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Abstract:

Assessments of social welfare do not usually take into account population sizes. This
can lead to serious social evaluation flaws, particularly in contexts in which policies can
affect demographic growth. We develop in this paper a little-known though ethically
attractive approach to correcting the flaws of traditional welfare analysis, an approach
that is population-size sensitive and that is based on critical-level generalized
utilitarianism (CLGU). Traditional CLGU is extended by considering arbitrary orders of
welfare dominance and ranges of “poverty lines” and values for the “critical level” of how
much a life must be minimally worth to contribute to social welfare. Simulation
experiments briefly explore the normative relationship between population sizes and
critical levels. We apply the methods to household level data to rank Canada’s social
welfare across 1976, 1986, 1996 and 2006 and to estimate normatively and statistically
robust lower and upper bounds of critical levels over which these rankings can be made.
The results show dominance of recent years over earlier ones, except when comparing
1986 and 1996. In general, therefore, we conclude that Canada’s social welfare has
increased over the last 35 years in spite (or because) of a substantial increase in
population size.

Keywords: CLGU, welfare dominance, FGT dominance, estimation of critical levels,
welfare in Canada
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1 Introduction

Is the “value” of a society increasing with its populatiomes? How can that question be
dealt with in a normatively robust framework? What sort attistical procedures can assess
this empirically? What does the evidence actually suggest@&ddress these questions is the
main objective of this paper.

Poverty and welfare comparisons are routinely made unaentplicit assumptions that
population sizes do not matter, or equivalently that pojpartasizes are the same. Techni-
cally, this is implicitly or explicitly done by calling on thso-called population replication
invariance axiom. The population replication invariang®m says that an income distribu-
tion and itsk-fold replication, withk being any positive integer, should be deemed equivalent
from a social welfare perspective. Welfare and inequabiyparisons can then be performed
in per capita terms.

However, as Blackorby, Bossert, and Donaldson (2005) amefethave argued, popula-
tion size should probably matter when assessing sociabveelfWe may not be indifferent,
for instance, to whether some income (or GDP) statisticeeapeessed iper capita or in
total terms. When total income changes in a society, we map wa know whether this is
due to changes in population size or changgseimncapita income; wherper capita income
changes, we may also wish to know whether this is associatbdavchange in population
size. Generally speaking, our assessment of the welfane wdla change in the distribution
of incomes may depend on how population size also changes.

In addressing these issues — which we believe to be impastae® — our work adopts
as a conceptual framework for social welfare comparisomsdhtical-level generalized util-
itarianism” (CLGU) principle of Blackorby and Donaldsor9@4). CLGU essentially says
that adding a person to an existing population will incressaal welfare if and only if that
person’s income exceeds the value afiical level. From a normative perspective, the crit-
ical level can be interpreted as the minimum income needesddimeone to add “value” to
humanity. (The critical level has been termtié value of living by Broome (1992b).) So-
cial welfare according to CLGU is then defined as the sum ofltfierences between some
transformation of individual incomes and the same tramsédion of the critical level.

CLGU is a social evaluation approach that is both normatiagdractive and (surpris-
ingly) little known; it has also not yet (to our knowledge)detested and applied. There
are, however, two major difficulties in implementing CLGUKSE, it is difficult in practice to
agree on a non-arbitrary value for the critical level. In ald@f heterogenous preferences
and opinions, it is indeed difficult to envisage a relativefgle consensus on something as
fundamentally un-consensual as the “value of living”. S&tat is also difficult to agree on
which transformation to apply to individual incomes whemgating social welfare. We get
around these difficulties in this paper by applying stodbakiminance methods for making
population comparisons under a CLGU framework. This avbaisng to specify a particular
form for the transformation of individual incomes. This@aknables assessing the ranges of
critical levels over which normatively robust CLGU comams can be made. In a poverty



comparison context, it also makes it possible to derivednges of poverty lines over which
robust CLGU comparisons can be obtained.

Although the paper’s main objective in this paper is to corapeelfare through CLGU,
the use of CLGU for social evaluation purposes has impoitaplications for the design of
policy and for the analysis and monitoring of human develeptin general. According to
CLGU , the socially optimal population size maximizes thedurct of population size and
the difference between a single-individual “socially egentative income” and the critical
level. This results in policy prescriptions that optimihe trade-off between population size
and some measure pér capita well-being in excess of the critical level.

For instance, the process of demographic transition (tfiv@ureduction of both fertility
and mortality) in which a large part of humanity has receatigaged is often rationalized as
one that maximizeper capita welfare under resource constraints. Itis unlikely for deped
countries that this process also maximizes social welfaeeGLGU perspective. As we will
also see in our illustration, Canada’s CLGU has robustlygased in the last 35 years despite
a significant increase in population size. For developedhizms, such a social evaluation
perspective can thus provide a rationale for promotingcpesithat encourage fertility, such
as the provision of relatively generous child benefits fonifees with many children.

Whether the current demographic transition is consistetit @LGU maximization in
developing countries depends much on the value that is séhdocritical level. A social
planner would favor a population increase only if the addiél persons enjoyed a level of
income at least equal to that level. This would be more difficuachieve in less developed
countries, where average income is lower relative to thealilevel, so a smaller population
might then be desirable. Optimal policies would then airmntyéaseper capitaincome and
raise social welfare by limiting demographic growth (pautarly of the poor people). This
could involve compulsory measures of birth control for tlh@pand measures for increasing
the life years (only) of the more affluent.

The use of CLGU thus enables social evaluations to be made thleedistributions and
policy outcomes to be compared involve varying populatizes These are certainly the
most generally encountered cases in theory and in practiois. is also almost always the
appropriate setting when making welfare comparisons ad¢noe.

A few papers have recently considered comparisons of popateof unequal sizes with-
out using the replication-invariance axiom. One of the miesent is Aboudi, Thon, and
Wallace (2010), who generalize the well-known concept ojomiation and suggest that an
income distribution should be deemed more equal than anotiegif the first distribution can
be constructed from the second distribution through lit@aasformations of incomes. Pogge
(2007) proposes the use of the Pareto criterion to compaial seelfare in income distribu-
tions with different numbers of individuals. Consideringlythe most well-off persons in
the larger population (such that their number be equal teiteof the smaller population),
Pogge (2007) suggests that social welfare in the largerlpbpn should be greater than
in the smaller population if every person in the larger pagiah reduced to the size of the
smaller one enjoys a level of well-being greater than thatefy person in the smaller popu-



lation. Other relatively recent interesting contribusanclude Broome (1992b), Mukherjee
(2008) and Gravel, Marchant, and Sen (2008). Our paperrsliffem these earlier papers
by focussing on how to rank distributions and outcomes ntwelg and empirically using
CLGU-based dominance criteria.

The paper’'s normative setting is described in Section 2yev@&.GU is introduced and
motivated and social welfare dominance relations are d#finBection 2 also discusses
how this relates to well-known poverty dominance critefiiais dominance context extends
Blackorby and Donaldson (1984)’s focus on CLGU indicesIdbduilds on the theoretical
contribution of Trannoy and Weymark (2009), who proposed.&Q dominance criterion
that is an extension of generalized Lorenz dominance arahgearder welfare dominance.

Section 3 presents the statistical framework that is usedrialyzing dominance rela-
tions, both in terms of estimation and inference. It alsoetlgys the apparatus necessary
to estimate normatively robust ranges of critical levelsct®n 4 provides the results of a
few simulation experiments that show how and why populasiae may be of concern —
normatively and statistically — for social welfare ranksng

Section 5 applies the methods to comparable Canadian Suofggonsumer Finances
(SCF) for 1976 and 1986 and Canadian Surveys of Labour araimedynamics (SLID)
for 1996 and 2006. Canada’s population size has increasediyst 50% between 1976
and 2006. We assess whether social welfare has increasezti@aded over that period
in Canada, allowing for variations in population size andome distributions and using
ranges of “poverty lines” (or censoring points) and valulesitical levels. Using asymptotic
and bootstrap tests, we find that Canada’s welfare has ¢fabadroved in the last 35 years
despite the substantial increase in population size anfd¢héhat new lives do not necessarily
increase society’s value in a CLGU framework. More surpghi perhaps, Canada’s smaller
population in 1986 is nevertheless socially better thana@ais larger population in 1996
for a relatively wide range of critical levels and despitegngicant increase in average and
total income. Hence, not only can average and total utditasm present significant ethical
weaknesses, but their social evaluation rankings canrdifiportantly from those derived
from critical-level utilitarianism. Section 6 concludes.

2 CLGU: an alternative approach to assessing social wel-
fare

2.1 Averageand total utilitarianism

The most popular methods to assess social welfare in thextooit variable population
sizes are based on average utilitarianism. Using averdgarignism as a social evaluation
criterion implicitly assumes that population sizes shawddmatter. One consequence of this
is that a population with only one individual will dominateyaother population of arbitrar-
ily larger size as long as those larger populations’ avetdii¢y is (perhaps only slightly)
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smaller than the single person’s utility level — see for amste Cowen (1989), Broome
(1992a), Blackorby, Bossert, and Donaldson 2005, and Kraaatd Mukherjee (2007). This
social evaluation framework would seem to be too biasednagabpulation size: it would
say for instance that a society made of a single very richgme(Bill Gates for example)
would be preferable tany other society of greater size but lower average utility.

An alternatively popular social evaluation criterion igaioutilitarianism. Adopting to-
tal utilitarianism leads, however, to Parfit (1984)’s “rgpant conclusion”. Parfit (1984)’s
“repugnant conclusion” bemoans the implication that, wattal utilitarianism, a sufficiently
large population will necessarily be considered bettem ey other smaller population, even
if the larger population has a very low average utility:

For any possible population of at least ten billion people, all with a very high
quality of life, there must be some much larger imaginable population whose
existence, if other things are equal, would be better, even though its members
have lives that are barely worth living. (Parfit 1984, p.388).

Such a social evaluation framework again seems to be toogdyrbiased, this time against
average utility.

2.2 Critical-level generalized utilitarianism

Blackorby and Donaldson (1984) have proposed CLGU as amattee to (and in order
to address the flaws of) average and total utilitarianisms@®how CLGU is defined, con-
sider two populations of different sizes. The smaller papah of sizeM has a distribution
of incomes (or some other indicator of individual welfaré&em by the vectom, and the
larger population of siz&/ has a distribution of incomes given by the vectowith M < N.
Letu := (uy, us,..., upr), Whereu,; being the income of individual andv := (vy, vs,..., vn)
with v; being the income of individugl. Let the level of social welfare in andv be given
by

W (u;a) = Z (9(u:) — g(a)) (1)
and
W(via) = (g(v;) — g(@)), 2)

j=1
whereg is some increasing transformation of incomes and a “critical level”. Note that
social welfare in the two populations remains unchangedweheew individual with income
equal tox is added to the population. The smaller population exhipriéster social welfare
than the larger one given this if and onlyiif (u; ) > W (v; a).
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CLGU thus aggregates the differences between transfaynsatf individual incomes
and of a critical level. It can therefore avoid some of averatjitarianism’s problems, since
the addition of a new person will be socially profitable ifttparson’s income is higher than
the critical level, although that income may not necesgéd higher than average income.
CLGU can also avoid the “repugnant conclusion” since it i@ty undesirable to add indi-
viduals with incomes lower than the critical level, regasd of how many there may be of
them. Overall, CLGU provides a relatively appealing andsparent basis on which to make
social evaluations and avoid the flaws associated to averadjtotal utilitarianism.

Suppose now that we may wish to focus on those income valle® lseme censoring
point z. This is a typical procedure in poverty analysis. Supposéh is the maximum
possible level for such a censoring point (or maximum “ptwvéne” in a poverty context).
Also denoteu,, := (u, a, ..., ) asu “expanded to size of population v” by adding N — M
« elements. For a poverty ling the well-known FGT (Foster, Greer, and Thorbecke 1984)
poverty indices with parameter— 1 (orders in what follows) for distributiorv are defined
as

Pi(z) =+ Z(z — ;) (v; < 2), 3)

wherel! (-) is an indicator function with value set to 1 if the conditiartiue and to 0 if not.
Similarly, the FGT indices for the expanded populatipnare defined as

<

M
P = A3

" (1 -y ). @

These expressions will be useful to test for CLGU dominance.

2.3 CLGU dominance

The welfare functions in (1) and (2) depend @rmnda. One could choose a specific
functional form forg and a specific value fax, but that would be inconvenient in the sense
that the welfare rankings af andv could then be criticized as depending on those choices.
It is thus useful to consider making welfare rankings that\alid over classes of functions
g and ranges of critical levels. To do this, lets =1,2,..., stand for an order of “welfare
dominance”. Considef® as the set of functionR — R that ares times continuously



differentiable. Define the class’_ . of functions as

2 <zt
s ). g*(z) = g*(z) forall z > z,
=2t T\ Y eC gz({lj) = gz(z_) forall z < z, (5)

and where— (1)F L2 < g vk =1, .., s.

Also denotelV; .- .. as the set of CLGU social welfare functions wigh € 77_ _, and
critical levela.. For any vector of income € RY, N > 1, this set is defined as:

N
ot = {W 'W(v; a) = Z (9°(vi) — g°(a)) whereg” € F;_ . andv e R 5.

=1
(6)
The first and third lines in (5) say that the censoring peintust be below some upper level
2T. The second line says that for social evaluation purposesanweset to:~ those incomes
that are lower than— — this assumption is mostly made for statistical tractapileasons,
to which we come back later. The fourth line on the derivativgy* imposes that the social
welfare functions be Paretian (fbr= 1), be concave and thus increasing with a transfer from
a richer to a poorer person (fér= 2), be transfer-sensitive in the sense of Shorrocks (1987)
(for k = 3), etc.. The greater the ordes the more sensitive is social welfare to the income
levels of the poorest.
We can then define the (partial) CLGU dominance orde};’n;jljg,’z+ as

uzVo L ve W(wa)>W(v;a)VW e | A p——— (7)

~NQ,ZT 2

The welfare ordering (7) considetsto be better thaw if and only if W (u; «) is greater
thanW (v; «) for all of the functions¥” that belong tdv; .

Similarly, define the (partial) FGT dominance ordertg§”2+ as

u, ,ﬁi}iﬁ v& P (2) = Pl(z) <Oforallz~ <z <z". 8)

This FGT ordering (8) considers to be better thaw if and only if the FGT curveP; (z)
for u, is always below the FGT curvE:(z) for v for all values of:~ < 2z < 2+,

Duclos and Zabsonré (2009) demonstrate that the two partiatings are equivalent, for
someq, 2z~ andz™:

u L+ VS U, ,ﬁi}iﬁ \Z 9)

This result is used as a foundation for the statistical aedethpirical analysis of the rest of

the paper. The current paper uses in fact a natural exteas{®hby focussing on dominance
over arange of critical levelsa € [a~, a™]:

sP
27,2zt

uzll v, Vaea ot S u, g v, Va € [a™,a™]. (10)
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This provides us with a social ordering that is robust ovelaass of functionsg and over
rangesz—, z*] and[a~, a™| of censoring points and critical levels.

3 Statistical inference

This section develops methods to infer statistically thevalbdominance relations. For
the purpose of statistical inference, we assume that thelabgn data have been generated
by a data generating process (DGP) from which a finite (buallysiarge) population is
generated. For some (but not for all of the results), we vaktahto assume that this DGP is
continuous, but this is different from saying that the papiohs must be continuous (or of
infinite size) too. For purposes of inference on the popoiteti we will use data provided by
a finite (typically relatively small) sample of observatsodgrawn from the populations. We
defineF andG as the distribution functions of the DGP that generate thmifaion vectors
u andv respectively.

3.1 Testing dominance

The equivalence between FGT dominance and CLGU dominanoesnintly allows
focusing on FGT dominance. As above dadenote the critical level and™ be the maximum
possible value that we assume this critical level can take.aRy poverty linez, define the
FGT index of ordes (s > 1) for the expanded populatian, as

z

Pi(2) = [z = w) dEuw), (11)

whereF,(z) := 2 F(z) + 25 (a < z) is the distribution of the expanded populatian

and F'(z) is the distribution function ofi. The FGT index of the population is similarly
defined as

z

Pi(z) = /(z — )G (v). (12)
0
The task now is to introduce procedures to test for whetheypaulation CLGU-dominates
another one at ordey, and this, over intervals of censoring points and critiezkels. Two
general approaches can be followed for that purpose. Theditsased on the following
formulation of hypotheses:

Hy + Pi(z)—Pp(2) <0 forall (z,a) € [27,2"] ® [a7,a'], (13)
Hi : Pi(2) — P (2) >0 forsome(z,a) € [z7,27] @ [a™,at]. (14)
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This formulation leads to what are generally called “uniotersection” tests. It amounts
to define a null of dominance and an alternative of non-dontdaa (The null above is that
v dominatesu, but that can be reversed.) It has been used and applied énasgapers
where a Wald statistic or a test statistic based on the supreofithe difference between the
FGT indices is generally used to test for dominance — seexdamele Bishop, Formby, and
Thistle (1992) and Barrett and Donald (2003) and LefranstdResi, and Trannoy (2006).
Davidson and Duclos (2006) discuss why this formulatiom$et decisive outcomes only
when it rejects the null of dominance and accepts non-damsaThis, however, fails to
order the two populations. In those cases in which it is désrto order the populations, it
may be useful to use a second approach and reverse the ré¢l&} ahd (14) by positing the
hypotheses as

Hy : Pi(z)— Py (2) >0 forsome(z,a) € [z7,27] @ [a™,a'], (15)
H : Pi(z)—Pp(2) <0 forall (z,a) € [z7,27] ® [a,a™]. (16)

This formulation leads to “intersection-union” tests, imish the null is the hypothesis of
non-dominance and the alternative is the hypothesis of danae. This test has been em-
ployed by Howes (1993) and Kaur, Prakasa Rao, and Singh Y1B®&h papers use a mini-
mum value of the-statistic. An alternative test is based on empirical Iikebd ratio (ELR)
statistics, first proposed by Owen (1988) — see also Owenl(2f@® a comprehensive ac-
count of the EL technique and its properties. Here, we follbes procedure of Davidson
and Duclos (2006), which can also be found in Batana (2008@nGnd Duclos (2008) and
Davidson (2009). Unlike these papers, we must, howeverspagial attention to the value
of the critical level and to the sizes of the two populations.

Let m andn be the sizes of the samples drawn from the populatioasdv respectively
and letw;' andwy be the sampling weights associated to the observation nfidhl i in the
sample ofu and individual; in the sample of- respectively. Suppose also that, w}') and
(vj, zb}’) are independently and identically distributed (iid) asrbandj. For the purposes
of asymptotic analysis, defing!' andw} such that

w' = ma! andw) = nady. (17)

These guantities can be used and interpreted as estimates pdpulation sizes af andv
respectively. They remain of the same orderaasndn tend to infinity. We can then compute
P;a (z) and P%(z), which are respectively the sample equivalent®pf(z) and P (z). They
are given by



1- (%Zw?) /(% ' w}’)] (z—a)i_l (18)
1l — o1 1 &
—~ <E2w; (2 —v;)% >/<52w;> : (19)

where(z — )" "= (z—2)" ' I(z < 2) for any income value.
We use the above to compute an ELR statistic./i}eindpy be the empirical probabilities
associated to observationsind j respectively. The ELR statistic is similar to an ordinary
LR statistic, and is defined as twice the difference betweemticenstrained maximum of
an empirical loglikelihood function (ELF) and a constrairfeLF maximum. Subject to the
null (15) thatu dominatess at some given value of: anda, the constrained ELF maximum

ELF (z,«) is given by

and

ELF (z,«) max Zlogpl +Zlogpj (20)
subject to
=1 pi=1 (21)
i=1 Jj=1
and

Zp Z—uZ (ijw}’—ip}‘w;‘> z_a31<z Z_U]s1.
=1 (22)

The unconstrained maximum ELF is defined as (20) subjectifp (otice that (22) can also
be rewritten as

Zp;‘w;‘ [(z — uz-)i_1 —(z— oz)i_l} < pjwy [(z — Uj)j__l —(z— oz)i_l] . (23)



In the spirit of Davidson and Duclos (2006), we compute th&kEtatistic for all possible
pairs of(z,a) € [z, 27] ® [a~, o], so that we can inspect the value of that statistic when
the null hypothesis in (15) is verified at each of these pamagtely. The final ELR test
statistic is then given by

LR = min LR (z,«), (24)

(z,0)€[z7,2zT]|®[a,a™T]

where
LR (z,a) =2[ELF — ELF (z,a)]. (25)

When, in the samples, there is non-dominancex @n v at some value of and« in
[z7, zF]®[a™, ], the constraint (23) does not matter and the constrainedmewhstrained
ELF values are the same. The resulting (unconstrained)rexalgprobabilities are given by

1 1
p = — andpy = —. (26)
m n

In the case where there is dominance in the samples, theraong23) binds and the proba-
bilities obtained from the resolution of the problem are:

1

pi = 3 pn (27)
m—p[u—w;‘((z—ui)Jrl (z a)+1)}
and
: 1 (28)
p; = s— s— :
¢ n+,0[1/—w;’((z—vj)+l—(z—a)+1)}
The constantg andv are the solutions to the following equations,
Soppw [(z—uw)Y = (2= )T = X pywy [z —vy)) = (2 - )]

with pi* andpy given in (27) and (28). The solutions cannot be found anziifi, so a
numerical method must be used.

An alternative, though analogous, statistic is tk&tatistic of Kaur, Prakasa Rao, and
Singh (1994), which is the minimum of 2, «) over[z~, 27| ® [a~, a*], where

(30)
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andvar <]55(z) - P;;a(z)> is the estimate of the asymptotic variancel¥f(z) — Py, (=) for
some pail(z, «). Denote that minimized statistic byt.

Testing the null of dominance makes sense only when therensrdince in the original
samples.We can then proceed with asymptotic tests andédstoap tests with eithet R or
t statistics, although for bootstrap tests we must first olitee empirical probabilities of the
ELF approach. LeL R, andt, denote the statistics in the case of asymptotic tests aidigt
andt, be the statistics for the bootstrap tests. For asymptatis tend for a test of level, the
decision rule is to reject the null of non-dominance in favbthe alternative of dominance if
t, exceeds the critical value associated tof the standard normal distribution. Note tHa®
and the square afare asymptotically equivalent — see Section 8.3 in the Agpeior more
details. We can therefore also use a decision rule of regttie null of non-dominance in
favor of the alternative of dominancelifR, exceeds the critical value associatedtof the
chi-square distribution.

The bootstrap testing procedure is formally set up as falow

Step 1: For two initial samples drawn from two populatiorenpute LR (z, o) andt (z, «)

for every pair(z, «) in [z, 27| ® [a~, at] as described above. If there exists at least
one(z, a) for which Pg(z) — P;a(z) > 0, then H; cannot be rejected; choose then a
value equal td for thep-value and stop the process. If not, continue to the next step

Step 2: Search for the minima statistics, that is to say, filkdas the minimum of.R (z, «)
andt as the minimum of (z, «) over all pairs(z, a). Suppose thal.R is obtained
at (z,a) and denote;' andpy the resulting probabilities given by (27) and (28) and
evaluated atz, &).

Step 3: Usey;' andpy to generate bootstrap samples of sizéor u and of sizen for v by
resampling the original data with these probabilities. Bbetstrap samples are thus
drawn with unequal probabilitigg' andpy. It can result that, in some of the bootstrap
samples, the estimated size of populatiohecomes larger than that of population

In such cases, the roles 6}, andG are subsequently reversed, that is, we consider
andG,.t

Step 4: As s usual, consider 399 bootstrap replicatibas],...,399. For each replication, use
the bootstrap data and follow previous step 3. Compute tbestatisticsL R, andt,
for everyb < 399 as in the original data.

Step 5: Compute the-value of the bootstrap statistics as the proportioh Bf that are greater
than LR — the ELR statistic obtained with the original data — or asghsportion of
t, that are greater than— thet-statistic obtained with the original data.

Step 6: Reject the null of non-dominance if the bootsjragalue is lower than some specified
nominal levels.

1This will not occur in samples where all observations haeesttime weights.
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3.2 Estimating robust ranges of critical levels

To get around the problem of the absence of empirical/dtb@esensus on an appropriate
range of values for the critical level, we can search for ena® on the ranges of critical levels
thatcan order distributions (see Blackorby, Bossert, and Donaldse96 and Trannoy and
Weymark 2009 for a discussion). For this, consider againgeulationsu andv of sizes
M and N respectively. Suppose that we have two samples drawn dr@amdv and assume
for simplicity that they are independent and that their mota®f order2 (s — 1) are finite.
Denotem andn the sizes of the two samples. For some fixedand 2", definea, ando®
respectively as follows:

o, = max{a|Py (z) > P&(z) forall 2~ <z < z"} (31)

and

o’ = min{a| Py, (z) < Pg(z) forall 2~ < z < 27}, (32)
In the light of how they are defined, we can referatpas an “upper bound” of the critical
level anda® as a “lower bound” of the critical level. In order to have FGdhinance made
robustly over ranges of censoring points, we can also defiieat values for the maximum
censoring point as:

s —

z7 =max{z"|P} (z) > P&(z) forall 2~ <z < 2"} (33)

and

2 = max{z"|P}, (2) < Pg(z) forall 2~ < 2 < 2*}, (34)

wherea is some fixed value of critical levek; is the maximum censoring point for which
v dominatear andz** is the maximum censoring point for whiechdominatesy.
Given the definitions (31) and (32) and assuming thanda?® exist, it is useful to define
the following assumptions. Far,, suppose that
{%P}(z) > Pi(z) forall z < ag ) (VDU,)
xPi(2) < Pi(z) forsomez > a, +eandz™ <z < 27,

wheree is some arbitrarily small positive value. Faf, consider first the case ef=1 and
suppose that

N

Mpl(z)+ @M~ pl(z) for somez < a! — ¢,

(UDV,)

{%P%(Z) + WM ra! < 2) < Pi(z) forallz- <z <zt

wheree is again some arbitrarily small positive value. Whe» 2, we modify the above
assumptions slightly and definé€ as:

13



N

LPi(2%) 4+ M5M(2° — o) = Pa(z%) fora® < z° <zt

{Mpg(zz + WM (o 0f) Tt < Py(z) forallzm <2< 2t (UDV.)

with (z — 2)57' = max[(z — 2)*"1,0]. Suppose that* exists and is the crossing point
between the FGT curveB;, and P;. In most cases, we would expectto coincide with

2t — see Section 8.1 in the Appendix for more details. AssumgtdDU, andUDV

are useful for the estimation of, anda®. In order to better understand their role, consider
the case ok = 1. Figures 1 and 2 graph cumulative distributions functiodgisted for
differences in population sizéslt is supposed that the larger populatiordominates the
smaller populatioru for a rangel0, 2] of censoring pointsr € [0, ;] . This is expressed
by the fact that the cumulative distributiéhof v is under the cumulative distributiah of u
adjusted by the rati% up toa; > 0. Figure 1 shows the case where the critical level is equal
to 0. In this case, the larger population clearly dominates mhaller one. At the critical level
valueay, the two functions cross; just dominates: when the critical level is equal to;.
However,v does not dominata when the critical level takes a valug > «;.

In Figure 3,u is assumed to dominate The dominance ofi overv is preserved when
the critical level has a value at least equahfo But this is not true for any critical leveil,
lower thana!.3

Note thato; anda! are the crossing points of FGT curves. This suggests thécatiph
of the procedure of Davidson and Duclos (2000) for estinmediod inference of the popula-
tion values ofv; anda!. Consider the populationsandv with sample sizes equal @ and
n respectively. Using assumptidhDV, (also see Figure 3) and assuming continuity of the
DGP ata!, we have that

M N-M
Denotingy (2) = X Ph(2) + B2 [ (ol < 2) — PL(z), them (2) < Oforall 2~ < » < 2+
andy (o) = 0. Recall that
. LSt (u; < R LS~ w¥l(vy < 2
R R e e CY
m 2ai=1 Wi n Ej:l w;
wherew;' andw} are given in the previous section. A natural estimatonbfvould bea!
such that ) )
y N-M
M .
NP}(@I) + % — P(ah) =0, 37)

2See Section 8.1 in the Appendix for the case of 1.
3The Appendix illustrates graphically two cases of domireaniou overv whens > 1.
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wherel = 135" w@andN = 137" wY are respectively the estimators of the popula-
tion sizes ofu andv.

Fors > 2, denoteg (a®) = 2 Ps(2%) + M (28 — o%)7! — P&(2*). Recall thatz®
is defined on page 13 and > o°. Then¢' (o) = — (s — 1) =M (25 — )2 £ 0. A
consistent estimator @f*, &*, can be obtained from

M. . NI

—P(2°) + — 25— A5) T = Pi(2) = 0, 38
< w(2°) < ( ) o (2°) (38)
where
A LY wd (= —u)y A Ry (= =)y
Pp(z*) = ———= and P3(z") = — . (39)
L8 S

(40)

To derive the asymptotic distribution éf for s > 1, assume that’ andG are differ-
entiable and denot®p (z) = F’(z) and P2 (z) = G’ (z). Also suppose thatw?)"", ~
iid (frm, 02, ) and (w;)?zl ~ did (v, 02, ). Assuming thai =  remains constant as
andn tend to infinity, let

1 vl 0
VEAGY [w (o' — U)J +
r—1 u 1 0 2
o [Varw (@' —u), +ogu| +

[faen _ ruah) 4 r 1

42 T42 T'42 wVY
2 [ () (ar = w)} ) = Ti(ah)Ts | +
9 [n(a1> Lo r3<a1>] y

(41)

Wherel"l(al) =F |:77’L_1 Z wlu (Oé1 — UZ)O:| , g = oy Fg(al) =F
=1

1 1 0
n- le}’(a — i),
]:

andl'y = u,~ and, fors > 2,
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[,z var [w" (25 — v)i_l} +
u S

oz [varw" (2° — w)H (25— )P P02 +
2
. v A I
A= a5 o B (w2 (o7 i) (42)
T (2 —a’) [E ((w) (28 —u)} ) —Tils] +
2 [ - (o1 - - ]

[E ((w")2 (z° — v)i_l) — I'3ly]

Wherefl =F |i77’L_1 Zw;‘ (Zs —Ui)i_1:|, Iy, = oy I's = F
i=1

— n v s s—1
nlzle(z —’Uj)+ ,
]:
andl'y = fiv.
We can now state the following theorem.

Theorem 1
Fors = 1, assume that there exists such that the conditioASDV, on page 13 are satisfied

and that’ P2 (') — P2(al) # 0. Then,y/n(a' — a') 5 N(0, V1), with

Al
V= lim var(vn(@' —a')) = .
m, n—00 u
(12 P () ~ PY(a))
andA! given in (41).
Fors > 2, suppose that there exist$ such that condition8)DV , on page 13 are satisfied
and that* > «o®. Then,\/n(&* — o*) 4 N(0,V*), where

Vo= lim var(vn(@® —a°)) = A 5
m, Nn—00 |:(S o 1) (1 i Zz—:> (ZS . as)s—2
andA’ given in (42).
Proof: See Appendix.

Let us consider the critical valug, and suppose that conditioNsDU, are satisfied. As-
suming continuity of the DGP at,, we obtain that

M
~ Prlas) = Pglan) = 0. (43)
A consistent estimator af,, is obtained from

~

M~ . </
ﬁpl? (&) — Pi(as) = 0. (44)
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Using the same previous conditions when dealing with thenasgtic distribution ofa?®,
denote

712;1 [var w* (a; — u)i_l} -
2 var [w (a — )5 l] +

2
A, = [ ~ ] o2t (45)
i (as) F (as)
2|5 - —}43 X

[E ((w")z(a —v) ) Fg(as)F4]

wherel'; (o) = E [m_l >owi (s — ) } Ty = puw, D) = B [0t S w) (s — ;)5 |,
i=1 j=1
andl'y = u,~. The following theorem gives the asymptotic distributidrmg.

Theorem 2

Suppose that conditiorDU, on page 13 are satisfied and that for 1 there existsy,
such thatd Pi (o) = Pg(a,) and 3 Pi(z) > Pi(z) for all = < «,. Denotey(z) =
L Pi(z) — P&(z) and note thap (=) > 0 for all = < o, andy (o) = 0. Then,¢' (o) =
(s = 1) (P (as) — P& () # 0. We have that/n(d, — o) 4 N(0,V,) where for

s =1,
A

et PO () — Pl(an) )

Vi= lim var(vn(d —a)) =

m, n—00 (

and fors > 2,
A

Vo= lim var (v/n(as — a,)) = i
| T (- )

m, n—00

with A given in (45).
Proof: See Appendix.

4 Simulationsof the effect of population size on social eval-
uation

We now briefly illustrate the impact of population sizes onfare rankings using the
CLGU dominance approach. To do this, we consider two pojaugbf different sizes. The
smaller population is of siz&/ and has a distributioA’ and the larger one is of siz€ and
has a distributiorts. We define those distributions over tfe1] interval.

Let populationv have a uniform distribution ofD, 1] and populationa be piecewise-
linear distributed, that is to say, be uniform over 20 eqeansents belonging to the, 1]
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interval. The upper limits of these segments are 0.05, @.13, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9050and 1.00. Becausehas a
uniform distribution, these upper limits also correspamthie cumulative probabilities for

at these points. For the first case that we consider, the @aiiveiprobabilities fom at the
upper limit of each segment are respectively 0.15, 0.25),@035, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.82, 0.85, 0.87, 0.90, 0.9%; @nd 1.00. We suppose that
M =2/3.

" v dominatesu for low values ofa. Figures 4 and 5, also show that =0.3 anda, =
0.6. The larger population thus dominates the smaller populatiarat first order for any
critical level at most equal to 0.3. Second-order dominamobtained with anyy < 0.6.

The second case we consider lets the smaller populatdmminate the larger population
v. For this, the cumulative probabilities farare set to 0.005, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.45, 0.55, @G%), 0.75, 0.80 and 1.00. We can
then find the critical levela®. Figures 6 and 7 show that = 0.4 anda? = 0.2. Hence, the
smaller populatioru dominates the larger one, at first order, for any criticaklev > 0.4,
and at second-order for aiy> 0.2.

Table 1 and Table 2 show how the lower and upper bounds foiatigess of normatively
robust critical levels vary with the order of dominancex, (the upper bound) is increasing
with s anda® (the lower bound) is decreasing with In both cases, this says the ranges of
normatively robust critical levels increase with the ordedominance.

Tables 1 and 2 also show how those bounds are affected bygimpusize. As the ratio
of the population sizes approaches 1 (the two distributemesleft unchanged), the value
of a, increases whereas the valuewfdecreases. Conversely, if the ratio of the sizes is
sufficiently small,a, becomes small and that af becomes large. The intuition is that the
larger the difference in population sizes, the greater mygortance of the critical level in
ranking the distributionsCeteris paribus, therefore, the larger the difference in population
sizes, the more restricted are the ranges of critical lewets which it is possible to rank
distributions.

5 Illustration using Canadian data

We now illustrate the use of the normative and statisticaniework developed earlier.
The data are drawn from the Canadian Surveys of Consumend¢eésg SCF) for 1976 and
1986 and the Canadian Surveys of Labour and Income Dyna®iid¢BJ for 1996 and 2006.
Empirical studies on poverty and welfare in Canada have lgnased these same data: see
inter alia Chen and Duclos (2008), Chen (2008) and Bibi and Duclos (R0&® use equiv-
alized net income as a measure of individual well-being. g for that purpose on the
equivalence scale often employed by Statistics Canada.€rthiivalence scale applies a fac-
tor of 1 for the oldest person in the family, 0.4 for all otheemmbers aged at least 16 and 0.3
for the remaining members under age 16. In order to take ctount the differences in spa-
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tial prices, we adjust incomes by the ratio of spatial “matk@sket measures” (see Human
Resources and Social Development Canada 2006). We alstaisti& Canada’s consumer
price indices to convert dollars into 2002 constant dollars

The sample sizes from 1976, 1986, 1996 and from 2006 areatdsglyg 28,613, 36,389,
31,973 and 28,524. The use of the sampling weights leadstitnages of Canada’s pop-
ulation size in 1976 of 22,230,000, of 25,384,000 for 19862&870,000 for 1996, and
of 31,853,000 for 2006. We assign the value of O to all negdticomes — this concerns
1.9% of the observations for 1976 and less than 0.5% for thergtears. The cumulative
distribution for all four years is shown in Figure 8.

We now turn to testing dominance. The FGT dominance testhsetpper bound of the
censoring point™ to $70,500, with the implicit assumption that the ranf$@ 500 $70,500
will cover any censoring point that one would want to applgeValue of:~ = $9,500 is the
minimum equivalent income that allows inferring dominafmemost of the comparisons we
will consider below. No more than 7.1% of the observationang of the four distributions
have equivalent incomes in excess:0f= $70,500. Setting such a relatively high value for
2T is also useful to be able to interpret the FGT dominance reysgalmost) as welfare ones.

Table 3 presents the results of the dominance tests baséeé carge of censoring points
[27,2%] = [$9,500%$70,500 and the range of critical levela.™, o] = [$5,000$15,000.
The lower limita~ of the critical levels is set arbitrarily to $5,000; the upfmit o+ is close
to Statistics Canada’s Low-Income Cutoff, a popular povtrteshold in Canada.

In Table 3, we test the null hypothesis that the larger pdmradoes not dominate the
smaller one. For expositional brevity, we focus on the firster results. At a 5% significance
level, recent years dominate earlier years for both asyte@od bootstrap tests, except when
comparing 1986 and 1996. The relatively large lower bound of $9,500 is needed to infer
the dominance of 2006 over 1986 and over 1996; for the othmirtince relations, however,
2z~ can be set lower, such as $3,500 for the dominance of 19861&# and $4,500 for
the dominance of 1996 over 1976. Notice that all of the domieaelations of larger over
smaller years remains unchanged when the lower beunof the critical level becomes
arbitrary close to 0 — see Duclos and Zabsonré (2009).

We now turn to the estimation of the upper bound®f the ranges of those critical levels
over which welfare dominance rankings can be made. For tbisgaure to be valid for dom-
inance of a large over a smaller population, we need to haniegethe hypothesi¥ DU,
for givens. Given the inference results of Table 3, we therefore foqu$ivee dominance
relationships: 1976 versus 1986, 1976 versus 1996, 1986y&006, 1986 versus 1996 and
1996 versus 2006.

Table 4 shows the estimatésfor the dominance of 1986 and 1996 over 1976. Analogous
estimates are given in Table 5 for the dominance of 2006 09@6 hnd 1996 respectively.
Table 4 shows for instance that 1986 dominates 1976 for #itarlevels up to an upper
bound of $30,550, with a standard error of $1,639. As can be,gbe estimates af, indi-
cate that the dominance of 2006 over 1996 is stronger thashaimenance of 2006 over 1976
and the dominance of 1986 over 1976. For instance, the useyafréaical level lower than
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$49,592 leads to the dominance of 2006 over 1996 at firstrorttevever, the dominance of
1996 over 1976 is obtained only for critical levels at mostado $17,453 (with a standard
error of $1,129). This also indicates that for valuesrpfyreater than $17,453 and for some
of the CLGU welfare indices that are members of the first-oatessF. _, (see (5)), 1996
would not show more welfare than 1976. ’

We can also estimate the lower bounad®f critical levels over which smaller populations
dominate larger ones. This is possible to do with our Camadéa only for the dominance
of 1986 over 1996 and when> 2. The case of = 1 is indeed too demanding sinéé does
not exist; there are therefore first-order indices that Wwaoahk 1996 better and this, for any
choice of critical level value. Considering for the dominance of other smaller populations
over larger ones is not possible becausetti@V, assumption posited in Section 3 is not
satisfied for such relations. This is partly due to the faat there are more individuals with
equivalentincome equal to 0 in the samples of earlier y&ans in the samples of more recent
years. Consequently, the estimates of the absolute nunit@wver-income people in 1976
and 1996 exceeds those of 2006 and it becomes difficult tarobdtaninance of 1976 and
1996 over 2006; the same applies for 1986 over 2006.

Figure 9 shows a plot of the estimated absolute number oflpdxgbow = (“number of
poor”) in 1976 and 1996. As can be seen, if the censoring pdsho more than the critical
level &, then there are more poor in 1976 than in 1996. Fequal tod;, the number of
poor is estimated to be the same at 8.38 millions for the tvaws/e

Table 6 shows the estimates @f (for s > 2) for dominance of 1986 over 1996. The
critical levela! cannot be found, given the initial non-dominance of 1986 d@96 at first-
order. The estimate of? is $23,878, with a standard error of around $1,100. Fromehelts
of Table 6 we can therefore infer that social welfare in Cartzats decreased robustly between
1986 and 1996 if lives need to enjoy a level of well-being ofieasst $25,100 ($23,878 plus
two standard errors) to contribute positively to socialfaed, as measured by second-order
welfare indices. With these critical levels, Canada’s sengbopulation in 1986 exhibits
greater social welfare than Canada’s larger populatiorD®61for all of the social welfare
indices that belong t&V? .. If we restrict attention to the class of third-order indice
W7 - .+, then Table 6 says that 1986 has greater social welfare 186 i the critical
levels are higher than $21,592 ($19,592 plus twice the staherror of $1,000). Fot = 4,
the corresponding figure is around $19,539.

We can also bound the ranges of censoring points over whéegie ik robust dominance
of one year over another. For all critical level values na bsn $31,000 and for all second-
order welfare indices, Canada in 1986 is better than in 189@lf censoring points up to
$53,096. This upper bound of the censoring points increasdbhe order of dominance
increases; it reaches a value of $218,36040& 4. (The influence ofs on oy, o*, and
21 is established in Duclos and Zabsonré (2009).) The link betwthe critical levely
and the upper bound of the censoring pointsis also considered in Figure 10 for first-
order dominance of 1986 over 1976. As the valuezofincreases, the critical level,
weakly decreases — an analogous relationship holds trdegber orders of dominance and
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for dominance of smaller over larger populations. Thus,gtreater the ranges of possible
censoring points we wish to allow for, the lower the rangeritical levels over which
we can find dominance. (This result is also theoreticallgwuksed in Duclos and Zabsonré
(2009).)

Note that given the definition & DU, on page 13, any value of the critical level greater
thanz* does not affect the relation of dominance of a larger overallenpopulation. That is
to say, ifa, = 2™, the larger population still dominates the smaller one éiveris arbitrarily
larger than:™ — settinga, is then harmless. Take for instance the case of the first-orde
dominance of 1986 over 1976, for whiéh = $30,550. For:* < $30,550,4, can thus be
set to as high a level as needed; f6r> $30,550, we havé; = $30,550.

6 Conclusion

This paper develops and applies methods for assessingys®eielfare in contexts in
which both population sizes and the distributions of indial welfare can differ. This is-
sue has important implications for monitoring human depelent and for thinking about
public policy. The paper makes three main contributionshto literature. First, it is one
of the first to use the critical-level generalized utilitaism (CLGU) framework of Black-
orby and Donaldson (1984), a framework that avoids someefuhdamental weaknesses
of the more traditional total and average utilitarian fravoeks. Second, it introduces and
uses relationships that can order distributions over elass§CLGU social welfare functions,
in the tradition of the stochastic dominance approach. dlhirs the first paper to analyze
combined population-sizes and population-distributi@mkings in a coherent statistical and
inferential framework. This is doniter alia by developing tools for testing for CLGU
dominance and for estimating the bounds of critical levats\aelfare censoring points over
which robust CLGU rankings can be made.

The paper is also the first to apply the CLGU framework to resdThis is done using
Canadian Surveys of Consumer Finances (SCF) for 1976 arsl 488 Canadian Surveys
of Labour and Income Dynamics (SLID) for 1996 and 2006. Astotip and bootstrap
procedures are used to test for dominance relationshipssthnese years, relationships that
involve testing over classes of social welfare functioasges of censoring points as well as
ranges of critical level values. It is found that recent gegenerally dominate earlier ones,
suggesting that there has been a social welfare improvem€anada in spite of the fact that
population size has increased substantially and that newdio not always increase society’s
welfare in a CLGU framework.

More surprisingly perhaps, Canada’s smaller populatioh986 is socially better than
Canada’s larger population in 1996 in a CLGU framework foektively wide range of
critical levels. Yet, comparisons of total and average meadndicate the contrary. Total
income in Canada indeed amounts to $654 billion and $78®hilespectively for 1986
and 1996; Canada’s average income is respectively $25/#892v,334 for 1986 and 1996.
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Hence, not only can the evaluating frameworks of averagda@adtiutilitarianism diverge in
theory and in practice, but they can also give opposite keeauation rankings to those of
critical-level utilitarianism, an alternative social évation framework that has been shown
to resolve nicely some of the ethical lacuna of average atad tbilitarianism. This is an
important lesson for anyone interested in the evaluatigpobty and human development in
the presence of demographic changes.

7 Figuresand tables
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Figure 1: Poverty incidence curves wiih= 0 adjusted for differences in population sizes
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Figure 3: Poverty incidence curves with= o' adjusted for differences in population sizes
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Figure 4: Population poverty incidence curves and domiearfithe larger population

Pﬁaz(Z') . 2 (Z)
2P%(2) Ho2
37 u _ 2])2
7 . AL

0 ag = 0.6 z

Figure 5: Populatio? curves and dominance of the larger population
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Figure 6: Population poverty incidence curves and domiearfithe smaller population
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Figure 7: Populatio®? curves and dominance of the smaller population
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Table 1: Population sizes and upper bounds of the critivel le- large dominates small

(%

M
N

==
==

1 1 2 M _ 3
4 2 3 N 4

a;  0.05 0.2 0.3 0.5
as  0.05 0.3 0.6 0.85

Table 2: Population sizes and lower bounds of the criticadlle- small dominates large

(%

M
N

==

1 1M _2 M_3
4 2 N 3 N 4

ot 0.95 0.85 0.4 0.3
o> 05 0.35 0.2 0.15

Table 3: First-order dominance tests

Dominance Asymptoticp-value | Bootstrapp-value
tests LR t LR t

1986 dominates 197f% 0.000 0.000 | 0.000 0.000
1996 dominates 1976 0.000 0.005 || 0.002 0.000
2006 dominates 1976 0.000 0.000 | 0.000 0.000
1996 dominates 198 0.500 0.500 - -
2006 dominates 198f 0.000 0.027 | 0.000 0.000
2006 dominates 1996 0.000 0.019 | 0.000 0.000
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Table 4: Estimates of the upper bound of range of criticaélewver which the larger popu-
lation dominates the smaller one

1986 dominates 1976

1996 dominates 1976

S Qg O Qs Os

s=1 30,550 1,639 17,453 1,129
s=2 48,294 2,153 30,708 2,104
s=3 69,958 3,854 41,263 2,653
s=4 92,847 5,678 52,203 3,464

Note: All amounts arein 2002 constant dollars; =+ = $100,000.

Table 5: Estimates of the upper bound of the range of criteadls over which the larger
population dominates the smaller one

2006 dominates 1976

2006 dominates 1996

s Qg O Qg Os
s=1 33,103 536 49,592 1,674
s =2 49,628 1,382 90,278 8,772
s=3 68,704 2,289 140,544 16,691
s=4 88,770 3,464 192,319 24,773

Note: All amountsare in 2002 constant dollars; z*+ = $100,000 (for 1976) and z* = $200,000 (for 1996).

Table 6: Estimates of lower bound of the critical level

1986 dominates 1996

A8

S

s & o
s=1 - -
s=2 23,878 1,098
s=3 19,592 1,003
s=4 17,609 965

Note: All amounts arein 2002 constant dollars; z*+ = $30,000.
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8 Appendix

8.1 Graphical illustrations of higher orders of dominance

0 Qs 2t z
Figure 11:P* curves and dominance of the larger population

Figures 11, 12 and 13 display FGT curves (adjusted for diffees in population sizes) for
a given order of dominance > 2. In Figure 11, the larger population (with cumulative
distributionG) dominates the smaller one with cumulative distributionThe three curves
M Pi(2), P&(z) and Py, (z) cross at the same point since we assume¥HalJ; is satisfied
and becausé’, (z) coincides with%l P (z) whenoy, = .

In Figures 12 and 13, we show two cases for the dominance shtladler population over
the larger one. In the first case, a censoring peins introduced. As defined in Section 3,
2% is the censoring income value at whiﬂﬁ% and P intersect. Figure 12 is a more general
case; Figure 13 occurs whehis equal toz™".
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Figure 13:P? curves and dominance of the smaller population (case 2)
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8.2 Proof of Theorems (1) and (2)

The proof is similar to that of Theoremin Davidson and Duclos (2000) (henceforth

DD) on page 1460. Let (z) = 4Pk (z) + SFH 1 (of < 2) — PL () and theny (a') =

MpL(a)y+ P2 pL(al). Anestimatoroff (z)isy (2) = %P} (z)+@] (o' < 2)—
Pl (z). We havethat/ = L 37 wiandN = 15" wY where(w?)!" | ~ iid (1,0, 02,)
and(w;’);‘:1 ~ iid (juov, 02, ), becausgwy)!” and(w;’);‘:l are assumed to be iid.

According to (37) (o) = 0. So, using a Taylor expansion fgr(a'), there existsi!
such thata! — o!| < |a' — ot and

v (@) = (a7 —al) ¢ (a").

Form andn — oo such that- = 2 remains constant, we have that — o' anda' —
al. Then, for large samplesy (&) # 0 because)’ (') # 0 by assumption, and then
(e

. We can use the following result as in DD:

(@' —at) =

¢’(al)
¥ (') +4 (@) = o (n7?). (46)
Therefore,
701
Al —al) o) 47
( ) ¢/ (al) ( )
As defined above, we have
¢ (a') = ﬁP} (o) + (1 %) Pl (ah) (48)
mY " w (ot — uz)(jr m= Y wh
- i=1 0 +(1-—&= 1L (49)
Tty wy Tty wy

Let

1 m u
N1y m Zi:l w;
F(Oé ) - n-1 Z?:j w;,- (al _ Uj)g_ (50)
nTt Y wy

withT'(a!) = E [f(al)] . Note that all of the elements b{«!) are sums of iid observations.
LetT';(a') be theith element of(«'). We can then write
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Becausd;(a!) = E {m_l Ewl“} = ppu = [y andTy(at) = F

'y, we can rewrite) (o) as

1\ Fl(al) FQ Pg(al)
v =S (o) - o1

and similarly for¢) (a') by replacingl’ by I in (51). Let the gradient of (o) with respect
toT'(a') be given by thel x 1 vectorH:

Fgll
I
H(ab) = e : (52)
4
Mi(e') |, Iy , Ta(a!)
— T tTret e

Then, using a usual Taylor’'s approximation, we have

1& (041) — ) (ozl) = H(a') [f(ozl) — F(al)} + 0 (n‘1/2) (53)
whereH' is the transpose aff . Therefore,
Avar (ﬂ@@ (al)) = nH(a") var <f(a1)> H(ab). (54)

We can now give the expressioneir (f(al)), which, for simplicity, we sometimes write

ar (1)

I
~ COVv (fg, f1> va. <f2
var (F) = (55)
0
0

The elements ofar (f(a1)> can be estimated consistently using the sample covarianee m
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trix of the elements of (o). Using equations (52), (54) and (55) together gives

Avar <\/ﬁlﬁ (ozl)) =

Note that

A A

cov (Fl(al), F2>

and, in the same manner,
cov (f‘g(al), F4)
var

var

1

f‘g(al)> =n"'var [wv (o — v)ﬂ ;

o

y3

—F?(gl)} cov (fg, f4) +
n [rg(al) _ Ti(al)

T2 r, T FFTQQ} i var <f4) +
1%2 [V&I‘ (fl) + var (fg)] -

% cov <f1, fg) +
F%Q var (f‘g)

ol
2n [—F}is )

(56)

(57)
—m_lfl (Oé1>r2

0

=n'E [(w")2 (o — U)_J —n'Ts(ah)Ty, (58)

(ozl)> =m !var [w“ (o = u)ﬂ ) (59)
(60)

_ -1 2
=m Oyu,

var (fg)
var (f‘ 4>

(61)

-1_2
=N O,.

(62)
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Putting (57), (58), (59), (60), (61) and (62) together gives

Avar <\/E@E (a1)> =

or—1

1 v 1
57 var [w (o' —v

1

2]+

r—t u 0 2
FTQ[varw (@' —u), +ogu| +

I's(al) 'y (at)

2
2

o
rT2—rTz+rTz] Tuwv ™

T'42

[E ((w“)2 (at — u)i) — Fl(al)r2] +

|

Ly (at) Iy

43

T43

43

rg(al)}

(63)

x [E <(w")2 (a' — v)i) . rg(al)n]

By (53), (a!) is alinear combination of sums of iid variables. We can tppyathe Central
Limit Theorem, which gives that

N (al) 4, N(0, Avar (\/ﬁzﬂ (a1)> )

Using (47), the asymptotic variance @f is given by

! S o m711’11rgoovaur (\/ﬁzf) (a1)>
S (TR

Hapv

(64)

It remains to show that A

v (al) +y(at) =o(n'?).
Through equations (44) and (37), we know thgt') = ¢ (') = 0. Then rewrite
— v (ah)].

(n=1/?). Simplifying the notation, denote

~ ~

[P @) +u @] =d (@) - d (o) - [ (a)
Using Theorem 2 of DD, we have that —o! =

U(@hal) = 9(a) —v () - [¥ (@) - v (o))
—[¥ @ +0 (7)) —v (a')].

Consequently,

plim ¥ (&', a') = plim [1& (' +0 (n_l/z)) —¢(a'+0 (n_1/2))]
—plim ) (a') + v (o)

= plim¢ (o) =2 (o) — plimv) (") + ¢ (a)
_—
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The second equality comes from the fact that, asymptoficall = o' + O (n='/?) — o'
Appling Bienaymé-Chebyshev's inequalityto(a!, '), we can write that for any > 0,

var (ﬁ\il (a, a1)>

e2

Pr <\/ﬁ ‘\if (ézl, ozl)

We can then comput&var (ﬁ\lf (al, a1)>:

(65)

>6>§

Avar (x/ﬁ\if (dl, al)) = Avar <\/ﬁzf) (al +0 (n_l/Z)))
+ Avar <\/ﬁlﬁ (ozl)) (66)
—2 Acov (ﬁ@@ (o' + 0 (n71/%)) /N (a1)> .

Using the expression dfvar <\/ﬁ <1p (al)>) givenin (54), note thatvar <\/ﬁ¢ (ar+0 (n‘l/z)))
can be written in a similar way. Thus,

Avar (ﬂ\if (&, a1)> = nH(a'+0 (n_l/Q))lvar (f(al +0 (n_l/Q))>

xH (o' +0 (n_l/z))
+nH (al)lvar (f(a1)> H (o)
—2nH (o' + O (n_1/2))/ cov (f(al +0 (n_l/Q)), f‘(al))
xH (al) .

Asymptotically,H (o' + O (n~Y?)) ~ H (a') andl'(a! + O (n~/?) =~ ['(a'). Hence,

cov (f(ozl +0 (n71?)), f(a1)> A var <f(a1)> :
We thus have A
Avar <\/ﬁ\If (dl, a1)> = 0.
We obtain that

lim Pr (\/ﬁ‘xp (ozl,al)‘ > 5) — 0. 67)

m, n—00

Becausel (4!, a') = ¢ (a!) + ¢ (a'), then

(o) +v (@) =o ().
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Using (47), the asymptotic variance @f is given by

v (Vi (o)
lim var (vn(d' —a')) = — 3 (68)
e (L2 PR(at) - PY(a))

where lim var (ﬁw (a1)> is given in (63).
m, n—00
We use a similar procedure to derive the asymptotic variahéé for s > 2. Recall that,
for s > 2, a® satisfies the following equation

M N-—-M

NP;(ZS> +

(25 —a®)* ! — Pi(2%) = 0. (69)

Denoteg (a®) = K Pi(2*) + M (2° — o®)*~! — P&(2%). Using a Taylor expansion, there
existsa® such thata® — o®| < |a® — o*| and

¢ (&%) = (6" —a®) ¢’ (&)

where¢' () = — (s — 1) M (z+ — a%)*~2 and¢’ (a°) # 0 by assumption. From (47), we
obtain that .
~S S ¢ (as)
o —o) — —.
@@
Notice thate (a*) = 2 Pg(2*) + XM (25 — %)~ — Pg(2*) and suppose that' < =7
he

is known. Applying t
exist, we find that

Avar (\/EQE(CYSD = lim var (\/ﬁ (as))

m, n—00

previous results and assuming thattioments of orde (s — 1)

1
Ty42

var [w" (2° —v)7 '] +
% [var w"™ (25 — u)i_l + (2° — of) 52 aiu} +
2
_ i e v e M e

21_7:;21 (ZS _ as)S—l |:E| ((wu)2 (Zs _ u)i—l) _ FlFQ] +
2[ L5 — £ (= — a0 - By

(B (w)? (2* — )5 ") = Tl

wherel', = E [m_l S wt (2 — ui)i_l} andl'y = pu; '3 = E [n‘l Z?:l wy (2% — vj)i_l}
andl'y = fuv.

Therefore, the asymptotic variance@fis given by
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lim var <\/ﬁ<£ (oﬁ))

e =) e T

Similar arguments can be used to establish the asymptsticiition ofa,. B

8.3 Asymptotic equivalence of statistics

Proposition 1

Suppose that = ™ remains constant as andn tend to infinity. Fors > 1 and for any pair
(2, @) inthe interior of ==, 2*| ® [a~, o], such that’s(z) = Py, (z), the statistid.R (z, «)
tends to the square of the asymptaetgtatistic where

t2 (Z,Oz) _ (APS (Z,Oé))2 L0 (n_1/2) (70)

Avar (\/ﬁ (155(2) — Pﬁa (Z)>>

with AP* (z,a) = plim /n (ﬁg(z) - ﬁ;a(z)) —0(1).

m, n—00

Pr oof

(Based on Davidson (2009)). We know that

and



N ~ ~ ~ ~ /
Also denotel™® = (Fl,Fz,Fg,F4> andl; E[ ] fori = 1,...,4. We use a Taylor

approximation to compute the variance(o‘?’g(z) - P;a(z)>. Let

_FA:
s __ (Z - )8 ! F !
H° = F_
I72(0) — (2 — )} ' Ty —T3)
and
[ var (f1> cov (fl, f‘g) 0 0 ]
N COVv (fg, fl) var (fQ 0
var (Fs) = R .
0 0 var <F3> CcCov <F3, F4)
0 0 ()% <f4, fg) var (A4>
Therefore,

Avar (\/ﬁ (Pg(z) — P;a(z))>
= lim n(H®) var (fs) (H?)

m, n—00
= lim {% [Var <f1> —2(2— )% cov (fl, fg) + [(z = oz)i_l]2 var (f})}
m, n—00 1
2
. n |’ z—a) 'y =T .
%var (Fg) + [ 1= F‘)l 2 3] var <F4)
4

o[y —(z—a) ' Ty—T L.

+ [ & (Z 1_?;)4_ 2 3:| Ccov (Fg, F4>} .
1

But Pg(z) = Pp(z) — L — I — (1 Y

I'3=—(z— a)i‘l I'y. ConsequentlyAvar (ﬁ (PG( ) — Pg (2 ))) becomes

= 0. Thenl'; — (z — a)5 ' Ty —
Avar (\/ﬁ (pé(z) — p&(z)))
- ml}fgw {% [Var (f ) —2(z— a)+_ cov (f‘l, f‘g) + [(z = a)i_l}z var (fg)i|

2[ )—2 z—a)+_ Cov(fg,f‘4>+[(z—a)i l]zvar<f4)]}.
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Now consider the/ LR statistic. Recall thablLR = 2[ELF — ELF (z,«)]. We have
that

ELF = Zlog( )+Zlog<) (74)

For ease of exposition, denotg, = (z —u,)"' — ( — )" andv;, = (2 — ;)%

(z—a)7 . Using the results of the empirical probabilitigs andpy obtained in (27) and
(28) respectlvely, we have

ELF (z,a) = Zlog (m_p(yl—w“u ))+Zlog< : vy )
m 1 m 1
= Z log (E) + Z:: log ) (75)

+ Z log <%) + Z log p(yl_vaja)

j=1 j=1 1+ o

n

Hence,a¥¥ LR = 2 [ELF — ELF (z,«)], we find that

1 “ p(l/—w Wiq wva)
iELR:;bg(l— )+Zlog<1+ J )

We now look at the Lagrange multipliers. First defing, andT'y, respectively ad',, =
% > wiw, andly, = F (fla). Suppose that = ™ remains constant as andn tend to
=1

infiﬁity. Because{w;‘um) fori =1, ..., m remain constant as tends to infinity, and because
(wiu,) @ = 1,...,m are iid,I';, is a rootn consistent estimator df,,. The same applies

for Iy, = % i‘ wyvj, andly, = £ <P2a> Recall thatv is given in (29) by

v= Zp}’w;»’vja. (76)
j=1
Rewriter as
1 n
v == 3 () () via) (1)



Because the termg:pY) and(w}v;,) for j = 1, ..., n remain constant as tends to infinity,
and becauséw;vja) j = 1,...,n are iid, «/n multiplied by the quantity of the right-hand
side of the above equation is of constant variance and herafeorderl in probability. Let
v be the limit in probability ofv asn tends to infinity. It follows that = 7 + O (n=/2). In
fact and as will be clearer below,= T, + O (n‘l/Q). We now turn top. Because the first
relation of (29) gives that

m n
D piute =Y pywyVia, (78)
i=1 j=1

this allows displaying by solving forp in (78). Using a Taylor expansion on the values of
pi* andpy, we obtain that

p:
1 - u 2 v 1m u 1 - v 2 v 1 v
oz 2 (W)™ = L w4+ Y (Wi via) — % ﬁzlevja

Because((wi'u;,)?); | and ((w;vja)Q)é are iid,p lim {% i (wglumf] = F [(w'u,)?]
J= ‘

3 (wtu) and? 3 (w)vsa)?

i=1 j=1

are of orderl in probability. See for example Green (2003). This gives thia O (n'/?).
Using this, we can show that= "5, + O (n='/2). Indeed, rewrite’ as

andp lim [% il (w¥va)*| = E [(w¥va)?]. Therefore
iz

n

v
'LUJ VjOé
UV = E

n+p (1/ - w}’vja)'

j=1
Then,
V—lzn:w‘.’v- = _P l Wj Vi (V wjvﬂa)
n <= j Via no|ni 1+§(y_w;fvm)

3D

- 1 n
E v, Vv v
L Jj=1

n n
But plim % > npywiVia (1/ — w}’vja) =% —plim |+ z:lnp;’ (w}’vja)2] . The second
J:

n

7j=1
term is of orderl in probability, because it is defined as a weighted averagd wériables.
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n n
Hence,2 |1 Z npywyvija (v— w}’vja) is O (n™"/?) andv — 1 le;-’vja = 0 (n7'2).
j:

Jj=1

Similarly, the relation (78) allows us writing that— L >~ wu,, = O (n~*/2). Using such
i=1

relations, we can write that= 2 >~ wYv;o, + O (n™*/?) andv = L > wilig +O (n=12).

3=

Consequentlyy becomes

. . (80)

i=1 i=1

Then the expression @ LR becomes
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i=1 j=1
2 [ m 2 m
pol2v (1 u v 1 2
* 2 |m (m — i ul@) mo om? = (i i) ]
0 o0 (1 & v I —1/2
3 | 2w | =5 = 2 (wivia) | £ O (7
L j=1 j=1

@
Il
—
.
Il
—

2 m 2 n 2
P 1 u 2 v —1/2
2 [ﬁ;@%uia) _EjLﬁ;(wJVM) —|+0(n 7).
Using (80), the ELR is simply given by
2
(% > wlu, — % > w;’vja>
ELR = = = — 0 (0

2

Hence, dividing the numerator and the denominato<k%y2 wy | allows writing ELR as
j=1

ELR =

[# > (i)’ — 212+ 5 (wiva) - %Iﬂ] /(i = w;>

This last expression is equivalent to
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The same thing applies fc<r# (w;.’vja)2 - %zﬂ) and we obtain that

n
j=1

2
1 Y 1 1 &y 11
2 (ijjaf—gVQ ﬁZ(ijj)z—g <5 ijVJ)
j=1 Jj=1
1 - v 2 1 . v ]‘ . v
—2u, EZ (wy)"v; = EZ (w)v;) 52%
j=1 j=1 Jj=1

2
I, w2 11, .
j=1 j=1

Therefore the dominator of ELR is simply the following exgs®n:
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n
i=1 =1 =1 =1
Sy
Jj=1
n n n n
n |1 |1 1
var | — w €OV | — w var | — w
+ 5 | va v 2u,,Co v, Y| +uiva M
n J n J J n J
13~ v j=1 j=1 j=1 i=1
L)
J=1
+0 (n_1/2)

Using the notation on pages 38 and 44, this expression caawriten as

ﬁ [Val" (F ) ~2(z—a)] o (fl, f2) +[(z =) (pz)}
[ < ) —2(z— a)+_ cov (f‘g, f‘4> + [(z - a)i_l]zxﬁa\r <1;4>} ) (n—1/2) ‘

Notice that the above expression is exactly the estimatiieofariance of'/2 (Pg’;(z) - P;a (z))
when using the condition th#&(2) = Py, (2). Hence, as we can se€/ R coincides asymp-

totically with 2 (2, ) given thatAP* (z,a) = plim v/ (ﬁg(z) - ﬁ;ﬂ(z)) —0(1).m

m, n—00
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