related medical research. The positive but statistically insigni�cant point estimate

leaves open the possibility that drug-related medical research reacts to aging-induced changes

in disease prevalence more strongly than all medical research. The results also indicate that

obesity-induced changes in disease prevalence have a negative but statistically insigni�cant

relationship with changes in the share of all research that is drug-related research. This

suggests that an obesity-induced increase in the prevalence of a disease may decrease the

share of research on the disease that is drug-related and increase the share of research on

the disease that examines the physiology of the disease in the obese.

In the analyses reported in columns 3 and 4 the dependent variable is the logarithm

of the ratio of surgery-related research and all research.21 The results show a negative and

statistically signi�cant relationship between the share of surgery-related research on a disease

and the measure of the quality of research opportunities in drug-related medical research

on the disease. This is additional evidence against the aforementioned reverse causality

explanation for the research opportunity e¤ect estimate in drug-related medical research.

This is also further evidence that an increase in the quality of research opportunities in drug-

related research shifts research e¤ort away from other types research to drug-related research.

We �nd no relationship between aging-induced changes in disease prevalence and the ratio of

research that is surgery-related. The negative relationship between obesity-induced changes

in disease prevalence and the share of research on the disease that is surgery-related again

suggests the possibility that an obesity-induced increase in the prevalence of a disease shifts

resources away from general research to obesity-speci�c research on the disease.

21Each observation is weighted by
P2005

t=1975N
OTHER 3
it .
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9 Conclusion

Our empirical results show that the composition of medical research across diseases responds

to changes in the quality of research opportunities and population aging induced changes

in disease prevalence. The results also suggest that an obesity epidemic induced increase in

the prevalence of a disease may have shifted research away from more general drug-related

medical research and from more general surgery-related research on the disease and likely

toward obesity-speci�c research on the disease.

These results provide support for the hypothesis that, similar to private-sector technolog-

ical innovation which has been the focus of existing research, also the direction of scienti�c

research responds to changes in the quality of research opportunities and the bene�t from

research. The distinction between scienti�c research and private-sector technological innova-

tion is important because the two can di¤er in many ways, including for-pro�t vs. non-pro�t

status and the level of authority that individual researchers have.

While we do not examine the mechanisms that induce the direction of scienti�c research

to respond to these factors, our analysis shows that these�yet largely unexplored�mechanisms

have a virtuous property in the sense that they induce scienti�c research to respond to factors

that in part determine the socially optimal allocation of research resources. Our analysis

is an important input into analyses of these mechanisms as it refutes the view of scienti�c

research as an ivory tower in which scientists�desire to in�uence other scientists is the only

determinant of the direction of research. We expect that future research on these mecha-

nisms, on how far or close the allocation of scienti�c research is from the socially optimal

allocation, and on what factors besides opportunities and societal bene�ts are important

drivers of the direction of scienti�c research, will be both fertile and worthy. We hope that

the value of such analyses is further enhanced by our methodological innovations, which

include a match between publications and disease prevalence data and new approaches to

estimating the quality of opportunities and measuring the associated research inputs.
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Table 1. Determinants of the Allocation of the All Medical Research Across Diseases.

(1) (2) (3) (4) (5) (6)

Dependent variable: ln(NALL
it ) ln(NALL

it ) ln(NALL
it ) ln(NALL

it ) ln(NALL
it ) ln(NALL

it )

ln
�
K̂it

� 0:32
[0:16]

pwild = 0:027

0:22
[0:15]

pwild = 0:137

0:29
[0:14]

pwild = 0:014

0:22
[0:15]

pwild = 0:149

ln
�
MAGING
it

� 2:74
[1:43]

pwild = 0:037

2:40
[1:29]

pwild = 0:083

1:76
[1:16]

pwild = 0:125

1:84
[1:18]

pwild = 0:168

2:66
[1:47]

pwild = 0:062

2:76
[1:28]

pwild = 0:023

ln
�
MOBESITY
it

� 0:43
[1:18]

pwild = 0:773

�0:004
[0:71]

pwild = 0:996

�0:25
[0:98]

pwild = 0:800

�0:13
[0:68]

pwild = 0:858

�0:07
[1:05]

pwild = 0:947

�0:13
[0:68]

pwild = 0:857

Fixed e¤ects
Disease,

Class�Year
Disease,
Year

Disease,
Class�Year

Disease,
Year

Disease,
Class�Year

Disease,
Year

Number of observations 3884 3884 3883 3883 3796 3796

Our statistical inference is based on pwild which is calculated using the cluster-robust standard error (clustered at the class level)
and the wild cluster bootstrapped distribution of the t-statistic (1000 iterations). Monte Carlo evidence favors this approach when the
number of clusters is small and the clusters are unbalanced (Cameron et al., 2007). The wild cluster bootstrapped standard error (1000
iterations) is presented in brackets. In columns 5 and 6 children�s mental health diseases (299, 314, 315) are omitted.
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Table 2. Determinants of the Allocation of Drug-Related Medical Research Across Diseases.

(1) (2) (3) (4) (5) (6)

Dependent variable: ln(NDRUG 1
it ) ln(NDRUG 1

it ) ln(NDRUG 2
it ) ln(NDRUG 2

it ) ln(NDRUG 3
it ) ln(NDRUG 3

it )

ln
�
K̂it

� 0:64
[0:36]

pwild = 0:021

0:58
[0:31]

pwild = 0:037

0:59
[0:30]

pwild = 0:022

0:48
[0:28]

pwild = 0:057

0:85
[0:35]

pwild = 0:006

0:74
[0:31]

pwild = 0:010

ln
�
MAGING
it

� 2:51
[1:81]

pwild = 0:200

2:32
[1:09]

pwild = 0:008

2:46
[1:17]

pwild = 0:185

2:73
[1:22]

pwild = 0:015

3:85
[1:92]

pwild = 0:030

4:06
[1:93]

pwild = 0:019

ln
�
MOBESITY
it

� �1:75
[2:02]

pwild = 0:525

�1:79
[1:29]

pwild = 0:163

�1:77
[1:91]

pwild = 0:489

�1:57
[1:15]

pwild = 0:223

�2:08
[2:11]

pwild = 0:451

�1:87
[1:49]

pwild = 0:208

Fixed e¤ects
Disease,

Class�Year
Disease,
Year

Disease,
Class�Year

Disease,
Year

Disease,
Class�Year

Disease,
Year

Number of observations 3730 3730 3730 3730 3697 3697

Children�s mental health diseases (299, 314, 315) are omitted. See the footnote to Table 1 for an explanation of the standard errors
and p-values.
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Table 3. Determinants of the Allocation of Other Medical Research Across Diseases.

(1) (2) (3) (4) (5) (6)

Dependent variable: ln(NOTHER 1
it ) ln(NOTHER 1

it ) ln(NOTHER 2
it ) ln(NOTHER 2

it ) ln(NOTHER 3
it ) ln(NOTHER 3

it )

ln
�
K̂it

� 0:20
[0:12]

pwild = 0:086

0:15
[0:13]

pwild = 0:339

0:06
[0:09]

pwild = 0:566

�0:007
[0:09]

pwild = 0:950

�0:11
[0:18]

pwild = 0:507

�0:06
[0:16]

pwild = 0:726

ln
�
MAGING
it

� 2:84
[1:53]

pwild = 0:056

2:82
[1:35]

pwild = 0:018

2:98
[1:57]

pwild = 0:062

2:79
[1:36]

pwild = 0:025

1:64
[1:24]

pwild = 0:181

2:59
[1:55]

pwild = 0:114

ln
�
MOBESITY
it

� 0:23
[0:92]

pwild = 0:798

�0:11
[0:52]

pwild = 0:830

0:13
[0:89]

pwild = 0:897

�0:19
[0:69]

pwild = 0:787

�0:51
[1:20]

pwild = 0:684

�1:49
[0:81]

pwild = 0:066

Fixed e¤ects
Disease,

Class�Year
Disease,
Year

Disease,
Class�Year

Disease,
Year

Disease,
Class�Year

Disease,
Year

Number of observations 3796 3796 3796 3796 3723 3723

Children�s mental health diseases (299, 314, 315) are omitted. See the footnote to Table 1 for an explanation of the standard errors
and p-values.
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Table 4. Determinants of the Allocation of Medical Research Across Research Types Within Diseases.

(1) (2) (3) (4)

Dependent variable: ln(
NDRUG 3
it

NALL
it

) ln(
NDRUG 3
it

NALL
it

) ln(
NOTHER 3
it

NALL
it

) ln(
NOTHER 3
it

NALL
it

)

ln
�
K̂it

� 0:53
[0:21]

pwild = 0:005

0:54
[0:21]

pwild = 0:001

�0:25
[0:14]

pwild = 0:043

�0:20
[0:12]

pwild = 0:089

ln
�
MAGING
it

� 0:79
[1:06]

pwild = 0:494

1:58
[1:05]

pwild = 0:196

�0:62
[1:04]

pwild = 0:563

�0:77
[0:92]

pwild = 0:459

ln
�
MOBESITY
it

� �1:69
[1:28]

pwild = 0:242

�1:76
[1:07]

pwild = 0:105

�0:65
[0:46]

pwild = 0:248

�0:89
[0:48]

pwild = 0:073

Fixed e¤ects
Disease,

Class�Year
Disease,
Year

Disease,
Class�Year

Disease,
Year

Number of observations 3697 3697 3723 3723

Children�s mental health diseases (299, 314, 315) are omitted. See the footnote to Table 1 for an explanation of the standard errors
and p-values.
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Data Appendix

Data Appendix to Section 5.1

We use several strategies to identify and measure drug-related medical research. The �rst is

to classify all publications that are matched to an ingredient as being drug-related medical

research and count a publication that is matched to n di¤erent cohorts of ingredients as n

units of research. The second is to classify all publications that are matched to an ingredi-

ent as being drug-related medical research and count each such publication as one unit of

research. The third is to classify all publications that have a MESH term indexed together

with the "major topic" �ag and the MESH quali�er term "drug therapy", "drug e¤ects" or

"pharmacology" as being drug-related research and count each such publication as one unit

of research. We refer to these three constructed measures of drug-related medical research

as DRUG 1, DRUG 2, and DRUG 3, respectively.

We also use several strategies to identify and measure other medical research. The �rst

is to classify all publications that are not matched to an ingredient as being other medical

research and count each such publication as one unit of research. The second is to classify all

publications that are 1) not matched to an ingredient, 2) not indexed are indexed with any

of the MESH quali�er terms "drug therapy", "drug e¤ects" or "pharmacology", and 3) not

indexed with the MESH term "Chemicals and Drugs", as being other medical research and

count each such publication as one unit of research. This second method should therefore

exclude also most of the research that is conducted using unapproved drugs that do not

appear in our list of FDA approved ingredients. The third is to classify all research that

is indexed with the MESH quali�er term "surgery" or "transplantation" as being other

medical research and count each such publication as one unit of research. We call these

three measures as OTHER 1, OTHER 2, and OTHER 3, respectively.

Data Appendix to Section 5.2

We limit the match e¤ort to diseases for which the MEPS disease incidence data (see Section

5.4) includes at least 100 observations.22 We do not match ICD-9 codes that include either

the word "Other" or the word "Unspeci�ed" in the title because these ICD-9 codes typically

include a variety of di¤erent diseases and are therefore di¢ cult to match to the MESH

vocabulary. Neither do we match diseases in the pregnancy category (class 11), in the

22We exclude HIV/AIDS because the disease does not appear in the publications database until the early
1980s and because the variations in the incidence of HIV/AIDS are obviously not mainly driven by aging or
the obesity epidemic.
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congenital category (class 14), in the perinatal category (class 15), in the symptoms category

(class 16), in the injuries category (class 17) or in the services category (class V). These

classes are excluded from the match e¤ort both in order to limit the scope of our match

e¤ort and because of the di¢ culty of matching diseases in these categories. If a match from

an individual disease to a MESH entry/entries is not possible we try to match a group of

ICD-9 codes to a MESH entry/entries. The 127 matched diseases account for 377,482 of the

745,355 disease mentions in the MEPS disease incidence data.

Because MESH is a hierarchical vocabulary, we also count all research that is indexed to

any subnode of a matched MESH term as research that is related to the matched disease

or group of diseases.23 As the MESH vocabulary has changed over the years we make an

e¤ort to check that the MESH terms for the matched diseases have not changed in a way

that would in�uence the research e¤ort estimate. For the diseases for which the related

publications from a year during the sample period are likely to have been indexed by terms

other than the matched MESH entry/entries we exclude the observations from such years

and from any of the preceding years. In Bhattacharya and Packalen (2008a) the match for

such diseases is marked with an asterisk and the year prior to which any observations are

excluded.

Data Appendix to Section 5.4

To estimate disease incidence for each age and BMI group we use the Medical Expenditure

Panel Survey (MEPS) data from years 1996-2005.24 Each subject is followed in MEPS for

two years. For each subject we aggregate the observations in each year into one observation.

MEPS includes a list of self-reported diseases that are coded by the International Classi�-

cation of Diseases, Ninth Revision (ICD-9). MEPS does not include BMI information for

years 1996-2000. We therefore use the National Health Interview Survey (NHIS) data from

years 1996-2000 and the match between NHIS and MEPS to obtain BMI information for

the observations in those years. Except for subjects in the age group 0-18 we exclude sub-

jects without either age or BMI information.25 The resulting MEPS data includes 262,958

23We manually remove several matches of ICD-9 diseases to terms for neoplasms in MESH when the same
neoplasm term is also mapped to a disease in the ICD-9 disease class 2 (neoplasms). MESH has 4982 disease
terms. The match maps 1338 terms in MESH to the 127 diseases. 51 of the matched terms are mapped to
2 diseases and one term in MESH is mapped to 3 diseases. All other terms are mapped to only 1 disease.
24Because the trends in the changes in the age and body weight distributions have been similar across the

developed nations we do not believe that using data on disease incidence, age demographics and obesity for
the United States but data on world-wide publications is a signi�cant concern.
25Interpreting BMI of children is not as straightforward as interpreting BMI of adults. Hence, we do not

distinguish the disease incidence by body weight for the age group 0-18. Consequently, we set sBMI
1;1;t = 1;
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observations on 149,737 subjects.

We use the Surveillance Epidemiology and End Results (SEER) data from years 1975-

2004 to estimate the share of people in each age group in each year.26 For each age group we

use the NHIS data from years 1976-2005 to estimate the share of people in each BMI group

in each year.27

In estimating the disease incidence parameters �i;j;k (see Section 6) we allow these pa-

rameters to vary by sex, race (black/non-black), insurance status (private/not private) and

year but for expositional simplicity we omit these issues in the main text. As we don�t mea-

sure changes in insurance coverage across time we do not examine the e¤ect that changes in

the insurance coverage across time may have on the bene�t from medical research and on

the extent of research.

The decomposition of changes in disease incidence to population aging and obesity epi-

demic induced changes (see Section 6) arises as follows. Let Mit0 denote the incidence of

disease i in the initial year t0: Let RAGINGit denote the e¤ect of aging alone on the incidence

of disease i so that if only population aging a¤ected the incidence of disease i the incidence

of disease i would be Mit0R
AGING
it in year t: Let ~ROBESITYit denote the additional e¤ect of

the obesity epidemic on the incidence of disease i so that if only aging and obesity a¤ected

the incidence of disease i the incidence of disease i would be Mit = Mit0R
AGING
it

~ROBESITYit

in year t: Let ROBESITYit denote the e¤ect of obesity alone on the incidence of disease i so

that if only obesity a¤ected the incidence of disease i the incidence of disease i would be

Mit0R
OBESITY
it in year t. Because RAGINGit is small, ROBESITYit � ~ROBESITYit . Therefore,

ln
�
Mit0R

AGING
it

~ROBESITYit

�
� ln

�
Mit0R

AGING
it ROBESITYit

�
. We can therefore decompose the

total e¤ect ln
�
Mit0R

AGING
it

~ROBESITYit

�
into an aging e¤ect ln

�
RAGINGit

�
and an obesity ef-

fect ln
�
ROBESITYit

�
. Because the empirical speci�cations include either disease �xed e¤ects,

we can use the variables ln
�
Mit0R

AGING
it

�
and ln

�
Mit0R

OBESITY
it

�
�instead of the variables

ln
�
RAGINGit

�
and ln

�
ROBESITYit

�
�as regressors. In the text these variables ln

�
Mit0R

AGING
it

�
and ln

�
Mit0R

OBESITY
it

�
are denoted by ln

�
MAGING
it

�
and ln

�
MOBESITY
it

�
; respectively.

This decomposition re�ects the fact that the e¤ect that an obesity-induced change in

disease incidence has had on the extent of research may be di¤erent than the e¤ect that a

sBMI
1;2;t = 0 and s

BMI
1;3;t = 0 for all t: Because people the age group 0-18 have small average expenditures and

also the e¤ect of the obesity epidemic on disease incidence is small for this age group, ignoring the e¤ect of
the obesity epidemic on the disease incidence of this age group has a negligible in�uence on the potential
market size variable MTOTAL

it .
26We impute the values for 2005 by assuming that the change in the population in each age group from

2004 to 2005 was the same as it was from 2003 to 2004.
27We impute the values for 1975 by assuming the the body weight distribution was the same in 1975 as it

was in 1976.
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corresponding aging-induced change in disease incidence has had on the extent of research.

These two e¤ects would be di¤erent, for example, if the implications of aging on disease

incidence have been better understood than the implications of obesity on disease incidence,

or if the change in age demographics was more expected than the obesity epidemic.

Data Appendix to Section 5.5

As our discussion of the descriptive statistics in Section 8.1 shows, there is a discontinuous

jump in the share of publications with abstracts in the database from 1974 to 1975. Moreover,

a number of diseases are indexed with di¤erent MESH terms before 1975 and especially before

1970 than they are after 1975. For these reasons we choose 1975-2005 as our sample period.

When we determine the cohort of an ingredient (the year before the �rst mention of the

ingredient�see Section 5.3.3) from the publications in years 1906-2005. In estimating the

parameters that govern the quality of research opportunities (see Section 4) we limit the

range of cohorts f to years 1960-2001 because there is a discontinuous jump in 1950 in the

number of publications that are indexed in MEDLINE and because there is a discontinuous

fall in the number of ingredients in a cohort from 2001 to 2002 due to the lag between the

year in which an ingredient is �rst mentioned in the publications database and the year of

FDA approval of the ingredient.28 Because of this lag, because many of the diseases are

indexed with di¤erent terms before 1970, and because in the subsequent analysis our focus

is on the sample period 1975-2005, in estimating the quality of research opportunities (see

Section 4) we limit the range of the years t to 1970-2002.

28We multiply the initially estimated research opportunity by a factor that compensates for truncation.
We assume that the average baseline productivity is the same before and after any truncation point. That is,
the estimates are multiplied by f

P1
t�f=1 e

��̂1(t�f) � [1� e��̂2(t�f)]g=f
Pt�1960

t�f=1 e
��̂1(t�f) � [1� e��̂2(t�f)]g

for all years t � 2001. For t > 2001 we also compensate for truncation due to the upper bound.
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Background Appendix: Non-Pro�t Nature of Publica-

tions in Medicine

The intertwined nature of industrial R&D activity and academic research activity is well

established. The two are connected in many ways, especially in the biomedical sector. In

this appendix we discuss each of these connections. And in each case we argue that despite

the connection, new drug introductions re�ect largely the functioning of for-pro�t incentives

and biomedical publications re�ect largely the functioning of non-pro�t incentives.

1. Pharmaceutical Innovation Re�ects Mostly For-Pro�t Incentives

First, many of the innovations that are introduced by pharmaceutical companies are based on

knowledge generated in the public sector (see e.g. Cockburn and Henderson, 1998 and Ward

and Dranove, 1995). This fact is at odds with the interpretation in the related literature

on the determinants of pharmaceutical innovation (e.g. Acemoglu and Linn, 2004), where

research in the pharmaceutical industry is often taken as an example of innovation in the

for-pro�t sector. However, we believe that, to a �rst approximation, it is reasonable to

consider the majority of pharmaceutical innovation as re�ective of the functioning of for-

pro�t incentives. The alternative�that pharmaceutical �rms do not make substantial choices

about which lines of research to pursue but decide their research agenda mainly on the basis

of prior basic research done in the public sector�seems to us less reasonable.

2. Research Publications Are Mostly from Academic Research Institutions

Second, individuals employed in pharmaceutical companies also publish in academic journals

and co-author research papers with university researchers (see e.g. Cockburn and Henderson,

1998 and Adams and Clemons, 2008). Biomedical publishing will therefore re�ect, in part,

how for-pro�t incentives respond to determinants of innovation. Unfortunately no compre-

hensive study exists on what part of biomedical publishing can be attributed to industry.

However, Adams and Clemons (2006) present summary statistics on the origin of scienti�c

publications in a database of over 5000 journals across the sciences during the time period

1980-1999. Their analysis shows that during this time period the top 110 U.S. universities

published 800,000 papers in medicine and the top 200 U.S. R&D �rms published less than

30,000 papers in medicine. While this comparison is not comprehensive because it does not

compare the biomedical publications of all U.S. universities with the biomedical publications

of all pharmaceutical and biotechnology �rms, the comparison suggests that the contribution
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of industry to academic publishing during this time period is substantially less voluminous

than the contribution of research universities to academic publishing.

This conclusion is also supported by a National Science Foundation study which mentions

that in 2003 in the science and engineering sector the academic sector accounted for almost

three quarters of the publications originating in the U.S.29 The remaining one quarter of

the publications is attributed to industry, government and non-pro�ts. The study also �nds

that only 6.0% of the publications that have at least one academic author have an industry

co-author. The available evidence thus suggests that the results in our analysis and the

results in any other analysis that examines the determinants of publications in medicine

in a comprehensive manner mainly re�ect the publishing behavior of academic research

institutions and the associated non-pro�t incentives as opposed to the publishing behavior

of industry and the associated for-pro�t incentives.

3. Academic Researchers in Medicine Mostly Do Not Patent

Third, in addition to publishing their work in academic publications university researchers

also apply for patents. If patents and the associated for-pro�t incentives are a signi�cant

driving force behind academic bio-medical research then biomedical publishing as the other

product of biomedical research would also re�ect the functioning of for-pro�t incentives.

However, the analysis of patenting in medicine by Azoulay et al. (2007b) shows that dur-

ing the period from 1981 to 2000 only 5% of faculty members in medical schools applied

for a patent that was successfully granted.30 Especially when this already low percentage

�gure is combined with the fact that most patented innovations bring no revenue to the

patentee, we conclude that patenting and the associated for-pro�t incentives are likely not a

signi�cant determinant of biomedical research and publishing. Moreover, this conclusion is

even stronger for our analysis as we only consider biomedical publications that are applied

biomedical research in the sense that the publication is related to a speci�c disease (see

Sections 5.1-5.2) and Azoulay et al. (2007b) �nd that that biomedical patenting is much

more common for basic research than for applied research.

Because patenting is not very common in medicine and particularly in the applied research

that is our focus, patenting by other researchers is unlikely to in�uence the direction of

research much in medicine. This is somewhat in contrast with the analysis of the anti-

commons hypothesis in biotechnology by Murray and Stern (2007) who �nd a modest anti-
29National Science Foundation, Division of Science Resources Statistics (NSF/SRS) 2006, �Industrial

Funding of Academic R&D Continues to Decline in FY 2004,�NSF 06-315.
30The analysis also shows that academic biomedical patents accounted for only 25% of total biomedical

patenting even during the peak period of academic biomedical patenting (the late 1990s).

2



commons e¤ect. However, their analysis was based on selecting the biomedical publication

(Nature Biotechnology) in which, ex ante, patenting by other researchers was the likeliest to

have an e¤ect on publication behavior.

4. Academic R&D is Mostly Funded by Non-Industry Sources

Fourth, some of the research activities of academic institutions are �nanced by industry. If

industry funding is a major source of funding for academic R&D, the direction of academic

R&D might simply re�ect the direction of industry R&D and the associated for-pro�t incen-

tives. However, a National Science Foundation study shows that in science and engineering

during 1993-2004 academic R&D funds provided by industry have been less than 8% of all

R&D funding.31 The industry funding of academic R&D was $2.1 billion in 2004. This �gure

is substantially less than total university research expenditures ($43.0 billion in 2004) and

federal support for university research expenditures ($27.4 billion in 2004). That �gure is

also substantially less than university research expenditures in medical sciences alone ($14

billion in 2004) and federal support for medical sciences ($9.4 billion in 2004). Considering

the balance of the evidence, we conclude that research in academic medicine largely (though

not exclusively) exempli�es the products of non-pro�t incentives.

31National Science Foundation, Division of Science Resources Statistics (NSF/SRS) 2006, �Where Has All
the Money Gone? Declining Industrial Support of Academic R&D,�NSF 06-328.
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