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Q u a n t i f y i n g t h e R e v e r s i b i l i t y P h e n o m e n o n
f o r t h e R e p e a t - S a l e s I n d e x

A u t h o r Arnaud Simon

A b s t r a c t The reversibility phenomenon in the repeat-sales index (RSI) is
a serious obstacle for derivatives products. This article provides
a solution for this problem, using an informational reformulation
of the RSI framework. A theoretical formula (simple, easy to
interpret, and easy to handle) is presented. For the derivatives,
the technique has strong implications for the choice of
underlying index and contract settlement. Even if reversibility of
the RSI is probably higher compared with the hedonic approach,
this index remains a challenger because of the predictability and
quantifiability of its revisions.

With the repeat-sales technique, the past seems to change, but actually it is not
the past itself that is changing; it is only its knowledge (its representation). This
phenomenon is the consequence of the arrival of new data in the estimation set,
these new data being relevant to the past. This mechanism of revision is an
obstacle to the introduction of derivatives written on the repeat-sales index (RSI),
and more generally it is an undesirable characteristic for management of real estate
risk. Thus, it would be profitable to have at one’s disposal an empirical
methodology that could allow anticipating the size of the potential fluctuations,
as mentioned in Clapham, Englund, Quigley, and Redfearn (2006): ‘‘If a futures
market requires index stability, it would be useful to know how often revision—
either period-by-period or cumulative—exceeds some level. Say, for example, that
futures markets could tolerate 0.5 percent revision in any one quarter and 2 percent
cumulative revision to the initial estimate.’’ But at the present time, such a general
methodology does not exist in the RSI literature. This paper provides a solution
to this problem, using an informational reformulation of the RSI framework. Our
methodology is robust in the sense that its conclusions are not conditioned by a
single dataset; indeed in Clapham, et al. (2006) one can ask whether the empirical
results are still valid for another sample. In this article, the authors also conclude
by acknowledging the superiority of the hedonic indexes because their reversibility
fluctuations are smaller; however, they do not provide a methodology that would
make the anticipations of these variations conceivable. As will be seen, the RSI
technique makes these estimations possible. Consequently, even if the reversibility
of the RSI is probably higher, this index can still challenge the hedonic approach
because of its forecasting feature.
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The rest of this article is organized as follows. The second section presents the
theoretical and informational reformulation of the RSI. The third section studies
the reversibility problem, first with a literature review [the results of Clapp and
Giaccotto (1999) are given particular attention], then with informational formalism
applied to the revisions issue. Most previous literature views the revisions as a
selectivity problem; here we adopt the point of view of the informational content
of the data and we show that revisions are also an intrinsic and general feature of
the RSI. The fourth section is devoted to empirical implementation. In this section,
a simulation algorithm is presented in order to answer Clapham, Englund, Quigley,
and Redfearn’s (2006) problem, establishing a conditional law for the distributions
of the reversibility percentages. The problem is examined unconditionally here to
give some indications of the best settlement of derivatives contracts (current or
initial indexes, delayed or not). It could be useful for the reader to refer regularly
to Appendix A in which the mathematics are exemplified with a basic example.

� A n I n f o r m a t i o n a l R e f o r m u l a t i o n o f t h e R S I

In Simon (2007), a theoretical reformulation of the classical weighted RPI is
developed. From the optimization problem associated to the general least squares
procedure, it was demonstrated that a RPI estimation could be realized using the
algorithmic decomposition presented in Exhibit 1. The left side is related to
informational concepts, whereas the right side is associated with price measures.
The final values of the index come from the confrontation of these two parts. This
approach does not aim to create a new index, because all the equations presented
in Simon (2007) are strictly equivalent to the classical Case-Shiller index. If at
first this way of thinking appears more sophisticated, it might help to solve or to
study some crucial RSI problems, for instance, quantification of the revisions. The
next paragraphs introduce the fundamental concepts that try to reduce the technical
side to a minimum level. A basic example can be found in Appendix A that
illustrates this formalism.

T h e U s u a l E s t i m a t i o n o f R S I

In the repeat-sales approach, the price of a property k at time t comprises three
parts:

Ln(p ) � ln(Index ) � G � N . (1)k,t t k,t k,t

Indext is the true index value, Gk,t is a Gaussian random walk representing the
asset’s own trend, and Nk,t is white noise associated with market imperfections. If
Rate � (rate0, rate1, ..., rateT�1)� the vector of the continuous rates for each
elementary time interval [t,t�1], becomes:
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Exhibi t 1 � Algorithmic Decomposition of the RPI

Sample of
estimation

Time of noise equality

�

Real distribution

{ni,j}

Informational
distribution

{Li,j}

Matrixes

Î and �

Distributions of the
purchase and the resale

prices

hp and hf
(i,j)(i,j)

Mean purchase and
resale prices for [t,t+1]

Hp(t) and Hf (t)

Mean of the holding
periods

� t

Mean of the mean rates

�t

Index
Î R = �P

1

2

5

8

9

4

7

3

6



3 0 � S i m o n

Index � exp(rate � rate � ... � rate ) ⇔ ratet 0 1 T�1 t

� ln(Index /Index ).t�1 t

And when the formula at the purchase and resale dates is rewritten:

Ln(p /p ) � Ln(Index /Index )k, j k,i j i

� (G � G ) � (N � N ). (2)k, j k,i k, j k,i

The return rate realized for property k is equal to the index return rate during the
same period, plus the random walk and white noise increments. Each repeat-sale
gives a relationship of that nature; in matrix form: Y � D*LIndex � �. Here, Y
is the column vector of the log return rates realized in the estimation dataset and
LIndex � (ln(Index1), ... , ln(IndexT))�. � is the error term and D is a non singular
matrix.1 In the estimation process, the true values LIndex and Rate will be replaced
with their estimators, respectively denoted LInd � (ln(Ind1),... , ln(IndT))� and
R � (r0, r1, ..., rt�1)�. The usual estimation of Y � D*LIndex � � is carried out
in three steps because of the heteroscedasticity of �. Indeed, the specification of
the error term leads to the relation Var(�k) � � ( j � i) in which the2� �2 2N G

values �N and �G are the volatilities associated with Gk,t and Nk,t, and j � i is the
holding period for the kth repeat-sale. The first step consists of running an OLS
that produces a series of residuals. These residuals are then regressed on a constant
and on the length of the holding periods to estimate �N, �G, and the variance-
covariance matrix2 of �, denoted �. Finally, the last step is an application of the
generalized least squares procedure with estimated matrix �.

C e n t r a l C o n c e p t s f o r t h e R e f o r m u l a t i o n

Time of Noise Equality. The variance of residual �k measures the quality of the
approximation Ln(pk, j /pk,i) � Ln(Indj /Indi) for the kth repeat-sale. This quantity

� ( j � i) can be interpreted as a noise measure for each datum. As a2� �2 2N G

repeat-sale is composed of two transactions (a purchase and a resale), the first
noise source Nk,t appears twice with The contribution of the second source2� .2N

Gk,t depends on the time elapsed between these two transactions: ( j � i).� 2G

Consequently, as time goes by, the above approximation becomes less and less
reliable. Next, if factorized by � ( j � i) � [( / ) � ( j �� : 2� � � 2� �2 2 2 2 2 2G N G G N G

i)] � [� � ( j � i)]. What does � � / represent? The first noise source2� 2� �2 2G N G

provides a constant intensity whereas the size of the second is time-varying(2� ),2N

( j � i)). For a short holding period, the first one is louder than the second,(� 2G

but as the former is constant and the latter is increasing regularly with the length
of the holding period, a time exists during which the two sources will reach the
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same levels. Then, Gaussian noise Gk,t will exceed the white noise. This time �,
that we will call ‘‘time of noise equality’’3, is the solution of the equation:

2� � � * time ⇔ time � 2� /� � �. (3)2 2 2 2N G N G

The inverse of � � ( j � i) can be interpreted as an information measure: if the
noise is growing, that is, if the approximation Ln(pk, j /pk,i) � Ln(Indj /Indi) is
becoming less reliable, the inverse of � � ( j � i) is also decreasing. Consequently,
(� � ( j � i))�1 is a direct measure4 (for a repeat-sale with a purchase at ti and a
resale at tj) of the quality of the approximation or, equivalently, of the quantity of
information delivered. A noise measure is defined up to a constant. For example,

� ( j � i) could be used, but for ease of interpretation, � � ( j � i) is2� �2 2N G

preferred; this quantity is simply a time, unlike � ( j � i). With this2� �2 2N G

choice, the impact of holding duration becomes clearly explicit. Moreover, the
entire estimation of the index can be realized with this single parameter �: when
the classical Case-Shiller index is estimated, the size of the two random sources
is not needed, just their relative sizes. A second parameter, for instance, � ,2G

becomes useful only when calculating the variance-covariance matrix of the index
values,5 but not for simple estimation of the index.

Time Structure, Real and Informational Distributions, Subset Notations. The time
is discretized from 0 to T (the present), and divided into T subintervals. We assume
that transactions occur only at these moments, and not between two dates. Each
observation gives a time couple (ti;tj) with 0 � ti 	 tj � T; thus there are
1⁄2T*(T � 1) possibilities for the holding periods. The set of repeat-sales with
purchase at ti and resale at tj will be denoted by C(i, j). The number of elements
in C(i, j) is ni, j and N � �i	jnij is the total number of repeat-sales in the dataset.
As each element of C(i, j) provides a quantity of information equal to (� � ( j �
i))�1, the total informational contribution of ni, j observations of C(i, j) is:

�1n (� � ( j � i)) � n /(� � ( j � i)) � L . (4)i, j i, j i, j

Therefore, from real distribution {ni, j}, there is informational distribution {Li, j},
which is produced by simply dividing its elements by � � ( j � i). The total
quantity of information embedded in the dataset is: I � �i	jLij. An observation is
globally relevant for an interval [t�,t] if its holding period includes [t�,t]; that is,
if the purchase is at ti � t� and the resale at tj � t. This subsample will be denoted
Spl[t�,t]. For an elementary time-interval [t,t�1], the simplified notation Spl[t,t�1] �
Splt will be used. Exhibit 2 illustrates with a triangular upper table the repeat-
sales associated with a given interval and the related quantity of information.

Mean Holding Period, Mean Prices, and Mean Rate for Splt. The repeat-sales that
bring information on [t,t�1] are the ones that satisfy ti � t 	 t � 1 � tj. The
length of their holding periods can differ. Thus, � t is denoted as the harmonic
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Exhibi t 2 � Repeat Sales in and Quantity of Information Associated[t�,t�1]Spl
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average of these durations in Splt (see Appendix B for more details). Within each
repeat-sales class C(i, j), the geometric averages of purchase prices is calculated
as: � (	k, pk�,i) and of resale prices: � (	k, pk�, j) With classes(i, j) 1 / n (i, j) 1 / ni, j i, jh , h .p ƒ

C(i, j) that correspond to Splt, the average Hp(t) of Hp(t) can also be seen as(i, j)h .p

the mean of the purchase prices, weighted by their informational contribution 1/
(� � ( j � i)), for investors who owned real estate during at least [t,t�1]. Similarly,
mean resale price is defined as Hƒ(t). For a given repeat-sales k� in C(i, j), with a
purchase price pk�,i and a resale price pk�, j, the mean continuous rate realized on
its holding period j � i is � ln(pk�, j /pk�,i)/( j � i). In subset Splt, the arithmetic(i, j)rk�

weighted average 
t of these mean rates is determined; this value is a measure(i, j)rk�

of the mean profitability of the investment. It was demonstrated in Simon (2007)
that 
t � ln[Hƒ(t)/Hp(t)]/� t. This relation is actually just the aggregated equivalent
of � ln(pk�, j /pk�,i)/( j � i) for subset Splt. All these averages Hƒ(t), Hp(t), and(i, j)rk�

� t are weighted by the information. The way prices and duration appear in the
formula (through a logarithm for prices and inverse function for durations)
explains whether the pattern will be geometric or harmonic. The vector of these
mean rates is denoted P � (
0, 
1, ..., 
T�1).

Informational Matrix. A repeat-sale is globally relevant for the interval [t�,t�1] if
purchase is at t� or before and resale takes place at t � 1 or after. The quantity
of information globally relevant6 for [t�,t�1] is thus � �i�t��t	jLi, j (cf.[t�,t�1]I
Exhibit 2). For an interval [t,t�1], It is denoted for These quantities of[t,t�1]I .
information are calculated for all possible intervals included in [0,T] and then
arranged in a symmetric matrix Î.
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[0,1] [0,2] [0,3] [0,T]I I I I
[0,2] [1,2] [1,3] [1,T]I I I I
[0,3] [1,3] [2,3] [2,T]Î � I I I I
:� �

[0,T] [1,T] [2,T] [T�1,T]I I I I

A diagonal matrix � also needs to be introduced. Its diagonal values simply
correspond to the sums on the lines of Î.

The Index and the Relation � � P. The estimation of the RSI can now beÎ R
realized simply by solving the equation: R � �P ⇔ R � P. The unknown�1ˆ ˆI (I �)
is the vector R � (r0, r1, ..., rT�1)� of the monoperiodic growth rates of the index.
The other three components of this equation �, and P) are calculated directlyˆ(I,
from the dataset. The main advantages of this formalism are its interpretability
and its flexibility: matrix gives us the informational structure of the dataset andÎ
vector P indicates the levels of profitability of the investment for people who
owned real estate at different dates.

E x a m p l e a n d C o m m e n t s

As this approach to RSI is not usual, the algorithm and the various concepts of
Exhibit 1 are illustrated in Appendix A with a small sample. Here, the estimation
interval is [0,2] and the dataset is assumed to have only three pairs: a first house
‘‘a’’ bought at 1 and sold at 2, a second house ‘‘b’’ bought at 0 and sold at 1, and
a third house ‘‘c’’ bought at 0 and sold at 2. In order to simplify the formulas,7 �
� 0. Consequently, only Li, j � ni, j /( j � i), but the central point is maintained:
goods with a long holding period are less informative. From {Li, j}, is produced,Î
and summing each line of produces diagonal matrix �. The quantity ofÎ
information for interval [0,1] is equal to 1,5: the related goods are houses a and
c. As the first one is associated with a short holding period, its informational
contribution (equal to 1) is greater than for c (equal to 0,5). Now, for interval
[0,2], what does it means to be relevant for this interval? According to the
definition, the only good satisfying this condition is house c, bought at 0 and sold
at 2. Here, one can ask why either house a or house b is overlooked, because both
bring information to a portion of interval [0,2]. The answer is that ‘‘relevant for
an interval’’ means globally relevant for the entire considered interval, and not
just for a part of it. However, in doing so, no information is removed, because
these partial pieces of information associated with houses a and b will be taken
into account in quantities I [0,1] and I [1,2] in matrix In other words, there is simplyÎ.
a gradation of information levels. Thus, as the holding period for c is equal to 2,
I [0,2] � 0,5. After distribution {Li, j}, mean holding periods �0 � 1,33 and �1 �
1,33 are produced for Spl0 and Spl1 by dividing the diagonal elements of � by
those of Spl0 and Spl1 both comprise two observations: the first with a holdingÎ.
period equal to 1 and the second equal to 2. But, as long possessions are less
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informative, the mean period is closer to 1. Tables and are very simple(i, j) (i, j)h hp ƒ

in this example because in each class C(i, j) there is just have one element. In a
more complex situation, geometric equally8 weighted averages within C(i, j) would
have to be calculated. For the mean purchase and resale prices in Splt: Hp(0) and
Hƒ(t), the relevant pairs weighted by 0,5 or 1 are gotten back according to their
informativity. The expressions for 
0 and 
1 come directly from that, with the
same weight structure. Finally, using the index rates solves the system. It is true
that this approach to the classical Case-Shiller index could appear to be an
unnecessary development if it does not provide strong results. Fortunately, as will
be seen below, this decomposition of the index in its building blocks is the key
required to solve the reversibility problem and to get a very intuitive formula.
Moreover, this way of thinking could be useful for analyzing some other features
of the index. The various quantities that appear in the algorithm are intuitive and
could be interesting to study in an empirical approach.

� T h e R e v e r s i b i l i t y P h e n o m e n o n : S t a t e - o f - t h e - A r t a n d
T h e o r e t i c a l S o l u t i o n

One of the specificities of the RSI is its time dependence on the estimation
horizon; a past value Indt is not fixed once and for all. When the horizon is
extended from T1 to T2 (T2 
 T1), the new repeat-sales will bring information not
only to interval [T1,T2] but also9 to [0,T1]; unfortunately, there is no reason the
new value Indt(T2) should be equal to the old one Indt(T1). This phenomenon of
retroactive volatility is called reversibility; the magnitude of variations can be
substantial, up to 10% for Clapp and Giaccotto (1999).

� L i t e r a t u r e R e v i e w

The two seminal articles in repeat-sales technique are Bailey, Muth, and Nourse
(1963), in a homoscedastic situation, and Case and Shiller (1987) in a
heteroscedastic context. Since publication of these two papers, the repeat-sales
approach has become one of the most popular indexes because of its quality and
flexibility. It is used not only for residential but also for commercial real estate
(cf. Gatzlaff and Geltner, 1998). One can also refer to Chau, Wong, Yiu, and
Leung (2005) for a recent example of a multisectorial application of RSI and to
Baroni, Barthélémy, and Mokrane (2004) for the French context. The reversibility
phenomenon was analyzed more specifically by Hoesli, Giaccotto, and Favarger
(1997), with a two-period model. This very simplified environment allows for
rigorous study of the mathematics of the RSI; Meese and Wallace (1997), for
example, chose the same model in their appendices. But when the number of dates
increases, the RSI equations quickly become burdensome. Clapham, Englund,
Quigley, and Redfearn (2006) tried to compare the sizes of the reversibility
phenomenon in the various index methodologies. They concluded that the hedonic
index was probably the least affected, but as this article was an empirical one, it
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can be asked whether the conclusion was dependent on the sample. Generally, in
the literature, a theoretical approach is not the most frequent situation. One
example is Wang and Zorn (1997), but other examples are scarce. For the
reversibility problem there is an exception, namely the article by Clapp and
Giaccotto (1999).

C l a p p a n d G i a c c o t t o ’s S o l u t i o n

Clapp and Giaccotto (1999) deal with a Bailey, Muth, and Nourse (1963) context,
but their formula can be generalized to a Case and Shiller (1989) model. The first
step consists of running, for interval [0,T1], regression Y(T1) � D(T1)LInd(T1) �
�(T1), in which the unknown is the vector of the logarithms of index: LInd(T1).
In Y(T1), there are the log-returns realized for the repeat-sales in the sample. The
lines of matrix D(T1) correspond to the data. In each line, �1 indicates the resale
date, �1 the purchase date, and the rest is made of zeros.10 In a second step, the
estimation interval is extended to [0,T2] and the regression becomes Y(T2) � D(T2)
LInd(T2) � �(T2). The vector of the log-returns can be written Y(T2)� � (Y(T1)�;
Y(T2/T1)�): the old observations Y(T1) completed with the new ones Y(T2/T1).
Matrix D(T2) is a fourblock matrix:

D(T ) 01D(T ) � � �2 D (T /T ) D (T /T )1 2 1 2 2 1

In the upper left corner is the old matrix D(T1). The lower part of D(T2) is
associated with new repeat-sales. D1(T2/T1) corresponds to the transactions
realized before T1 (only purchases in that case), and D2(T2/T1) corresponds to the
transactions realized after T1 (purchases and resales). There are two kinds of new
data: purchases before T1 and resales after T1, or purchases and resales after T1.
For the first case, �1 is registered in D1(T2/T1) and �1 in D2(T2/T1), whereas
both are in D2(T2/T1) for the second. Denote 
(T2) � (D(T1)�; D1(T2/T1)�)� as the
left part of the matrix and F(T2) � (0�; D2(T2/T1)�)� as the right part. Vector
LInd(T2) gives the logarithms of the index values for the second estimation. This
can be separated into two pieces; the first gives the levels of the index on [0,T1]
and the second on [T1,T2]: LInd(T2)� � (LInd1(T2)�; LInd2(T2)�). Clapp and
Giaccotto’s formula establishes the link between vectors LInd(T1) and LInd1(T2),
which both give the index values on the interval [0,T1], but using only the
information embedded in Y(T1) for LInd(T1), while LInd1(T2) uses completed
dataset Y(T2). This formula requires an auxiliary regression Y(T2/T1) � D1(T2/
T1)AUX � ��. But, even if it is similar to the previous regressions, ‘‘AUX is not
an index of any kind. It’s just the vector of coefficients in the artificial regression
of Y(T2/T1) on D1(T2/T1)’’ (Clapp and Giaccotto, 1999). A matrix � must be
introduced that is quite hard to interpret: � � [D(T1)�D(T1) � D1(T2/T1)�D1(T2/
T1)]�1 D(T1)� D(T1). With all these elements, the reversibility formula is:
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LInd (T ) � �LInd(T ) � (I � �)AUX1 2 1

�1� [
(T )�
(T )] 
(T )�F(T )LInd (T ). (5)2 2 2 2 2 2

I n f o r m a t i o n a l A p p r o a c h t o R e v e r s i b i l i t y

Notations. This section deals with the reversibility phenomenon using the
reformulation presented in the first section: the formulas will be simple and
intuitive. Assume here the initial time horizon T1 is extended to T2, T2 
 T1. The
main idea of the reversibility formulas below consists of working with three
repeat-sales samples. The first is the old sample, denoted by its horizon T1. The
second consists of new repeat-sales used in the re-estimation at T2 but not used
in the first estimation because their resale occurred after T1; this sample is denoted
as T2\T1. The last sample, denoted T2, is the entire sample of available repeat-sales
at T2. Thus: T1 U T2\T1 � T2. With T1, the index and its building blocks can be
determined for the time interval [0,T1]. With T2\T1 and T2, the same can be done
for [0,T2]. The notations will be the same as those presented in the first section;
however, the considered sample will be added as a parameter. For example, Hp(t)
will be denoted Hp(t;T1), Hp(t;T2\T1), or Hp(t;T2) according to the associated
dataset. The result is illustrated in Appendix A, adding two new transactions to
the small sample. Assume that house d is bought at 2 and sold at 3, and house e
is bought at 0 and sold at 3. Index T2\T1 is first estimated with these two new
repeat-sales and then index T2 with the five observations available on [0,3]. The
reversibility formula is just a linear dependence between the vectors R(T1),
R(T2\T1) and R(T2). The coefficients correspond to the associated quantities of
information (cf. formulas i and v in the proposition below).

Reversibility formulas. The main results are summed up in the following
proposition11;

Proposition:

i. It(T2) � It(T1) � It(T2\T1)
ii. [Hp(t,T2)] � [Hp(t,T1)] [Hp(t,T2\T1)]

t t tI (T ) I (T ) I (T \T )2 1 2 1

[Hƒ(t,T2)] � [Hƒ(t,T1)] [Hƒ(t, T2\T1)]
t t tI (T ) I (T ) I (T \T )2 1 2 1

iii. � t(T2) is the harmonic weighted average of � t(T1) and � t(T2\T1)
iv. 
t(T2) � [It(T1)/It(T2)][� t(T1)/� t(T2)]
t(T1) � [It(T2\T1)/It(T2)][� t(T2\T1)/

� t(T2)]
t(T2\T1)
v. (T2) � (T1) � (T2\T1).ˆ ˆ ˆI I I

vi. �(T2) P(T2) � �(T1)P(T1) � �(T2\T1)P(T2\T1)
vii. (T2)R(T2) � (T1)R(T1) � (T2\T1)R(T2\T1)ˆ ˆ ˆI I I
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The first point (i) means that the quantity of relevant information It for a time
interval [t,t�1] for dataset T2 is equal to the quantity of information provided by
T1 plus the quantity provided by T2\T1. According to ii, the mean purchase and
resale prices for T2 are simply the weighted averages of the same quantities for
T1 and T2\T1; the weights correspond to the informational contributions from the
old sample and from new data. � t(T2) is the weighted average of � t(T1) and
� t(T2\T1) (cf. Appendix B for the weights). For t 	 T1, iv means that 
t(T2) is the
average of 
t(T1) and 
t(T2\T1). In this formula, quantity It(T1)/It(T2) represents the
percentage of the total information It(T2) already known when the horizon is T1.
It(T2\T1)/It(T2) is the percentage of the information revealed between T1 and T2.
The ratios � t(T1)/� t(T2) and � t(T2\T1)/� t(T2) measure the lengths of the holding
periods for the old data and the new, relative to the lengths of the whole sample.12

The scalar formula i can be generalized in a matrix13 formula v. The matrix
approach allows rewriting14 formula iv under the synthetic form vi. Finally,
relation vii gives the reversibility result for the index.

Comments. The logic of the reversibility phenomenon can be summarized as
follows. First, estimate the RSI with old data on [0,T1]; this gives an informational
matrix (T1) and a vector R(T1). Then, only with new data T2\T1, the index isÎ
estimated on [0,T2]; it gives (T2\T1) and R(T2\T1). Finally, using the entire datasetÎ
(old data � new data), the RSI is calculated on [0,T2], with (T2) and R(T2). WhatÎ
is expressed in the reversibility formula is simply that quantity R is additive ifÎ
the horizon is extended from T1 to T2. As Clapp and Giaccotto (1999) have already
proposed a formula to deal with this problem, how should these two different
approaches be scrutinized? At the theoretical level, they are of course strictly
equivalent because they are measuring the same phenomenon. But from a practical
point of view, things are different. Clapp and Giaccotto’s formula is rather
complex and its financial interpretation is not obvious. For instance, what does
matrix � represent? Moreover, as is pointed out in their article from 1999, the
auxiliary regression is just an abstract estimation that does not correspond to an
index of any kind. Taking a look at formula vi, it is simple, easy to handle, and
easy to interpret. Just the informational matrixes and vectors of the monoperiodic
growth rates of the indexes are needed; and these two notions are strongly
intuitive. What is more, the equivalent of auxiliary regression AUX, namely
R(T2\T1), can be interpreted as the RSI for the interval [0,T2] if the estimation is
run only with the new dataset, T2\T1. Intuitively, this relation could be interpreted
as a kind of ‘‘equation of energy preservation’’ for the datasets. Indeed, if product
R measures the ‘‘quantity of energy’’ embedded in a dataset, the reversibilityÎ

formula simply asserts that:

Energy of the whole dataset � Energy of the old data

� Energy of the new data.
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This idea of energy delivered by a sample also allows interpreting the relation
R � �P. The left side can be understood as the energy of the informationalÎ

system of the index values, whereas the right side can be analyzed as the energy
provided by the gross (real) dataset system. Here, also, there is a kind of equation
of preservation:

Energy of the informational system

� Energy provided by the real system.

� P r e d i c t i n g t h e M a g n i t u d e o f t h e R e v i s i o n s

A methodology is presented next that allows estimation of the magnitude of
potential revisions that will be applied to settlement of the derivatives contracts.

T h e E x p o n e n t i a l B e n c h m a r k

In order to simulate the behavior of repeat-sales between T1 and T2, a very simple
model is introduced, based on an exponential distribution of resale decisions. More
precisely, assume that:

1. The quantities of goods traded on the market at each date are constant
and denoted K.

2. Purchase and resale decisions are independent between individuals.
3. The length of the holding period follows an exponential survival curve,

with a parameter � 
 0 (the same for all owners).

This last hypothesis means that, conditional to purchase at t � 0, the probability
of not having sold the house at time t is equal to e��t. This choice is unrealistic
because it implies that the probability of selling the house in the next year is not
influenced by the length of the holding period.15 If the hazard rate is introduced,16

which measures the instantaneous probability of a resale: �(t) � (1/
t)*
Prob(resale 
 t � 
t�resale � t), it is well known that the choice of an exponential
distribution is equivalent to the choice of a constant hazard rate. In the real world
things are of course different. For the standard owner, the hazard rate is first low
(quick resales are scarce). The second time, it increases progressively up to a
stationary level, potentially modified by the economic context (residential time).
Then, as time goes by, the possibility of moving because of retirement, or even
death of the householder, would bring the hazard rate to a higher level (aging).
However, even if the assumption is not entirely realistic, it generates a simple
model. The aim of this benchmark is not to exactly describe reality; it is just
trying to model a basic behavior. For an interval [0,T], the benchmark dataset is
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Exhibi t 3 � An Example of Reversibility

: “true prices,” Curve 1
: T1= 40 (old dataset), Curve 2
: T2 = 45 (completed dataset), Curve 3
: T2\T1 (new data), Curve 4
: Percentage of reversibility, Curve 5
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fully determined if the parameters K and � � e�� are known. This is established
in Simon (2008), where the number of repeat-sales in an exponential sample is17

N � KT(1 � �) and the total quantity of information embedded in this dataset
is18 I � K�[(T � � � 1) uT � T�]. These two expressions will be useful in the
calibration step.

A n E x a m p l e

For practical reasons, randomly generated artificial samples are used.19 However,
the methodology can be applied directly to real datasets, with no difficulties.
Exhibit 3 presents the results of an estimation with T1 � 40 and T2 � 45. Curve
2 gives the index values on [0,40], for the old dataset, Curve 4 gives the index
values on [0,45], using only the new data T1/T2, and Curve 3 is for the completed
sample. Curve 5 shows the percentage of reversibility (Indt(45)/Indt(40) � 1) for
t � 0,...,40. The sample of the new data T2\T1 is smaller than the two others; thus
its curve logically presents a higher volatility. For the majority of the dates, the
difference between the old index and the completed one is negligible; Curve 5 is
close to zero. It is only in the last quarter of the interval [0,40] that the two curves
can diverge (the spread can reach 1% with the simulated data). The direction of
the variation is given by the new data. For instance, at t � 34 the index T2\T1 is
at 110, whereas the old index is around 104. Consequently, Curve 4 brings the
old value (104) to a higher level (105). As can be seen, the reversibility
phenomenon has a temporal pattern: it appears essentially for the nearest dates.
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This phenomenon is also documented by Clapham, Englund, Quigley, and
Redfearn (2006) and Deng and Quigley (2008). Unfortunately, from an investment
point of view, these recent past values are in general the most important values.
Therefore, it is crucial to elaborate a methodology able to indicate the level of
reliability of the index values.

T h e S i m u l a t i o n P r o c e s s

The Monte Carlo technique is well adapted to our problem. The simulation
algorithm is presented in Exhibit 4 (in several points some variations in the
assumptions could be introduced according to the needs of the modeling; a basic
version is presented here). From a repeat-sales sample on [0,T1], the associated
index is calculated with R(T1) and (T1). These two quantities are fixed during theÎ
entire process. The present is time T1, and the two estimations at T1 and T2 must
satisfy the relation (T2)R(T2) � (T1)R(T1) � (T2\T1)R(T2\T1). Variations of theˆ ˆ ˆI I I
index are attempted when the estimation will be renewed at T2; in other words,
comparing R(T1) with R(T2). Unfortunately, at point T1 the quantities (T2), (T2\T1)ˆ ˆI I
and R(T2\T1) are unknown. The idea of the algorithm is to forecast these three
measures to solve the equation with unknown R(T2), and then to compare R(T1)
and R(T2). The first step consists of calibrating the exponential benchmark with
the old data on [0,T1]. More precisely, the search is for the values of parameters
K0 (constant flow on the market) and �0 (resale speed) such that the total number
of repeat-sales N and the total quantity of information I is equal between the real
dataset and the benchmark sample.20 Mathematically speaking, parameter �0 can
be estimated by working with quantity I /N, which does not depend on K
(numerical resolution). When �0 is known, K0 can be calculated with N � KT
(1 � �). Once the benchmark is calibrated, the arrival of the information on the
interval [T1,T2] will occur according to the same rhythm as previously. This gives
an approximation:21

bench(T2\T1) for matrix (T2\T1). At the same time, there is alsoˆ ˆI I
an approximation for matrix (T2), adding (T1) and bench(T2\T1) (cf. Propositionˆ ˆ ˆI I I
v). After the left side of Exhibit 4 devoted to informational matrixes, the focus
turns to the right side, dedicated to growth rate vectors, and try to infer vector
R(T2\T1). R(T1) gives the index evolution on interval [0,T1]. For the rest of interval
[T1,T2], it is completed in a T2-vector Rhyp � (R(T1), Rhyp(T1;T2)). Rhyp(T1;T2) is
a scenario for the future of real estate prices. Simon (2007) established that the
vector R(T2\T1) is Gaussian. It is centered on the growth rates of the theoretical
index values,22 and its variance-covariance matrix23 is (T2\T1)�1. Because ofˆ� I2G

its unobservability at T1, R(T2\T1) has to be generated randomly as a Gaussian
vector N(Rhyp ; (T2\T1)�1). The theoretical expectation (the true rates values)ˆ� I2G

is replaced here with the best estimator that we have on [0,T1] at T1, that is, R(T1),
and we complete it with the economic assumptions on [T2\T1] through vector
Rhyp(T1;T2). For the second parameter, the benchmark matrix is used as an
approximation. At this stage of the process, (T1), (T2\T1), (T2), R(T1), andˆ ˆ ˆI I I
R(T2\T1). The final step consists simply of calculating vector R(T2) with the
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Exhibi t 4 � Algorithm for the Quantification of the Reversibility Phenomenon

Estimation of the old index on [0,T1]

Î(T1) ; R(T1)

Benchmark calibration on

the interval [0,T1]

K; �

Informational matrix for the

new data, estimated with the

calibrated benchmark

Îbench(T2\T1)

Simulation of the index “new

data” on the interval [0,T2]

NNNN    (Rhyp ; �G Î(T22 \T1)
-1

)

R(T2\T1)

Extension of the vector R(T1)

to the interval [0,T2], with the

economic assumptions

Rhyp(T1)

Estimation of the global index on [0,T2]

Î(T2) = Î(T1) + Îbench(T2\T1)

R(T2) = [Î(T2)]
-1 [Î(T1)R(T1) + Îbench(T2\T1)R(T2\T1)]

Reversibility quantification

(Indt(T2)/Indt(T1) – 1 ) on [0,T1]
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equation (T1)R(T1) � (T2\T1)R(T2\T1) � (T2)R(T2). Once R(T2) is known, indexˆ ˆ ˆI I I
values Intt(T2) can be calculated on the interval [0,T1], and the size of the
reversibility phenomenon can be measured for each simulation of R(T2\T1).
Repeatedly running this procedure, produces an empirical distribution of the
spreads.

T h e T h e o r e t i c a l L a w o f R e v e r s i b i l i t y i n a S i m p l i f i e d
C o n t e x t

The Monte Carlo technique is interesting for the very complex situations in which
closed formulas will be impossible to establish. For simple situations it is useful
to deepen the mathematical analysis to get an idea of the dynamic of the revisions
and to potentially model this phenomenon with a stochastic process. The process
begins with an initial repeat-sales sample �0, associated with interval [0,T1]. In
the model, the benchmark is calibrated on this dataset and, using the corresponding
parameters gives an estimation for matrix (T2\T1). The quantities (T1), R(T1),ˆ ˆI I

bench(T2\T1), and (T2) are fixed and there is one random source, R(T2\T1). It isˆ ˆI I
assumed that vector Rhyp(T1;T2) is constant. Under these assumptions and with the
formula R(T2) � [ (T2)]�1 [ (T1)R(T1) � bench(T2\T1)R(T2\T1)], it can beˆ ˆ ˆI I I
demonstrated that vector R(T2) is Gaussian:

�1ˆ ˆE[R(T ) � R(T ) � [I(T ) I (T /T )]R (T ;T )2 1 2 bench 2 1 hyp 1 2

�1 �1ˆ ˆ ˆV[R(T )] � � [I(T ) I (T /T )][I(T )] (6)22 G 2 bench 2 1 2

Matrix bench(T2\T1) represents new information, (T2), the total information.ˆ ˆI I
Consequently, product (T2)�1

bench(T2\T1), which appears in these two formulas,ˆ ˆI I
can be interpreted as the (vectorial) proportion of the new information contained
in the total. The first formula simply asserts that the expectation of R(T2) is equal
to the old and constant vector R(T1), plus a quantity that represents the influence
of the economic hypotheses Rhyp(T1;T2) on [T2\T1]. This influence of Rhyp(T2\T1) is
weighted by [ (T2)]�1

bench(T2\T1); a relative measure of the informational weightˆ ˆI I
of the new data. Regarding the variance formula, it has to be compared with the
formula24 V[R(T2)] � [ (T2)]�1 that would have to applied if the estimation forˆ� I2G

the index on [0,T2] was run directly with the entire dataset, without doing a
halfway estimation at T1. In a reversibility situation, part of the total sample is
already known; therefore the resulting index is less volatile. What is expressed
with the second formula is simply that the attenuation coefficient for the volatility
is nothing other than [ (T2)]�1

bench(T2\T1), once more. Now, if on [T1,T2] realˆ ˆI I
estate growth is null, in other words, Rhyp(T1;T2) � 0,25 the following result can
be demonstrated:
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Exhibi t 5 � Deciles for Reversibility Percentages (t � 1,..., T1 � 40)
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The bold curve gives the observed empirical reversibility (at T2) and the dotted ones give the theoretical deciles
deduced from the reversibility law, just using the information known at T1. The two extreme curves are the per-
centiles at 1% and 99%; the other curves give the deciles from 10% up to 90%.

R e v e r s i b i l i t y L a w

For t � 1,...,T1 the ratio Indt(T2)/Indt(T1) is log-normally distributed: LN(0; v(t))
v(t) is the tth diagonal element of the matrix26 A(T2)[[ (T2)]

�1
bench(T2\T1)]ˆ ˆ� I I2G

[ (T2)]�1 [A(T2)].�Î

The reversibility percentage27 for date t is a random variable that can be written
as 100(Yt � 1), with Yt 	 LN(0; v(t)). Exhibit 5 represents the theoretical deciles,
anticipated at T1, using sample �0 on [0,T1]. The bold curve gives the observed
reversibility for this specific sample when the horizon is extended from T1 to T2.
The theoretical curves are a good approximation of the empirical one. The
magnitude of the potential revisions is small and approximately constant for the
left side of the interval. But on the right side, things are different. Near T1 the
fluctuations are potentially more pronounced, as evidenced by the divergence of
the theoretical curves in Exhibit 5. With the methodology developed in this
paragraph, it now becomes possible to anticipate and to quantify reversibility
effects in a reliable way.

C o m m e n t s

In the above algorithm, randomness appears with simulation of the Gaussian
vector28 R(T2\T1). However, to deepen the simulation, two additional random
sources could be introduced: for vector Rhyp(T1;T2) and for the couple (K, �).
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Indeed, in order to estimate the expectation of vector R(T2\T1), vector R(T1) could
be completed with Rhyp(T1;T2). This vector corresponds to a specific scenario for
the evolution of real estate prices on [T1,T2]. But, as the future is uncertain, it
could be reasonable to let these last coordinates fluctuate randomly, rather than
restricting them to a single path. The second generalization concerns the couple
(K, �). The first variable represents a constant level of liquidity in the market and
the second the resale speed. With the calibration step on interval [0,T1], a mean
couple (K0,�0) is found. However, for interval [T2\T1], market conditions might be
slightly different. To take this possibility into account, parameter K could be
randomly chosen in an interval [K0 � �; K0 � �] and �0 in [�0 � ��; �0 � ��],
for each Monte-Carlo simulation. This methodology could be extended to consider
that the rhythm of transactions depends on the economic context and especially
on future real estate prices. Here, a proportional hazard model would be calculated
on [0,T1], like the one developed by Cheung, Yau, and Hui (2004), for instance.
Then, according to the scenario simulated on [T1,T2], the rhythm of resales could
be deduced. The last point to examine is the direction of revisions. From Exhibit
5, the probability of having a positive revision is equal to the probability of a
negative one. But, from Clapp and Giaccotto (1999) it is known that most of the
time there is a downward revision, as is also documented by Clapham, Englund,
Quigley, and Redfearn (2006). Actually, it seems that there are two sides to the
reversibility problem. The first corresponds to the decrease in variance of the
estimators when more data become available, as shown in Exhibit 5; thanks to
the methodology developed in this paper, the magnitude of these revisions is
readily apparent. The second aspect is a selectivity problem: the density of ‘‘flips’’
is higher near the right edge of interval [0,T1]. When the estimation horizon is
extended to T2, the relative weights between the flips and the goods with a longer
holding period come back to a more normal level for the dates near T1. It would
not be a problem if the financial features (trend and volatility) were the same
across all types of goods, however, there is some evidence to suggest that this is
not true [Clapham et al. (2006): ‘‘This suggests systematic differences in the
relative appreciation of those early entrants to the sample compared to those that
arrive later’’]. The simplest solution to avoid the revision problem would be to
exclude all ‘‘flips’’ from the estimation sample; however, with this choice, some
interesting information about market conditions would be removed. For an
estimate of an index of the whole market, is it possible to deal with this problem
using the formalism previously introduced? The answer is probably positive. For
simplicity, assume that the initial sample can be divided into two subsamples: flips
(holding period 	 two years) and non-flips. For each subsample, for each
elementary time interval [t,t�1], the quantities of relevant information are
calculated: and Near the right edge of the interval, the ratio /[t,t�1] [t,t�1] [t,t�1]I I . Iflips non-flips flips

increases automatically. The idea of a correction would be to remove just[t,t�1]Inon-flips

a portion of the flips from the global dataset in order to recover the same level
for the ratio / as the one observed in the middle of the interval. After[t,t�1] [t,t�1]I Iflips non-flips

this initial correction of the selectivity problem, the index is estimated on [0,T1].
Then, the methodology developed above is applied to control for the revisions
that do not depend on flips.
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D e r i v a t i v e s a n d R e v e r s i b i l i t y

In the last section of Clapham, Englund, Quigley, and Redfearn (2006), several
possibilities are investigated for the contract settlement of the derivatives. More
precisely, the issue is when should cash flows be measured to give the
best estimation of the true economic return realized between t and T, that is,
Ln(IndexT /Indext)? Four choices are examined on a specific dataset (from the least
to the most effective):

1. Ln(IndT(T)) � Ln(Indt(t)): initial indexes

2. Ln(IndT(T)) � Ln(Indt(T)): current indexes

3. Ln(IndT(T�d)) � Ln(Indt(t�d)): initial indexes delayed

4. Ln(IndT(T�d)) – Ln(Indt(T�d)): current indexes delayed

These four random variables are all centered on the true value: Ln(IndexT) �
Ln(Indext). The levels of reliability for these approximations are given by their
respective standard deviations. Formulas are given in Appendix C for variances.
The formulas differ from those established in for the reversibility law. What is
the difference? Actually, the reversibility law gives the conditional behavior for
the revisions: at T1, the value Indt(T1) is known, and an idea of the variation of
this single index value is wanted when the index is re-estimated at T2. Here, in
this paragraph, things are different: there is an examination of the absolute
behavior of the revisions. In others words, at 0 and what is the forecast of the
error on the measure of the return, without knowing the index values at T1. Can
there be a ranking of Clapham, Englund, Quigley, and Redfearn with this
theoretical approach? If there is to be an examination of this problem from a
general point of view, a ‘‘neutral’’ sample must be employed. An exponential
sample is selected, assuming that K � 200, � � 0.1, � 0.001, and � � 10� 2G

(conservative choice). Exhibit 6a gives the results for the no-delay situations, with
three choices for the resale date T (5, 30, and 45) and a purchase date t that varies
between 0 and T � 1. It appears clearly that the current choice is always better
than the initial one. This is especially true for transactions with a purchase near
the left edge of the interval. For repeat-sales with a purchase date in the middle
or at the end of the estimation interval, a difference also exists, but in a smaller
proportion. With Exhibit 6b, there is an examination of the delay effect for a
transaction realized between t and T � 30. The three kinds of curves give the
results for the no-delay situation, for a delay equal to 4 (four quarters), and for a
delay equal to 8 (two years). When the measure of the return is realized one year
later, the global quality of the approximation improves significantly compared with
the no-delay choice. But when the delay is extended up to two years, the additional
improvement becomes lower (for instance, with the current choice and t � 10: no
delay � 1.23%; delay one year � 1.11%; delay two years � 1.07%). From a cost/
benefit point of view, this suggests that the optimal delay is maybe closer to one
year than to two years. Note that the no-delay current index is a bit problematic
for repeat-sales with a purchase near T; the quality of the measure deteriorates at
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Exhibi t 6a � Standard Deviations for Ln(IndT (T)) � Ln(Indt (t)) and Ln(IndT (T)) � Ln(Indt (T))
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Exhibi t 6b � Standard Deviations for Ln(IndT (T�d)) � Ln(Indt (t�d)) and Ln(IndT (T�d)) � Ln(Indt (T�d))
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the right of the interval. If these results are compared with those established in
Clapham et al. (2006), the same ranking is found, except when dealing with
delayed indexes. It seems that the current indexes are always better than the initial
ones, according to this model. Moreover, the error strongly depends on the
purchase date. The next step in the study of derivatives would be to choose a
stochastic dynamic for the RSI in order to price the contingent claims.
Unfortunately, things are rather complex because of the reversibility. If the basic
assumption for stochastic processes in finance (related to the concept of market
efficiency) is considered, that is their Markovian29 behavior, a problem occurs. Is
it really possible to describe the dynamic of the RSI with a single Markovian
process? The answer is no. It is understood heuristically that there is a problem
in just rewriting the reversibility formula: (T2)R(T2) � (T1)R(T1) �ˆ ˆI I
(T2\T1)R(T2\T1). The left side measures an increment between the present T1 andÎ

the future T2. If the Markovian assumption is satisfied, this variation cannot depend
on the dates before T1. But the right side (T2\T1)R(T2\T1) is associated with newÎ
data arriving with the time extension, and adds information not only to [T1,T2] but
also to interval [0,T1]. Consequently, RSI does not have a Markovian behavior.
What follows from this result is the usual stochastic dynamics (geometric
Brownian motion, Ornstein-Uhlenbeck...) cannot be used, at least not directly, to
price a contingent claim. A solution might be to describe the reversibility process
itself with a dynamic related to the reversibility law, and then to model the RSI
as a noisy asset, as in Childs, Ott, and Riddiough (2001, 2002a, 2002b). Using
this approach, the price discovery mechanism associated with the reversibility
phenomenon could be captured. Even if the technical problems are important, the
stakes are real and crucial for the finance industry. It is nothing less than the
possibility of pricing the real estate derivatives written on the RSI.

� C o n c l u s i o n

An intuitive and easy to handle formula for the reversibility phenomenon was
established using an informational reformulation of the RSI framework (cf.
Appendix A for the example). Then, using an exponential benchmark for the
resale decision and Monte-Carlo simulations, a methodology was developed for
quantifying the size of the potential revisions, conditionally and unconditionally.
In this way the problem30 mentioned in Clapham, Englund, Quigley, and Redfearn
(2006) was resolved for the repeat-sales index. For the moment, as there is not a
similar technique for the hedonic indexes, it cannot be concluded that the RSI is
not a suitable underlying for the derivatives contracts. Indeed, if its fluctuations
are probably higher, they are nevertheless predictable, contrary to the hedonic
approach. Regarding the best choice for settlement of the derivatives contracts, it
seems that the current indexes with a delay equal to one year are the optimal
choice. This article establishes that the reversibility phenomenon is not just a
selectivity problem but also an inherent and intrinsic feature of the RSI, although
the entire phenomenon cannot likely be reduced to a single sample effect. The
natural question for future research is now to disentangle the two sources and to
better understand their respective impacts.
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� A p p e n d i x A
�� A l g e b r a i c E x a m p l e s

Old Index T1 on [0,2]

Old Dataset

Time 0 1 2

House a pa,1 pa,2

House b pb,0 pb,1

House c pc,0 pc,2

Real Distribution

ni, j 0 1 2

0 1 1

1 1

2

Informational Distribution

Li, j 0 1 2

0 1 0.5

1 1

2

1.5 0.5 2 0� � � �0.5 1.5 0 2

Matrix Matrix �Î
0 1� (T ) � � (T ) � 2/1.5 � 1.331 1

Purchase Price in C(i, j)
(i, j)hp 0 1 2

0 pb,0 pc,0

1 pa,1

2

Resale Price in C(i, j)
(i, j)hƒ 0 1 2

0 pb,1 pc,2

1 pa,2

2

Mean Purchase and Resale Prices in Sptt

1 0.5 1 / 1.5 1 0.5 1 / 1.5H (0;T ) � [(p ) (p ) ] H (1;T ) � [(p ) (p ) ]p 1 b,0 c,0 p 1 a,1 c,0

1 0.5 1 / 1.5 1 0.5 1 / 1.5H (0;T ) � [(p ) (p ) ] H (1;T ) � [(p ) (p ) ]ƒ 1 b,1 c,2 ƒ 1 a,2 c,2

Mean Return Rates in Sptt

0
 (T ) � (1/� ) ln[H (0;T )/H (0;T )] � 1/1.330 1 ƒ 1 p 1

* [(1/1.5) ln(p /p ) � (0.5/1.5) ln(p /p )]b,1 b,0 c,2 c,0
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1
 (T ) � (1/� ) ln[H (1;T )/H (1;T )] � 1/1.331 1 ƒ 1 p 1

* [(1/1.5) ln(p /p ) � (0.5/1.5) ln(p /p )]a,2 a,1 c,2 c,0

The term into brackets in the first equation represents the mean return for the
repeat-sales that are relevant for [0,1], but not their mean rate. Indeed, these returns
are realized on different time periods (one unit of time for the good b and two
units for the good c). In order to get the mean rate, the brackets are divided by
the associated mean holding period equal to 1.33.

1.5r (T ) � 0.5r (T ) � 2
 (T )0 1 1 1 0 1Estimation of the index: 
0.5r (T ) � 1.5r (T ) � 2
 (T )0 1 1 1 1 1

These equations can be understood, for instance the first one, in the following
way. The mean rate realized by the repeat-sales that are relevant for the interval
[0,1] on their whole holding periods, in other words 
0(T1), depends on 75% of
the first unitary index rate r0(T1), and on 25% of the second unitary index rate
r1(T1). This set of transactions is more focused on the first time interval but
not only because of the good c, bought at 0 and resold at 2. If the system is
solved:

r (T ) � 1.5
 (T ) � 0.5
 (T )0 1 0 1 1 1
r (T ) � 1.5
 (T ) � 0.5
 (T )1 1 1 1 0 1

r (T ) � 1/8 * [6 ln(p /p ) � 2 ln(p /p ) � 2 ln(p /p )]0 1 b,1 b,0 c,2 c,0 a,2 a,1
r (T ) � 1/8 * [6 ln(p /p ) � 2 ln(p /p ) � 2 ln(p /p )]1 1 a,2 a,1 c,2 c,0 b,1 b,0

And if: ra � ln(pa,2/pa,1) rb � ln(pb,1/pb,0) rc � 1/2 ln(pc,2/pc,0)

r (T ) � 1/8 * [6r � 4r � 2r ]0 1 b c a
r (T ) � 1/8 * [6r � 4r � 2r ]1 1 a c b

For the first rate r0(T1), the goods b and c contribute positively, whereas the good
a that is informational just on the interval [1,2] contributes negatively in order to
subtract to the return of the good c the part that is only depending on the interval
[1,2]. This equation could be rewritten as: r0(T1) � 1/8 * [(6rb � 2rc) � (2rc �
2ra)]. The interpretation is the same for the second equation.
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Index ‘‘New Data’’ T2\T1 on [0,3]

New Data

Time 0 1 2 3

House d pd,2 pd,3

House e pe,0 pe,3

Mean Return Rates in Sptt


 (T \T ) � 1/3 * [ln(p /p )]0 2 1 e,3 e,0


 (T \T ) � 1/3 * [ln(p /p )]1 2 1 e,3 e,0


 (T \T ) � 1/1,5*[(0.33/1.33) ln(p /p ) � (1/1.33) ln(p /p )]2 2 1 e,3 e,0 d,3 d,2

0.33r (T \T ) � 0.33r (T \T )0 2 1 1 2 1

� 0.33r (T \T ) � 1 
 (T \T )2 2 1 0 2 1

0.33r (T \T ) � 0.33r (T \T )0 2 1 1 2 1Estimation of the index:
� 0.33r (T \T ) � 1 
 (T \T )2 2 1 1 2 1

0.33r (T \T ) � 0.33r (T \T )� 0 2 1 1 2 1

� 1.33r (T \T ) � 2 
 (T \T )2 2 1 2 2 1

Completed Index T2 on [0,3]

Mean Return Rates in Sptt


 (T ) � 1/1.63*[(1/1.83)ln(p /p ) � (0.5/1.83) ln(p /p )0 2 b,1 b,0 c,2 c,0

� (0.33/1.83) ln(p /p )]e,3 e,0


 (T ) � 1/1.63*[(1/1.83)ln(p /p ) � (0.5/1.83) ln(p /p )1 2 a,2 a,1 c,2 c,0

� (0.33/1.83) ln(p /p /p )]e,3 e,3 e,0


 (T ) � 1/1.5 *[(0.33/1.33)ln(p /p ) � (1/1.33) ln(p /p )]2 2 e,3 e,0 d,3 d,2

Estimation of the index:

1.83r (T ) � 0.83r (T ) � 0.33r (T ) � 3
 (T )0 2 1 2 2 2 0 2

0.83r (T ) � 1.83r (T ) � 0.33r (T ) � 3
 (T )0 2 1 2 2 2 1 2�0.33r (T ) � 0.33r (T ) � 1.33r (T ) � 2
 (T )0 2 1 2 2 2 2 2
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Reversibility for vector P gives:

3
 (T ) � 2
 (T ) � 1
 (T \T )0 2 0 1 0 2 1

3
 (T ) � 2
 (T ) � 1
 (T \T )1 2 1 1 1 2 1�2
 (T ) � 2
 (T )2 2 2 2

And equivalently for vector R:

1.83r (T )�0.83r (T ) � 0.33r (T ) � [1.5r (T ) � 0.5r (T )]0 2 1 2 2 2 0 1 1 1

� [0.33r (T \T ) � 0.33r (T \T ) � 0.33r (T \T )]0 2 1 1 2 1 2 2 1

0.83r (T ) � 1.83r (T ) � 0.33r (T ) � [0.5r (T ) � 1.5r (T )]0 2 1 2 2 2 0 1 1 1

� [0.33r (T \T ) � 0.33r (T \T ) � 0.33r (T \T )]0 2 1 1 2 1 2 2 1�0.33r (T ) � 0.33r (T ) � 1.33r (T ) � 0 � [0.33r (T \T )0 2 1 2 2 2 0 2 1

� 0.33r (T \T ) � 1.33r (T \T )]1 2 1 2 2 1

� A p p e n d i x B
�� D e m o n s t r a t i o n o f t h e I n f o r m a t i o n a l R e v e r s i b i l i t y

F o r m u l a s

F u r t h e r D e t a i l s ( e s t i m a t i o n o n [ 0 , T 1 ] )

The number of repeat-sales in Splt is nt � �i�t	jni, j. For an element of C(i, j), the
length of the holding period is j � i. Using function G, the G-mean31 � t of these
lengths in Splt can be defined by �i�t	j , G( j � i) � ntG(� t). The first sum�k

enumerates all the classes C(i, j) that belong to Splt, the second, all the elements
in each of these classes. Moreover, as G( j � i) measures the proportion of the
time varying-noise Gk,t in the total noise for a repeat-sales of C(i, j), the quantity
G(� t) can also be interpreted as the mean proportion of this Gaussian noise in the
global one, for the entire subsample Splt. In the same spirit, the arithmetic average
Ft of the holding frequencies 1/( j � i), weighted by G( j � i), is defined in Splt:
Ft � (ntG(� t))�1 �i�t	j , G( j � i)*(1/( j � i)) � I t /(ntG(� t)). Its inverse � t ��k

(Ft)�1 is then the harmonic average32 of holding periods j � i, weighted by G( j �
i), in Splt. If at first the two averages � t and � t appear to be two different concepts,
in fact they are nothing of the sort. These is always, for each subsample Splt,
� t � � t [cf. Simon (2007) for more details].

R e v e r s i b i l i t y f o r I t a n d n t

Table B1 exemplifies the extension of the horizon for the informational
distribution. Two kinds of new repeat sales exist: those with a purchase before T1



5 2 � S i m o n

Table B1 � Informational Distribution When the Horizon is Extended from T1 to T2

0 1 … t t + 1 … T1 … T2

0 L0,1 … L0,t L0,t+1 … L0 T1 … L0 T2

1 … L1,t L1,t+1 … L1,T1 … L1,T2

 … … … … … …

t Lt,t+1 … Lt,T1 … Lt,T2

t + 1 … Lt+1 T1 … Lt+1 T2

… … …

T1 … LT1,T2

…

T2

Notes: Solid lines: new repeat sales with a purchase before T1 and a resale after T1(I 	 T1	 j � T2).
Dotted lines: new repeat sales with a purchase and a resale between T1 and T2(T1 � i 	 j � T2).

and a resale after T1(i 	 T1 	 j � T2), shown as solid lines, and those with a
purchase and a resale between T1 and T2(T1 � i 	 j � T2), shown as dotted lines.
In this table, the relevant repeat sales for [t,t�1], if the horizon is T1, are in light
gray. And if the horizon becomes T2, the darker gray cells should also be included
in this set.

For an interval [t,t�1], t 	 T1, the quantities of relevant information are I t(T1) �
Li, j for the first horizon and I t(T2) � Li, j � I t(T1) � Li,j� � �i�t	j�T i�t	j�T i�t	T 	j�T1 2 1 2

for the second. The sum with i � t 	 T1 	 j � T2 corresponds to the additional
information (darker gray). If denoted as I t(T2\T1), the relation becomes I t(T2) �
I t(T1) � I t(T2\T1). Similarly, for the real equivalents of I t(T2), I t(T1), and I t(T2\T1),
that is, nt(T2), nt(T1), and nt(T2\T1), gives exactly the same kind of formula: nt(T2)
� nt(T1) � nt(T2\T1). In what follows, the notation T2\T1 will refer to the dataset
of the new repeat sales that appear when the horizon is extended.

� R e v e r s i b i l i t y f o r t h e M e a n P r i c e s H p ( t ) a n d H ƒ ( t )

First calculate Hp(t) with the purchase prices for the two horizons:

tI (T ) 1 / (��( j�i))1[H (t,T )] � 	 (	 p )p 1 i�t	j�T k� k,,i1

tI (T ) 1 / (��( j�i))2[H (t,T )] � 	 (	 p ) .p 2 i�t	j�T k� k,,i2

Therefore: [Hp(t,T2)] � [Hp(t,T1)] ( pk,,i)
t tI (T ) I (T )2 1 	 	 .i�t	T 	j�T k� 1 / (��( j�i))1 2

Introducing , the product becomes: pk,,i) �(i, j) 1 / (��( j�i))h 	 (	p i�t	T 	j�T k�1 2
(i, j) Li, j	 (h ) .i�t	T 	j�T p1 2
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The total mass of these weights Li, j is equal to I t(T2\T1). This geometric average
is denoted:

tI (T \T ) (i, j)L2 1 i, j[H (t, T \T )] � 	 (hp 2 1 i�t	T 	j�T p1 2

1 / (��( j�i))� 	 (	 p )i�t	T 	j�T k� k,, i1 2

For the interval [t,t�1], Hp(t, T2\T1) represents the mean purchase price for the
new relevant repeat sales. Thus, the reversibility formula is: [Hp(t,T2)] �tI (T )2

[Hp(t,T1)] [Hp(t,T2\T1)] The new value Hp(t,T2) is the geometric averaget tI (T ) I (T \T )1 2 1 .
between the old value Hp(t,T1) and a term that represents the new data: Hp(t,T2\T1).
Their respective contributions are measured by the informational weights I t(T1)
and I t(T2\T1). Similarly, for the resale prices, if the following is introduced:

tI (T \T ) (i, j)2 1[H (t,T \T )] � 	 (h )Lƒ 2 1 i�t	T 	j�T ƒ i, j1 2

1 / (��( j�i)),� 	 (	 )i�t	T 	j�T k�p1 2 k,, j

gives:

t t tI (T ) I (T ) I (T \T )2 1 2 1[H (t,T )] � [H (t,T )] [H (t,T \T )] .ƒ 2 ƒ 1 ƒ 2 1

� R e v e r s i b i l i t y f o r � t

This section discusses the link between the mean holding periods � t(T1) and
� t(T2). There is: I t(T2\T1) � Li, j � G( j � i) * (1/( j � i)).� � �i�t	T 	j�T i�t	T 	j�T k�1 2 1 2

Thus, I t(T2\T1) is almost the arithmetic average of 1/(j � i) weighted by
G( j � i). This formula lacks only the total mass of the weights, that is

G( j � i) � nt(T2\T1) G(� t(T2\T1)), with � t(T2\T1) the G-average of the� �i�t	T 	j�T k�1 2

holding periods for the new repeat sales. Therefore, as in the basic situation,
I t(T2\T1)/[nt(T2\T1) G(� t(T2\T1))] is a mean frequency Ft(T2\T1), and its inverse a
mean harmonic holding period � t(T2\T1) for the new repeat-sales. Now the formal
link between � t(T1) and � t(T2) can be established with the relations I t(T2\T1) �
[nt(T2\T1)G(� t(T2\T1))]/� t(T2\T1) and I t(T2) � I t(T1) � I t(T2\T1). Thus: [nt(T2)G(� t

(T2))]/� t(T2) � [nt(T1)G(� t(T1))]/ tt(T1) � [nt(T2\T1)G(� t(T2\T1))]/� t(T2\T1). And, as
there is nt(T2)G(� t(T2)) � nt(T1)G(� t(T1)) � nt(T2\T1)G(� t(T2\T1)), therefore � t(T2)
is simply the harmonic weighted average of � t(T1) and � t(T2\T1).
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� R e v e r s i b i l i t y f o r 
 t

S c a l a r f o r m u l a f o r t 	 T 1

For t 	 T1
33: 
t(T2) � [(1/� t(T1))*(lnHƒ(t,T1) � lnHp(t,T1))]*[(I t(T1)� t(T1))/

(I t(T2)� t(T2))] � [(1/� t(T2\T1)) * (lnHƒ(t, T2\T1) � lnHp(t, T2\T1))]*[(I t(T2\T1)
� t(T2\T1))/(I t(T2)� t(T2))]. In the first square brackets, it can be seen that 
t(T1).
Moreover, it can easily be proved that the third brackets are also equal to
[nt(T2\T1)G(� t(T2\T1))]�1 G( j � i) This expression is simply the(i, j)� � r .i�t	T 	j�T k� k�1 2

weighted mean of the mean rates for the new repeat sales. And, of course,(i, j)r ,k�

it is denoted: 
t(T2\T1). Thus, the reversibility formula for 
t, t 	 T1, is:

t t t t
 (T ) � [I (T )/I (T )][� (T )/� (T )]
 (T )t 2 1 2 1 2 t 1

t t t t� [I (T \T )/I (T )][� (T \T )/� (T )]
 (T \T ).2 1 2 2 1 2 t 2 1

Ve c t o r i a l F o r m u l a

The above formula is valid for t 	 T1. However, the expressions that define
I t(T2\T1), � t(T2\T1), � t(T2\T1), nt(T2\T1), and 
t(T2\T1) can be generalized for t � T1.
Indeed, in these expressions the sums are for the classes C(i, j) such that i � t 	
T1 	 j � T2, that is the new repeat-sales relevant for [t,t�1], with t 	 T1. Now,
if t � T1 is selected, the relevant cells will be the ones that satisfy34 to i � t 	
j � T2. But what is produced is not really new; it is just I t(T2), � t(T2), � t(T2), nt(T2)
and 
t(T2). For instance I t(T2\T1) � Li, j gives for t � T1: Li, j �� �i�t	T 	j�T i�t	j�T1 2 2

I t(T2). Now the reversibility formula for 
t can be written in a more synthetic
manner. The values 
t(T2) are regrouped, for 0 � t 	 T2, in a T2-vector P(T2) and
the values 
t(T1), for 0 � t 	 T1, in a T1-vector P(T1). From vector P(T1), a T2-
vector is created, adding to its end T2 � T1 zeros; it will be denoted in italics
P(T1). The numbers 
t(T2\T1) are regrouped in a T2-vector P(T2\T1). Its last T2 �
T1 coordinates are simply equal to 
t(T2). Thus, for t 	 T1:

t t t t� (T )I (T )
 (T ) � I (T )t (T )
 (T )2 2 t 2 1 1 t 1

t t� I (T \T )� (T \T )
 (T \T )2 1 2 1 t 2 1

t t t t⇔ n (T )G(� (T ))
 (T ) � n (T )G(� (T ))
 (T )2 2 t 2 1 1 t 1

t t� n (T \T )G(� (T \T ))
 (T \T ).2 1 2 1 t 2 1

And for t � T1: nt(T2)G(� t(T2))
t(T2) � nt(T2\T1)G(� t(T2\T1))
t(T2\T1).
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Table B2 � Informational Distribution for Dataset T2\T1

0 1 … T1 T1 +1 … T2

0 0 … 0 L0,T1+1 … L0,T2

1 … 0 L1,T1+1 … L1,T2

   …  

T1
LT1,T1+1 … LT1,T2

T1 +1 … LT1+1,T2

  

T2

The diagonal matrix �(T1) can be included in a T2-matrix, completing it with
zeros, and denoted in italics: �(T1). �(T2) is the usual T2-diagonal matrix.
Denote �(T2\T1) the T2-diagonal matrix that is achieved with n0(T2\T1)G
(�0(T2\T1),..., (T2\T1)G( (T2\T1)). Now simultaneously these two kinds ofT �1 T �12 2n �
equations can be written (for t 	 T1 and for t � T1):

�(T )P(T ) � �(T )P(T ) � �(T \T )P(T \T ).2 2 1 1 2 1 2 1

� R e v e r s i b i l i t y f o r t h e I n f o r m a t i o n a l M a t r i x Î

For an interval [ti, tj] the relevant information is denoted (T1) or (T2),[t ,t ] [t ,t ]i i i iI I
according to the horizon. The associated informational matrixes are (T1) and (T2),ˆ ˆI I
dimension T1 and T2 respectively. A third matrix (T2\T1), dimension T2, is theÎ
link between (T1) and (T2). Its values are calculated only with the new Li, j (cf.ˆ ˆI I
Table B2), and for each interval [ti, tj] C[0,T2] they represent the additional quantity
of information.

Now (T2\T1) can be written with three submatrixes a(T2\T1), b(T2\T1), andˆ ˆ ˆI I I
c(T2\T1). a(T2\T1) and c(T2\T1) are two square matrixes of dimension T1 andˆ ˆ ˆI I I

T2 � T1, whereas b(T2\T1) is a T1*(T2 � T1) matrix and its transpose t
b(T2\T1) aˆ ˆI I

(T2 � T1)*T1 matrix. a(T2\T1) is symmetric and its diagonal elements correspondÎ
to the first column of b(T2\T1); from one of these diagonal elements, the matrixÎ
values are the same on the right and below. The matrixes b(T2\T1) and c(T2\T1)ˆ ˆI I
are simply extracted from (T2). a and c, respectively, represent the additionalˆ ˆ ˆI I I
information for an interval [ti,tj] C[0,T1] and [ti,tj] C[T1,T2]. Whereas b is for theÎ
intervals [ti,tj] C[0,T2] with ti 	 T1 	 tj. If the matrix (T1) is included in a T2*T2Î
matrix, completing it with zeros and denoting it in italics (T1), the reversibilityÎ
formula for the informational matrix is simply: (T2) � (T1) � (T2\T1).ˆ ˆ ˆI I I
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ˆ ˆI (T \T ) I (T \T )a 2 1 b 2 1Î(T \T ) � � �2 1 tˆ ˆI (T \T ) I (T \T )b 2 1 c 2 1

� R e v e r s i b i l i t y f o r t h e I n d e x

The last step consists of establishing the reversibility formula for the index. For
an horizon T1 and t 	 T1, the building blocks I t(T1), � t(T1), � t(T1), nt(T1), and 
t(T1)
give the repeat-sales index R(T1).35 Similarly I t(T2), � t(T2), � t(T2), nt(T2) and 
t(T2),
calculated for t 	 T2, give the repeat-sales index R(T2). The link between these
two groups of intermediate measures is known, thanks to quantities I t(T2\T1),
� t(T2\T1), � t(T2\T1), nt(T2\T1), and 
t(T2\T1). Thus, it suggests that it is useful to
estimate the RSI on the interval [0,T2], just with the sample T2\T1. In this way, a
T2-vector R(T2\T1) is achieved.36 If the general relation R � �P and theÎ
reversibility formula established for vector P: �(T2)P(T2) � �(T1)P(T1) �
�(T2\T1)P(T2\T1) are used, a very simple reversibility formula for the repeat-sales
index is:

ˆ ˆ ˆI(T )R(T ) � I(T )R(T ) � I(T \T )R(T \T ).2 2 1 1 2 1 2 1

� A p p e n d i x C
�� Vo l a t i l i t y a n d C o n t r a c t S e t t l e m e n t

The fourth situations can be studied with one single formula, namely the variance
of the difference: Lindt1(T1) � LIndt2(T2), where t1 	 T1 and t2 	 T2. It is useful
here to introduce the following notations: ei(L) � (0,..., 0, 1, 0,..., 0)�. ei(L) is a
column vector of dimension L, with all its components equal to zero, except the
ith, which is equal to 1. It is known that:

Var(Lind (T ) � LInd (T )) � Var(Lind (T )) � Var(LInd (T ))t1 1 t2 2 t1 1 t2 2

� 2Cov(Lind (T ); LInd (T )).t1 1 t2 2



Q u a n t i f y i n g t h e R e v e r s i b i l i t y P h e n o m e n o n � 5 7

J R E R � V o l . 3 1 � N o . 1 – 2 0 0 9

The first two variances with the matrix formula can be calculated: V(LInd) �
A A� (cf. Simon, 2007). More precisely:�1ˆ� I2G

�1ˆVar(Lind (T )) � � e (T )�A(T )I(T ) A(T )�e (T ).2t1 1 G t1 1 1 1 1 t1 1

�1ˆVar(Lind (T )) � � e (T )�A(T )I(T ) A(T )�e (T ).2t2 2 G t2 2 2 2 2 t2 2

For the third term, as there are estimations with different horizons, the reversibility
formula has to be used: (T2)R(T2) � (T1)R(T1) � (T2\T1)R(T2\T1). The randomˆ ˆ ˆI I I
variables R(T1) and R(T2\T1) are independent because they do not have any repeat-
sales classes C(i, j) in common. As Lind(T1) and Lind(T2\T1) are linearly related
to R(T1) and R(T2\T1) through the formula Lind � AR, these two vectors are also
independent. The reversibility formula can be written:37

�1 �1ˆ ˆI(T )A(T ) A(T )R(T ) � I(T )A(T ) A(T )R(T )2 2 2 2 1 1 1 1

�1ˆ� I(T \T )A(T \T ) A(T \T )R(T \T ).2 1 2 1 2 1 2 1

�1 �1ˆ ˆI(T )A(T ) Lind(T ) � I(T )A(T ) Lind(T )2 2 2 1 1 1

�1ˆ� I(T \T )A(T \T ) Lind(T \T ).2 1 2 1 2 1

�1 �1ˆ ˆLind(T ) � A(T )I(T ) I(T )A(T ) Lind(T )2 2 2 1 1 1

�1 �1ˆ ˆ� A(T )I(T ) I(T \T )A(T \T ) Lind(T \T ).2 2 2 1 2 1 2 1

If the right this equation is multiplied by the vector et2(T2)�:

�1 �1ˆ ˆLind (T ) � e (T )�A(T )I(T ) I(T )A(T ) Lind(T )t2 2 t2 2 2 2 1 1 1

�1 �1ˆ ˆ� e (T )�A(T )I(T ) I(T \T )A(T \T ) Lind(T \T ).t2 2 2 2 2 1 2 1 2 1

And as Lind(T1) and Lind(T2\T1) are independent:

Cov(Lind (T ); Lind (T ))t2 2 t1 1

�1 �1ˆ ˆ� Cov(e (T )�A(T )I(T ) I(T )A(T ) Lind(T ); Lind (T )).t2 2 2 2 1 1 1 t1 1

But as Lind(T1) � Lindi(T1)ei(T2):�i�1,...,T1



5 8 � S i m o n

�1ˆCov(Lind (T ); Lind (T )) � � e (T )�A(T )I(T )t2 2 t1 1 i�1,...,T t2 2 2 21

�1Î(T )A(T ) e (T ) Cov(Lind (T );1 1 i 2 i 1

�1 �1ˆ ˆLind (T )) � � � e (T )�A(T )I(T ) I(T )A(T )2t1 1 G i�1,...,T t2 2 2 2 1 11

�1ˆe (T )e (T )�A(T )I(T ) A�(T )e (T ).i 2 i 1 1 1 1 t1 1

If these results are summarized in a global formula:

�1ˆVar(Lind (T ) � Lind (T )) � � [e (T )�A(T )I(T ) A(T )�e (T )2t1 1 t2 2 G t1 1 1 1 1 t1 1

�1ˆ� e (T )�A(T )I(T ) A(T )�e (T )]t2 2 2 2 2 t2 2

�1 �1ˆ ˆ2� � e (T )�A(T )I(T ) I(T )A(T )2G i�1,...,T t2 2 2 2 1 11

�1ˆe (T )e (T )�A(T )I(T ) A(T )�e (T ).i 2 i 1 1 1 1 t1 1

1. ni, j: Number of repeat sales with purchase at ti and resale at tj, organized
in an upper triangular table.

2. Estimation of the volatilities �N and �G for the white noise and the
random-walk (step 1 and 2 of the Case-Shiller procedure). The time of
noise equality is � � 2� /� .2 2N G

3. Li, j � ni, j /(� � j � i): Quantity of information delivered by the ni, j repeat
sales of C(i, j). These numbers are also organized in an upper triangular
table.

4. Matrix is derived from the informational distribution of the {Li, j}Î
summing for each time interval [t,t�] the relevant Li, j, that is, the ones
with a holding period that includes [t,t�]. The diagonal elements of the
diagonal matrix � are equal to the sums (rows or columns indifferently)
of the components of matrix .Î

5. Dividing the diagonal elements of by the diagonal elements of � givesÎ
the mean holding periods � t.

6. For each repeat-sales class C(i, j), the geometric averages of the purchase
prices and the resale prices are:(i, j) (i, j)h , hp ƒ

(i, j) 1 / n (i, j) 1 / ni, j i, jh � (	 p ) h � (	 p ) .p k� k�,i ƒ k� k, j

7. For the subset of the people who owned real estate during [t,t�1], that is
Splt, the mean purchase price Hp(t) (the mean resale price Hƒ(t)) is the
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geometric average of the (respectively the ), weighted by the(i, j) (i, j)h hp ƒ

Li, j, for all the relevant repeat-sales classes:

t t(i, j) L 1 / I (i, j) L 1 / Ii, j i, jH (t) � (	 (h ) ) H (t) � (	 (h ) ) .p i�t	j p ƒ i�t	j ƒ

8. The mean of the mean rates 
t realized by the people who owned real
estate during [t,t�1] can be calculated as a return rate with fictitious
prices: Hp(t) for the purchase, Hƒ(t) for the resale, and fictitious holding
period � t:

t
 � (1/� ) * ln[H (t)/H (t)].t ƒ p

9. Vector R of the monoperiodic growth rates of the index is the solution of
the equation:

�1ˆ ˆIR � �P ⇔ R � (I �)P.

P is the vector (
0, 
1, ... , 
T�1).

� E n d n o t e s
1 D is a matrix extracted from another matrix D�; the first column has been removed to

avoid a singularity in the estimation process. The number of lines of D� is equal to the
total number of repeat-sales in the dataset, and its T�1 columns correspond to the
different possible times for the trades. In each line �1 indicates the purchase date, �1
the resale date, and the rest is completed with zeros.

2 � is a diagonal matrix with a dimension equal to the size of the repeat-sales sample.
3 In the Appendixes, the function G(x) � x / (x��) will sometimes appear. For a holding

period j � i, G(j � i) � (j � i) / (� � (j � i)) � (j � i) / [2�N2 � (j � i)].� �2 2G G

G(j � i) is actually the proportion of the time-varying noise in the total noise; these
numbers will be used as a system of weights.

4 These measures are relative ones. What matters is their relative sizes and not their
absolute levels. They can be defined up to a constant in order to standardize the
measures.

5 Simon (2007) establishes that the variance-covariance matrix of the vector of estimators
R is equal to � 1 (cf. below for the definition of matrix ).ˆ ˆ� I I2G

6 As exemplified in Exhibit 2, I[t�,t�1] can be calculated buy-side with the partial sums
B0t, B1t , ... , Btt� or sell-side with St�T, St�T�1, ... , St�t�1. But there is always I[t�,t�1]
� B0t � ... � Btt� � St�T � ... � St�t�1.
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7 This simplification simply means that the noise coming from the white noise is null.
8 Equally weighted because within a class C(i, j) all the observations have the same degree

of information.
9 For instance, a datum with purchase at t 	 T1 and resale at t� with T1 	 t� 	 T2 will

be informative for [t,T1]. But, as the resale occurs after T1, this repeat-sale cannot be
used for the first index estimation.

10 The purchases at t � 0 are not included to avoid a singular matrix in the estimation.
11 More details are shown in Appendix B.
12 If it is assumed that the average holding periods are all equal, the relation would simply

become: 
t(T2) � [It(T1) / It(T2)]
t(T1) � [It(T2 /T1) / It(T2)]
t(T2\T1).
13 The vectorial quantities of dimension T1, like P(T1), R(T1), �(T1), and (T1) can beÎ

injected in vectors and matrixes of dimension T2, completing them with zeros. These
equivalents will be denoted in italics in the formula: P(T1), R(T1), �(T1), and (T1).Î

14 The informational matrixes are used to get the diagonal matrixes � by just summingÎ
on the diagonals.

15 Prob (resale 
 t � resale � t) � Prob (resale 
 s � resale � s).
16 �(t) is a classical concept in the survival models [cf. Kalbfleisch and Prentice (2002)].

It appears, for example, in econometrical studies of prepayment and default options
embedded in mortgages [cf. Deng, Quigley, and Van Order (2000)].

17 � � d(T) * (� /T(1 � �)) d(k) � 1 � �k.
18 K� � K (1 � �) /� � � 2�N2 /�G2 un � � / (� � 1) � �2 / (� � 2) � �3/

(� � 3) � ... � �n / (� � n).
19 First the numbers of transactions realized at each date in the market are fixed. Then, the

resale rates for each cohort are randomly generated. The estimation sample regroups the
repeat-sales with a resale date observed before T. The prices are randomly generated
around a ‘‘true price’’ curve; it is assumed that this curve is flat, for purposes of
simplicity (Curve 1 in Exhibit 3).

20 Other choices are possible for this calibration step, according to the economic contexts
or the empirical issues.

21 When K and � are known, it was demonstrated in Simon (2008) that Li,j � K��j � i /
(� � j � i). First, the informational distribution of {Li,j} is calculated for the benchmark
and for interval [0,T2]. Then, we just keep the columns between T1 and T2, which
represent the new data for the exponential sample. From this partial table, adding its
components, gives the matrix (T2\T1).Îbench

22 ratet � ln(Indext � 1/Indext).
23 This formula is a general one. The variance-covariance matrix of vector R, whatever

the repeat-sales distribution, is always V(R) � � 1.ˆ� I2G

24 Cf. Simon (2007).
25 For the purpose, the following was used: LInd(T2) � A(T2)R(T2) and E[R(T2)] � R(T1).
26 Matrix A(T2) is square and its dimension is T2. It is composed of 1 on its diagonal and

below, 0 elsewhere.
27 100*(Indt(T2) / Indt(T1) � 1).
28 Here, the Cholesky factorization is used:

If � is a square matrix of dimension d, symmetric, positive, and with rank r then a
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matrix B is found, dimension d 
 r, rank r such that � � BB� (Cholesky factorization)
Now, for a vector M of dimension d, and for a square matrix � of dimension d,
symmetric, positive, rank r, with its Cholesky factorization � � BB�: If Y 	 N (0,Id)
then M � BY 	 N(M,�).

29 A process is said to be Markovian if its future depends on its past only through its
present. In others words, the path followed by the process to arrive at level Xs, on date
s, will not influence the probability of realization of its future Xt (t 
 s). Financially,
this mathematical assumption is one of the formulations for the concept of market
efficiency. The present value incorporates all the past information; it is useless to study
the past in order to get a better level for Xs. The market has already integrated all the
available and relevant information with the fixing of Xs.

30 ‘‘If a futures market requires index stability, it would be useful to know how often
revision—either period-by-period or cumulative—exceeds some level. Say, for example,
that futures markets could tolerate 0.5 percent revision in any one quarter and 2 percent
cumulative revision to the initial estimate—how often do the four indexes violate these
criteria?’’

31 Recall here that the concept of average is a very general one. If a function G is strictly
increasing or decreasing the G-mean of the numbers {x1, x2, ... , xn}, weighted by the
(�1, �2, ... , �n), is the number X such that: �G(X) � �1G(x1) � �2G(x2) � ... � �nG(xn)
with � � � i � 1,...,n�i. An arithmetic mean corresponds to G(x) � x, a geometric one
to G(x) � ln(x) and the harmonic average to G(x) � 1/x.

32 Thus (tG(�t)) /� t � �i � t 	 j�k�G(j � i) * (1/(j � i)) � It.
33 
t(T2) � [It(T2) / (nt(T2)G(�t(T2)))] * ln[Hƒ(t,T2) /Hp(t,T2)] � [It(T2) / (nt(T2)G(�t(T2)))] *

[lnHƒ(t,T2) � lnHp(t,T2)] � [It(T1)lnHf(t,T1) � It(T2\T1)lnHf(t,T2\T1)] / [It(T2)� t(T2)] �
[It(T1)lnHp(t,T1) � It(T2\T1)lnHp(t,T2\T1)] / [It(T2)�t(T2)].

34 i � T1 � t 	 j � T2 is not correct because it would exclude the repeat-sales with a
purchase at i such that T1 	 i � t. As these couples belong to the new data and are
perfectly relevant for [t,t�1], it cannot be removed.

35 In order to have a T2-vector R(T1), the T1-vector R(T1) will sometimes be completed
with T2-T1 final zeros.

36 Above it was seen that It, �t, �t, nt, and 
t are equal for T2 and T2\T1 when t � T1.
Unfortunately, for the repeat-sales index this kind of relation is not true.

37 For the matrix A(T1), its inverse A(T1)�1 is calculated first. The matrix A(T1) is equal to
the matrix A(T1) completed with zeros, the same is don for A(T1)�1 and A(T1)�1.
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