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The Role of Education in Regional Innovation Activities and Economic Growth: 
Evidence from China 

 
 Abstract: 

This study examines one of the channels through which education may contribute 
to economic growth, specifically, innovation. Endogenous growth theory has long 
suggested that human capital lead to greater innovation and, through technology 
innovation and diffusion, contribute to economic growth. However, there is little 
evidence on the role of human capital in innovation. Using the Chinese provincial 
data from 1997 to 2006, we show that workers’ tertiary education is significantly and 
positively related to provincial innovative activities measured by invention patent 
applications per capita. This result does not vary when spatial dependence is allowed 
in the estimation. Thus, we find strong and robust evidence for the prediction of 
endogenous growth theory regarding the effect of human capital on innovation. 
However, we do not find the consistently significant effect of innovation on growth. 
This finding may, however, relate to the growth pattern in China.  

 
JEL code: O1, O3 
Keywords: Education, Human Capital, Innovation, Patent, Economic Growth, Spatial 
Analysis
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1.  Introduction  

There is a large literature on the role of education in a country or region’s 

economic growth. A number of studies have shown that the East Asian growth miracle, 

such as that of Singapore and Hong Kong, may be related to the significant 

investment in human capital and consequently highly educated workforce of these 

countries and regions (Ahlburg and Jensen, 2001; McMahon, 1999, 1998; Ito and 

Krueger, 1995; World Bank, 1993). It is less conclusive with respect to China as to 

whether fast economic growth in the last several decades was driven by human capital 

or physical capital investment. The stereotyped view is that China’s economic growth 

is mostly due to high fixed asset investment, while the contribution of human capital 

is relatively small. Several studies have found concrete evidence in support of this 

view (Arayama and Miyoshi, 2004; Wei et al., 2001, Chen and Fleisher, 1996). 

However, there are also studies that have found some measures of human capital, such 

as secondary and higher education enrollment, the number of science and technology 

workers in the labor force and per capita spending on education and science, are 

significantly related to the growth rate (Ding and Knight, 2008; Song et al. 2000; Yao 

and Zhang, 2001).  Reconciling the different evidence, Chi (2008) suggests that the 

higher education of workers contributes to economic growth, but the effect may be 

indirect, which explains the insignificant direct effect of education on growth. Despite 

the large literature, there is still much to learn how the education of workforce 

contributes to growth which remains largely a black box. This paper explores one 

mechanism by which human capital and growth may be linked, specifically through 

regional innovation activities. 
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Using the provincial panel data from 1996 to 2006, the study describes the large 

differences in the workforce educational attainment, innovation activities, and 

economic growth across regions, and then examines the impact of education on 

regional innovation activities and the impact on economic growth. A feature of the 

study is the use of spatial econometric method to account for spatial dependence 

across regions. Spatial dependence refers to the correlation across neighboring areas 

in economic variables which widely exists in geographic data and can pose a serious 

problem to the simple OLS estimates. We estimate the Spatial Error Model (SEM) 

and Spatial Lag Model (SLM) in contrast to the OLS model, and Spatial General 

Method of Moment (GMM) in the case of two stage IV (instrument variable) 

estimation.  

The main findings of the paper include: innovation activities have significantly 

increased across the country in China from 1996 to 2006, and the spatial correlation 

of innovation activities has also been rising, suggesting increasing knowledge 

spillovers in the neighboring provinces. Estimates of OLS, SEM, and SLM models 

unanimously suggest that the percentage of college educated workers in the labor 

force is a significant predictor of regional innovation intensity. Over time, the impact 

of education on innovation activities has been increasing.  

The structure of the paper is as follows: In section 2, we review theoretical and 

empirical studies regarding the role of education in technological innovation and 

economic growth. Section 3 describes data and variables. Section 4 presents the 

spatial econometric methods used in the study. Section 5 reports the empirical 
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estimates. A summary and conclusion is contained in section 6. 

2. Related Studies  

According to Endogenous Growth Theory represented by the work of Nelson and 

Phelps (1966), Romer (1990), Grossman and Helpman (1991), Aghion and Howitt 

(1992), human capital is of crucial importance to economic growth. The enhancement 

of workers’ educational attainment will lead to economic growth by means of 

technological innovation and diffusion. Following the theoretical research, a large 

number of empirical studies have used cross-country data to test the effect of human 

capital on economic growth (Barro, 1991, 2001; Benhabib and Spiegel, 1994; Barro 

and Sala-i-Martin, 1995; Barro, 2001; Gemmell, 1996; Bils and Klenow, 2000). These 

empirical studies have generally found that the initial stock of human capital played a 

significant role in economic growth, while Gemmell (1996) showed that both the 

initial stock and accumulation of human capital were significant determinants of 

growth. Although the key argument of Endogenous growth theory is that human 

capital first leads to innovation and knowledge spillover and then to economic growth, 

most empirical work so far has focused on the impact of human capital on growth, 

while relatively fewer studies have estimated the effect of human capital on 

innovation (Simonen and McCann, 2008; Badinger and Tondl, 2005).  

Similarly, in China studies on human capital and economic growth are abundant, 

however, much less is known about the role of human capital in innovation activities. 

Several Chinese authors have studied how foreign direct investment (FDI) affects the 

host country’s innovation activities. Cheung and Lin (2004) found the positive effect 
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of FDI on the number of domestic patent applications in China. This result supports 

the argument articulated in Grossman and Helpman (1990, 1991) that international 

trade serves as a channel of knowledge spillover which generates endogenous 

economic growth. In this argument, human capital is considered to affect the 

capability of the host country to absorb foreign knowledge. Two recent studies, Lai et 

al. (2006) and Kuo and Yang (2008), use Chinese provincial data and include the 

interaction of human capital with FDI or with foreign R&D to explain domestic GDP 

growth. Both studies found that the benefit of foreign knowledge to China depends on 

the Chinese domestic human capital levels. Workers with college education are 

especially important as they are more capable to absorb foreign knowledge embodied 

in FDI or R&D.  

Our study significantly differ from the previous two studies in that they emphasize 

the role of human capital in absorbing foreign knowledge, while our research 

examines the effect of workers’ human capital on knowledge creation concerning the 

country’s own innovative ability. Moreover, we take into consideration spatial 

dependence and spillover effects across provinces, and examine both the impact of 

human capital on innovation and that on economic growth.  

3. Data 

Data used in this study are drawn from China Statistics Yearbooks and China 

Labor Statistical Yearbooks from 1997 to 2006. Provincial GDP, population, the size 

of labor force, educational attainment of labor force, fixed capital investment (FCI), 

patent applications are selected. Workers’ education attainment is reported in labor 
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statistics yearbooks only from 1996. Also in 1996, Chongqin became the fourth 

municipal city directly under the central government following Beijing, Tianjin, and 

Shanghai, and reported data separately from Sichuan province. Since the Spatial 

models, SEM, SLM and GMM, require a geographic matrix that consists of the fixed 

number of sub-areas, we use data from 1997. Two spatial matrixes are used in the 

estimation: one is generated based on whether any two provinces are neighboring 

provinces, where neighboring provinces are defined as those who share a common 

border line; the other is the spatial coordinate matrix obtained from the database 

constructed by the National Geomatics Center of China. 

Human capital is measured by two variables: the percentage of workers with 

tertiary, secondary, or primary education, and the average years of schooling. 

Following Chi (2008), we use workers’ educational attainment to measure human 

capital because it is a better measure of a province’s human capital level than the 

widely used school enrollment data and it has fewer measurement errors. The average 

years of schooling are imputed based on the percentage of workers with different 

educational attainment.  

Since the direct measure of innovation does not exist, a common approach has 

been to use the number of patent applications or patent grants as the proxy for 

innovation. We use the patent applications rather than patent grants to measure 

innovation due to the concern that patent grants may be biased by different granting 

standards across provinces. The same as many other countries, the Intellectual 

Property offices in China classify patent applications into three categories: invention 
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patent, utility model patent and design patent. An invention patent refers to any new 

technical solution relating to a product or process. Utility model patents refer to the 

shape, structure, or their combination of a product, which enhances the practical use 

of the product. A design patent means any new design of the shape, pattern, color, or 

their combinations that serves for the ornamental purpose.  Since invention patents 

most reflect new knowledge and technology creation, we choose the number of 

invention patent application as the proxy of innovation activities. To ensure the 

robustness of the estimates, we also use the total patent applications as the measure of 

innovation in the estimation. The results do not vary by different measures. 1  

Definition and summary statistics of the variables used in the study are given in 

Appendix.  

4. Econometric Methods  

In the geographically coded data, neighboring areas often share more common 

characteristics than those that are far apart due to the interaction and spillover effects 

across regions. A recent study shows that spatial interaction does occur in terms of 

innovation. Using the U.S. county level data, Monchuk and Miranowski (2004) found 

that a county’s innovative behavior is influenced by the innovative activity of the 

neighboring counties. GDP, employment, and fixed capital investment data are also 

likely subject to spatial dependence. OLS regression assumptions imply that the 

individual observations be independent and uncorrelated. Spatial dependence clearly 

violates these assumptions, thus causes conventional OLS analysis invalid and 

                                                        
1 Results are available for the authors. 
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requires special spatial methods.  

The spatial econometric methods used in this study include the Moran’s I test to 

evaluate whether there is the spatial clustering effect in the Chinese provincial data. 

The Moran’s I test statistic is calculated as follows: 
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iY  represents the observation of sub-area i, e.g. the patent applications of province i.  

n represents the total number of subareas. ijW  denotes the binary spatial weight 

matrix, which defines the adjacent relationship between provinces i and j.  ijW  

equals one if the two provinces have a common border line and zero otherwise.  

If spatial correlation exists, that is if the p-value of Moran’s I is significant, the 

spatial effect should be incorporated in the regression models. The commonly used 

spatial regression models are the Spatial Lag Model (SLM) and Spatial Error Model 

(SEM). The difference between SLM and SEM lies in whether spatial dependence is 

modeled by the spatially lagged dependent variable or induced in the disturbance 

term.  

We begin with the OLS estimation as a benchmark, modeling the relations 

between human capital and innovation.  

      1 2 3 4ln ln lnpatent HC FCI employeeβ β β β ε= + + + +                 (1) 

ln patent : Logarithm of the number of invention patent applications per 10,000 
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population. 

HC: human capital variables. Specifically, “High”, “Secondary”,  and “Primary” 

denotes the percentage of workers with primary, primary, secondary, and tertiary 

educational attainment. S represents the average years of schooling in a year. 

lnFCI: Logarithm of fixed capital investment. 

lnemployee: Logarithm of the number of employees in the labor force.  

Then, we estimate the Spatial Lag Model and Spatial Error Model, and compare 

the results of the OLS estimation. The Spatial Lag Model is specified as follows: 

   1 2 3 4

2

ln ln ln ln

(0, )

patent W patent HC FCI employee

N

ρ β β β β ε

ε σ

= + + + + +

∼
      (2) 

W is the n n×  spatial weight matrix to capture the neighboring relations. ρ is the 

parameter reflecting the degree of spatial dependence between observations in the 

sample.  

The Spatial Error Model is as follows:   

    
1 2 3 4

2

ln ln ln

(0, )

patent HC FCI employee
W

N

β β β β ε
ε λ ε μ

μ σ

= + + + +

= +

∼
 .                 (3) 

The Spatial Error Model uses the same weight matrix W as that in the Spatial Lag 

Model. λ  is the parameter for the spatial error term. The rest of the variables and 

parameters in (3) are the same as those in equation (2).  

 Finally, we model the indirect relationship between human capital and economic 

growth through innovation, using the two-stage instrument variable (IV) method. 

Human capital is used to instrument for innovation to estimate the effect on economic 

growth. To obtain correct standard error estimates for the IV model with spatial 
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dependence, we adopt the Conley Generalized method of Moments (GMM) method 

(Conley, 1999). Spatial coordinates (x- and y-coordinates) are used in the IV 

estimations. They are obtained from the National Geomatics Center of China. 

5. Results 

5.1    Spatial Maps of Innovation across the Country 

We begin our analysis by showing spatial distribution of innovation across the 

country from 1997 to 2006. Each year, a province is classified into one of the five 

quantiles based on the number of invention patent applications per 10,000 population, 

with the lowest 20% of the provinces forming the first quantile and the top 20% 

forming the fifth quantile. The map shows five shades of blues from light to deep 

blues, corresponding to the five levels of innovative intensity from low to high. As 

shown by the maps, innovation activities have been rising rapidly all over the country 

during 1997 to 2006. In 1997, for the bottom 20% of provinces in terms of innovation 

intensity, the number of invention patent applications per 10,000 people ranges from 

0.004 to 0.05, while for the highest 20% of provinces the number ranges from 0.11 to 

1.35. In 2006, the number of invention patent applications per 10,000 people for the 

two groups ranges from 0.07 to 0.26 for the land 2.29 to 9.00 respectively.   

 Despite the overall increase in innovative activities in China, there still exists a 

large variation across the country.  By 1997, China has seen the rise of several 

innovation centers that have had a considerably higher number of per capita invention 

patent applications than the rest of the country; The two most significant centers of 

innovation were Beijing and Shanghai and the city’s surrounding areas; Another 
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important area of innovation is the northeast region including four provinces, 

Heilongjiang, Jilin, Liaoning, and Inner Magnolia (to a lesser degree).  

What is interesting is that the highlighted centers of innovation have been 

changing over time. Beijing and Shanghai remain the most innovative cities in China. 

However, the northeast region has lost its lead in innovation, falling from the first-tier 

innovative provinces to the third tier. In contrast to the northeast region, Guangdong, 

has moved up one class from the third class to the second class in terms of innovation. 

Coastal areas such as Guangdong, Fujian, and Zhejiang have had the fastest 

economic growth in the last decades but are not the most innovative regions. It is not 

surprising because the three provinces have attracted most FDI and become the 

centers of Chinese exporting industries characterized by the large-scale 

labor-intensive manufacturing with relatively unsophisticated technology. The key 

factors driving the fast growth of the three coastal provinces are scale of economy and 

low costs of unskilled labor, not technology and product innovation.  

One last point from figure 1 is that after evolving over the 10-year period, by 

2006, two knowledge and innovation zones have emerged in China, one is along the 

east coast, and the other is in the center of china including Hunan, Hubei, and Shaanxi. 

The wide area between these two regions and the area in the west are almost in white 

color, suggesting very low innovative activities.   

Table 1 reports the Moran’s I statistics and Z-value from 1997 to 2006. For most 

of the years, Moran’s I is significant at the 5 percent level or lower, suggesting the 

existence of clustering in innovation activities across provinces. The high level of 
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innovation in one province tends to spatially correlated to the high level innovation of 

nearby provinces, which is likely due to knowledge spillover across regions. The 

extent of knowledge spillover tends to decrease with the distance between the two 

provinces. Also, Tables 1 shows some evidence of the increased spatial correlation 

between provinces in innovative activities. This result suggests the need for spatial 

regression models to estimate impact of education on innovation. 

5.2     Spatial Regression Estimates   

We employ the OLS, SEM, and SLM models introduced in section 4 to estimate 

the effect of human capital on innovation activities. The results are reported in Table 2. 

The first four columns report the OLS estimates with each column using a different 

human capital measure. The SEM and SLM estimates are reported in the rest columns 

with similar specifications to the OLS. All the models in Table 2 include control 

variables, logarithm of fixed capital investment and logarithm of the number of 

employees in the labor force. In a separate estimation, we estimate the models without 

the control variables, while the results do not vary much. Due to the limited length, 

these results are not reported but available from the authors upon request.  

 Several important findings emerge from Table 2: educational attainment of 

workers appears to be a crucial factor explaining the degree of innovation of a 

province. The workers with tertiary and secondary education lead to greater 

innovative effort. Tertiary educational attainment of workers is even more important 

to innovation than secondary education. For example, in 2006, on average, the 

percentage of workers with tertiary education is 8.2 percent in China, while the 
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province with the lowest educational attainment has only half percent, and the 

province with the highest educational attainment has 36 percent of workers with 

tertiary education. The regression estimates suggest that one percentage point increase 

in the fraction of workers with tertiary education is associated with a 9 percent 

increase in the number of invention patent applications per 10,000 population. Also, 

as can be seen from the OLS estimates, after controlling for the size of labor force and 

fixed assets investment, adjusted R square is around 0.8, suggesting the model has a 

good explanatory power. Even without control variables, education variables can still 

explain 60-70 percent of innovation activities, suggesting education is a key factor 

explaining innovation.   

 However, we need to be aware of the declining effect of tertiary education on 

innovation. Both OLS and spatial regression estimates show that the marginal effect 

of tertiary education of workers on provincial innovation outputs have evidently 

declined from 1997 to 2006. This finding is consistent with the decreasing marginal 

productivity of input factors assumed in the classical production theory. The number 

of college-educated workers has increased significantly in the last decades. As the 

result of college expansion effort starting from 1999, the number of college graduates 

has almost tripled from 0.8 million in 1998 to 3.08 million in 2005. 2 As the number 

of college-educated workers increases, the marginal contribution of college education 

to innovation declines, suggesting the declining marginal productivity of human 

capital in the production of innovation. 

                                                        
2 Data source: China Education Statistics Yearbooks, 2006. 
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From the econometric perspective, Table 2 shows that the OLS estimates are 

comparable to the SEM and SLM estimates. This result indicates that the estimates 

are rather robust and do not vary by different econometric models. However, we also 

estimate the model without correcting spatial dependence using the maximizing 

likelihood method, and report log likelihood; we compare the log likelihood of the 

model without correcting spatial dependence with that of spatial error and spatial lag 

models. The results suggest that the spatial regression models perform better than the 

OLS models as the log likelihood of spatial models is a little larger. The more 

rigorous diagnostic tests for spatial dependence in OLS regression are reported in 

Table 3. The test statistics are significant for several years, which also suggest the use 

of spatial models. 

Table 4 reports the estimates of two-stage IV model of the effect of innovation on 

economic growth. Economic growth is measured by the change of logarithm of GDP 

from year t-1 to t. For the comparison purpose, we also report the OLS estimates of 

the impact of innovation on growth. Table 4 does not show strong evidence that 

greater innovation has led to faster economic growth during 1997-2006.  The effect 

of innovation is significant in both OLS and IV estimates only in 2005. This finding 

may be related to the lack of commercializing the patents so as to limit the new 

technology generating economic growth. In the broader context, this finding confirms 

the view that China’s economic growth so far has been mostly driven by exporting 

labor-intensive products in large scales and that technology and product innovation 

have not become the major driver of the Chinese economy. Regarding spatial methods, 
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Table 4 shows an interesting point that spatial GMM standard error estimates are not 

necessarily larger than the 2SLS standard error; in many cases, they are actually 

smaller. This important point has been explained in Conley (1999). 

6. Summary and Conclusion  

This paper addresses the important question of how human capital contributes to 

economic growth. Although endogenous growth theory has long suggested that 

human capital lead to greater economic growth through technology innovation and 

diffusion, there is very little empirical evidence on the effect of human capital on 

innovation. With respect to China, several studies have examined the role of human 

capital in absorbing foreign knowledge and turn it into domestic productivity. 

However, this research has not explicitly studied the effect of human capital on the 

country’s own knowledge generation. To address this issue, we use detailed provincial 

education and patent applications data, and employ spatial econometric methods to 

allow spatial dependence in observations.  

 We find that workers’ educational attainment is highly related to provincial 

innovation activities, measured by the number of invention patent applications per 

10,000 people. Higher education contributes more to innovation than primary and 

secondary education. However, we also find two less positive results: first, the effect 

of workers’ tertiary educational attainment on innovation has declined in the last ten 

years. Second, the contribution of innovation to economic growth has not been 

evident in recent years. We give two policy recommendations in light of these 

findings: one is to enhance commercialization of the patents, and the other is to 
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improve the pattern of economic growth and strengthen the role of technology and 

product innovation in economic development.  
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Figure 1: Spatial Map of Regional Innovation Activities, 1997-2006 
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Table 1:  Spatial Correlation of Innovation Activities, 1997-2006 
 

Year  Moran’s I Z-value 

1997 0.088 2.355 

1998 0.068 1.970 

1999 0.062 1.473 

2000 0.054 1.026 

2001 0.085 1.562 

2002 0.176 2.397 

2003 0.190 2.441 

2004 0.202 2.519 

2005 0.178 2.290 

2006 0.174 2.241 

 
Note: Moran’s I is calculated for provincial Patent Applications Per Capita. The statistics show spatial correlation of innovation 
activities over time.   
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Table 2: The Impact of Education on Regional Innovation Activities, 1997-2006 
Dependent Variable: Regional Innovation Activities, measured by Logarithm of Patent Applications per capita   

Year OLS Spatial Error Spatial Lag 

1997 Model(1) (2) (3) (4) Model(1) (2) (3) (4) Model(1) (2) (3) (4) 

high 0.210***    0.207***    0.201***    

secondary  0.039***    0.037***    0.040***   

primary   -0.036***    -0.035***    -0.036***  

s    0.972***    0.879***    0.963***

Adjusted R2 0.87 0.73 0.79 0.76         

Log likelihood -6.318 -17.033 -14.453 -15.982 -5.417 -15.648 -12.503 -13.788 -4.062 -16.222 -12.557 -14.958

1998             

high 0.179***    0.261***    0.178***    

secondary  0.032***    0.032***    0.036***   

primary   -0.032***    -0.031***    -0.035***  

s    0.963***    0.948***    1.024***

Adjusted R2 0.83 0.81 0.87 0.90         

Log likelihood -4.876 -15.647 -12.353 -9.024 -3.082 -13.490 -10.385 -7.411 -5.534 -13.324 -10.021 -7.200

1999             

high 0.155***    0.146***    0.153***    

secondary  0.043***    0.042***    0.048***   

primary   -0.040***    -0.039***    -0.043***  

s    1.113***    1.110***    1.164***

Adjusted R2 0.83 0.81 0.87 0.90         

Log likelihood -10.935 -13.768 -9.251 -3.856 -9.431 -12.045 -7.018 -3.213 -9.917 -11.161 -5.643 -2.416

2001             

high 0.134***    0.115***    0.131***    

secondary  0.031***    0.032***    0.034***   

primary   -0.029***    -0.030***    -0.032***  

s    0.847***    0.839***    0.893***

Adjusted R2 0.86 0.84 0.86 0.88         

Log likelihood -13.132 -14.937 -13.241 -11.024 -11.582 -13.806 -11.264 -9.609 -11.865 -13.580 -11.106 -9.564

2002             

high 0.139***    0.118***    0.130***    

secondary  0.040***    0.042***    0.036***   

primary   -0.037***    -0.037***    -0.034***  

s    1.029***    1.004***    0.939***

Adjusted R2 0.77 0.79 0.81 0.83         

Log likelihood -23.498 -20.871 -18.795 -19.458- -21.739 -19.401 -17.711 -17.162 -19.347 -20.665 -18.665 -17.359

2003             

high 0.130***    0.134***    0.123***    

secondary  0.040***    0.044***    0.039***   

primary   -0.037***    -0.038***    -0.036***  

s    1.005***    1.000***    0.988***
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Adjusted R2 0.74 0.73 0.77 0.79         

Log likelihood -28.845 -27.532 -25.348 -25.657 -26.070 -25.834 -23.923 -23.148 -25.343 -26.578 -24.410 -23.239

2004             

high 0.103***    0.103***    0.096***    

secondary  0.024**    0.025**    0.020*   

primary   -0.026***    -0.027***    -0.023***  

s    0.764***    0.761***    0.714***

Adjusted R2 0.77 0.68 0.72 0.76         

Log likelihood -24.787 -28.905 -27.413 -25.034 -22.993 -27.292 -25.138 -23.450 -22.191 -27.169 -25.204 -23.398

2005             

high 0.119***    0.125***    0.113***    

secondary  0.021*    0.024*    0.017   

primary   -0.027**    -0.029***    -0.024**  

s    0.826***    0.851***    0.766***

Adjusted R2 0.71 0.57 0.62 0.67         

Log likelihood -29.607 -35.336 -33.245 -31.108 -27.370 -33.241 -31.113 -29.311 -26.429 -32.870 -31.063 -29.179

2006             

high 0.088***    0.088***    0.083***    

secondary  0.008    0.008    0.001   

primary   -0.023**    -0.023**    -0.019*  

s    0.761***    0.738***    0.694***

Adjusted R2 0.76 0.60 0.65 0.71         

Log likelihood -25.564 -32.489 -31.874 -28.056 -23.859 -31.391 -29.196 -26.643 -22.900 -30.786 -29.265 -26.606

 
Notes: In addition to the variables reported in the table, all the models control for logarithm of fixed asset investment and 
logarithm of the size of the workforce. Coefficient estimates are reported. ***, **, and * indicate the 1, 5, and 10 percent 
significance level, respectively. Due to limited space, standard error estimates are not reported, but available from the authors 
upon request. 
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Table 3: Diagnostic tests for spatial dependence in OLS regression, 1997-2006 
 
Year   1997 1998 1999 2001 2002 2003 2004 2005 2006 

Spatial error:                

Moran's I 1.935* -0.128 0.543 1.247 2.107** 1.098 1.258 1.493 1.659* 

Lagrange multiplier 1.228 0.445 0.008 0.290 1.516 0.192 0.329 0.578 0.954 

Robust Lagrange multiplier 1.787 0.024 0.215 1.054 0.555 0.157 0.066 0.098 0.308 

Spatial Lag:          

Lagrange multiplier 0.008 0.024 1.398 0.509 1.275 0.040 0.358 0.621 0.747 

Robust Lagrange multiplier 0.567 0.499 1.605 1.272 0.313 0.005 0.094 0.140 0.101 

 
Notes: Test statistics reported in the table are for the OLS model in which dependent variable is logarithm of patent application 
and explanatory variables include average years of schooling, logarithm of fixed asset investment, and logarithm of the size of 
workforce. ***, **, and * indicate the 1, 5, and 10 percent significance level, respectively. 
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Table 4: The Impact of Education and Innovation on Economic Growth   
 
Dependent variable: GDP growth, measured by the annual change in Logarithm of GDP  

 OLS Est. OLS S.E. 2SLS Est.  2SLS S.E. Spatial GMM SE 

1998      

Log FCI -0.00917  0.00705  -0.01068  0.00683  0.00720  

Log Patent per capita 0.00161  0.01032  0.00653  0.01118  0.00778  

Change of Log Employees -0.22630  0.17424  -0.17922  0.17188  0.12310  

1999           

Log FCI -0.00558  0.00800  -0.00779  0.00770  0.00773  

Log Patent per capita 0.00528  0.00765  0.01033  0.00807  0.00328  

Change of Log Employees 0.44869  0.38095  0.47159  0.35876  0.20792  

2001           

Log FCI -0.01125  0.00516  -0.00950  0.00511  0.00721  

Log Patent per capita 0.00841  0.00458  0.00511  0.00525  0.00731  

Change of Log Employees -0.19122  0.31586  -0.11413  0.30568  0.29314  

2002           

Log FCI -0.00387  0.00523  -0.00300  0.00539  0.00601  

Log Patent per capita -0.00093  0.00453  -0.00233  0.00558  0.00626  

Change of Log Employees 0.09179  0.09859  0.10783  0.10114  0.07910  

2003           

Log FCI 0.00515  0.00848  0.00156  0.00889  0.00748  

Log Patent per capita -0.00078  0.00691  0.00465  0.00876  0.00720  

Change of Log Employees 0.31022  0.33771  0.18836  0.34469  0.29641  

2004           

Log FCI 0.01627  0.00461  0.01386  0.00465  0.00404  

Log Patent per capita -0.00689  0.00391  -0.00263  0.00462  0.00295  

Change of Log Employees -0.63140  0.22903  -0.72101  0.22577  0.21535  

2005           

Log FCI -0.01693  0.02007  -0.03380  0.02103  0.01284  

Log Patent per capita 0.03151  0.01599  0.06274  0.01991  0.01927  

Change of Log Employees 0.27708  0.93486  -0.04066  0.93994  1.01136  

2006           

Log FCI 0.00399  0.00511  0.00743  0.00616  0.00497  

Log Patent per capita -0.00594  0.00557  -0.01226  0.00871  0.00764  

Change of Log Employees 0.00574  0.01245  0.01605  0.01638  0.01760  

 
Notes: 2SLS estimation treats patent applications as endogenous and uses High (the percentage of workers with college or above 
education) as instrument. Spatial GMM S.E. is estimated following Conley (1999). 
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Appendix Table: Definition and Summary Statistics of Variables  
 
  Variable definition Mean Standard 

Deviation 
Min. Max. 

All Years       
GDP Gross domestic product in 100 million 

RMB Yuan 
4300.423 3528.126 168.020  13816.970 

Patent The number of Invention Patent 
Applications per 10,000 Population  

5007.750 9501.473 314.447  44537.250 

High  The percentage of workers with tertiary 
education in the labor force 

6.727 4.714 0.434  24.792 

Secondary  The percentage of workers with 
secondary education in the labor force 

53.694 12.924 7.293  68.341 

Primary  The percentage of workers with primary 
education in the labor force 

39.651 15.884 8.579  92.293 

S Average years of schooling of the labor 
force  

11.088 0.623 9.251  12.737 

FCI Fixed capital investment in 100 million 
RMB Yuan 

1712.368 1325.588 114.228  4986.126 

Employees The number of employees in 10,000 
people 

1886.256 1304.005 115.461  4861.887 

1997       
GDP Gross domestic product in 100 million 

RMB Yuan 
2482.471 1915.893 76.980  7315.510 

Patent The number of Invention Patent 
Applications per 10,000 Population  

1318.172 2364.860 80.645  13524.190 

High  The percentage of workers with tertiary 
education in the labor force 

4.442 3.593 0.500  18.000 

Secondary  The percentage of workers with 
secondary education in the labor force 

48.958 13.724 3.100  72.000 

Primary  The percentage of workers with primary 
education in the labor force 

47.258 16.626 10.000  96.400 

S Average years of schooling of the labor 
force  

10.839 0.627 9.128  12.420 

FCI Fixed capital investment in 100 million 
RMB Yuan 

779.731 633.563 34.500  2291.050 

Employees The number of employees in 10,000 
people 

2053.765 1408.805 120.300  5017.000 

2006      
GDP Gross domestic product in 100 million 

RMB Yuan 
7453.334 6422.115 291.010  26204.470 

Patent The number of Invention Patent 
Applications per 10,000 Population  

11057.910 20218.590 747.331  89981.020 

High  The percentage of workers with tertiary 
education in the labor force 

8.191 7.088 0.488  35.696 

Secondary  The percentage of workers with 
secondary education in the labor force 

54.178 12.704 9.414  70.577 

Primary  The percentage of workers with primary 
education in the labor force 

37.630 16.271 8.287  90.098 

S Average years of schooling of the labor 
force  

11.199 0.709 9.317  13.178 

FCI Fixed capital investment in 100 million 
RMB Yuan 

3485.503 2712.135 231.142  11111.420 

Employees The number of employees in 10,000 
people 

377.844 231.365 18.915  954.439 

 


