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Joint tests for zero restrictions on nonnegative regression
coefficients

BY GRANT H. HILLIER
Department of Econometrics and Operations Research, Monash University,

Victoria, Australia 3168

SUMMARY

Three tests for zero restrictions on regression coefficients that are known to be nonnega-
tive are considered: the classical F test, the likelihood ratio test, and a one-sided t test
in a particular direction. Critical values for the likelihood ratio test are given for the
cases of two and three restrictions, and the power function is calculated for the case of
two restrictions. The analysis is conducted in terms of a characterization of the clas
all similar tests for the problem, of which each of the above tests is a member. The
likelihood ratio test emerges as the preferred test.

Some key words: Likelihood ratio test; One-sided alternative; Regression; Similar regions.

1. I N T R O D U C T I O N

There are numerous applications of the linear model in which the signs of at least
some of the regression coefficients are known a priori. Without loss of generality we can
assume that the coefficients of interest are known to be nonnegative. This paper is
concerned with the problem of testing the joint null hypothesis that k 2s 2 such coefficients
are zero, against the alternative that they are nonnegative, in the context of the classical
normal linear model. Writing the model as

y = Xp + Zy+u, u~N(0,o-2/n), (1)

with X an nxp matrix, Z an n x k matrix, and W = (X, Z) of full column rank(/> + fc),
the problem of interest is that of testing Ho: y = 0 against the one-sided alternative
H*: y>0, where y > 0 means that yt 2

s 0 for each i = 1 , . . . , k, with strict inequality for
at least one i. Both the case of more general constraints on i7' = (j8', y'), for example
Ho: R-q = r against Rrj 3= r, R and r both known, and the case u ~ N(0, cr2Cl), ft known,
are easily transformed into this form.

A number of authors, notably Bartholomew (1959a, b; 1961), Chacko (1963), Kudo
(1963), Niiesch (1966), Perlman (1969), Oosterhoff (1969) and Shorack (1967), have
considered closely related multivariate one-sided testing problems. Oosterhoff (1969,
§3.1) gives results for the case /3 = 0, while Gourieroux, Holly & Monfort (1982) and
Yancey, Judge & Bock (1981) have recently considered the same problem under the
simplifying assumptions that the covariance matrix is completely known, in the former
paper, or that the regressors are orthonormal, in the latter. Kudo (1963, § 5) claims to
have characterized the likelihood ratio test for the case where a2 in (1) is unknown, but
we shall see later that Kudo's advice is incorrect.

In the present paper we assume that a2 is unknown, and impose no special restrictions
on X and Z The paper is primarily concerned with the likelihood ratio test but we also
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consider for comparison the traditional F test, which takes no account of the signs of
the coefficients under the alternative, and a one-sided t test in a particular direction from
the null. All three tests are similar tests for Ho, and we start with a characterization of
the class of similar tests. The critical region for any similar test of Ho must be defined
in terms of a statistic that measures the direction of any departure from Ho, and a statistic
that measures the extent of any such departure. This immediately suggests ways of
improving the F test, which is based purely on the latter statistic, when the alternative
hypothesis is restricted to H^, and also provides a very simple way of describing the
critical region for the likelihood ratio test.

2. SIMILAR REGIONS

For testing Ho: y = 0 in (1) the parameters /3 and a2 are nuisance parameters, but
under Ho the statistics po = (X'X)-lX'y and s2

0 = y'Mxy, where Mx = I-X(X'XylX',
are jointly sufficient for (/3, a2) and the distribution of ($0,

sl) is complete. Hence,
every size a critical region a> for testing Ho consists of a fraction a of the surface content
of the manifold in _y-space defined by (j80,5o) = const; see Cox & Hinkley (1974, pp.
134-6). If attention is confined to similar regions the relevant density for the problem
becomes the conditional density of y given /§0 and si, or the density of y on the manifold
defined by (f}0, si) = const.

We show in the Appendix that the manifold defined by (/30, sl) = const has three
components: the surface of the unit m-sphere, Sm: v'v = 1, where m = n-k-p, the surface
of the unit fc-sphere, Sk: h'h = \, and the line segment 0s= b ̂  1, where b is related to the
usual F statistic for testing Ho by b - (kF/m)/(1 + kF/m), and v and h are defined in
the Appendix. Hence every similar region for testing Ho must consist of some fraction
of the surface v'v = 1, some fraction of the surface h'h = 1, and some fraction of the line
segment 0=£ fc=£ 1.

The statistic v is independent of h, b and si, and is uniformly distributed on 5m,
whether or not Ho is true. It follows from this that the most powerful critical regions
must include the entire surface v'v = l, so that attention may be confined to critical
regions defined in terms of h and b alone.

Under Ho, h, b and si are mutually independent, h is uniformly distributed on Sk, b
has the beta distribution B{^k,\m), and sl/a-2~#2(m + fc). Hence, as expected, the
conditional distribution of y given 0O and si is free of nuisance parameters when H^ is
true. Under the general alternative Ha: y + 0 the conditional density of h and b given si
is

p(h, b\sl) = Kxb*~\\ -&)*"-' exp (s0b*h'y/a2), (2)

where y = Ty, with T as defined in the Appendix, and

K, = n\k)V^kB{\k, ±mm\sl/<r2)J{j\(jm +£fc)j}-T',

with (a)j = a(a + l).. .(a+j— 1) and A = y'y/a2. The statistic h may be interpreted as
a measure of the direction of any departure from Ho, while b, or F, is a measure of the
extent of any such departure.

3. THE F TEST AND DIRECTED f TESTS

Applying the Neyman- Pearson Lemma to the density (2) shows that the best similar
region for testing Ho against the specific alternative y = y* > 0 consists of large values
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of b* cos0*, where 0* is the angle between h and the unit vector ft* = y*/{y*'y*)>l. This
has the following well-known consequences:

(i) if fc = 1 the one-sided t test that rejects Ho for large positive values of b^h is
uniformly most powerful similar;

(ii) if fc> 1 there is no uniformly most powerful similar test for Ho, whether or not
the alternative is restricted to H+

a\
(iii) if k> 1 and, under Ha, y = Sy*, with •y*>0 known and 5^0, the best similar

region consists of large positive values of 6* cos 0*.
This is equivalent to a one-sided t test of 5 = 0 against 5 > 0 in the equation y =
Xfi + SZy* + u, because the t statistic for this problem is

(m + fc-1)**?* cos 0 7 Q - & cos2 0*)*. (3)

For testing Ho against / /„ , (iii) above suggests that the following strategy may yield
a reasonable test: choose a particular vector y* in the region y > 0, and simply use a
one-sided f-test for S = 0 against S > 0 in the equation y = XfS + SZy* + tL The resulting
test is evidently locally most powerful similar in directions close to that of y*, and might
be expected to have reasonable power over the whole region y > 0. We discuss this
approach in more detail in § 5 below.

Let /A = y/iy'y)^ be the point on Sk determined by the true vector y; fi indicates the
direction in which the true vector y lies, and /A and A are the population analogues of
h and F. From (2), the conditional power, given si, of a critical region co is given by

where (dh) denotes the invariant measure on the surface of the unit fc-sphere (James,
1954). Using (4) it is easy to show that the power of the test depends only upon A if and
only if (o includes the entire surface of the Sk: h'h = 1, a result due to Wolfowitz (1949).
It is well known that the traditional F test has precisely this property. In fact, on integrating
(4) over h'h - 1, and then integrating out s\, it follows that the F test is uniformly most
powerful among similar tests whose power depends only upon A (Hsu, 1941).

Now notice that h'fi = cos 8, where 0 is the angle between h and ft. For any fixed
/i., that is, for y in any fixed direction, cos 0 ranges over the entire interval - 1 « cos 0 «s 1
as h ranges over S*, so that the power of the F test is in fact diminished by the inclusion
in the critical region of that part of Sk for which cos 0 is negative. Of course, if the
direction fj, of y is arbitrary, this observation is nugatory, but for the problem of testing
Ho against //„ it suggests that a test which excludes that part of the Sk: h'h = 1 for which
cos 0 must be negative from the critical region is likely to improve upon the F test. We
shall now show that the likelihood ratio test does exactly that, and does indeed improve
upon the F test.

4. THE LIKELIHOOD RATIO TEST

4-1. Critical regions
After maximizing the likehood with respect to the nuisance parameters /3 and cr2 we

find the profile likelihood to be proportional to

L = {s2
0+l2-2lscos6}-ln, (5)
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where l = (y'y)* denotes the length of y and the other notation is as in § 3 and the
Appendix. Now, the region y > 0 for y corresponds to a subset of the surface of the
unit sphere Sk: p/p, = 1, say Sa. Provided the 'direction' p. = 0 is admitted as a possibility,
the problem of maximizing (5) with respect to y, subject to y > 0, is equivalent to that
of maximizing (5) first with respect to the direction, p., of y, subject to p. e Sa, then with
respect to its length, I But, if h e Sa it is clear at once that (5) is maximized by choosing
p, = h, so that cos 0 = 1, and / = s, giving a maximum of {sl(l -&)}"*"•

Let Sa denote the subset of'the Sk: h'h = l for which cos 0 = /»'p. must be negative
when fieSa. That is, Sa is the set of points h on Sk that make an angle greater than \TT
with every point fieSa. Clearly, if h e Sa, (5) is maximized by setting p. = 0, and hence
/ = 0, giving a maximum of (sl)~*n.

If h is in neither Sa nor Sa, so that p, cannot be chosen to give 0 = 0, but can be-chosen
so that 0^577, then (5) is clearly maximized by choosing p, on the edge of Sa so as to
minimize the angle between p. and the given point h. We denote such a choice for p. by
fih, and it is clear that (5) is then maximized by setting l = sh'p.h, giving a maximum of
[s2{\-b(h'fLh)

2}Tin.
Since the maximized value of the likelihood under Ho is proportional to {s2)} *", the

critical region for the likelihood ratio test has the following form:

b>c (heSa), _ ,
b(h'{Lh)

2>c (he(Sk-Sa-Sa)),
 (b)

where c is a suitably chosen critical value.
Notice that, because <oLR is defined in terms of b and h, the likelihood ratio test is a

member of the class of similar tests for Ho against H^. Also, since points he Sa are
not included in the critical region, wLR excludes precisely those points h on Sk for which
cos 0 must be negative when p, e 5O.

The results above define the maximum likelihood estimates for y, p and a2, subject
to y > 0. The details are easily deduced from the results that follow for the cases k = 2,
3 and are omitted.

4-2. The case k = 2
Let Z = (zi, z2), and write

7'KA V \ ] T - \ 1
Z MXZ = \ 2 \, T= \ 2 . j ,

L \ \ LO o-2(i-p y\
where cr\ = z\Mxzi (i = l,2) and p = (z\Mxz2)/Xo-,o-2). The region y>0 corresponds to
the region {y^p-yVCl-p2)5; ^5=0}, where y' = {yx, y2). Writing /x' = (/x,, p2), the region
Sa for fi is an arc on the positive semicircle for /JL2 that subtends an angle a = cos"1 p,
measured clockwise from the vertical axis; see Fig. 1.

The region (S2-Sa-Sa) has two components, S'a and S£ in Fig. 1. For heS'a,
pTJ, = (l,O), while, for h e S"a, /I), = (p, (1 -p2)1). In terms of the elements of y' = (y,, y2)
the regions 5a , 5^, S"a are
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(a) p > 0

661

(b) p<0

Fig. 1. Regions Sa, S'a, S* and Sa when p > 0 and p<0.

Using (3) and the fact that b = {kF/m){\ + kF/m)~\ the critical region (6) has the form

(F>f (yeSa),

<oLR:l t]>2{m + \)f/m (yeS'a),

[tl>2(m + l)f/m (yeS"a),

where t, is the t statistic for the coeflBcient of z( in the regression of y on X and z, alone,
and the critical value c in (6) is related t o / b y c = (2//m)(l + 2//m)~I.

It is important that the boundary of Sa corresponds to points where, in the original
parameter space, one or other of the elements of y is zero, and the likelihood ratio test
explicitly takes this into account in the denominators of t\ and t$. The tests of Kudo
(1963, § 5) and Yancey, Judge & Bock (1981) do not incorporate this adjustment and
hence are not the likelihood ratio test.

The critical value c, and hence / is determined by the equation

(1-£)*"- '
db(dh),

where a is the chosen level of significance. From the results above we see that this integral
has three components, with regions of integrationnents, with regions of integration

c;heSa}, {b{h'jL,)2>c;heS'a}, {b(h'jL2)
2> c; he S"a},

respectively, where /I', = (1,0) and iX'2 = (p, (1 -p2)*).

{b>
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Now, the invariant differential form (dh) on, in this case, 52, may be decomposed
(James, 1954, pp. 57-8) into (dh) = dd, where 0 is the angle, measured in a clockwise
direction, between any conveniently chosen fixed point on 52 and h. For the first of the
above regions we measure 6 from the vertical axis and we have at once

Jb>c Jo
dbde=-^\ u _ , p , db

b>c

where / = jmc/(l - c).
For the third region we measure 6 from the point /I2 and we have, on putting

bl = b cos2 6,b2 = b sin2 6,

J p *
J b,>c JO

-bx- . . . .
db2db

_l f b7*(l — ^ i ) i f "
1 4 J b 5(- 1m+1)
= ipr{F(l ,m +

where/, = (m + l ) c / ( l - c ) = 2(m + l)//m. It is easy to check that the contribution of the
second region is identical to that of the third, so that the critical value / is the solution
to the equation

2TT
pr{F(2, (7)

Note that (7) admits a solution for/ only if a <j{l + (cos ' P)/TT}. This, of course, is
unlikely to present any difficulty in practice; it is a consequence of the fact that wLR

explicitly excludes part of the S2: h'h = 1. Table 1 gives selected critical values,/ calculated
from (7) for various values of p and m, and for a = 0-05 and a =0-01.

The last two lines in Table 1 give the comparable critical values for the F test, and it
is striking that these can be much larger than those for the likelihood ratio test. Thus,
in the case where it turns out that y,s= 0, y2s*0, and it is known that yx, y2^0, the
acceptance region for the F test can be much too large. We shall see shortly that this is
reflected in a comparison of the power of the two tests.

Let Z = (zl, z2, z3), and write

Z'MXZ =

where a2, = Z(MxZi (i = 1,2,3) and ptJ = z't
by

T =

4-3. The case k =

cr, o-\cr2pl2

0 o-2(l-p
2

2)*
o o

and piJk = (pij-paj>jk)l{i\-p«t)(l-

0 3

j) (i,j = 1,2,3). The matrix T is given
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Table 1. 5% and 1% critical values for the likelihood ratio test: fc = 2

p m = 10 m = 15 m=20 m=30 m = 50

0-9 5% 1-83 1-76 1-72 1-69 1-66
1% 403 3-68 3-51 3-36 3-24

0-7 5% 208 1-98 1-93 1-89 1-85
1% 4-46 402 3-82 3-63 3-48

0-5 5% 2-25 213 2-07 2-02 1-97
1% 4-73 4-23 4-01 3-80 3-64

0-3 5% 2-39 2-25 2-18 2-12 2-07
1% 4-95 4-40 416 3-93 3-76

0-1 5% 2-51 2-35 2-28 2-21 216
1% 514 4-55 4-29 4-04 3-86

0-0 5% 2-56 2-40 2-33 2-25 2-20
1% 5-23 4-62 4-35 4-10 3-91

-0-1 5% 2-62 2-45 2-37 2-29 2-24
1% 5-31 4-69 4-41 415 3-95

-0-3 5% 2-73 2-54 2-46 2-37 2-31
1% 5-48 4-81 4-52 4-25 4-04

-0-5 5% 2-84 2-64 2-55 2-46 2-39
1% 5-65 4-94 4-63 4-35 413

-0-7 5% 2-96 2-74 2-64 2-54 2-47
1% 5-83 5-08 4-75 4-45 4-23

-0-9 5% 3-11 2-87 2-76 2-66 2-57
1% 606 5-26 4-91 4-58 4-35

F 410 3-68 3-49 3-32 318
7-56 6-36 5-85 5-39 506

Linear interpolation between successive p values for fixed m is extremely accurate.

The region y>0 corresponds to the region {y-cty2~c2y3^0; y2-c3y3^0; y^G)
with c, = 0 ,2/ (1^2) ' , c2 = Piy2/(l-R]^ and c3 = p23 . i/(l-pki) ' . where 1-^.23 =

The regions Sa for /A is the region ABC in Fig. 2 which is drawn for the case p12 > 0,
P23.i>0, Pi3.2>0. The region Sa may be described as follows: draw three 'equators' EA,
EB and EC with A, B and C respectively as 'north poles'. The southernmost unbroken
line that can be drawn while remaining on one of these 'equators' is the northern boundary
of Sa.

The points A, B and C are

A = {1,0,0}, B = {p13, P23A(l - Pu) J , (1 - P?3)J(1 ~pk . ) 1 } ,

The coordinates of A', B' and C are easily deduced from the obvious orthogonality
relations with A, B and C. The line BB', for example, represents the locus of the points
of tangency between latitudes drawn with B as 'north pole' and latitudes drawn with B'
as 'north pole', so that points in BB'C are closest, in terms of angular distance, to B,
while points in AB'B are closest to points on the edge AB of Sa. Thus, for h e BB'C,
/Ifc is at B, while, for h e AB'B, /lh is a point on the edge AB of Sa. Similar remarks hold
for the other four regions depicted in Fig. 2.
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Fig. 2. Regions Sa and Sa when pn> 0, p13 2> 0, pu , > 0.

The six components of (S3-Sa- Sa) can be expressed in terms of the elements of
y' = {j\, 72, Ji) by using the definition of h in terms of y. The results are summarized
in Table 2, which also gives the appropriate test statistic and critical value for each section
of (5 3 -S f l -5 B ) .

Table 2. Critical region for the likelihood ratio test: k = 3

Region Test statistic Critical value

II

III

0)0 -

3(m + 2)//m

Ill: i = 1, 2,3; (j, fc) = (2, 3), (1, 3), (1, 2).

In Table 2, F{J is the F statistic that would be used to test the joint significance of z,
and Zj in the regression of y on X, z, and zJt with zk excluded, and t, is the f statistic for
the coefficient of z, in the regression of y on X and z, alone. The critical value c in (6)
is related to / in Table 2 by c = (3//m)(l + 3//m)~'. As before, the use of Fy and t,
explicitly acknowledges that, on the boundary of 5a, one or more elements of y are zero.

The integral that defines the critical value, c, for the test decomposes in this case into
seven components, and the invariant measure (dh) on S3 decomposes as (dh) =
sin 0, ddx dO2, where 0, is the angle between h and a fixed point /x0, say, on 53, and 62

is the angle between the unit vector lying along the orthogonal projection of h onto the
52 orthogonal to fx0 and a point jx0, say, in that 52. By judiciously choosing the points
/x0 and /Zo, the components of the integral can be calculated in exactly the same manner
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as was used in § 4-2 above for the case fc = 2. Thus we find that the critical value / in
Table 2 is defined by

a= — [{cos"1 p12J + cos"1 p132 + cos"1 P23.,- v} pr {F(3, m)>f\
4TT

+ {cos~1 pn + cos"1 pn + cos"1 pn}pr{F(2, m + l )> | (m + l)//m}

+ {cos~1 (-p,2j) + cos"1 ( - p u ^ + cos"1 (-P23.1)}

xpr{F(l , m + 2)>3(m + 2)//m}]. (8)

As in the case k = 2, equation (8) admits a solution for / only if a <
Kl + Ccos"1 pn + cos"1 pi3 + cos~1p23)/(27r)}, but this constraint is unlikely to be of prac-
tical importance. Table 3 gives a small selection of critical values, f, calculated from (8).

Table 3. Some 5% critical values for the likelihood ratio test: fc = 3

p,2 p 1 3 P23 m = 10 m = 15 m = 20 m=30 m = 50

0-9 0-9 0-9 1-23 1-21 1-21 1-20 119
0-9 0-6 0-3 1-50 1-46 1-44 1-42 1-41
0-9 0 1 - 0 1 1-71 1-65 1-63 1-60 1-57
0-6 -0-5 -0-3 214 202 1-97 1-91 1-87

-0-1 -0-5 -0-3 2-52 2-35 2-26 218 212
-0-3 -0-5 -0-5 2-80 2-57 2-55 2-44 2-36
-0-9 -0-5 0 1 300 2-74 2-62 2-50 2-41

00 00 00 215 203 1-98 1-92 1-88-

F 3-71 3-29 310 2-92 2-79

Again, it is striking that the likelihood ratio critical values can be much smaller than
those of the traditional F test, the differences being greatest when p12, P13 and P23 are
all large and positive.

4-4. Power function: k = 2
As in the case of the size of the test, the conditional power function, given si,

= f db(dh),

decomposes into three components, with regions of integration

{b>c;heSa}, {b{h'^)2>c;heS'a}, {b(h'fL2)
2> c;heS"a).

Consider first the last of these regions. Setting (dh) = dd, as before, 6 with the angle,
measured in a clockwise direction, between /I2 and h, the contribution to the conditional
power from this region is simply

*:,(! - b)im-1 exp {(Afts2,)* cos (6 + a - do)/cr} db dO,

where R = {b cos2 6 > c; 0 *£ 6 s£ \TT), 6O is the angle between the vertical axis and fi, and
a = cos"1 p. Transforming to 6, = 6 cos2 6, b2 = b sin2 0 and evaluating the integral
gives, after averaging with respect to the density of si, the contribution of this region to
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the unconditional power of the test. It is easy to see that the contribution of the second
region is identical to that of the third except that (a - 0O) is replaced by 00 itself. Hence
we find that the contribution from these two regions is

where
KIJ(OO) =Mcos' (a - 0O) sin-* (a - 0O) + cos' 0O sinJ 0O} (10)

and Iu(a,b) denotes the incomplete beta integral with parameters a and b and upper
limit u.

Turning next to the first region, we again put (dh) = dO but in this case measure 0
from the vertical axis, i.e. from /I,, so that h> = cos (0 - 0O) and 0 =£ 0 =£ a. Provided both
0O and a - 60 are less than \tr the calculation is straightforward and gives, after averaging
with respect to the density of s\, the unconditional power deriving from the region
{b>c; heSa} to be

* I T ^ ^ W , ( i (11)

where

Since both 0O and (a — 0O) must be less than \TT when p > 0, expressions (11) and (12)
are valid when p>0. When p < 0 either 60 or (a-60) can exceed \TT, and in that case
Jj(0o)

 m (11) is replaced, for even values of j , by

The total power of the test is given by the sum of expressions (9) and (11), and is
evidently a function of A, m and 60, with d0 reflecting the direction in which the true
vector y lies. From (10), (12) and (13) it follows that the power function is symmetric
with respect to 0O about the point Q0 = \a, is maximized with respect to 80 when 00 = 5^
and is minimized with respect to 0O when 0O = a. Some power calculations based on
(9)-(13) are in Table 4. Comparison with the last two lines of Table 5 shows that the
likelihood ratio test is superior to the F test over the whole range for p, and that the
improvement in power in the likelihood ratio test is substantial when p is large and positive.

The power function for the case fc = 3 can be obtained by an obvious generalization
of the argument above. We omit details and merely note that, since the source of the
improvement in power is the same in k 5= 3 dimensions as it is in the case fc = 2, there
are good grounds for expecting that the above conclusions will remain valid in general.

5. DIRECTED t TESTS

We consider next the test suggested in § 3, a one-sided t test based on a preselected
vector, y* say, in the feasible region under H^. From (3), this test rejects Ho when
b^h'fi,* = fe* cos 0* is large and positive. Hence, the critical region for the test is co* =
{6i cos 0*> c, he S*}, where S* is the set of points on the 5k: h'h = 1 which make an
angle less than \n with /i*. Notice that, since /**e Sa, S* excludes all of Sa, and also
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0-338
0-767
0-803

0-261
0-310
0-736
0-775

0-233
0-282
0-705
0-746

0-381
0-391
0-852
0-863

0-336
0-370
0-813
0-840

0-299
0-344
0-781
0-814

0-269
0-317
0-752
0-789

0-241
0-290
0-724
0-762

.0-386
0-396
0-859
0-868

0-342
0-375
0-822
0-847

0-305
0-349
0-792
0-823

0-275
0-323
0-766
0-799

0-248
0-296
0-739
0-776
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Table 4. Power of the likelihood ratio test: k = 2, a = 005, A = 2, 8

p a A 0 O m = 10 m = 15 m = 20 m = 30 m = 50

0-9 0-4510

0-5 10472

0 0 1-5708

-0-5 20944

-0-9 2-6906

Table 5. Minimum power of the optimal directed t test: k = 2, a =0<05

p A m = 10 m = 15 m = 20 m = 30 m = 50

0-9 2 0-360 0-371 0-376 0-382 0-387
8 0-817 0-834 0-843 0-850 0-857

0-5 2 0-298 0-310 0-316 0-322 0-328
8 0-692 0-724 0-741 0-757 0-770

0-3 2 0-266 0-278 0-285 0-291 0-297
8 0-614 0-654 0-675 0-695 0-712

0 1 2 0-235 0-247 0-253 0-260 0-266
8 0-527 0-573 0-598 0-622 0-643

-0-2 2 0187 0199 0-205 0-211 0-217
8 0-385 0-435 0-463 0-492 0-517

-0-5 2 0140 0149 0155 0160 0165
8 0-240 0-284 0-311 0-339 0-365

-0-9 2 0070 0076 0080 0083 0086
8 0065 0084 0097 0112 0127

0J = O 2 0-375 0-386 0-391 0-396 0-401
8 0-842 0-856 0-862 0-869 0-874

Power of F: 2 0178 0192 0-200 0-207 0-216
8 0-575 0-623 0-647 0-670 0-694

excludes part of (Sk - Sa — Sa). Integrating (2) over co*, and then averaging with respect
to the density of si, gives the power function

P * i - u v (*A)j+*'cos'fl?sin2-'flg r

u-o 7 ' H » + 1)
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where 0? is the angle between y and y*, and \- c2 = {1 + t2j(m + k-l)}~\ with t2.
determined by pr {F(l, m + k -1) > t2.} = 2a.

The power function (14) is evidently a function of A, m, k and 6%, the angle between
the true vector y and the preselected vector y*. The power is a maximum at 6% = 0 and
is a decreasing function of 0*, but it is, of course, impossible to choose y* so as to ensure
that 6* is small even when it is known that y > 0. Nevertheless, there is an optimal choice
for y* when y is restricted to the region y > 0 under Ha in the following sense. The test
based on the vector y* for which the maximum value of 8* over all /x e Sa is smallest
will maximize the minimum possible power of the test.

In the case k = 2 the vector \x* corresponding to y* should obviously bisect the angle
a, see Fig. 1, which yields the vector y*' = (o-2, er,) as the optimal choice for y* in the
above sense. For k 5e 3 the problem of finding the optimal y* is more complicated. When
fc = 3, if the point fia, say, that makes the same angle with each of the extremities of Sa

is within Sa, then /i,* = /ia and y* = (Z'MxZ)~'d, where d' = (a1,a-2,cr3). However, the
point fxa may not lie within Sa, and in that case p.* should be taken as the point on the
longest edge of Sa that bisects the angle between its endpoints.

Table 5 gives some power calculations based on (14) for k = 2, a = 0-05, various values
for A and m and, in the body of the table, 8* =ia- Values in the main body of Table 5
represent the minimum power of the directed t test for which this minimum power is
largest. Table 5 gives also the power of the directed t test when 8* = 0, and the power
of the F test. The entries for 8* = 0 give the maximum possible power for any test of Ho

because the t test in the correct direction is uniformly most powerful similar.
The minimum power of the best directed t test exceeds that of F for p 2= -0-2 when

A =2, for p3*0-l when A = 5, and for p>0-3 when A =8. Thus, when p is reasonably
large this test is better than the F test for k = 2. Tables 4 and 5 reveal that the likelihood
ratio test dominates the directed f test, in terms of minimum power, for almost all values
of p. Both tests are excellent when p is large, but the power of the directed t test falls
off much more sharply than that of the likelihood ratio test as p declines. Hence, at least
for the case k = 2, the likelihood ratio test is superior.
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APPENDIX

The manifold defined by (/Jo, $o) constant
Let m = n-k-p, and let C be an nxm matrix such that CC' = In- W(W'W)'1 W and

C'C = Im. Put w = C'y, 0O = (X'X)-lX'y and y = (Z1 MXZ)~XZ'Mj. The vectors w, 0O and y are
mutually independent, H>~ N(0, <r2lm), /30~ NiP + iX'Xy^X'Zy, o^X'XY*) and y~
N(y, o-2(Z'MxZ)~l). Let T be a kx k upper triangular matrix such that TT = Z'MXZ, and put
y=Ty, y= Ty, so that y~N(y, cr2lk). Note that So = w'w + y'y.

Now make the transformations w-*vr, y-*hs, with v = w/(w'w)i, h = y/iy'y^, r2=w'w and
s2= f 'y= y'Z'MxZy. By construction, v'v = 1 and h'h = 1, and the volume elements dw and dy
are transformed as

dw = ̂ r2fm~x dr\dv\ dy = &s2fk-x ds\dh),
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where (dv) and {dh) denote the invariant differential forms on the surfaces of the unit m-sphere
and the unit fc-sphere respectively (James, 1954). Because w~ JV(0, <r2lm), v and r2 are indepen-
dent, v is uniformly distributed on the m-sphere Sm: v'v = 1, and r2/cr2~x\m)- Note that at this
point we have resolved p(y) into p(/30)xp(p)xp(r2)xp(/i, s2).

Now make the transformations (r2, s2)-+(sl, b), with s\= r2 + s2 and b = s2/{r2 + s2), and note
that b = (fcF/m)(l + kF/m)~\ where F = ms2/kr2 is the usual F statistic for testing Ho. We then
have the resolution of p(y) into piPo) *p(sl)*p(v)xp(K b\sl), with p(h, b\s\) given by (2) in
the text, and it is straightforward to check that sl/a-2~x'2(m + k,X), with X = y'y/a2 =
y'Z'MyZyla2. The manifold defined by {$0, s\) = const thus has three components: the surface
of the unit m-sphere Sm: v'v = 1, the surface of the unit fc-sphere Sk: h'h = 1, and the line segment
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