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Abstract

Rapid development in the computer technology has made the financial
transaction data visible at an ultimate limit level. The realized volatility, as
a proxy for the ”true” volatility, can be constructed using the high frequency
data. This paper extends a threshold stochastic volatility specification pro-
posed in So, Li and Lam (2002) by incorporating the high frequency volatility
measures. Due to the availability of the volatility time series, the parameters’
estimation can be easily implemented via the standard maximum likelihood
estimation (MLE) rather than using the simulated Bayesian methods. In the
Monte Carlo section, several mis-specification and sensitivity experiments are
conducted. The proposed methodology shows good performance according
to the Monte Carlo results. In the empirical study, three stock indices are ex-
amined under the threshold stochastic volatility structure. Empirical results
show that in different regimes, the returns and volatilities exhibit asymmet-
ric behavior. In addition, this paper allows the threshold in the model to be
flexible and uses a sequential optimization based on MLE to search for the
”optimal” threshold value. We find that the model with a flexible thresh-
old is always preferred to the model with a fixed threshold according to the
log-likelihood measure. Interestingly, the ”optimal” threshold is found to be
stable across different sampling realized volatility measures.
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1 Introduction

Recent empirical studies have established many stylized facts for the financial
asset returns. As well known, the return time-series exhibit significantly non-
Gaussian behavior, such as heavy tail. In addition, the volatility is clustered,
known as the volatility persistency, and tends to be negatively correlated with
the past return, known as the leverage effect. To capture these empirical phe-
nomena, a lot of models have been developed in the past two decades. The
benchmark class of models is the (Generalized) Autoregressive Conditional
Heteroskedasticity (ARCH/GARCH) family, which was firstly proposed by
Engle (1982) and Bollerslev (1986). The standard ARCH/GARCH speci-
fication allows the volatility to be time-varying. The conditional volatility
is modeled as a function of the past squared mean return innovations and
the past conditional volatilities. Alternatively, another seminal model, called
Stochastic Volatility (SV) model, was introduced by Taylor (1986). Rather
than assuming the volatility to be deterministic in the ARCH/GARCH, the
SV model allows the volatility to evolve with a stochastic process. Theoret-
ically, the SV model is more flexible than the ARCH/GARCH specification
since a new innovation term is embedded in the latent volatility process.

The SV specification has an intuitive appeal and realistic modeling struc-
ture, however, the estimation for the SV parameters is proved to be more
challenging in the literature. In particular, the likelihood function implied
from the SV structure involves a sequence of integrals with a dimension equal
to the sample size. As a consequence, direct estimation approach based on the
exact likelihood seems impossible especially when the sample size is large. As
noticed, the main difficulty in the SV estimation is because the volatility se-
ries is latent and needs to be integrated out in order to construct the objective
likelihood function.1 Despite of many different estimation methods proposed
in the literature, we realize that if the volatility can be incorporated into the
SV model as an observed sequence, the estimating process is very straight-
forward via the standard maximum likelihood estimation (MLE). Naturally,
the realized volatility is considered in this paper. Barndorff-Nielsen and
Shephard (2002), Andersen, Bollerslev, Diebold and Labys (2003), Meddahi
(2002), among others2, have established some theoretical foundations for re-
alized volatility construction using the high frequency data. In particular,

1Different approaches have been devised for estimating SV parameters. Broto and Ruiz
(2004) document a survey for the recent development of the estimation methodology under
the SV specification.

2A recent survey paper, McAleer and Medeiros (2008), has documented an excellent
review of rapidly expanding literature on realized volatility.
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Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2001)
propose using the sum of the squared intra-daily returns as a proxy measure
for the corresponding daily volatility. This measure provides a consistent
estimator of the latent volatility under an ideal market condition. A few pa-
pers have utilized the realized volatility in the estimation of the SV models,
such as Takahashi, Omori and Watanabe (2009), Xu and Li (2010) and etc.

Furthermore, recently empirical research has indicated that the financial
asset returns and volatilities exhibit asymmetric behavior in different regimes
(e.g. bear/bull markets). Li and Lam (1995) have detected the significantly
asymmetric movements of the conditional mean structure corresponding to
the rise and fall of the previous-day market. In addition, Liu and Maheu
(2008) have found strong empirical evidence of asymmetry in the volatility
regimes. To accommodate these asymmetric effects, So, Li and Lam (2002)
extend the standard SV model into a threshold framework, in which the la-
tent volatility dynamic is determined by the sign of the lagged return. They
also detected the significant asymmetric behavior in the variance persistence
based on their sample data.

In this paper, we extend the threshold stochastic volatility specification
proposed in So, Li and Lam (2002) by incorporating the high frequency
volatility measures. The proposed model is applied to three stock indices,
including Standard and Poor’s 500 (S&P 500), Dow Jones Industrial Aver-
age (DJIA) and France CAC 40 Index (PX1). The realized volatilities are
constructed using different sampling-frequency data. The empirical results
show that the returns and volatilities exhibit asymmetric behavior in differ-
ent regimes. In addition, instead of fixing the threshold values, we allow the
thresholds to be flexible for each sample. We find that the flexible threshold
model is always preferred according to the log-likelihood measure and more
interestingly, the ”optimal” threshold is stable across different sampling re-
alized volatility measures.

The rest of the paper is organized as follows. Section 2 details the model
specification and presents the constructions of the realized volatility mea-
sures. Section 3 conducts several sensitivity and mis-specification Monte
Carlo experiments. Section 4 presents the empirical data and discusses the
applications and empirical results. Section 5 concludes the paper. All the
tables and the figures are collected in the Appendix.
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2 Threshold SV Model Specification and Re-

alized Volatility Measures

In the standard discrete-time SV model, there are two processes describing
the dynamics of the returns and volatilities. The model structure is given as
follows,

xt = exp(ht/2)et (1)

ht+1 = λ + αht + vt+1 (2)

In the above set-up, xt is the continuously compounded return time series,
which can be constructed using the logarithmic closing price differences. As-
suming unit variance on the innovation (et) of the return process, exp(ht)
characterizes the conditional variance at time t. The log-volatility, ht, is
normally assumed to follow an AR(1) process. In general, to capture the
leverage effect, we allow certain correlation structure between the innova-
tions from the return and volatility processes. Typically, following Harvey
and Shephard (1996) and Yu (2005), the bivariate structure is assumed as
follows: (

et

vt+1

)
∼ N

((
0
0

)
,

(
1 ρσv

ρσv σ2
v

))
(3)

The asymmetric relationship between the return and the future volatility
can be accommodated in the correlation coefficient parameter, ρ. Empiri-
cally, this correlation is found to be significantly negative, which suggests
that the return volatility tends to increase generally after observing a drop
of the stock price.

Furthermore, as mentioned earlier, recent empirical evidence, such as So,
Li and Lam (2002) and Smith (2009), indicates that there seems to exist
different behavior in the volatility process. In other words, the volatility re-
sponses to the price change quite distinctly. So, Li and Lam (2002) argue
that the volatility is on average higher under the influence of the bad news
than that of good news. To capture this volatility asymmetry phenomenon,
a threshold effect is naturally considered in the volatility autoregressive dy-
namic. Essentially, the volatility process in (2) is assumed to follow a thresh-
old AR model, which belongs a class of threshold time-series models proposed
by Tong and Lim (1980).

This paper follows the basic threshold SV model structure from So, Li
and Lam (2002) with the volatility threshold triggered by the observed return
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time series. In particular, the volatility process in (2) follows a threshold
autoregressive framework, specified as follows,

ht+1 =

{
λ0 + α0ht + v0,t+1, xt ≤ γ
λ1 + α1ht + v1,t+1, xt > γ

(4)

In (4), the log-volatility exhibits different AR dynamics in the two speci-
fied regimes triggered by the previous return. γ is the threshold value for
the regimes. In this representation, the parameters switch between the two
regimes according to the threshold level of the price change in the lagged
period. In So, Li and Lam (2002), their model does not accommodate cor-
relation between the return and volatility. This paper extends the model by
allowing that the correlation (or the leverage effect) coefficient also switches
between the two regimes. Essentially, extended from (3), a more flexible
bivariate structure is assumed:

(
et

vst,t+1

)
∼ N

((
0
0

)
,

(
1 ρst+1σvst+1

ρst+1σvst+1
σ2

vst+1

))
(5)

where st+1 is a state variable defined as follows,

st+1 =

{
0, xt ≤ γ
1, xt > γ

(6)

σ2
v0

and σ2
v1

are the variances of the innovations in the two volatility regimes.
Correspondingly, ρ0 and ρ1 capture the asymmetric correlations between
the return and volatility in the regimes (xt ≤ γ) and (xt > γ), respec-
tively. Therefore, the unknown parameter vector to be estimated is defined
as θ = (λ0, λ1, α0, α1, σv0 , σv1 , ρ0, ρ1)

′.

In the standard threshold SV set-up, see So, Li and Lam (2002), there is
no correlation assumed between the return and the volatility process. Smith
(2009) accommodates a constant correlation among regimes. In this paper,
we allow the correlations to be state-dependent switching by the threshold.
In addition, in both So, Li and Lam (2002) and Smith (2009), the thresh-
old value is ”arbitrarily” set to be zero, which essentially implies that the
volatility regimes depend on the sign of the last period return. In this paper,
we further allow a flexible threshold value in the model and search for the
”optimal” threshold level with respect to certain measure. This potentially
increases the goodness-of-fit to the data in practice. We will give more details
in the later discussion.
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As mentioned, the SV parameters’ estimation is challenging since the
volatility is an unobserved sequence. Therefore, to estimate the threshold
SV model, So, Li and Lam (2002) and Smith (2009) have adopted a simu-
lated Bayesian approach (MCMC) to estimate the parameters and the latent
ht sequence simultaneously. But if the sample size is large, the computa-
tional cost could be potentially expensive based on the simulations, because
of which allowing a flexible threshold in the SV is even more computation-
ally costly. In addition, in the Bayesian methods, the estimates (for both
the model parameters and ht) could be sensitive to the initial prior informa-
tion. In this paper, we approach the estimation from a different angle by
incorporating the realized volatility measures into the model. Based on the
”observed” data of the volatilities, the model estimation can be easily imple-
mented via the standard MLE. Specifically, the exact likelihood function is
as follows,

L(θ; x, h) = Ls
T
(xT , hT+1|xT−1, hT , θ)× Ls

T−1
(xT−1, hT |xT−2, hT−1, θ)× ...

× Ls2
(x2, h3|x1, h2, θ)× Ls1

(x1, h2|x0, θ) (7)

The likelihood in (7) consists of a serial products of the conditional densities.
In essence, at the each time t, given the state determined from the previous
observation, the return and the future volatility follow a bivariate Gaussian
under (5). Therefore, the conditional density can be specified as,

Lst
=





1

2πσv0σxt

√
1−ρ2

0

e

(
− 1

2(1−ρ2
0)

[
x2

t
σ2

xt

+
(ht+1−λ0−α0ht)

2

σ2
v0

−2ρ0
xt(ht+1−λ0−α0ht)

σxt σv0

])

st = 0

1

2πσv1σxt

√
1−ρ2

1

e

(
− 1

2(1−ρ2
1)

[
x2

t
σ2

xt

+
(ht+1−λ1−α1ht)

2

σ2
v1

−2ρ1
xt(ht+1−λ1−α1ht)

σxt σv1

])

st = 1

(8)

where σxt = exp(ht/2). In the objective likelihood function, the volatility is
treated as observable. In this paper, we use the realized volatility measure
as a proxy for the latent true volatility.

Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2001)
propose the construction of the realized volatility, formulated as the sum of
squared intra-day returns over a certain interval. Specifically, let pd,t be the
logarithmic price at a certain sampling frequency interval on day t. Conse-
quently, the continuously compounded return with D observations on day t
is defined as, rd,t = 100(pd,t− pd−1,t), where d = 1, 2, ..., D and t = 1, 2, ..., T .
This simple estimator of the daily volatility, denoted as RV, can be con-
structed by summing up the intra-day squared intra-day returns during the
market open period, i.e.,

(RV)t =
D∑

d=1

r2
d,t (9)
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This measure provides a consistent estimator of the latent volatility in
an ideal market condition. However, as Hansen and Lunde (2005) argued,
the over-night information is ignored in this simple construction. Conse-
quently, they propose an estimator by incorporating the ”overnight” effects
into the measurement and assign ”optimal” weights for the overnight compo-
nent and the intra-day component. In other words, a linear combination of
the overnight squared return and (RV)t is used to form a mean-square-error
”optimal” realized volatility measure for the whole day volatility. This paper
denotes this estimator as RV*, which is given by,

(RV*)t = ω1 · z2
1,t + ω2 · (RV)t (10)

where z1,t is the return over the inactive period, which measures the close-to-
open price change (in logarithm). ω1 = (1− φ)µ0/µ1 and ω2 = φµ0/µ2 with
φ = (µ2

2η
2
1−µ1µ2η12)/(µ

2
2η

2
1+µ2

1η
2
2−2µ1µ2η12). η2

1 = var(z2
1,t), η2

2 = var((RV)t)
and η12 is the covariance of z2

1,t and (RV)t. Parameters µ0, µ1 and µ2 are
computed as the mean of (z2

1,t + (RV)t), z1,t and (RV)t respectively.

Following Hansen and Lunde (2005) and Xu and Li (2010), which have es-
tablished some supportive empirical evidence of RV* measure, in this paper,
we incorporate the RV* into the proposed threshold SV model estimation. In
addition, we consider the sampling frequencies at 5-minute, 10-min, 15-min
and 30-min intervals, which are commonly used for the constructions of the
realized volatility measures in the literature.

With the observed return and the constructed volatility inputs, the model
estimation is implemented via the standard MLE. In essence, we maximize
the objective function based on (7), i.e., θ̂ = argmax[log(L(θ; x, h))]. The
standard errors of the estimates are computed in the usual way by evaluat-
ing the expectation of the second derivatives of the log-likelihood function.
Given the feasibility of the computation, in this paper, we also consider a
flexible threshold value on γ (rather than arbitrarily fixing γ at 0). Formally,
the model is estimated sequentially for each possible point of the threshold
variable. We search the whole sample domain of xt and choose the ”optimal”
one which yields the highest log-likelihood value, i.e., γ̂∗ = argmax[log(L(γ))]
and θ̂∗ = θ̂(γ̂∗).
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3 Sensitivity and Model Mis-Specification Anal-

ysis via Monte Carlo Simulations

In this section, we conduct the sensitivity and model mis-specification anal-
ysis under the Monte Carlo environment to investigate the performance of
the proposed model and its estimation. In each Monte Carlo experiment, the
sample size is 1000 and the simulation is replicated 1000 times in the first
group of experiments and 500 times in the second group of the experiments.3

In the first group of the simulations, we investigate the model estimation
sensitivity to different parameter configurations. Some benchmark parameter
values are taken from the simulation section in So, Li and Lam (2002).4

The parameter values change accordingly in other cases compared to the
benchmark in this group. Specifically, the benchmark data generating process
(DGP) is specified as follows,

DGP 1. xt = exp(ht/2)et

ht+1 =

{ −0.5 + 0.6ht + v0,t+1, st+1 = 0 (xt ≤ 0)
−1.0 + 0.9ht + v1,t+1, st+1 = 1 (xt > 0)

(
et

vst+1,t+1

)
∼ N

((
0
0

)
,

(
1 ρst+1σvst+1

ρst+1σvst+1
σ2

vst+1

))

where σv0 = 1.0, σv1 = 0.5, ρ0 = −0.1 and ρ1 = −0.3.

In the benchmark case, the threshold value of γ is chosen to be zero. In
other words, the volatility regime switches depending on the sign of the last
period return. The persistent parameter in the regime 1 (xt ≤ 0) is smaller
than that in the regime 2 (xt > 0) because So, Li and Lam (2002) argues
that the volatility exhibits less persistency under the bad news than that
under the good news. Furthermore, in the benchmark case it is believed that
the variance of the innovation in the volatility equation is higher with the

3In the second group of the simulations, the computational cost is relatively expensive
since the model allows the threshold values to be flexible. Consequently, in each simulation,
given the sample size of 1000, the program executes 1000 optimizations to search for the
”optimal” threshold value. Due to this reason, we reduce the replication times to be 500 to
keep the computational cost at a feasible level while with sufficient numbers of estimates
for constructing the reliability measures.

4Since in the threshold SV model from So, Li and Lam (2002), there is no correlation
assumed between the return and volatility processes, we arbitrarily set the benchmark
correlation coefficients with ρ0 = −0.1 and ρ1 = −0.3. We also test other sets of correlation
values and find similar results (patterns) as those reported in this paper.
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bad news arrival than that with the good news arrival. Consequently, the
simulated data is generated from DGP 1.5 The threshold stochastic volatil-
ity model parameters are replicatedly estimated 1000 times. The simulation
results are reported in Table 1.

To investigate the robustness of our proposed methodology under differ-
ent parameter configurations, we change some subset of the parameter values
accordingly compared to the benchmark case. From the experiments 2 to 4,
we individually increase the distances between σv0 and σv1 , between ρ0 and
ρ1 and between α0 and α1, with the remaining parameters’ values unchanged.
More specifically, in experiment 2, we only decrease σv1 from 0.5 to 0.1; in
experiment 3, we only increase ρ1 from -0.3 to -0.9; and in experiment 4,
we only decrease α0 from 0.6 to 0.1. The simulation results are presented in
Table 2, 3 and 4, respectively.6

Some standard measures, such as mean, bias and root of mean squared
error (RMSE), are constructed for Monte Carlo evaluations. In general, for
all four experiments (1-4) the means of the estimates are very close to the
true parameter values. The bias and RMSE are of small magnitudes, which
indicates that our proposed methodology can accurately and stably produce
the estimates around their corresponding true values. One interesting com-
parison worth mentioning here is that both the bias and RMSE for all eight
estimates are generally smaller in experiment 2 – 4 than those in the bench-
mark case. The possible reason is that in experiment 2 – 4, we differentiate
the two regimes in a higher degree than the benchmark case. In other words,
more similarities in the two regimes may deteriorate the quality of the esti-
mates, and hence produces bigger bias and RMSE.7

Furthermore, we carry out a reliability test to examine the asymptotic
behavior of the estimates. One standard evaluation is to examine the asymp-
totic distributions of the estimates via the Kolmogorov - Smirnov (K-S) test.
The K-S statistics with the associated p-values are presented in the last row
for each table. As expected, the distribution for all the estimates exhibit
asymptotically normal. More specifically, the Normality can not be rejected

5Regarding the initial condition effect, for each simulation, we generate 1500 data points
and discard the first 500 to reduce the impact.

6The true parameter values are also presented in the descriptions under each table.
The changed parameter is highlighted in a bold font.

7In the extreme case, if two regimes have exactly the same values for all the parameters,
then the estimation would not be identified. This is noted as a common problem in the
mixture modeling literature.
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at 1% significance level for all the estimates in experiments 1 – 4. In order to
visualize the distribution of the estimates, we provide the QQ-plots in Fig-
ure 1 for the estimates from the benchmark experiment.8 All the estimates
from the 1000 replications fit well with the 45-degree quantile line against
the normal distribution. This reinforces the K-S test results reported in the
tables.

In the standard threshold SV model, the regime-switch depending on the
sign of the return. In other words, the threshold value is set to be zero. As
argued, fixing the threshold might give us mis-leading results. Therefore, we
set up the second group of experiments to investigate the mis-specification
of threshold effects. The true model parameter values are still set to be the
same as the benchmark case, except we allow either a positive or negative
threshold value for γ. We then apply both the zero-threshold and flexible-
threshold models to the simulated data. Specifically, the data is generated
from the following DGP 2,

DGP 2. xt = exp(ht/2)et

ht+1 =

{ −0.5 + 0.6ht + v0,t+1, st+1 = 0 (xt ≤ γ∗)
−1.0 + 0.9ht + v1,t+1, st+1 = 1 (xt > γ∗)

(
et

vst+1,t+1

)
∼ N

((
0
0

)
,

(
1 ρst+1σvst+1

ρst+1σvst+1
σ2

vst+1

))

where σv0 = 1.0, σv1 = 0.5, ρ0 = −0.1 and ρ1 = −0.3. γ∗ is equal to -0.02
and 0.02 respectively for experiment 5 and 6.

Finally, in the last experiment (experiment 7), we set the true parameter
values to be close to the estimated values from the empirical section. The
data is generated following DGP 3,

DGP 3. xt = exp(ht/2)et

ht+1 =

{ −0.1 + 0.8ht + v0,t+1, st+1 = 0 (xt ≤ γ∗)
−0.3 + 0.7ht + v1,t+1, st+1 = 1 (xt > γ∗)

(
et

vst+1,t+1

)
∼ N

((
0
0

)
,

(
1 ρst+1σvst+1

ρst+1σvst+1
σ2

vst+1

))

where σv0 = 0.4, σv1 = 0.5, ρ0 = 0.1 and ρ1 = −0.1. γ∗ is equal to -0.5.

8To save space, we do not provide all the distributional plots for the estimates from
other experiments. These figures are available upon request.
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The simulation results for experiment 5, 6 and 7are reported in Table 5, 6
and 7 correspondingly. In these tables, in addition to presenting the statisti-
cal measures of the model estimates, we also construct the same measures for
the ”optimal” threshold values over the 500 replications. It is worth mention-
ing that the threshold parameter is not treated as a parameter endogenously
in the estimation. Instead, we search the whole sample domain from the
simulated returns for the ”optimal” threshold that yields the maximum log-
likelihood value. Hence, for comparisons, we also report the average of the
log-likelihood values for both zero-threshold and flexible-threshold models in
the last row of Tables 5, 6 and 7.

In general, the model with a flexible threshold (γ = γ∗) generates uni-
formly smaller biases and RMSEs than the model with the fixed threshold at
zero (γ = 0). For example, in experiment 5, λ0 and α0 are positively biased
with relatively big magnitudes in the zero-threshold case. In experiment 7,
a relatively big bias for ρ0 is detected in the γ = 0 case. Consequently,
the associated RMSEs are significantly larger compared to those from the
flexible threshold model. We also note that in experiment 5 (γ = 0), the
Normality is rejected at 5% level for the distributions of λ0, α0 and σv0 .
These Monte Carlo evidences suggest that, in practice, ”arbitrarily” fixing
the regime threshold at zero may produce significant biases for the parame-
ter estimates, which could be potentially a serious issue for further inferences
and applications. As noted from Table 5, 6 and 7, our proposed methodology
can identify the true threshold accurately by searching the maximum of the
set of the optimized log-likelihood values. On average, the mean of the 500
”optimal” thresholds is fairly close to the true values. The bias and RMSE
are small, which indicates that the ”optimal” γ is distributed stably around
γ∗. Furthermore, as expected, the average log-likelihood values from the flex-
ible threshold SV model are significantly greater than those calculated from
the zero-threshold specification. In the following empirical study, we apply
both models to the financial data and make further empirical comparisons.

4 Empirical Study

In this section, we apply the proposed model and methodology to three stock
indices including S&P 500, DJIA and PX1 covering from 2003 to 2008. At
daily level, there are around 1400 data points for each data set. The realized
volatilities are constructed based on (10) using the intra-day transaction data.

To summarize the data, we provide the descriptive statistics for the daily
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returns (DR) and the realized volatilities at 5-min sampling frequency (RV5m)
in Table 8.9 Standard statistics, such as mean (Mean), variance (Var), skew-
ness (Skn), kurtosis (Kurt), minimum (min), maximum (Max) and Jarque-
Bera statistic (J-B Stats), are reported. Generally, the statistics show consis-
tency with the common empirical findings in the literature. Both the return
and realized volatility exhibit non-Gaussian behavior with relatively large
kurtosis and J-B statistics values. The logarithms of the realized volatility
are nearly normally distributed, where the kurtosis values are close to 3 and
J-B statistics are much smaller. We also provide several descriptive data
plots in Figures 2-4 for empirical illustrations. We will give detailed discus-
sions combining with the empirical estimation analysis later in this section.

We apply both the threshold SV models with γ = 0 and γ = γ∗ to
the return and 5-min realized volatility data for S&P 500, DJIA and PX1,
respectively. For the flexible threshold SV estimation, we follow the sequen-
tial optimization procedure via MLE described in section 2. The standard
errors of the estimates are calculated by evaluating the Hessian matrix nu-
merically. The empirical results are presented in Table 9. As expected, the
flexible threshold model is uniformly preferred to the zero-threshold model
according to the log-likelihood measure. For all three indices, the ”optimal”
thresholds are found to be negative. With these threshold values, the re-
turn and realized volatility are divided into two regimes: regime 1 (γ ≤ γ∗)
and regime 2 (γ > γ∗). Consequently, there are 287 (20.49%), 407 (29.54%)
and 266 (18.95%) observations in regime 1 for S&P 500, DJIA and PX1 re-
spectively. For comparisons, we find that when the threshold is set to be
zero, there are 628 (44.83%), 630 (45.75%) and 660 (47.01%) observations in
regime 1 for S&P 500, DJIA and PX1 respectively. Clearly, the number of
the observations in regime 1 under the flexible threshold model is much less
than that under the zero threshold specification.

To visualize the two regimes under the ”optimal” threshold, we plot the
daily returns and 5-min realized volatilities (across time) in panel (a) and
(b) through Figure 2 to 4 for the three indices with regime 1 dotted and
regime 2 dashed. Panel (c) presents the evolution path of the optimized
log-likelihoods across different threshold values in the domain of returns. In
other words, panel (c) is drawn from the results with about 1400 optimiza-
tions by imposing different threshold each round. From panel (c), we see that

9We also construct the realized volatilities using other frequency-level transaction data.
To save space, those summary statistics are not reported in this version of the paper, but
they are available upon request.
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”arbitrarily” setting zero as the threshold does not yield the maximum log-
likelihood values. This could potentially bias the estimation results, which
has been demonstrated in the mis-specification Monte Carlo experiments.

From the empirical results in Table 9, some asymmetric behavior are con-
sistently detected. In general, the persistent parameter value (α0) in regime
1 is higher than that (α1) in regime 2. In regime 1, generally no significant
leverage effect is detected. Interestingly, we do find some positive correla-
tions between the return and the future volatility in regime 1.10 One possible
explanation for this is that when the investors observe the price dropping be-
yond certain level, they might choose wait-and-see investing strategy rather
than trading more. This would lead to smaller volatilities on the market.
In other words, the returns and volatilities may exhibit positive correlations
when price drops up to certain threshold. In regime 2, we consistently detect
the significant leverage effects (negative ρ1) for all three indices. Note that
the majority of the observations (about 70-80%) are in regime 2, overall,
the correlation between the return and volatility processes exhibits negative
relationship, which is commonly explained in the literature.

Furthermore, as mentioned, the realized volatility can be constructed us-
ing different sampling frequencies. In this paper, we also adopt three other
popular sampling frequencies (including 10-min, 15-min and 30-min), which
are commonly used in the literature, to construct the realized volatility mea-
sures. The empirical estimation results for S&P 500 are provided in Table
10.11

In general, the empirical results in Table 10 are similar compared to those
from 5-min. However, we observe some consistent and interesting findings.
As the sampling interval increases (from 5-min to 30-min), the variance es-
timate of the disturbance from the volatility process (σv0 or σv1) increases
regardless of regimes. This is consistent with the findings established in
Takahashi, Omori and Watanabe (2008) and Xu and Li (2010). That is, as
the sampling frequency decreases, the volatility process might become more
noisy. Consequently, as expected, a decreasing persistency in the volatility
process (α0 or α1) is observed (regardless of regimes) as the sampling interval
increases. This implies that the larger the variance of the volatility process
is, the less persistent the volatility process is. In general, ρ0 in regime 1

10However, those correlation coefficients (ρ0) are not statistically significant in general.
11The empirical results for DJIA and PX1 are consistent with those reported in Table

10 for S&P 500. To save space, we do not present the results in this paper. The results
are available upon request.
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is insignificantly positive and ρ1 in regime 2 is significantly negative across
different frequency levels, which captures the overall leverage effect. In other
words, the commonly observed leverage effect dominantly comes from regime
2. The most interesting finding in Table 10 is that the ”optimal” threshold
value stays at the same level (around −0.58). In other words, the ”optimal”
threshold is found to be pretty stable across different sampling-frequency re-
alized volatility measures. We also provide the plots of the evolution path of
the optimized log-likelihoods across different threshold values for each sam-
pling frequency in Figure 5. Panel (a), (b) and (c) in Figure 5 represent the
optimized log-likelihood path for 10-min, 15-min and 30-min respectively.
We find that the common peak in the three panels is at the similar return
level (−0.58).

5 Conclusion

This paper incorporates the realized volatility measures constructing from
high frequency transaction data into a threshold stochastic volatility model.
Due to availability of the volatility time series, the model parameters’ estima-
tion is implemented via the standard MLE. Several groups of mis-specification
and sensitivity Monte Carlo experiments are conducted. Our proposed method-
ology shows good performance according to the Monte Carlo results. In
the empirical study, three stock indices are examined under the thresh-
old stochastic volatility structure. Empirical results show that in different
regimes, the returns and volatilities exhibit asymmetric behavior. In addi-
tion, this paper allows the threshold in the model to be flexible and uses a
sequential optimization based on MLE to search for the ”optimal” threshold
value. We find that the model with a flexible threshold is always preferred to
the model with a fixed threshold according to the log-likelihood measure. The
”optimal” threshold is also stable across different sampling realized volatility
measures.

Finally, we want to point out a few potential issues for our future re-
search directions. In the flexible threshold environment, the threshold vari-
able is not treated as an endogenous parameter in the estimation procedure.
Therefore, to achieve the ”optimal” threshold, the program needs to search
the whole domain of the possible values. In practice, if the sample size is
relatively large, the computational cost could be potentially expensive. If
the threshold and model parameters can be estimated simultaneously, this
would improve the efficiency of the whole procedure. Furthermore, more
statistical inferences can be made based on the estimates of the threshold

14



parameter, such as regime specification test by examining the significance of
the threshold estimate. In addition, there have been some successes in the
ARCH/GARCH and SV modeling with threshold-effects in both returns and
volatility processes, see for example Li and Li (1996), So, Li and Lam (2002)
and Smith (2009). This concept could also be easily introduced into the real-
ized stochastic volatility framework. It would be also interesting to examine
multiple asymmetric threshold-effects under the time-varying volatility struc-
ture through a more complicated threshold selection process. We will leave
these for future study.

Appendix

Table 1. Monte Carlo Simulation Design # 1.
λ0 λ1 α0 α1 ρ0 ρ1 σv0 σv1

MEAN -0.5075 -1.0023 0.5971 0.8993 -0.1002 -0.3019 0.9970 0.4991
BIAS -0.0075 -0.0023 -0.0029 -0.0007 -0.0002 -0.0019 -0.0030 -0.0009
RMSE 0.0926 0.0433 0.0270 0.0121 0.0454 0.0403 0.0327 0.0160
K-S 0.0205 0.0209 0.0321 0.0232 0.0229 0.0345 0.0146 0.0207

(0.7921) (0.7729) (0.2497) (0.6477) (0.6657) (0.1810) (0.9822) (0.7823)
The data is generated following DGP 1. True model parameter values: λ0 = −0.5,

λ1 = −1.0, α0 = 0.6, α1 = 0.9, ρ0 = −0.1, ρ1 = −0.3, σv0 = 1.0, σv1 = 0.5. The threshold
variable γ = 0. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov
(K-S) statistics. Normality is not rejected at 5% significant level (cut-off K-S value is
0.0428); Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).

Figure 1. QQ-Plots of the Estimates in the Benchmark Case
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Table 2. Monte Carlo Simulation Design # 2.
λ0 λ1 α0 α1 ρ0 ρ1 σv0 σv1

MEAN -0.5101 -1.0004 0.5978 0.8998 -0.0999 -0.3012 0.9977 0.0998
BIAS -0.0101 -0.0004 -0.0022 -0.0002 0.0001 -0.0012 -0.0023 -0.0002
RMSE 0.0951 0.0094 0.0275 0.0028 0.0436 0.0393 0.0314 0.0031
K-S 0.0291 0.0311 0.0290 0.0356 0.0238 0.0146 0.0199 0.0186

(0.3589) (0.2849) (0.3665) (0.1558) (0.6159) (0.9825) (0.8208) (0.8752)

The data is generated following DGP 1. True model parameter values: λ0 = −0.5,
λ1 = −1.0, α0 = 0.6, α1 = 0.9, ρ0 = −0.1, ρ1 = −0.3, σv0 = 1.0, σv1= 0.1. The threshold
variable γ = 0. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov (K-S)
statistics. Normality is not rejected at 5% significant level (cut-off K-S value is 0.0428);
Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).

Table 3. Monte Carlo Simulation Design # 3.
λ0 λ1 α0 α1 ρ0 ρ1 σv0 σv1

MEAN -0.5090 -1.0002 0.5977 0.9001 -0.0997 -0.9006 0.9987 0.4997
BIAS -0.0090 -0.0002 -0.0023 0.0001 0.0003 -0.0006 -0.0013 -0.0003
RMSE 0.0839 0.0196 0.0239 0.0050 0.0453 0.0063 0.0314 0.0093
K-S 0.0196 0.0243 0.0288 0.0132 0.0163 0.0289 0.0219 0.0220

(0.8324) (0.5924) (0.3750) (0.9948) (0.9523) (0.3705) (0.7188) (0.7152)

The data is generated following DGP 1. True model parameter values: λ0 = −0.5,
λ1 = −1.0, α0 = 0.6, α1 = 0.9, ρ0 = −0.1, ρ1 =−0.9 , σv0 = 1.0, σv1 = 0.5. The threshold
variable γ = 0. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov (K-S)
statistics. Normality is not rejected at 5% significant level (cut-off K-S value is 0.0428);
Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).

Table 4. Monte Carlo Simulation Design # 4.
λ0 λ1 α0 α1 ρ0 ρ1 σv0 σv1

MEAN -0.5003 -1.0007 0.0988 0.8997 -0.0996 -0.3018 0.9971 0.4995
BIAS -0.0003 -0.0007 -0.0012 -0.0003 0.0004 -0.0018 -0.0029 -0.0005
RMSE 0.0615 0.0297 0.0286 0.0127 0.0454 0.0405 0.0326 0.0160
K-S 0.0307 0.0264 0.0233 0.0232 0.0214 0.0341 0.0175 0.0192

(0.2994) (0.4813) (0.6445) (0.6521) (0.7443) (0.1909) (0.9164) (0.8500)

The data is generated following DGP 1. True model parameter values: λ0 = −0.5,
λ1 = −1.0, α0 =0.1 , α1 = 0.9, ρ0 = −0.1, ρ1 = −0.3, σv0 = 1.0, σv1 = 0.5. The threshold
variable γ = 0. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov (K-S)
statistics. Normality is not rejected at 5% significant level (cut-off K-S value is 0.0428);
Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).
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Table 5. Monte Carlo Simulation Design # 5.

MEAN BIAS RMSE K-S
γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗

λ0 0.4078 -0.5132 0.9078 -0.0132 0.9261 0.1138 0.1114 0.0250
(0.0000) (0.9103)

λ1 -1.0068 -1.0071 -0.0068 -0.0071 0.0452 0.0413 0.0373 0.0353
(0.4826) (0.5542)

α0 0.9833 0.5975 0.3833 -0.0025 0.3881 0.0295 0.1528 0.0243
(0.0000) (0.9269)

α1 0.8985 0.8984 -0.0015 -0.0016 0.0073 0.0062 0.0695 0.0390
(0.0151) (0.1596)

ρ0 -0.1070 -0.0979 -0.0070 0.0021 0.0474 0.0594 0.0297 0.0297
(0.7635) (0.7651)

ρ1 -0.3037 -0.3024 -0.0037 -0.0024 0.0416 0.0355 0.0229 0.0209
(0.9530 ) (0.9796)

σv0 1.1236 0.9960 0.1236 -0.0040 0.1482 0.0412 0.0923 0.0324
(0.0004) (0.6649)

σv1 0.4994 0.4998 -0.0006 -0.0002 0.0166 0.0142 0.0380 0.0238
(0.4597) (0.9365)

γ – -0.0209 – 0.0025 – 0.0012 – –
Log-L -1579.1 -1453.0 – – – – – –

The data is generated following DGP 2. True model parameter values: λ0 = −0.5,
λ1 = −1.0, α0 = 0.6, α1 = 0.9, ρ0 = −0.1, ρ1 = −0.3, σv0 = 1.0, σv1 = 0.5. The threshold
variable γ∗ =–0.02. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov
(K-S) statistics. Normality is not rejected at 5% significant level (cut-off K-S value is
0.0428); Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).
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Table 6. Monte Carlo Simulation Design # 6.

MEAN BIAS RMSE K-S
γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗

λ0 -0.5108 -0.5049 -0.0108 -0.0049 0.0879 0.0851 0.0241 0.0228
(0.9298) (0.9559)

λ1 -1.0781 -1.0002 -0.0781 -0.0002 0.1006 0.0466 0.0272 0.0321
(0.8479) (0.6737)

α0 0.5968 0.6023 -0.0032 0.0023 0.0277 0.0268 0.0328 0.0350
(0.6495) (0.5666)

α1 0.8248 0.8999 -0.0752 -0.0001 0.0784 0.0140 0.0216 0.0246
(0.9723) (0.9207)

ρ0 -0.0996 -0.0999 0.0004 0.0001 0.0450 0.0437 0.0247 0.0242
(0.9170) (0.9278)

ρ1 -0.2015 -0.2997 0.0985 0.0003 0.1077 0.0421 0.0415 0.0248
(0.3489) (0.9148)

σv0 0.9978 1.0028 -0.0022 0.0028 0.0311 0.0307 0.0245 0.0190
(0.9228) (0.9932)

σv1 0.7214 0.4993 0.2214 -0.0007 0.2254 0.0172 0.0208 0.0350
(0.9805) (0.5658)

γ – 0.0213 – 0.0013 – 0.0023 – –
Log-L -1267.3 -1107.5 – – – – – –

The data is generated following DGP 2. True model parameter values: λ0 = −0.5,
λ1 = −1.0, α0 = 0.6, α1 = 0.9, ρ0 = −0.1, ρ1 = −0.3, σv0 = 1.0, σv1 = 0.5. The threshold
variable γ∗ =0.02. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov
(K-S) statistics. Normality is not rejected at 5% significant level (cut-off K-S value is
0.0428); Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).
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Table 7. Monte Carlo Simulation Design # 7.

MEAN BIAS RMSE K-S
γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗

λ0 -0.1955 -0.1017 -0.0955 -0.0017 0.1017 0.0422 0.0348 0.0213
(0.5716) (0.9760)

λ1 -0.3038 -0.3051 -0.0038 -0.0051 0.0368 0.0304 0.0363 0.0318
(0.5194) (0.6875)

α0 0.7557 0.7974 -0.0443 -0.0026 0.0531 0.0430 0.0360 0.0249
(0.5301) (0.9121)

α1 0.6960 0.6951 -0.0040 -0.0049 0.0318 0.0256 0.0314 0.0227
(0.7014) (0.9571)

ρ0 -0.0230 0.1078 -0.1230 0.0078 0.1314 0.0721 0.0266 0.0209
(0.8670) (0.9804)

ρ1 -0.1050 -0.1036 -0.0050 -0.0036 0.0459 0.0350 0.0207 0.0208
(0.9822) (0.9814)

σv0 0.4634 0.3962 0.0634 -0.0038 0.0653 0.0194 0.0254 0.0184
(0.9003) (0.9954)

σv1 0.4996 0.4997 -0.0004 -0.0003 0.0166 0.0130 0.0333 0.0303
(0.6290) (0.7407)

γ – -0.4968 – 0.0032 – 0.0150 – –
Log-L -1682.4 -1628.6 – – – – – –

The data is generated following DGP 3. True model parameter values: λ0 = −0.1,
λ1 = −0.3, α0 = 0.8, α1 = 0.7, ρ0 = 0.1, ρ1 = −0.1, σv0 = 0.4, σv1 = 0.5. The threshold
variable γ∗ =−0.5. The numbers in parenthesis are p-values of the Kolmogorov-Smirnov
(K-S) statistics. Normality is not rejected at 5% significant level (cut-off K-S value is
0.0428); Normality is not rejected at 1% significant level (cut-off K-S value is 0.0513).
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Table 8. Summary Statistics

Mean Var Skn Kurt Min Max J-B Stats
S&P 500

DR 0.0248 0.8448 -0.2454 5.9026 -4.8354 4.1780 505.88 (0.00)
RV 5m 0.5714 0.6720 7.5754 94.8291 0.0292 14.3848 5.69e5 (0.00)

ln(RV 5m) -0.9752 0.7043 0.5402 3.4849 -3.5320 2.6662 81.85 (0.00)
DJIA

DR 0.0249 0.7413 -0.2305 5.3446 -4.2258 3.5893 327.60 (0.00)
RV 5m 0.5163 0.4707 7.4983 90.5360 0.0313 11.1384 4.52e5 (0.00)

ln(RV 5m) -1.0271 0.6302 0.4704 3.6100 -3.4642 2.4104 72.12 (0.00)
PX1

DR 0.0284 1.1308 -0.0298 8.0894 -6.6344 8.5064 1.51e3 (0.00)
RV 5m 1.1556 3.4715 10.6987 180.4995 0.0570 39.1751 1.86e6 (0.00)

ln(RV 5m) -0.3112 0.7888 0.4473 3.2052 -2.8648 3.6680 49.27 (0.00)
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Table 9. Empirical Results

S&P 500 DJIA PX1
γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗

λ0 -0.2256 -0.1635 -0.2563 -0.2166 -0.0417 0.0433
(0.0295) (0.0321) (0.0299) (0.0329) (0.0242) (0.0413)

λ1 -0.2495 -0.2824 -0.3050 -0.3309 -0.1265 -0.1319
(0.0299) (0.0260) (0.0329) (0.0289) (0.0228) (0.0187)

α0 0.7666 0.7762 0.7492 0.7719 0.7404 0.7686
(0.0249) (0.0330) (0.0250) (0.0315) (0.0255) (0.0390)

α1 0.7483 0.7277 0.7109 0.6951 0.7109 0.6865
(0.0215) (0.0191) (0.0228) (0.0201) (0.0247) (0.0206)

ρ0 0.0103 0.1154 0.0221 0.0974 -0.0196 0.1112
(0.0345) (0.0536) (0.0347) (0.0435) (0.0427) (0.0663)

ρ1 -0.1705 -0.1433 -0.1773 -0.1628 -0.1556 -0.1362
(0.0289) (0.0245) (0.0296) (0.0265) (0.0371) (0.0298)

σv0 0.5272 0.4887 0.5261 0.5034 0.6102 0.6265
(0.0138) (0.0223) (0.0113) (0.0191) (0.0147) (0.0221)

σv1 0.5420 0.5447 0.5331 0.5389 0.5828 0.5840
(0.0129) (0.0104) (0.0120) (0.0091) (0.0136) (0.0111)

γ – -0.5771 – -0.3004 – -0.7062
Log-L -2786.9 -2778.1 -2664.1 -2656.8 -2998.9 -2987.1

The numbers in parenthesis are the standard errors. For each index column, γ = 0
stands for the model with a fixed threshold value at 0, while γ = γ∗ stands for the model
with a flexible threshold. The estimates under (γ = γ∗) column are taken from the opti-
mization under the ”optimal” threshold.
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Figure 2. Plots for S&P 500
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Figure 3. Plots for DJIA
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Figure 4. Plots for PX1
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Table 10. Empirical Results for S&P 500 with Different
Frequencies

10-min 15-min 30-min
γ = 0 γ = γ∗ γ = 0 γ = γ∗ γ = 0 γ = γ∗

λ0 -0.2627 -0.1860 -0.3136 -0.2047 -0.4500 -0.3098
(0.0320) (0.0356) (0.0357) (0.0389) (0.0445) (0.0521)

λ1 -0.3027 -0.3371 -0.3772 -0.4193 -0.5598 -0.5983
(0.0340) (0.0289) (0.0378) (0.0321) (0.0448) (0.0380)

α0 0.7278 0.7360 0.6871 0.6900 0.5840 0.5764
(0.0266) (0.0368) (0.0279) (0.0357) (0.0313) (0.0412)

α1 0.7113 0.6881 0.6578 0.6336 0.5480 0.5288
(0.0235) (0.0206) (0.0257) (0.0224) (0.0283) (0.0246)

ρ0 0.0108 0.1100 0.0062 0.0765 -0.0091 0.0595
(0.0323) (0.0487) (0.0329) (0.0504) (0.0318) (0.0473)

ρ1 -0.1710 -0.1431 -0.1652 -0.1350 -0.1324 -0.1176
(0.0280) (0.0237) (0.0270) (0.0230) (0.0277) (0.0231)

σv0 0.5766 0.5415 0.6292 0.5736 0.7648 0.7225
(0.0153) (0.0234) (0.0171) (0.0233) (0.0212) (0.0306)

σv1 0.5971 0.5963 0.6511 0.6529 0.7877 0.7831
(0.0143) (0.0116) (0.0161) (0.0134) (0.0190) (0.0157)

γ – -0.5771 – -0.5756 – -0.5756
Log-L -2919.9 -2910.6 -3047.1 -3034.9 -3358.4 -3344.1

The numbers in parenthesis are the standard errors. For each frequency column,
γ = 0 stands for the model with a fixed threshold value at 0, while γ = γ∗ stands for the
model with a flexible threshold. The estimates under (γ = γ∗) column are taken from the
optimization under the ”optimal” threshold.
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Figure 5. Plots of Log-Likelihoods across Different Thresholds at
Different Frequencies for S&P 500
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