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Abstract

This paper shows how to maximize revenue when a contest is noisy.
We consider a case where two or more contestants bid for a prize in
a stochastic contest with proportional probabilities, where all bidders
value the prize equally. We show that by fixing the number of tickets,
thus setting a limit to total expenditures, it is possible to maximize the
auctioneer’s revenue and obtain (almost) full rent dissipation. We test
this hypothesis with a laboratory experiment. The results indicate
that, as predicted, revenue is significantly higher in a lottery with
rationing than in a standard lottery. On the other hand, an alternative
rationing mechanism that does not limit total expenditures fails to
increase revenue relative to a standard lottery.
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1 Introduction

Gordon Tullock (1980) famously conceived rent seeking as a lottery where
lobbysts compete for a prize held by a politician. The prize could be, for
instance, a monopoly priviledge, favourable legislation or a government con-
tract, while lobbysts’ bids consist of non-refundable investments that could
take the form of campaign contributions, gifts or explicit briberies. Each lob-
byist’s probability of winning is equal to her lobbying expenditure divided
by total lobbying expenditure. Similarly, lotteries are commonly employed
to model, for example, rivalry and conflict (see, for example, Abbink et al.,
2010), R&D tournaments, or market competition (e.g. Morgan et al., 2010).
Moreover, a number of recent papers have explored the use of proportional
contests as incentive mechanisms (Cason et al., 2010; Masters, 2005; Mas-
ters and Delbecq, 2008, among others). These tournaments have interesting
applications as schemes to reward workers in firms or elicit effort among sup-
pliers. It is worth noticing that, if contestants are risk neutral, proportional
tournaments are isomorphic to a lottery.

The other typical way in which contests have been modeled is as all-pay
auctions, in which the highest bid is awarded the prize with certainty (see, for
instance, Lazear and Rosen, 1981). Both a lottery and an all-pay auction can
be interpreted as extreme cases of a class of contests described by a Tullock’s
success function where the exponent ρ varies between 1 and ∞, respectively.
Which type of contest is a more appropriate description of, say, rent seeking
activities or political competition is an interesting empirical question which
has not been fully addressed yet. It is well known, though, that contrary to an
all-pay auction, rents are not fully dissipated in lotteries. Under-dissipation
has been commonly interpreted as a result of the stochastic element of the
lottery.1

Despite their inefficiency, lotteries are ubiquitous as fundraising mecha-
nisms and their origins are so old that they can hardly be traced back in
time. There exist virtually innumerable examples of lotteries used to raise
funds for civic or charitable purposes.2 Just like national lotteries today help
fund charitable causes, the Great Wall of China, the Republic of Milan’s

1See, for example, in the context of fundraising mechanisms, Goeree et al. (2005, p.
903): “A major difference [between lotteries and all-pay auctions] is that lotteries are not,
in general, efficient; i.e., they do not necessarily assign the object for sale to the bidder
who values it the most. Indeed, even in symmetric complete information environments in
which efficiency plays no role, lotteries tend to generate lower revenues because the highest
bidder is not necessarily the winner.”

2A recent literature has analyzed the use of lotteries as fundraising mechanisms for the
provision of public goods, both theoretically and through experiments (see Morgan, 2000;
Morgan and Sefton, 2000; Goeree et al., 2005; Landry et al., 2006; Lange et al., 2007;
Orzen, 2008; Schram and Onderstal 2009; Corazzini et al., 2010, among others).
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ongoing war against Venice in the fifteenth century, and the bridges, canals
and fortifications of Burgundian and Dutch cities were all financed through
public lotteries (see Welch, 2008). However, it would be wrong to exaggerate
the importance of their public good component. As reported by the historian
Evelyn Welch, “after the failure of the Milanese lottery to appeal to a sense
of public duty, no Italian lottery (even those run by religious organizations)
referred to either civic pride or spiritual devotion when encouraging ticket
purchases. Buyers were simply enticed by the chance of winning wealth”
(Welch, 2008, p. 97).

Indeed, although it is perhaps less known, it was equally frequent in
the past for individuals or private institutions to hold lotteries and raffles
to sell objects or raise revenue for private causes. In 1446, the widow of
the Flemish painter Jan Van Eyck held one of the first recorded European
lotteries to sell her late husband’s expensive paintings, for which buyers could
not be readily found. In Venice, during the sixteenth century, private lotteries
were held daily for speculative reasons to sell objects as well as silver and
gold. In seventeenth-century London, lotteries were commonly used to sell
“books, maps and other goods” (Welch, 2008). The “running lotteries” of
the Virginia Company are perhaps one of the most notorious examples of
private lotteries. Between 1612 and 1621 the Virginia Company of London,
a joint stock company, funded its enterprise through a series of local lotteries
throughout England (Johnson, 1960).3

The question we address in this paper is how an auctioneer, a fundraiser4

or a politician5 can maximize revenue when the contest is noisy. We show
that the intuition that under-dissipation derives from the inefficiency of a
stochastic contest is incorrect. The reason why rents are not fully dissipated
in a Tullock lottery is that the total number of tickets is determined endoge-
nously. Hence, each additional ticket purchased has a positive but decreasing
marginal effect on the probability of winning the prize. As a consequence, in
equilibrium, each contestant bids less than the expected value of the prize,
and the overall rate of dissipation is less then one. For example, denoting
the number of contestants with N and the prize with Π, in equilibrium each

3The lotteries were extremely successful, so much so that the annual financial report
for 1620 states that they brought to the company a profit of £7,000. This was a very
substantial sum, considering that the cost of furnishing one ship amounted at the time to
about £791 (see Johnson, 1960).

4Although the literature on fundraising mechansisms has focused on situations where
the contestants (significantly) value the public good, as we mentioned earlier, it is plausible
to think of scenarios in which society values the project financed through their bids, but
the bidders’ valuation of it is actually zero.

5Typically the literature on rent seeking has considered that contestants’ effort to earn
rents is wasteful and it is therefore socially optimal to minimize it. Nevertheless, it is
obvious that the politician’s goal is to maximize the revenue acquired from the lobbyists.
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participant bids N−1
N

Π
N

, total expenditures are N−1
N

Π and the overall rate of
dissipation is N−1

N
< 1.6

On the other hand, by exogenously setting the number of existing tickets,
each additional ticket has a constant marginal effect on the probability of
winning the prize. Provided the total cost of the tickets is less than the value
of the prize, contestants will have an incentive to buy all the tickets. We show
that by appropriately setting the total number of tickets, the auctioneer can
increase rent seeking expenditures. To the limit, by setting the total value of
the tickets arbitrarily close to the value of the prize, it is possible to obtain
full dissipation of rents. This is why less is more: in equilibrium, setting a
limit to total expenditures by rationing tickets leads to an increase in revenue
relative to a standard lottery.7

In order to define a rationing scheme, we need a rule specifying how tickets
are allocated when demand exceeds supply. We consider a simultaneous
move game, and assume that, when the capacity constraint is binding, each
player is allocated a share of the tickets equal to her share of total demand.
Given this allocation rule, the most intuitive scheme is one where bidders
only pay for the tickets they actually receive. We call this mechanism fixed
price rationing. It should be noted that, although this rationing scheme may
lead to an increase in revenue relative to the standard lottery, it limits the
maximum revenue a seller can potentially raise, albeit off equilibrium. In
order to address this issue, we also consider an alternative rationing scheme
where bidders pay for the tickets they demand, while only receiving a share
of the tickets equal to their share of total demand. We call this scheme
variable price rationing. This mechanism shares the features of both fixed
price rationing and a standard lottery. When demand is less than supply
it is identical to fixed price rationing, but when demand exceeds supply it
works just like a standard lottery. Consequently, it does not limit potential
revenue. We show that both rationing schemes lead to the same dissipation
rate in equilibrium. However, while in fixed price rationing there is a unique
equilibrium in dominant strategies, in variable price rationing there exists a
continuum of multiple equilibria.

We test these theoretical predictions with a laboratory experiment, fo-

6Note that the marginal effect of buying an extra ticket on the probability of winning the
prize decreases faster as the number of contestants is small. Therefore, ceteris paribus, the
higher the number of contestants, the higher the expected rate of dissipation. As N →∞,
the expected rate of dissipation tends to 1.

7It should be observed that, by fixing supply, the auctioneer sets both a ceiling and a
floor for the number of tickets. Although it is the presence of the floor that drives the
result of (almost) full rent dissipation, we use the term rationing to emphasize the fact
that the maximum number of tickets is fixed and there is an upper limit to potential
revenue. This is in contrast to a standard lottery, where the maximum number of tickets
is determined by demand and revenue is potentially unlimited.
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cusing on a case where two contestants bid for a prize with a common value
in a stochastic contest with proportional probabilities. Using a between-
subjects experimental design, we test the hypothesis that expenditures are
higher with either rationing mechanism than with the standard lottery. The
results indicate that, as predicted by the theory, expenditures with fixed price
rationing are significantly higher than in the standard lottery. However, con-
trary to the theoretical predictions, the variable price rationing mechanism
does not increase expenditures relative to the standard lottery. The results
also lead to reject the hypothesis of revenue equivalence for the two rationing
schemes: expenditures are significantly higher with fixed price rationing than
with variable price rationing. We interpret this result as reflecting strategic
uncertainty, given the existence of multiple equilibria under variable price
rationing.

Our work is related to a growing body of experimental research on rent
seeking (Millner and Pratt, 1989, 1991; Shogren and Baik, 1991; Davis and
Reilly, 1998; Potters et al., 1998; Anderson and Stafford, 2003; Shupp, 2004;
Schmitt et al., 2004; Schmidt et al., 2006; Bullock and Rutström, 2007;
Herrmann and Orzen, 2008; Kong, 2008; Matros and Lim, 2009, among
others).8 With relatively few exceptions (see Shogren and Baik, 1991; Shupp,
2004; Schmidt et al., 2004), these experiments typically report higher rent
seeking expenditures than predicted by the theory. In the standard lottery
treatment, we too find higher rent dissipation than predicted. However, rent
dissipation is significantly higher when fixed price rationing is applied.

There also exists a parallel theoretical literature that considers a very
similar issue in the case of all-pay auctions (Che an Gale,1998; Kaplan and
Wettstein, 2006, among others). In a seminal paper, Che and Gale (1998)
analyze a lobbying game between two lobbyists and a politician, and show
that if the lobbyists have different valuations, then rents are not fully dissi-
pated. They demonstrate that setting caps on individual bids can produce
the perverse effect of increasing rent dissipation. Interestingly, in a subse-
quent paper, Fang (2002) shows that limiting individual bids does not de-
crease rent dissipation in a lottery. The difference between Che and Gale’s
idea and ours is that under-dissipation is driven by heterogeneous valuations
in their setting, and by the decreasing marginal benefit of bidding in ours.

The remainder of the paper is organized as follows. Section 2 outlines
the theoretical framework. Section 3 describes the experimental design and
procedures. Section 4 presents the results. Section 5 concludes.

8For an excellent survey of this literature see Morgan et al. (2010).
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2 Theory

Consider a Tullock contest where n risk-neutral players compete for a prize
Π they all equally value. Players bid for the prize. We call bi individual i’s

bid, while we will refer to B =
n∑

i=1

bi and B−i =
n∑

j 6=i

bj as the total bids and

the sum of all bids but i’s, respectively. Player i’s probability of winning the
prize is bi

B
and her expected payoff from bidding bi is given by bi

B
Π− bi. It is

well known that in equilibrium B∗ = n−1
n

Π, meaning that rents are not fully
dissipated. Differentiating i’s expected payoff with respect to bi we obtain

B−i

(bi + B−i)2
Π− 1. (1)

Notice that in equilibrium it must be the case that bi + B−i > 0, otherwise
an agent would have an incentive to bid ε arbitrarily close to zero and win
the prize for sure. Setting (1) equal to zero and rearranging it we have
(bi + B−i)

2 = B−iΠ. Replacing B−i with (n− 1)bi we obtain b∗ = n−1
n2 Π and

B∗ = n−1
n

Π. As proved by Fang, this equilibrium is unique (see Theorem 1
in Fang, 2002).

The first term in expression (1) represents i’s marginal benefit of bidding
an extra unit. Note that it is decreasing in bi and is equal to the marginal
cost when bi = 2

√
B−iΠ − B−i. This means that, for a given B−i < Π, the

optimal bid for player i is smaller than Π − B−i, resulting in less than full
dissipation. The intuition for this result is that bidding an extra unit not
only increases an individual’s bid, but also the sum of all bids, thus making
the marginal increase in the chance of winning decreasing in bi.

Such a contest has been typically interpreted as a lottery in which every
player is entitled to a number of lottery tickets equal to her bid. Once players
have submitted their bids, a ticket is randomly drawn and the holder wins
the prize. Note that no limit is placed to players’ bids and thus to the number
of tickets that can be purchased.

We modify the above game by fixing the total number of existing tickets,
so that if some tickets remain unsold there is a positive probability that no one
wins the prize. Call κ the fixed number of tickets, with κ < Π. If agent i buys
bi ≤ κ tickets, her expected payoff is now defined by bi

κ
Π− bi, independently

of other players’ bids. Note that the marginal benefit of buying an extra
ticket is always greater than the marginal cost. Hence, although the number
of tickets a player can purchase will be subject to their availability, each agent
would want to buy all the tickets. As a result, in equilibrium no ticket will
remain unsold. Since κ can be set arbitrarily close to Π, rents can be (almost)
fully dissipated.9 Notice that this mechanism maintains the inefficiency of a

9Note that the increase in rent dissipation is not driven by rationing per se, but by the
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Tullock contest, in that the highest bid is not necessarily awarded the prize.
This illustrates that under-dissipation of rents in a lottery is not a result of
inefficiency, but rather a consequence of the decreasing marginal benefit of
bids.

We consider a simultaneous move game. We focus on the case in which
κ ∈ (n−1

n
Π, Π),10 and we assume that each individual has the same endow-

ment ω ≥ κ
n
. Notice that it is necessary to define a rule specifying how to

allocate the tickets in case total demand exceeds the fixed supply (B > κ).
We apply the following rule. If total bids exceed κ, then each agent receives
a share of the κ tickets equal to her share of the total demand ( bi

B
). This

implies that individual i’s expected prize from bidding bi, when the sum of
all other players’ bids is B−i, is given by:

E[Π, κ, bi, B−i] =





bi

κ
Π if B ≤ κ

bi

B
Π if B > κ

.

Finally, we need to define an expenditure rule specifying how much players
pay for the tickets they purchase as a function of the tickets they demand,
conditional on the other players’ demands. Call x(bi | B−i) such function.
Hence a player’s expected payoff is defined by

ω + E[Π, κ, bi, B−i]− x(bi | B−i)

We consider two rationing mechanisms, defined by the different expendi-
ture function they apply.

Definition 1 Fixed price rationing: x(bi | B−i) is equal to bi if B ≤ κ, while
it is equal to bi

B
κ if B > κ.

Definition 2 Variable price rationing: x(bi | B−i) is always equal to bi.

With fixed price rationing agents pay only for the tickets they receive and
the price of each ticket is equal to 1. With variable price rationing each player
pays her own bid, independently of the number of tickets actually allocated
to her. If total bids are less than or equal to κ, the price of each ticket is 1.

winning ticket being drawn from the exogenously fixed set of tickets. Hence, unless all of
the tickets are bought, there is a positive probability that no one wins the prize.

10Clearly, if κ ≤ n−1
n Π the auctioneer would raise a revenue less than or equal to the

amount raised with a standard lottery, while if κ > Π no one would bid anything. If
κ = Π, it is easy to prove that in equilibrium total expenditures could assume any value
less than or equal to Π.
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But, if total demand exceeds supply, each agent receives bi

B
κ tickets, which is

equivalent to letting the price of each ticket vary to accommodate demand.
Indeed, note that if B > κ then a ticket’s price is equal B

κ
.

As stated in the following proposition, with fixed price rationing there
exists a unique equilibrium in dominant strategies.

Proposition 1 With fixed price rationing there exists a unique Nash equilib-
rium in dominant strategies in which each player bids her whole endowment
and total expenditure is equal to κ.

Proof. It is easy to show that bidding ω is a dominant strategy for this
game. Let us first consider the case ω + B−i ≤ κ. An individual’s expected
payoff from bidding ω is equal to ω

κ
(Π − κ), while, if she bids z < ω, her

expected utility is z
κ
(Π− κ). Since κ < Π, the latter is strictly less than the

former.
Suppose now that ω + B−i > κ. Clearly, if B−i = 0 then bidding z < ω

would either guarantee the same utility Π− κ, if z ≥ κ, or a lower expected
payoff otherwise. Hence suppose B−i > 0. The expected payoff from bidding
ω is equal to W = ω

ω+B−i
(Π− κ). Vice versa a player’s expected utility from

bidding z < ω is represented either by X = z
z+B−i

(Π− κ), if z + B−i > κ, or

by Y = z
κ
(Π− κ) if z + B−i ≤ κ.

Let us compare W and X. Their difference is given by

W −X =
B−i(ω − z)(Π− κ)

(ω + B−i)(z + B−i)
> 0

which means that bidding ω strictly dominates any lower bid z when z +
B−i > κ.

When z + B−i ≤ κ, we have to study the sign of W − Y , given by

W − Y =
ω

ω + B−i

(Π− κ)− z

κ
(Π− κ)

= (Π− κ)
ω(κ− z)− zB−i

(ω + B−i)κ

The above expression is greater than zero if ω > zB−i

(κ−z)
. Since B−i ≤ κ − z,

this inequality is always true. This proves that bidding ω is a dominant
strategy. Finally, as we are assuming that ω ≥ κ

n
, total expenditure is equal

to κ.
The next proposition shows that also with variable price rationing total

expenditure in equilibrium is equal to κ. In this case though, there exist
multiple equilibria. We provide a full characterization of the pure strategy
equilibria of the game.
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Proposition 2 The complete set of pure strategy equilibria of the variable
price rationing mechanism is represented by the strategy profiles {b∗1, b∗2, ..., b∗n}
such that

n∑

i=1

b∗i = κ and κ(Π−κ)
Π

≤ b∗i ≤ ω ∀i ∈ {1, ..., n}. There always exists

a symmetric equilibrium in which every player bids κ
n
. Such equilibrium is

unique if ω = κ
n
.

Proof. We first show that in equilibrium the sum of all bids cannot be
strictly less or greater than κ. If bi + B−i < κ then player i would have an
incentive to increase her bid from bi to κ − B−i, since the marginal benefit
is greater than the marginal cost. If bi + B−i > κ player i’s utility is equal
to Π bi

bi+B−i
− bi, which is the payoff of a standard Tullock contest. Since we

know that in a Tullock game in equilibrium B = n−1
n

Π, and we assumed that
n−1

n
Π < κ < Π, it follows that B cannot be greater than κ.
It remains to explore the case B = κ. In order for a strategy profile

{b1, b2, ..., bn}, with
n∑

i=1

bi = κ, to be an equilibrium we have to verify under

what conditions no player has an incentive to deviate. Clearly, an agent
who is submitting a positive bid has no incentive to decrease it. However,
it is possible that a player may be better off by increasing her bid. Recall
that, keeping the strategies of the other agents constant, if i raises her bid

to b̂i > bi her payoff is Π b̂i

b̂i+B−i
− b̂i. Differentiating i’s payoff with respect to

b̂i we obtain

Π
B−i

(b̂i + B−i)2
− 1

Setting the above expression equal to zero and solving for b̂i we obtain i’s
best response function

b̂i = 2

√
ΠB−i −B−i

This means that i will not have an incentive to raise her bid above bi provided

that bi ≥ 2
√

ΠB−i − B−i. Since
n∑

i=1

bi = κ, we can substitute B−i with κ− bi

and, rearranging, we obtain

bi ≥ κ(Π− κ)

Π

It follows that the complete set of pure strategy equilibria for this game is

represented by the strategy profiles {b∗1, b∗2, ..., b∗n} such that
n∑

i=1

b∗i = κ and

κ(Π−κ)
Π

≤ b∗i ≤ ω∀i ∈ {1, ..., n}. Notice that the symmetric equilibrium in
which every player bids κ

n
is always an element of this set, and it is the unique

equilibrium if ω = κ
n
.
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Note that variable price rationing resembles a coordination game in which
players want to coordinate on a total demand equal to κ, although each one
of them would prefer to demand as many tickets as possible, provided that
B does not exceed κ. Due to this strategic uncertainty, the equilibrium
prediction is clearly less robust than in fixed price rationing, where it is a
dominant strategy to bid all the endowment. Yet, it is worth noting that
while fixed price rationing limits to κ the total revenue that can be extracted
from the bidders, variable price rationing does not place any limit to the total
revenue, albeit off equilibrium. This makes the latter mechanism directly
comparable with a standard lottery, where the auctioneer can potentially
earn a higher revenue than predicted.

3 The Experiment

The experiment is designed to test the hypothesis that by exogenously set-
ting the number of tickets in a lottery it is possible to increase contestants’
expenditures. The experimental task is a standard rent seeking game as in
Tullock (1980). We implement three treatments: a standard lottery, used as
a benchmark, a lottery with fixed price rationing and a lottery with flexible
price rationing. In this section, we describe the design of the experiment, the
hypotheses to be tested and the experimental procedures.

3.1 Baseline Game

Two agents compete by expending resources (buying lottery tickets) to in-
fluence the probability of acquiring a given rent. Each session consists of 20
rounds. In each round, subjects have an endowment of 800 points and have
to decide simultaneously how many lottery tickets they want to buy. Each
ticket costs 1 point. At the end of each round the computer selects randomly
the winning ticket among all the existing tickets. The owner of the winning
ticket wins a prize of 1600 points. In case no tickets are purchased, no one
wins the prize. Actual earnings are determined on the basis of one round
randomly selected at the end of the session.

3.2 Treatments

The experimental design is based on three treatments, implemented between
subjects, aimed at comparing the effects of alternative allocation mechanisms
that differ in the way participants can determine their probability of winning
the prize (see Section 2 for details):
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1. Standard lottery (LOT). Subjects can buy any number of tickets.
At the end of each round the computer selects randomly the winning
ticket among all the tickets purchased.

2. Lottery with fixed price rationing (RF). The total number of tick-
ets is κ. If total bids (B) are not greater than κ, each subject receives
a number of tickets equal to her bid (bi) and wins with probability bi

κ
.

If B > κ, each subject receives a share of the κ tickets equal to bi

B
, pays

only for the number of tickets she receives, and wins with probability
bi

B
.

3. Lottery with variable price rationing (RV). The total number of
tickets is κ. If B ≤ κ, each subject receives bi tickets and wins with
probability bi

κ
. If B > κ, each subject receives a share of the κ tickets

equal to bi

B
, pays for the number of tickets she demanded, and wins with

probability bi

B
.

3.3 Hypotheses

Table 1 presents the theoretical predictions for the three treatments in our
experimental design, where we set the prize Π = 1600, the number of tickets
under rationing κ = 1200, and the endowment of each subject ω = 800.
Note that κ is set as the average between the theoretical prediction for total
expenditures in the standard lottery (800) and the value of the prize (1600).
As a consequence, while in LOT total expenditures are 50% of the prize, in
both RF and RV, total expenditures are 75% of the prize. Note that the
sum of individual endowments within a group is equal to the value of the
prize, so that individual expenditures as a percentage of the endowment are
equivalent to group-level expenditures as a percentage of the prize.

Table 1: Theoretical predictions for the experiment

LOT RF RV
Individual expenditure 400 600 600
Total expenditures 800 1200 1200
Dissipation rate 0.50 0.75 0.75

Note: Π = 1600, ω = 800, κ = 1200. LOT=Standard lottery. RF=Fixed-price rationing.
RV=Variable-price rationing. Figures are expressed in points (experimental units). The
prediction for RV at individual level (row 1) is expected expenditure.

Defining µi as average expenditures in treatment i, the hypotheses to be
tested can be stated as follows:
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Hypothesis 1 - Less is more: Expenditures are higher with
either rationing mechanism than with the standard lottery:

H0 : µLOT = µRF vs H1 : µLOT < µRF

H0 : µLOT = µRV vs H1 : µLOT < µRV

Hypothesis 2 - Revenue Equivalence: Expenditures are the
same under fixed and variable price rationing:

H0 : µRF = µRV vs H1 : µRF 6= µRV

3.4 Procedures

We implemented one session for each treatment, with 32 subjects participat-
ing in each session, for a total of 96 subjects. In each session, subjects were
randomly assigned to a computer terminal at their arrival. To ensure public
knowledge, instructions were distributed and read aloud (see the Appendix
for the instructions). Moreover, to ensure understanding of the experimental
design, sample questions were distributed and the answers privately checked
and, if necessary, individually explained to the subjects.

A strangers matching mechanism was adopted to avoid strategic incen-
tives. In each round, subjects were randomly and anonymously rematched in
pairs. At the end of each round, subjects were informed of their own payoff,
given by the initial endowment, minus the expenditure for buying the tickets,
plus the prize if won. At the end of the last round, subjects were informed
of their total payoff for each of the twenty rounds, and of the actual earnings
in points and Euros determined on the basis of a randomly selected round.
They were then asked to answer a short questionnaire on the understand-
ing of the experiment and socio-demographic information, and were paid in
private using an exchange rate of 100 points per Euro.

Subjects earned 14.5 Euro on average for sessions lasting about 50 min-
utes, including the time for instructions. Participants were undergraduate
students of Economics recruited by e-mail using a list of voluntary potential
candidates. The experiment took place in March 2010 in the Experimen-
tal Economics Lab of the University of Milan Bicocca. The experiment was
computerized using the z-Tree software (Fischbacher, 2007).

4 Results

This section presents the experimental results. We start with a descrip-
tive analysis of the main features of the data in the three treatments. We
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then present formal tests of the theoretical predictions, focusing on average
expenditures over all subjects. Finally, we compare behavior at individual
level across treatments.

4.1 Overview

Figure 1 compares overall mean and median relative expenditures (as a per-
centage of the endowment) for each of the three treatments.11 Mean relative
expenditures are 55% in LOT, 65% in RF and 49% in RV. Focusing on median
relative expenditures, the results for LOT and RF are strikingly consistent
with the theoretical predictions (50% and 75%, respectively). Contrary to
the theoretical predictions, median relative expenditures in RV are the same
as in the standard lottery (50%).

Figure 1: Overall expenditures, by treatment
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Figure 2 compares observed and predicted average expenditures, as a
percentage of the endowment, over rounds for each treatment. Average ex-
penditures are relatively stable in all treatments, displaying only a slight
decline over successive rounds. In LOT, average relative expenditures are
initially above the theoretical predictions, but gradually converge to 50%
over successive rounds. In RF, average expenditures are relatively stable and
slightly lower than the theoretical prediction throughout the session. In RV,

11Note that in presenting the results we refer to individual-level expenditures as a per-
centage of the endowment. Given the parameter calibration (N = 2, ω = 800, Π = 1600),
this is equivalent to referring to group-level expenditures as a percentage of the prize.
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average expenditures are substantially lower than the 75% prediction and
declining over rounds.

Figure 2: Average expenditures over rounds, by treatment
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Overall, these descriptive results indicate that, as predicted by the theory,
while the standard lottery produces substantial under-dissipation, fixed price
rationing provides an effective mechanism to increase revenue. On the other
hand, contrary to the theoretical predictions, the variable price rationing
mechanism does not increase expenditures relative to the standard lottery.

4.2 Average Expenditures

In order to assess the statistical significance of the differences observed in ex-
penditures under alternative allocation mechanisms, Table 2 presents results
of Wilcoxon rank-sum tests of the null hypothesis that median expenditures
are the same across treatments. The first two rows test the effect of rationing
(Hypothesis 1), by comparing expenditures in each of the two rationing mech-
anisms (fixed and variable price) with the benchmark standard lottery. Given
that the theory predicts the direction of departure from the null hypothesis,
we use the relevant one-sided tests. The third row tests revenue equivalence
(Hypothesis 2) by comparing expenditures in RF and RV, using a two-sided
alternative.

It is important to note that the random rematching mechanism implies
that subject-level observations might be dependent in rounds beyond the
first, due to repeated interaction with a strangers matching mechanism and
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(limited) feedback. However, given that there are 32 subjects in each session,
subjects know that there is a very small probability of interacting with the
same subject as in the previous round(s). In addition, at the end of each
round subjects only learn whether they won the prize, without being informed
of the actual bid of the other subject. The dependence across individual
observations can therefore be considered negligible, so that the test results we
present are based on the assumption of independent individual observations
(see Morgan and Sefton, 2000, for a similar approach). As a robustness check,
we also present test results based on the first round only, so that individual
observations are independent by construction.

Table 2: Expenditures across treatments: tests of hypotheses

1-20 1 1-10 11-20
RF - LOT 1.46 1.40 1.38 1.32
(p-value) (0.07) (0.08) (0.08) (0.09)
RV - LOT -0.77 -0.53 -1.01 -0.54
(p-value) (0.78) (0.70) (0.84) (0.70)
RF - RV 2.87 2.29 2.67 2.74
(p-value) (0.00) (0.02) (0.01) (0.01)

Note: The table reports rank-sum test statistics and corresponding p-values for the
relevant one-sided (rows 1-4) or two-sided (rows 5-6) hypotheses, based on 32
independent observations for each treatment.

In the comparison between RF and LOT, the rank-sum test statistics
for the whole session (rounds 1 to 20, column 1) are positive and significant
at the 10 per cent level (p-value=0.07). Similar results are obtained when
considering only the first round (p-value=.008). The results are also virtually
unchanged when focusing on either the first or the last 10 rounds, indicating
that repetition has a negligible effect on the comparison between expenditures
in the two treatments.

Result 1: Expenditures in the lottery with fixed price ra-
tioning are significantly higher than in the standard lottery.

The results for the difference between RV and LOT indicate that, contrary
to the theoretical predictions, the variable price rationing mechanism actually
exacerbates under-dissipation relative to the standard lottery. This result
holds irrespective of the sub-sample considered.

Result 2: The variable price rationing mechanism does not
increase expenditures relative to the standard lottery.
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The test results for the comparison between the two rationing schemes
indicate that the positive difference between RF and RV is not only large
but also strongly statistically significant, irrespective of the sub-set of rounds
considered.

Result 3: Expenditures with fixed price rationing are signif-
icantly higher than with variable price rationing.

4.3 Individual Choices

Figure 3 compares the distribution of individual expenditures for the three
treatments. In LOT, 15.9 per cent of the subjects spend half of their en-
dowment, as predicted by theory. Although a relatively large fraction of
subjects spend their whole endowment (27.2 per cent), about 41 per cent of
the subjects spend less than 50 per cent of their endowment. In RF, the ex-
penditure predicted by the theory (0.75) is indeed the modal value (24.1 per
cent). The high overall expenditures in this treatment are also explained by
a large fraction of subjects spending their whole endowment (18.1 per cent)
or half their endowment (19.1 per cent). Interestingly, only a fifth of the
subjects spend less than 50 per cent of their endowment. The comparison
with the distribution for LOT indicates that the fixed price rationing mecha-
nism is indeed effective in discouraging low expenditures. In RV too the 0.75
prediction represents the modal value (18.1 per cent). However, relatively
few subjects spend their whole endowment (10.9 per cent) or half of it (13.6
per cent), whereas 46.4 per cent of the subjects spend less then 50 per cent of
their endowment. In particular, RV is characterized by a much higher frac-
tion of zero expenditures (8.3 per cent) than either LOT or RF (2.8 and 1.1
per cent, respectively). This result is consistent with the effect of strategic
uncertainty, given the existence of a continuum of multiple equilibria in RV.

It should be observed that, in RF, actual expenditures are different from
original bids in all the cases where the constraint on the supply of tickets is
binding. This implies that the 0.75 modal value for individual expenditures
for RF in Figure 3 may comprise both actual bids of 0.75 and higher bids
rationed ex post. This also explains the clustering of density around 0.75
for expenditures in RF. In order to assess strategic behavior before the effect
of rationing, Figure 4 displays the distribution of individual bids (tickets
demanded) over all rounds. Interestingly, about 40 per cent of the subjects
bid their whole endowment, as opposed to 27.2 and 10.9 per cent in LOT or
RV, respectively. An additional 10 per cent of the subjects bid 0.75 of their
endowment. Overall, the distribution of individual bids provides further
support to the theoretical predictions for fixed price rationing.
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Figure 3: Distribution of individual expenditures, all rounds
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Figure 4: Distribution of individual bids: fixed price rationing, all rounds

0
10

20
30

40
%

 o
f t

ot
al

0 20 40 60 80 100
% of endowment

17



5 Conclusions

This paper formulated the hypothesis that, in a stochastic contest, setting
a limit to total expenditures by fixing the number of tickets may lead to an
increase in total revenue. We characterized the theoretical properties of two
rationing schemes, where the price of each ticket is either fixed or variable.
We tested the theoretical predictions with a laboratory experiment where
two contestants bid for a prize they equally value in a stochastic contest
with proportional probabilities. The results indicate that, as predicted by
the theory, revenue is significantly higher in a lottery with rationing than in a
standard lottery. On the other hand, contrary to the theoretical predictions,
an alternative rationing mechanism that fixes the number of tickets without
limiting potential revenue does not increase revenue relative to a standard
lottery.

At the theoretical level, our results indicate that under-dissipation is not
related to the stochastic nature of the lottery. By appropriately setting the
number of tickets, the auctioneer can increase total expenditures relative to a
standard lottery. Provided the total cost of the tickets is less than the value
of the prize, contestants will have an incentive to buy all the tickets. To the
limit, by setting the total value of the tickets arbitrarily close to the value
of the prize, it is possible to obtain full dissipation of rents in a stochastic
contest.

At the empirical level, the effectiveness of rationing in raising total expen-
ditures is strongly supported by our experimental results for the case of fixed
price rationing, where contestants only pay for the tickets they receive. How-
ever, it is not supported for variable price rationing, where contestants pay
for the tickets they demand. This result can be interpreted as a consequence
of strategic uncertainty. An apparently advantageous feature of variable price
rationing is that, contrary to fixed price, potential revenue is unlimited. On
the other hand, while fixed price rationing has a unique equilibrium in dom-
inant strategies, there exists a continuum of multiple equilibria with variable
price rationing, thus introducing a coordination problem for the contestants.

Our results also have relevance beyond theory and the lab. House raffles
are an interesting example of the mechanism we propose.12 In a house raffle,
the home owner sells her property by selling a fixed number of lottery tickets
to the public, the total value of the tickets being equal to the appraisal value
of the house. Once all of the tickets are sold, one ticket is randomly drawn
and the holder wins the property prize. Such lotteries are becoming more and
more popular in the US, as well as in the UK, where they are attracting the
attention of the media.13 Interestingly, in these real life examples the price

12See, for example, http://winahouseraffles.com.
13A famous antecedent of these modern raffles is the case of the US President Thomas
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of each ticket is fixed, although this sets a limit to the revenue the seller
can raise. Our experimental results shed light on this apparently puzzling
decision, indicating a possible explanation why sellers may choose to opt for
a fixed price scheme.

Jefferson, who attempted to sell his property, including the residence of Monticello,
through a lottery with a fixed number of tickets. Only a series of unfortunate events
prevented Jefferson from running the lottery (see Welch, 2008).
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Appendix: Instructions

[In italics parts that are common across treatments]
Welcome. Thanks for participating in this experiment. If you follow the

instructions carefully and make good decisions you can earn an amount of
money that will be paid to you in cash at the end of the experiment. During
the experiment you are not allowed to talk or communicate in any way with
other participants. If you have any questions raise your hand and one of the
assistants will come to assist you.

General rules

• There are 32 subjects participating in this experiment.

• The experiment will consist of 20 rounds.

• In each round you will interact in a group of 2 with another participant
selected randomly and anonymously by the computer.

• In each round each participant will be assigned an endowment of 800
points. You will make decisions that will determine the number of points
you can earn.

• At the end of each round the computer will display your payoff in points.

• When the 20 rounds are completed, one round will be randomly chosen
by the computer. The number of points that you have obtained in the
selected round will be converted in euros at a rate of 100 points per euro
and the resulting amount will be privately paid to you in cash.

How earnings are determined

Treatment 1 (Standard Lottery)

• In each round, you and the other participant will play a two-person
lottery. The lottery prize is 1600 points. You and the other participant
will be given the chance to purchase lottery tickets at 1 point per ticket.
As you purchase tickets, your point endowment will be reduced by the
value of the tickets purchased.

• At the end of each round the computer will select randomly the winning
ticket among all the tickets purchased. The owner of the winning ticket
wins the prize.
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• Thus, your probability of winning is given by the number of points you
purchase divided by the total number of tickets purchased by you and
the other participant in your group.

• For example, if you have purchased x tickets and the other participants
has bought y tickets, the probability that you will win the prize is x

x+y
.

• In case no tickets are purchased, no one wins the price.

Treatment 2 (Fixed Price Rationing)

• In each round, you and the other participant will play a two-person
lottery. The lottery prize is 1600 points. You and the other participant
will be given the chance to purchase lottery tickets at 1 point per ticket.
As you purchase tickets, your point endowment will be reduced by the
value of the tickets purchased.

• There is a total number of 1200 tickets available.

• At the end of each round the computer selects randomly the winning
ticket among the 1200 tickets. The owner of the winning ticket wins
the prize.

• In case no tickets are purchased, or the winning ticket is not purchased,
no one wins the price.

• Note that here are two possible cases:

1. If the total number of tickets demanded by your group is not
greater than 1200, you will receive the number of tickets you de-
manded. In this case, it is possible that no one bought the winning
tickets, in which case no one wins the price.

Example: if you have purchased 800 tickets and the other partic-
ipant has purchased 200 tickets, the probability that you will win
the prize is 800

1200
= 2

3

2. If the total number of tickets demanded by your group exceeds
1200, each participant receives a share of the 1200 tickets equal to
the number of tickets she purchased divided by the total number
of tickets purchased. In this case the number of points you will
spend will be equal to the number of tickets you actually received.

Example: if you have demanded 800 tickets and the other partic-
ipant has demanded 800 tickets, you will receive 800

1600
∗ 1200 = 600

tickets, at a cost of 600 points, and the probability that you will
win the prize is 600

1200
= 1

2
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Treatment 3 (Variable Price Rationing)

• In each round, you and the other participant will play a two-person
lottery. The lottery prize is 1600 points. You and the other participant
will be given the chance to purchase lottery tickets at 1 point per ticket.
As you purchase tickets, your point endowment will be reduced by the
value of the tickets purchased.

• There is a total number of 1200 tickets available.

• At the end of each round the computer selects randomly the winning
ticket among the 1200 tickets. The owner of the winning ticket wins
the prize.

• In case no tickets are purchased, or the winning ticket is not purchased,
no one wins the price.

• Note that here are two possible cases:

1. If the total number of tickets demanded by your group is not
greater than 1200, you will receive the number of tickets you de-
manded. In this case, it is possible that no one bought the winning
tickets, in which case no one wins the price.

Example: if you have purchased 800 tickets and the other partic-
ipant has purchased 200 tickets, the probability that you will win
the prize is 800

1200
= 2

3

2. If the total number of tickets demanded by your group exceeds
1200, each participant receives a share of the 1200 tickets equal to
the number of tickets she purchased divided by the total number
of tickets purchased. In this case the number of points you will
spend will be equal to the number of tickets you demanded.

Example: if you have demanded 800 tickets and the other partic-
ipant has demanded 800 tickets, you will receive 800

1600
∗ 1200 = 600

tickets, at a cost of 800 points, and the probability that you will
win the prize is 600

1200
= 1

2
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