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Abstract:  
Assessments of social welfare do not usually take into account population sizes. This 
can lead to serious social evaluation flaws, particularly in contexts in which policies can 
affect demographic growth. We develop in this paper a little-known though ethically 
attractive approach to correcting the flaws of traditional welfare analysis, an approach 
that is population-size sensitive and that is based on critical-level generalized 
utilitarianism (CLGU). Traditional CLGU is extended by considering arbitrary orders of 
welfare dominance and ranges of “poverty lines” and values for the “critical level” of how 
much a life must be minimally worth to contribute to social welfare. Simulation 
experiments briefly explore the normative relationship between population sizes and 
critical levels. We apply the methods to household level data to rank Canada’s social 
welfare across 1976, 1986, 1996 and 2006 and to estimate normatively and statistically 
robust lower and upper bounds of critical levels over which these rankings can be made. 
The results show dominance of recent years over earlier ones, except when comparing 
1986 and 1996. In general, therefore, we conclude that Canada’s social welfare has 
increased over the last 35 years in spite (or because) of a substantial increase in 
population size. 
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1 Introduction

Is the “value” of a society increasing with its population size? How can that question be
dealt with in a normatively robust framework? What sort of statistical procedures can assess
this empirically? What does the evidence actually suggest?To address these questions is the
main objective of this paper.

Poverty and welfare comparisons are routinely made under the implicit assumptions that
population sizes do not matter, or equivalently that population sizes are the same. Techni-
cally, this is implicitly or explicitly done by calling on the so-called population replication
invariance axiom. The population replication invariance axiom says that an income distribu-
tion and itsk-fold replication, withk being any positive integer, should be deemed equivalent
from a social welfare perspective. Welfare and inequality comparisons can then be performed
in per capita terms.

However, as Blackorby, Bossert, and Donaldson (2005) and others have argued, popula-
tion size should probably matter when assessing social welfare. We may not be indifferent,
for instance, to whether some income (or GDP) statistics areexpressed inper capita or in
total terms. When total income changes in a society, we may wish to know whether this is
due to changes in population size or changes inper capita income; whenper capita income
changes, we may also wish to know whether this is associated with a change in population
size. Generally speaking, our assessment of the welfare value of a change in the distribution
of incomes may depend on how population size also changes.

In addressing these issues — which we believe to be importantones — our work adopts
as a conceptual framework for social welfare comparisons the “critical-level generalized util-
itarianism” (CLGU) principle of Blackorby and Donaldson (1984). CLGU essentially says
that adding a person to an existing population will increasesocial welfare if and only if that
person’s income exceeds the value of acritical level. From a normative perspective, the crit-
ical level can be interpreted as the minimum income needed for someone to add “value” to
humanity. (The critical level has been termedthe value of living by Broome (1992b).) So-
cial welfare according to CLGU is then defined as the sum of thedifferences between some
transformation of individual incomes and the same transformation of the critical level.

CLGU is a social evaluation approach that is both normatively attractive and (surpris-
ingly) little known; it has also not yet (to our knowledge) been tested and applied. There
are, however, two major difficulties in implementing CLGU. First, it is difficult in practice to
agree on a non-arbitrary value for the critical level. In a world of heterogenous preferences
and opinions, it is indeed difficult to envisage a relativelywide consensus on something as
fundamentally un-consensual as the “value of living”. Second, it is also difficult to agree on
which transformation to apply to individual incomes when computing social welfare. We get
around these difficulties in this paper by applying stochastic dominance methods for making
population comparisons under a CLGU framework. This avoidshaving to specify a particular
form for the transformation of individual incomes. This also enables assessing the ranges of
critical levels over which normatively robust CLGU comparisons can be made. In a poverty
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comparison context, it also makes it possible to derive the ranges of poverty lines over which
robust CLGU comparisons can be obtained.

Although the paper’s main objective in this paper is to compare welfare through CLGU,
the use of CLGU for social evaluation purposes has importantimplications for the design of
policy and for the analysis and monitoring of human development in general. According to
CLGU , the socially optimal population size maximizes the product of population size and
the difference between a single-individual “socially representative income” and the critical
level. This results in policy prescriptions that optimize the trade-off between population size
and some measure ofper capita well-being in excess of the critical level.

For instance, the process of demographic transition (through a reduction of both fertility
and mortality) in which a large part of humanity has recentlyengaged is often rationalized as
one that maximizesper capita welfare under resource constraints. It is unlikely for developed
countries that this process also maximizes social welfare in a CLGU perspective. As we will
also see in our illustration, Canada’s CLGU has robustly increased in the last 35 years despite
a significant increase in population size. For developed countries, such a social evaluation
perspective can thus provide a rationale for promoting policies that encourage fertility, such
as the provision of relatively generous child benefits for families with many children.

Whether the current demographic transition is consistent with CLGU maximization in
developing countries depends much on the value that is set for the critical level. A social
planner would favor a population increase only if the additional persons enjoyed a level of
income at least equal to that level. This would be more difficult to achieve in less developed
countries, where average income is lower relative to the critical level, so a smaller population
might then be desirable. Optimal policies would then aim to increaseper capita income and
raise social welfare by limiting demographic growth (particularly of the poor people). This
could involve compulsory measures of birth control for the poor and measures for increasing
the life years (only) of the more affluent.

The use of CLGU thus enables social evaluations to be made when the distributions and
policy outcomes to be compared involve varying population sizes. These are certainly the
most generally encountered cases in theory and in practice.This is also almost always the
appropriate setting when making welfare comparisons across time.

A few papers have recently considered comparisons of populations of unequal sizes with-
out using the replication-invariance axiom. One of the mostrecent is Aboudi, Thon, and
Wallace (2010), who generalize the well-known concept of majorization and suggest that an
income distribution should be deemed more equal than another one if the first distribution can
be constructed from the second distribution through lineartransformations of incomes. Pogge
(2007) proposes the use of the Pareto criterion to compare social welfare in income distribu-
tions with different numbers of individuals. Considering only the most well-off persons in
the larger population (such that their number be equal to thesize of the smaller population),
Pogge (2007) suggests that social welfare in the larger population should be greater than
in the smaller population if every person in the larger population reduced to the size of the
smaller one enjoys a level of well-being greater than that ofevery person in the smaller popu-
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lation. Other relatively recent interesting contributions include Broome (1992b), Mukherjee
(2008) and Gravel, Marchant, and Sen (2008). Our paper differs from these earlier papers
by focussing on how to rank distributions and outcomes normatively and empirically using
CLGU-based dominance criteria.

The paper’s normative setting is described in Section 2, where CLGU is introduced and
motivated and social welfare dominance relations are defined. Section 2 also discusses
how this relates to well-known poverty dominance criteria.This dominance context extends
Blackorby and Donaldson (1984)’s focus on CLGU indices. It also builds on the theoretical
contribution of Trannoy and Weymark (2009), who proposes a CLGU dominance criterion
that is an extension of generalized Lorenz dominance and second-order welfare dominance.

Section 3 presents the statistical framework that is used for analyzing dominance rela-
tions, both in terms of estimation and inference. It also develops the apparatus necessary
to estimate normatively robust ranges of critical levels. Section 4 provides the results of a
few simulation experiments that show how and why populationsize may be of concern —
normatively and statistically — for social welfare rankings.

Section 5 applies the methods to comparable Canadian Surveys of Consumer Finances
(SCF) for 1976 and 1986 and Canadian Surveys of Labour and Income Dynamics (SLID)
for 1996 and 2006. Canada’s population size has increased byalmost 50% between 1976
and 2006. We assess whether social welfare has increased or decreased over that period
in Canada, allowing for variations in population size and income distributions and using
ranges of “poverty lines” (or censoring points) and values of critical levels. Using asymptotic
and bootstrap tests, we find that Canada’s welfare has globally improved in the last 35 years
despite the substantial increase in population size and thefact that new lives do not necessarily
increase society’s value in a CLGU framework. More surprisingly perhaps, Canada’s smaller
population in 1986 is nevertheless socially better than Canada’s larger population in 1996
for a relatively wide range of critical levels and despite a significant increase in average and
total income. Hence, not only can average and total utilitarianism present significant ethical
weaknesses, but their social evaluation rankings can differ importantly from those derived
from critical-level utilitarianism. Section 6 concludes.

2 CLGU: an alternative approach to assessing social wel-
fare

2.1 Average and total utilitarianism

The most popular methods to assess social welfare in the context of variable population
sizes are based on average utilitarianism. Using average utilitarianism as a social evaluation
criterion implicitly assumes that population sizes shouldnot matter. One consequence of this
is that a population with only one individual will dominate any other population of arbitrar-
ily larger size as long as those larger populations’ averageutility is (perhaps only slightly)
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smaller than the single person’s utility level — see for instance Cowen (1989), Broome
(1992a), Blackorby, Bossert, and Donaldson 2005, and Kanbur and Mukherjee (2007). This
social evaluation framework would seem to be too biased against population size: it would
say for instance that a society made of a single very rich person (Bill Gates for example)
would be preferable toany other society of greater size but lower average utility.

An alternatively popular social evaluation criterion is total utilitarianism. Adopting to-
tal utilitarianism leads, however, to Parfit (1984)’s “repugnant conclusion”. Parfit (1984)’s
“repugnant conclusion” bemoans the implication that, withtotal utilitarianism, a sufficiently
large population will necessarily be considered better than any other smaller population, even
if the larger population has a very low average utility:

For any possible population of at least ten billion people, all with a very high
quality of life, there must be some much larger imaginable population whose
existence, if other things are equal, would be better, even though its members
have lives that are barely worth living. (Parfit 1984, p.388).

Such a social evaluation framework again seems to be too strongly biased, this time against
average utility.

2.2 Critical-level generalized utilitarianism

Blackorby and Donaldson (1984) have proposed CLGU as an alternative to (and in order
to address the flaws of) average and total utilitarianism. Tosee how CLGU is defined, con-
sider two populations of different sizes. The smaller population of sizeM has a distribution
of incomes (or some other indicator of individual welfare) given by the vectoru, and the
larger population of sizeN has a distribution of incomes given by the vectorv, withM < N .
Let u := (u1, u2,..., uM), whereui being the income of individuali, andv := (v1, v2,..., vN)
with vj being the income of individualj. Let the level of social welfare inu andv be given
by

W (u;α) =

M∑

i=1

(g(ui)− g(α)) (1)

and

W (v;α) =
N∑

j=1

(g(vj)− g(α)) , (2)

whereg is some increasing transformation of incomes andα is a “critical level”. Note that
social welfare in the two populations remains unchanged when a new individual with income
equal toα is added to the population. The smaller population exhibitsgreater social welfare
than the larger one given this if and only ifW (u;α) ≥W (v;α).
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CLGU thus aggregates the differences between transformations of individual incomes
and of a critical level. It can therefore avoid some of average utilitarianism’s problems, since
the addition of a new person will be socially profitable if that person’s income is higher than
the critical level, although that income may not necessarily be higher than average income.
CLGU can also avoid the “repugnant conclusion” since it is socially undesirable to add indi-
viduals with incomes lower than the critical level, regardless of how many there may be of
them. Overall, CLGU provides a relatively appealing and transparent basis on which to make
social evaluations and avoid the flaws associated to averageand total utilitarianism.

Suppose now that we may wish to focus on those income values below some censoring
point z. This is a typical procedure in poverty analysis. Suppose that z+ is the maximum
possible level for such a censoring point (or maximum “poverty line” in a poverty context).
Also denoteuα := (u, α, ..., α) asu “expanded to size of population v” by addingN −M
α elements. For a poverty linez, the well-known FGT (Foster, Greer, and Thorbecke 1984)
poverty indices with parameters− 1 (orders in what follows) for distributionv are defined
as

P s
v
(z) =

1

N

N∑

i=j

(z − vj)
s−1I (vj ≤ z) , (3)

whereI (·) is an indicator function with value set to 1 if the condition is true and to 0 if not.
Similarly, the FGT indices for the expanded populationuα are defined as

P s
uα
(z) =

M

N

M∑

i=1

(z − ui)
s−1I (ui ≤ z)

+

(
1− M

N

)
(z − α)s−1I (α ≤ z) . (4)

These expressions will be useful to test for CLGU dominance.

2.3 CLGU dominance

The welfare functions in (1) and (2) depend ong andα. One could choose a specific
functional form forg and a specific value forα, but that would be inconvenient in the sense
that the welfare rankings ofu andv could then be criticized as depending on those choices.
It is thus useful to consider making welfare rankings that are valid over classes of functions
g and ranges of critical levelsα. To do this, lets =1,2,..., stand for an order of “welfare
dominance”. ConsiderCs as the set of functionsR −→ R that ares times continuously
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differentiable. Define the classF s
z−,z+ of functions as

F s
z−,z+ :=




gz ∈ Cs

∣∣∣∣∣∣∣∣

z ≤ z+,
gz(x) = gz(z) for all x > z,
gz(x) = gz(z−) for all x < z−,

and where− (1)k d
kgz(x)
dxk

≤ 0 ∀k = 1, ..., s.





(5)

Also denoteW s
α,z−,z+ as the set of CLGU social welfare functions withgz ∈ F s

z−,z+ and
critical levelα. For any vector of incomev ∈ R

N
+ ,N ≥ 1, this set is defined as:

W s
α,z−,z+ :=

{
W

∣∣∣∣∣W (v;α) =

N∑

i=1

(gz(vi)− gz(α)) wheregz ∈ F s
z−,z+ andv ∈ R

N

}
.

(6)
The first and third lines in (5) say that the censoring pointz must be below some upper level
z+. The second line says that for social evaluation purposes wecan set toz− those incomes
that are lower thanz− — this assumption is mostly made for statistical tractability reasons,
to which we come back later. The fourth line on the derivatives ofgz imposes that the social
welfare functions be Paretian (fork = 1), be concave and thus increasing with a transfer from
a richer to a poorer person (fork = 2), be transfer-sensitive in the sense of Shorrocks (1987)
(for k = 3), etc.. The greater the orders, the more sensitive is social welfare to the income
levels of the poorest.

We can then define the (partial) CLGU dominance ordering%sW
α,z−,z+ as

u %sW
α,z−,z+ v ⇔W (u;α) ≥W (v;α)∀W ∈ W s

α,z−,z+. (7)

The welfare ordering (7) considersu to be better thanv if and only if W (u;α) is greater
thanW (v;α) for all of the functionsW that belong toW s

α,z−,z+.
Similarly, define the (partial) FGT dominance ordering%sP

z−,z+ as

uα %sP
z−,z+ v ⇔ P s

uα
(z)− P s

v
(z) ≤ 0 for all z− ≤ z ≤ z+. (8)

This FGT ordering (8) considersu to be better thanv if and only if the FGT curveP s
uα
(z)

for uα is always below the FGT curveP s
v
(z) for v for all values ofz− ≤ z ≤ z+.

Duclos and Zabsonré (2009) demonstrate that the two partialorderings are equivalent, for
someα, z− andz+:

u %sW
α,z−,z+ v ⇔ uα %sP

z−,z+ v. (9)

This result is used as a foundation for the statistical and the empirical analysis of the rest of
the paper. The current paper uses in fact a natural extensionof (9) by focussing on dominance
over arange of critical levelsα ∈ [α−, α+]:

u %sW
α,z−,z+ v, ∀α ∈ [α−, α+] ⇔ uα %sP

z−,z+ v, ∀α ∈ [α−, α+]. (10)
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This provides us with a social ordering that is robust over a classs of functionsg and over
ranges[z−, z+] and[α−, α+] of censoring points and critical levels.

3 Statistical inference

This section develops methods to infer statistically the above dominance relations. For
the purpose of statistical inference, we assume that the population data have been generated
by a data generating process (DGP) from which a finite (but usually large) population is
generated. For some (but not for all of the results), we will need to assume that this DGP is
continuous, but this is different from saying that the populations must be continuous (or of
infinite size) too. For purposes of inference on the populations, we will use data provided by
a finite (typically relatively small) sample of observations drawn from the populations. We
defineF andG as the distribution functions of the DGP that generate the population vectors
u andv respectively.

3.1 Testing dominance

The equivalence between FGT dominance and CLGU dominance conveniently allows
focusing on FGT dominance. As above, letα denote the critical level andα+ be the maximum
possible value that we assume this critical level can take. For any poverty linez, define the
FGT index of orders (s ≥ 1) for the expanded populationuα as

P s
Fα
(z) =

z∫

0

(z − u)s−1dFα(u), (11)

whereFα(z) := M
N
F (z) + N−M

N
I(α ≤ z) is the distribution of the expanded populationuα

andF (z) is the distribution function ofu. The FGT index of the populationv is similarly
defined as

P s
G(z) =

z∫

0

(z − v)s−1dG(v). (12)

The task now is to introduce procedures to test for whether a population CLGU-dominates
another one at orders, and this, over intervals of censoring points and critical levels. Two
general approaches can be followed for that purpose. The first is based on the following
formulation of hypotheses:

Hs
0 : P s

G(z)− P s
Fα
(z) ≤ 0 for all (z, α) ∈

[
z−, z+

]
⊗
[
α−, α+

]
, (13)

Hs
1 : P s

G(z)− P s
Fα
(z) > 0 for some(z, α) ∈

[
z−, z+

]
⊗
[
α−, α+

]
. (14)
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This formulation leads to what are generally called “union-intersection” tests. It amounts
to define a null of dominance and an alternative of non-dominance. (The null above is that
v dominatesu, but that can be reversed.) It has been used and applied in several papers
where a Wald statistic or a test statistic based on the supremum of the difference between the
FGT indices is generally used to test for dominance — see for example Bishop, Formby, and
Thistle (1992) and Barrett and Donald (2003) and Lefranc, Pistolesi, and Trannoy (2006).
Davidson and Duclos (2006) discuss why this formulation leads to decisive outcomes only
when it rejects the null of dominance and accepts non-dominance. This, however, fails to
order the two populations. In those cases in which it is desirable to order the populations, it
may be useful to use a second approach and reverse the roles of(13) and (14) by positing the
hypotheses as

Hs
0 : P s

G(z)− P s
Fα
(z) ≥ 0 for some(z, α) ∈

[
z−, z+

]
⊗
[
α−, α+

]
, (15)

Hs
1 : P s

G(z)− P s
Fα
(z) < 0 for all (z, α) ∈

[
z−, z+

]
⊗
[
α−, α+

]
. (16)

This formulation leads to “intersection-union” tests, in which the null is the hypothesis of
non-dominance and the alternative is the hypothesis of dominance. This test has been em-
ployed by Howes (1993) and Kaur, Prakasa Rao, and Singh (1994). Both papers use a mini-
mum value of thet-statistic. An alternative test is based on empirical likelihood ratio (ELR)
statistics, first proposed by Owen (1988) — see also Owen (2001) for a comprehensive ac-
count of the EL technique and its properties. Here, we followthe procedure of Davidson
and Duclos (2006), which can also be found in Batana (2008), Chen and Duclos (2008) and
Davidson (2009). Unlike these papers, we must, however, payspecial attention to the value
of the critical level and to the sizes of the two populations.

Letm andn be the sizes of the samples drawn from the populationsu andv respectively
and letw̃u

i andw̃v

j be the sampling weights associated to the observation of individual i in the
sample ofu and individualj in the sample ofv respectively. Suppose also that(ui, w̃

u

i ) and(
vj , w̃

v

j

)
are independently and identically distributed (iid) across i andj. For the purposes

of asymptotic analysis, definewu

i andwv

j such that

wu

i = mw̃u

i andwv

j = nw̃v

j . (17)

These quantities can be used and interpreted as estimates ofthe population sizes ofu andv
respectively. They remain of the same order asm andn tend to infinity. We can then compute
P̂ s
Fα
(z) andP̂ s

G(z), which are respectively the sample equivalents ofP s
Fα
(z) andP s

G(z). They
are given by
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P̂ s
Fα
(z) =

(
1

m

m∑

i=1

wu

i (z − ui)
s−1
+

)/(
1

n

n∑

j=1

wv

j

)

+

[
1−

(
1

m

m∑

i=1

wu

i

)/(
1

n

n∑

j=1

wv

j

)]
(z − α)s−1

+ (18)

and

P̂ s
G(z) =

(
1

n

n∑

j=1

wv

j (z − vj)
s−1
+

)/(
1

n

n∑

j=1

wv

j

)
, (19)

where(z − x)s−1
+ ≡ (z − x)s−1 I (x ≤ z) for any income valuex.

We use the above to compute an ELR statistic. Letpui andpvj be the empirical probabilities
associated to observationsi andj respectively. The ELR statistic is similar to an ordinary
LR statistic, and is defined as twice the difference between theunconstrained maximum of
an empirical loglikelihood function (ELF) and a constrained ELF maximum. Subject to the
null (15) thatu dominatesv at some given value ofz andα, the constrained ELF maximum
ELF (z, α) is given by

ELF (z, α) = max
pui ,p

v

j

[
m∑

i=1

log pui +
n∑

j=1

log pvj

]
(20)

subject to

m∑

i=1

pui = 1,

n∑

j=1

pvj = 1 (21)

and

m∑

i=1

pui w
u

i (z − ui)
s−1
+ +

(
n∑

j=1

pvjw
v

j −
m∑

i=1

pui w
u

i

)
(z − α)s−1

+ ≤
n∑

j=1

pvjw
v

j (z − vj)
s−1
+ .

(22)
The unconstrained maximum ELF is defined as (20) subject to (21). Notice that (22) can also
be rewritten as

m∑

i=1

pui w
u

i

[
(z − ui)

s−1
+ − (z − α)s−1

+

]
≤

n∑

j=1

pvjw
v

j

[
(z − vj)

s−1
+ − (z − α)s−1

+

]
. (23)
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In the spirit of Davidson and Duclos (2006), we compute the ELR statistic for all possible
pairs of(z, α) ∈ [z−, z+] ⊗ [α−, α+], so that we can inspect the value of that statistic when
the null hypothesis in (15) is verified at each of these pairs separately. The final ELR test
statistic is then given by

LR = min
(z,α)∈[z−,z+]⊗[α−,α+]

LR (z, α) , (24)

where
LR (z, α) = 2 [ELF − ELF (z, α)] . (25)

When, in the samples, there is non-dominance ofu on v at some value ofz andα in
[z−, z+]⊗[α−, α+], the constraint (23) does not matter and the constrained andunconstrained
ELF values are the same. The resulting (unconstrained) empirical probabilities are given by

pui =
1

m
andpvj =

1

n
. (26)

In the case where there is dominance in the samples, the constraint (23) binds and the proba-
bilities obtained from the resolution of the problem are:

pui =
1

m− ρ
[
ν − wu

i

(
(z − ui)

s−1
+ − (z − α)s−1

+

)] (27)

and

pvj =
1

n+ ρ
[
ν − wv

j

(
(z − vj)

s−1
+ − (z − α)s−1

+

)] . (28)

The constantsρ andν are the solutions to the following equations,





m∑
i=1

pui w
u

i

[
(z − ui)

s−1
+ − (z − α)s−1

+

]
=

n∑
j=1

pvjw
v

j

[
(z − vj)

s−1
+ − (z − α)s−1

+

]

n∑
j=1

pvjw
v

j

[
(z − vj)

s−1
+ − (z − α)s−1

+

]
= ν,

(29)

with pui and pvj given in (27) and (28). The solutions cannot be found analytically, so a
numerical method must be used.

An alternative, though analogous, statistic is thet-statistic of Kaur, Prakasa Rao, and
Singh (1994), which is the minimum oft (z, α) over[z−, z+]⊗ [α−, α+], where

t (z, α) =
P̂ s
G(z)− P̂ s

Fα
(z)

[
v̂ar
(
P̂ s
G(z)− P̂ s

Fα
(z)
)]1/2 , (30)
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andv̂ar
(
P̂ s
G(z)− P̂ s

Fα
(z)
)

is the estimate of the asymptotic variance ofP̂ s
G(z)− P̂ s

Fα
(z) for

some pair(z, α). Denote that minimizedt-statistic byt.
Testing the null of dominance makes sense only when there is dominance in the original

samples.We can then proceed with asymptotic tests and/or bootstrap tests with eitherLR or
t statistics, although for bootstrap tests we must first obtain the empirical probabilities of the
ELF approach. LetLRa andta denote the statistics in the case of asymptotic tests and letLRb

andtb be the statistics for the bootstrap tests. For asymptotic tests and for a test of levelβ, the
decision rule is to reject the null of non-dominance in favorof the alternative of dominance if
ta exceeds the critical value associated toβ of the standard normal distribution. Note thatLR
and the square oft are asymptotically equivalent — see Section 8.3 in the Appendix for more
details. We can therefore also use a decision rule of rejecting the null of non-dominance in
favor of the alternative of dominance ifLRa exceeds the critical value associated toβ of the
chi-square distribution.

The bootstrap testing procedure is formally set up as follows:

Step 1: For two initial samples drawn from two populations, computeLR (z, α) andt (z, α)
for every pair(z, α) in [z−, z+] ⊗ [α−, α+] as described above. If there exists at least
one(z, α) for which P̂ s

G(z) − P̂ s
Fα
(z) ≥ 0, thenHs

0 cannot be rejected; choose then a
value equal to1 for thep-value and stop the process. If not, continue to the next step.

Step 2: Search for the minima statistics, that is to say, findLR as the minimum ofLR (z, α)
and t as the minimum oft (z, α) over all pairs(z, α). Suppose thatLR is obtained
at (z̃, α̃) and denotẽpui and p̃vj the resulting probabilities given by (27) and (28) and
evaluated at(z̃, α̃).

Step 3: Usẽpui and p̃vj to generate bootstrap samples of sizem for u and of sizen for v by
resampling the original data with these probabilities. Thebootstrap samples are thus
drawn with unequal probabilities̃pui andp̃vj . It can result that, in some of the bootstrap
samples, the estimated size of populationu becomes larger than that of populationv.
In such cases, the roles ofFα andG are subsequently reversed, that is, we considerF
andGα.1

Step 4: As is usual, consider 399 bootstrap replications,b = 1,...,399. For each replication, use
the bootstrap data and follow previous step 3. Compute the two statisticsLRb andtb
for everyb ≤ 399 as in the original data.

Step 5: Compute thep-value of the bootstrap statistics as the proportion ofLRb that are greater
thanLR — the ELR statistic obtained with the original data — or as theproportion of
tb that are greater thant — thet-statistic obtained with the original data.

Step 6: Reject the null of non-dominance if the bootstrapp-value is lower than some specified
nominal levels.

1This will not occur in samples where all observations have the same weights.
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3.2 Estimating robust ranges of critical levels

To get around the problem of the absence of empirical/ethical consensus on an appropriate
range of values for the critical level, we can search for evidence on the ranges of critical levels
that can order distributions (see Blackorby, Bossert, and Donaldson 1996 and Trannoy and
Weymark 2009 for a discussion). For this, consider again twopopulationsu andv of sizes
M andN respectively. Suppose that we have two samples drawn fromu andv and assume
for simplicity that they are independent and that their moments of order2 (s− 1) are finite.
Denotem andn the sizes of the two samples. For some fixedz− andz+, defineαs andαs

respectively as follows:

αs = max{α|P s
Fα
(z) ≥ P s

G(z) for all z− ≤ z ≤ z+} (31)

and

αs = min{α|P s
Fα
(z) ≤ P s

G(z) for all z− ≤ z ≤ z+}. (32)

In the light of how they are defined, we can refer toαs as an “upper bound” of the critical
level andαs as a “lower bound” of the critical level. In order to have FGT dominance made
robustly over ranges of censoring points, we can also define critical values for the maximum
censoring point as:

z+s = max{z+|P s
Fα
(z) ≥ P s

G(z) for all z− ≤ z ≤ z+} (33)

and

zs+ = max{z+|P s
Fα
(z) ≤ P s

G(z) for all z− ≤ z ≤ z+}, (34)

whereα is some fixed value of critical level.z+s is the maximum censoring point for which
v dominatesu andzs+ is the maximum censoring point for whichu dominatesv.

Given the definitions (31) and (32) and assuming thatαs andαs exist, it is useful to define
the following assumptions. Forαs, suppose that

{
M
N
P s
F (z) ≥ P s

G(z) for all z ≤ αs
M
N
P s
F (z) < P s

G(z) for somez ≥ αs + ǫ andz− ≤ z ≤ z+,
(VDUs)

whereǫ is some arbitrarily small positive value. Forαs, consider first the case ofs =1 and
suppose that

{
M
N
P 1
F (z) +

(N−M)
N

I(α1 ≤ z) ≤ P 1
G(z) for all z− ≤ z ≤ z+

M
N
P 1
F (z) +

(N−M)
N

> P 1
G(z) for somez ≤ α1 − ǫ,

(UDV1)

whereǫ is again some arbitrarily small positive value. Whens ≥ 2, we modify the above
assumptions slightly and defineαs as:
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{
M
N
P s
F (z) +

(N−M)
N

(z − αs)s−1
+ ≤ P s

G(z) for all z− ≤ z ≤ z+

M
N
P s
F (z

s) + N−M
N

(zs − αs)s−1
+ = P s

G(z
s) for αs < zs ≤ z+

(UDVs)

with (z − x)s−1
+ = max [(z − x)s−1, 0]. Suppose thatzs exists and is the crossing point

between the FGT curvesP s
Fα

andP s
G. In most cases, we would expectzs to coincide with

z+ — see Section 8.1 in the Appendix for more details. AssumptionsVDUs andUDVs

are useful for the estimation ofαs andαs. In order to better understand their role, consider
the case ofs = 1. Figures 1 and 2 graph cumulative distributions functions adjusted for
differences in population sizes.2 It is supposed that the larger populationv dominates the
smaller populationu for a range[0, z+] of censoring pointsα ∈ [0, α1] . This is expressed
by the fact that the cumulative distributionG of v is under the cumulative distributionF of u
adjusted by the ratioM

N
up toα1 > 0. Figure 1 shows the case where the critical level is equal

to 0. In this case, the larger population clearly dominates the smaller one. At the critical level
valueα1, the two functions cross;v just dominatesu when the critical level is equal toα1.
However,v does not dominateu when the critical level takes a valueα0 > α1.

In Figure 3,u is assumed to dominatev. The dominance ofu overv is preserved when
the critical level has a value at least equal toα1. But this is not true for any critical levelα0

lower thanα1.3

Note thatα1 andα1 are the crossing points of FGT curves. This suggests the application
of the procedure of Davidson and Duclos (2000) for estimation and inference of the popula-
tion values ofα1 andα1. Consider the populationsu andv with sample sizes equal tom and
n respectively. Using assumptionUDV1 (also see Figure 3) and assuming continuity of the
DGP atα1, we have that

M

N
P 1
F (α

1) +
(N −M)

N
− P 1

G(α
1) = 0. (35)

Denotingψ (z) = M
N
P 1
F (z) +

(N−M)
N

I(α1 ≤ z)−P 1
G(z), thenψ (z) ≤ 0 for all z− ≤ z ≤ z+

andψ (α1) = 0. Recall that

P̂ 1
F (z) =

1
m

∑m
i=1w

u

i I(ui ≤ z)
1
m

∑m
i=1w

u

i

, P̂ 1
G(z) =

1
n

∑n
j=1w

v

j I(vj ≤ z)
1
n

∑n
j=1w

v

j

, (36)

wherewu

i andwv

j are given in the previous section. A natural estimator ofα1 would beα̂1

such that

M̂

N̂
P̂ 1
F (α̂

1) +

(
N̂ − M̂

)

N̂
− P̂ 1

G(α̂
1) = 0, (37)

2See Section 8.1 in the Appendix for the case ofs > 1.
3The Appendix illustrates graphically two cases of dominance ofu overv whens > 1.
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whereM̂ = 1
m

∑m
i=1w

u

i andN̂ = 1
n

∑n
j=1w

v

j are respectively the estimators of the popula-
tion sizes ofu andv.

For s ≥ 2, denoteφ (αs) = M
N
P s
F (z

s) + N−M
N

(zs − αs)s−1
+ − P s

G(z
s). Recall thatzs

is defined on page 13 andzs > αs. Thenφ′ (αs) = − (s− 1) N−M
N

(zs − αs)s−2 6= 0. A
consistent estimator ofαs, α̂s, can be obtained from

M̂

N̂
P̂ s
F (z

s) +
N̂ − M̂

N̂
(zs − α̂s)s−1 − P̂ s

G(z
s) = 0, (38)

where

P̂ s
F (z

s) =

1
m

m∑
i=1

wu

i (z
s − ui)

s−1
+

1
m

m∑
i=1

wu

i

and P̂ s
G(z

s) =

1
n

n∑
j=1

wv

j (z
s − vj)

s−1
+

1
n

n∑
j=1

wv

j

. (39)

Fors ≥ 2 , α̂s is given analytically by

α̂s = zs −
[
N̂ P̂ s

G(z
s)− M̂P̂ s

F (z
s)

N̂ − M̂

] 1

s−1

. (40)

To derive the asymptotic distribution of̂αs for s ≥ 1, assume thatF andG are differ-
entiable and denoteP 0

F (z) = F ′ (z) andP 0
G (z) = G′ (z). Also suppose that(wu

i )
m
i=1 ∼

iid
(
µwu, σ2

wu

)
and

(
wv

j

)n
j=1

∼ iid
(
µwv , σ2

wv

)
. Assuming thatr = m

n
remains constant asm

andn tend to infinity, let

Λ1 =




1
Γ4

2 var
[
wv (α1 − v)

0
+

]
+

r−1

Γ4
2

[
varwu (α1 − u)

0
+ + σ2

wu

]
+

[
Γ3(α1)
Γ4

2 − Γ1(α1)
Γ4

2 + Γ2

Γ4
2

]2
σ2
wv−

2r−1

Γ4
2

[
E
(
(wu)2 (α1 − u)

0
+

)
− Γ1(α

1)Γ2

]
+

2
[
Γ1(α1)
Γ4

3 − Γ2

Γ3
4

− Γ3(α1)
Γ4

3

]
×[

E
(
(wv)2 (α1 − v)

0
+

)
− Γ3(α

1)Γ4

]




(41)

whereΓ1(α
1) = E

[
m−1

m∑
i=1

wu

i (α
1 − ui)

0
+

]
,Γ2 = µwu,Γ3(α

1) = E

[
n−1

n∑
j=1

wv

j (α
1 − vj)

0

+

]

andΓ4 = µwv and, fors ≥ 2,
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Λs =




1
Γ4

2 var
[
wv (zs − v)s−1

+

]
+

r−1

Γ4
2

[
varwu (zs − u)s−1

+ + (zs − αs)2s−2 σ2
wu

]
+[

Γ3

Γ4
2 − Γ1

Γ4
2 +

Γ2

Γ4
2 (z

s − αs)s−1
]2
σ2
wv−

2r−1

Γ4
2 (zs − αs)s−1 [E

(
(wu)2 (zs − u)s−1

+

)
− Γ1Γ2

]
+

2
[

Γ1

Γ4
3 − Γ2

Γ4
3 (z

s − αs)s−1 − Γ3

Γ4
3

]
×[

E
(
(wv)2 (zs − v)s−1

+

)
− Γ3Γ4

]




(42)

whereΓ1 = E

[
m−1

m∑
i=1

wu

i (z
s − ui)

s−1
+

]
, Γ2 = µwu, Γ3 = E

[
n−1

n∑
j=1

wv

j (z
s − vj)

s−1
+

]
,

andΓ4 = µwv .

We can now state the following theorem.

Theorem 1
Fors = 1, assume that there existsα1 such that the conditionsUDV1 on page 13 are satisfied

and thatM
N
P 0
F (α

1)− P 0
G(α

1) 6= 0. Then,
√
n(α̂1 − α1)

d−→ N(0, V 1), with

V 1 = lim
m, n→∞

var
(√

n(α̂1 − α1)
)
=

Λ1

(
µwu

µwv

P 0
F (α

1)− P 0
G(α

1)
)2

andΛ1 given in (41).
For s ≥ 2, suppose that there existsαs such that conditionsUDVs on page 13 are satisfied

and thatzs > αs. Then,
√
n(α̂s − αs)

d−→ N(0, V s), where

V s = lim
m, n→∞

var
(√

n(α̂s − αs)
)
=

Λs[
(s− 1)

(
1− µwu

µwv

)
(zs − αs)s−2

]2

andΛs given in (42).

Proof: See Appendix.

Let us consider the critical valueαs and suppose that conditionsVDUs are satisfied. As-
suming continuity of the DGP atαs, we obtain that

M

N
P s
F (αs)− P s

G(αs) = 0. (43)

A consistent estimator ofαs is obtained from

M̂

N̂
P̂ s
F (α̂s)− P̂ s

G(α̂s) = 0. (44)
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Using the same previous conditions when dealing with the asymptotic distribution ofα̂s,
denote

Λs =




r−1

Γ4
2

[
varwu (αs − u)s−1

+

]
+

1
Γ4

2 var
[
wv (αs − v)s−1

+

]
+[

Γ3(αs)
Γ4

2 − Γ1(αs)
Γ4

2

]2
σ2
wv+

2
[
Γ1(αs)
Γ4

3 − Γ3(αs)
Γ4

3

]
×[

E
(
(wv)2 (αs − v)s−1

+

)
− Γ3(αs)Γ4

]




(45)

whereΓ1(αs) = E

[
m−1

m∑
i=1

wu

i (αs − ui)
s−1
+

]
,Γ2 = µwu,Γ3(αs) = E

[
n−1

n∑
j=1

wv

j (αs − vj)
s−1
+

]
,

andΓ4 = µwv . The following theorem gives the asymptotic distribution of α̂s.

Theorem 2
Suppose that conditionsVDUs on page 13 are satisfied and that fors ≥ 1 there existsαs
such thatM

N
P s
F (αs) = P s

G(αs) and M
N
P s
F (z) > P s

G(z) for all z < αs. Denoteϕ (z) =
M
N
P s
F (z) − P s

G(z) and note thatϕ (z) > 0 for all z < αs andϕ (αs) = 0. Then,ϕ′ (αs) =

(s− 1)
(
M
N
P s−1
F (αs)− P s−1

G (αs)
)
6= 0. We have that

√
n(α̂s − αs)

d−→ N(0, Vs) where for
s = 1,

V1 = lim
m, n→∞

var
(√

n(α̂1 − α1)
)
=

Λ1(
µwu

µwv

P 0
F (α1)− P 0

G(α1)
)2

and fors ≥ 2,

Vs = lim
m, n→∞

var
(√

n(α̂s − αs)
)
=

Λs

(s− 1)2
(
µwu

µwv

P s−1
F (αs)− P s−1

G (αs)
)2

with Λs given in (45).

Proof: See Appendix.

4 Simulations of the effect of population size on social eval-
uation

We now briefly illustrate the impact of population sizes on welfare rankings using the
CLGU dominance approach. To do this, we consider two populations of different sizes. The
smaller population is of sizeM and has a distributionF and the larger one is of sizeN and
has a distributionG. We define those distributions over the[0, 1] interval.

Let populationv have a uniform distribution on[0, 1] and populationu be piecewise-
linear distributed, that is to say, be uniform over 20 equal segments belonging to the[0, 1]
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interval. The upper limits of these segments are 0.05, 0.10,0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 1.00. Becausev has a
uniform distribution, these upper limits also correspond to the cumulative probabilities forv
at these points. For the first case that we consider, the cumulative probabilities foru at the
upper limit of each segment are respectively 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.82, 0.85, 0.87, 0.90, 0.95, 0.97 and 1.00. We suppose that
M
N

= 2/3.
v dominatesu for low values ofα. Figures 4 and 5, also show thatα1 =0.3 andα2 =

0.6. The larger populationv thus dominates the smaller populationu at first order for any
critical level at most equal to 0.3. Second-order dominanceis obtained with anyα ≤ 0.6.

The second case we consider lets the smaller populationu dominate the larger population
v. For this, the cumulative probabilities foru are set to 0.005, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.45, 0.55, 0.65,0.70, 0.75, 0.80 and 1.00. We can
then find the critical levelsαs. Figures 6 and 7 show thatα1 = 0.4 andα2 = 0.2. Hence, the
smaller populationu dominates the larger one, at first order, for any critical level α ≥ 0.4,
and at second-order for anyα ≥ 0.2.

Table 1 and Table 2 show how the lower and upper bounds for the ranges of normatively
robust critical levels vary with the order of dominances. αs (the upper bound) is increasing
with s andαs (the lower bound) is decreasing withs. In both cases, this says the ranges of
normatively robust critical levels increase with the orderof dominance.

Tables 1 and 2 also show how those bounds are affected by population size. As the ratio
of the population sizes approaches 1 (the two distributionsare left unchanged), the value
of αs increases whereas the value ofαs decreases. Conversely, if the ratio of the sizes is
sufficiently small,αs becomes small and that ofαs becomes large. The intuition is that the
larger the difference in population sizes, the greater the importance of the critical level in
ranking the distributions.Ceteris paribus, therefore, the larger the difference in population
sizes, the more restricted are the ranges of critical levelsover which it is possible to rank
distributions.

5 Illustration using Canadian data

We now illustrate the use of the normative and statistical framework developed earlier.
The data are drawn from the Canadian Surveys of Consumer Finances (SCF) for 1976 and
1986 and the Canadian Surveys of Labour and Income Dynamics (SLID) for 1996 and 2006.
Empirical studies on poverty and welfare in Canada have mostly used these same data: see
inter alia Chen and Duclos (2008), Chen (2008) and Bibi and Duclos (2009). We use equiv-
alized net income as a measure of individual well-being. We rely for that purpose on the
equivalence scale often employed by Statistics Canada. This equivalence scale applies a fac-
tor of 1 for the oldest person in the family, 0.4 for all other members aged at least 16 and 0.3
for the remaining members under age 16. In order to take into account the differences in spa-
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tial prices, we adjust incomes by the ratio of spatial “market basket measures” (see Human
Resources and Social Development Canada 2006). We also use Statistics Canada’s consumer
price indices to convert dollars into 2002 constant dollars.

The sample sizes from 1976, 1986, 1996 and from 2006 are respectively 28,613, 36,389,
31,973 and 28,524. The use of the sampling weights leads to estimates of Canada’s pop-
ulation size in 1976 of 22,230,000, of 25,384,000 for 1986, of 28,870,000 for 1996, and
of 31,853,000 for 2006. We assign the value of 0 to all negative incomes — this concerns
1.9% of the observations for 1976 and less than 0.5% for the other years. The cumulative
distribution for all four years is shown in Figure 8.

We now turn to testing dominance. The FGT dominance tests setthe upper bound of the
censoring pointz+ to $70,500, with the implicit assumption that the range[$9,500, $70,500]
will cover any censoring point that one would want to apply. The value ofz− = $9,500 is the
minimum equivalent income that allows inferring dominancefor most of the comparisons we
will consider below. No more than 7.1% of the observations inany of the four distributions
have equivalent incomes in excess ofz+ = $70,500. Setting such a relatively high value for
z+ is also useful to be able to interpret the FGT dominance rankings (almost) as welfare ones.

Table 3 presents the results of the dominance tests based on the range of censoring points
[z−, z+] = [$9,500, $70,500] and the range of critical levels[α−, α+] = [$5,000, $15,000].
The lower limitα− of the critical levels is set arbitrarily to $5,000; the upper limit α+ is close
to Statistics Canada’s Low-Income Cutoff, a popular poverty threshold in Canada.

In Table 3, we test the null hypothesis that the larger population does not dominate the
smaller one. For expositional brevity, we focus on the first-order results. At a 5% significance
level, recent years dominate earlier years for both asymptotic and bootstrap tests, except when
comparing 1986 and 1996. The relatively large lower bound ofz− = $9,500 is needed to infer
the dominance of 2006 over 1986 and over 1996; for the other dominance relations, however,
z− can be set lower, such as $3,500 for the dominance of 1986 over1976 and $4,500 for
the dominance of 1996 over 1976. Notice that all of the dominance relations of larger over
smaller years remains unchanged when the lower boundα− of the critical level becomes
arbitrary close to 0 — see Duclos and Zabsonré (2009).

We now turn to the estimation of the upper boundsαs of the ranges of those critical levels
over which welfare dominance rankings can be made. For this procedure to be valid for dom-
inance of a large over a smaller population, we need to have verified the hypothesisVDUs

for given s. Given the inference results of Table 3, we therefore focus on five dominance
relationships: 1976 versus 1986, 1976 versus 1996, 1976 versus 2006, 1986 versus 1996 and
1996 versus 2006.

Table 4 shows the estimatesα̂s for the dominance of 1986 and 1996 over 1976. Analogous
estimates are given in Table 5 for the dominance of 2006 over 1976 and 1996 respectively.
Table 4 shows for instance that 1986 dominates 1976 for all critical levels up to an upper
bound of $30,550, with a standard error of $1,639. As can be seen, the estimates ofαs indi-
cate that the dominance of 2006 over 1996 is stronger than thedominance of 2006 over 1976
and the dominance of 1986 over 1976. For instance, the use of any critical level lower than
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$49,592 leads to the dominance of 2006 over 1996 at first-order. However, the dominance of
1996 over 1976 is obtained only for critical levels at most equal to $17,453 (with a standard
error of $1,129). This also indicates that for values ofαs greater than $17,453 and for some
of the CLGU welfare indices that are members of the first-order classF1

z−,z+ (see (5)), 1996
would not show more welfare than 1976.

We can also estimate the lower boundsαs of critical levels over which smaller populations
dominate larger ones. This is possible to do with our Canadian data only for the dominance
of 1986 over 1996 and whens ≥ 2. The case ofs = 1 is indeed too demanding sinceα̂1 does
not exist; there are therefore first-order indices that would rank 1996 better and this, for any
choice of critical level value. Consideringαs for the dominance of other smaller populations
over larger ones is not possible because theUDVs assumption posited in Section 3 is not
satisfied for such relations. This is partly due to the fact that there are more individuals with
equivalent income equal to 0 in the samples of earlier years than in the samples of more recent
years. Consequently, the estimates of the absolute number of lower-income people in 1976
and 1996 exceeds those of 2006 and it becomes difficult to obtain dominance of 1976 and
1996 over 2006; the same applies for 1986 over 2006.

Figure 9 shows a plot of the estimated absolute number of people belowz (“number of
poor”) in 1976 and 1996. As can be seen, if the censoring pointz is no more than the critical
level α̂1, then there are more poor in 1976 than in 1996. Forz equal toα̂1, the number of
poor is estimated to be the same at 8.38 millions for the two years.

Table 6 shows the estimates ofαs (for s ≥ 2) for dominance of 1986 over 1996. The
critical levelα1 cannot be found, given the initial non-dominance of 1986 over 1996 at first-
order. The estimate ofα2 is $23,878, with a standard error of around $1,100. From the results
of Table 6 we can therefore infer that social welfare in Canada has decreased robustly between
1986 and 1996 if lives need to enjoy a level of well-being of atleast $25,100 ($23,878 plus
two standard errors) to contribute positively to social welfare, as measured by second-order
welfare indices. With these critical levels, Canada’s smaller population in 1986 exhibits
greater social welfare than Canada’s larger population in 1996 for all of the social welfare
indices that belong toW 2

α,z−,z+. If we restrict attention to the class of third-order indices,
W 3
α,z−,z+ , then Table 6 says that 1986 has greater social welfare than 1996 if the critical

levels are higher than $21,592 ($19,592 plus twice the standard error of $1,000). Fors = 4,
the corresponding figure is around $19,539.

We can also bound the ranges of censoring points over which there is robust dominance
of one year over another. For all critical level values no less than $31,000 and for all second-
order welfare indices, Canada in 1986 is better than in 1996 for all censoring points up to
$53,096. This upper bound of the censoring points increasesas the order of dominances
increases; it reaches a value of $218,360 fors = 4. (The influence ofs on αs, αs, and
z+s is established in Duclos and Zabsonré (2009).) The link between the critical levelα
and the upper bound of the censoring pointsz+ is also considered in Figure 10 for first-
order dominance of 1986 over 1976. As the value ofz+ increases, the critical levelα1

weakly decreases — an analogous relationship holds true forhigher orders of dominance and
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for dominance of smaller over larger populations. Thus, thegreater the ranges of possible
censoring points we wish to allow for, the lower the ranges ofcritical levels over which
we can find dominance. (This result is also theoretically discussed in Duclos and Zabsonré
(2009).)

Note that given the definition ofVDUs on page 13, any value of the critical level greater
thanz+ does not affect the relation of dominance of a larger over a smaller population. That is
to say, ifαs = z+, the larger population still dominates the smaller one evenif α is arbitrarily
larger thanz+ — settingαs is then harmless. Take for instance the case of the first-order
dominance of 1986 over 1976, for whicĥα1 = $30,550. Forz+ < $30,550,α̂1 can thus be
set to as high a level as needed; forz+ ≥ $30,550, we havêα1 = $30,550.

6 Conclusion

This paper develops and applies methods for assessing society’s welfare in contexts in
which both population sizes and the distributions of individual welfare can differ. This is-
sue has important implications for monitoring human development and for thinking about
public policy. The paper makes three main contributions to the literature. First, it is one
of the first to use the critical-level generalized utilitarianism (CLGU) framework of Black-
orby and Donaldson (1984), a framework that avoids some of the fundamental weaknesses
of the more traditional total and average utilitarian frameworks. Second, it introduces and
uses relationships that can order distributions over classes of CLGU social welfare functions,
in the tradition of the stochastic dominance approach. Third, it is the first paper to analyze
combined population-sizes and population-distributionsrankings in a coherent statistical and
inferential framework. This is doneinter alia by developing tools for testing for CLGU
dominance and for estimating the bounds of critical levels and welfare censoring points over
which robust CLGU rankings can be made.

The paper is also the first to apply the CLGU framework to real data. This is done using
Canadian Surveys of Consumer Finances (SCF) for 1976 and 1986, and Canadian Surveys
of Labour and Income Dynamics (SLID) for 1996 and 2006. Asymptotic and bootstrap
procedures are used to test for dominance relationships across these years, relationships that
involve testing over classes of social welfare functions, ranges of censoring points as well as
ranges of critical level values. It is found that recent years generally dominate earlier ones,
suggesting that there has been a social welfare improvementin Canada in spite of the fact that
population size has increased substantially and that new lives do not always increase society’s
welfare in a CLGU framework.

More surprisingly perhaps, Canada’s smaller population in1986 is socially better than
Canada’s larger population in 1996 in a CLGU framework for a relatively wide range of
critical levels. Yet, comparisons of total and average income indicate the contrary. Total
income in Canada indeed amounts to $654 billion and $789 billion respectively for 1986
and 1996; Canada’s average income is respectively $25,789 and $27,334 for 1986 and 1996.
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Hence, not only can the evaluating frameworks of average andtotal utilitarianism diverge in
theory and in practice, but they can also give opposite social evaluation rankings to those of
critical-level utilitarianism, an alternative social evaluation framework that has been shown
to resolve nicely some of the ethical lacuna of average and total utilitarianism. This is an
important lesson for anyone interested in the evaluation ofpolicy and human development in
the presence of demographic changes.

7 Figures and tables
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Table 1: Population sizes and upper bounds of the critical level — large dominates small

α M
N

= 1
4

M
N

= 1
2

M
N

= 2
3

M
N

= 3
4

α1 0.05 0.2 0.3 0.5
α2 0.05 0.3 0.6 0.85

Table 2: Population sizes and lower bounds of the critical level — small dominates large

α M
N

= 1
4

M
N

= 1
2

M
N

= 2
3

M
N

= 3
4

α1 0.95 0.85 0.4 0.3
α2 0.5 0.35 0.2 0.15

Table 3: First-order dominance tests

Dominance Asymptoticp-value Bootstrapp-value
tests LR t LR t

1986 dominates 1976 0.000 0.000 0.000 0.000
1996 dominates 1976 0.000 0.005 0.002 0.000
2006 dominates 1976 0.000 0.000 0.000 0.000
1996 dominates 1986 0.500 0.500 - -
2006 dominates 1986 0.000 0.027 0.000 0.000
2006 dominates 1996 0.000 0.019 0.000 0.000
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Table 4: Estimates of the upper bound of range of critical levels over which the larger popu-
lation dominates the smaller one

1986 dominates 1976 1996 dominates 1976
s α̂s σ̂s α̂s σ̂s

s = 1 30,550 1,639 17,453 1,129
s = 2 48,294 2,153 30,708 2,104
s = 3 69,958 3,854 41,263 2,653
s = 4 92,847 5,678 52,203 3,464

Note: All amounts are in 2002 constant dollars; z+ = $100,000.

Table 5: Estimates of the upper bound of the range of criticallevels over which the larger
population dominates the smaller one

2006 dominates 1976 2006 dominates 1996
s α̂s σ̂s α̂s σ̂s

s = 1 33,103 536 49,592 1,674
s = 2 49,628 1,382 90,278 8,772
s = 3 68,704 2,289 140,544 16,691
s = 4 88,770 3,464 192,319 24,773

Note: All amounts are in 2002 constant dollars; z+ = $100,000 (for 1976) and z
+
= $200,000 (for 1996).

Table 6: Estimates of lower bound of the critical level

1986 dominates 1996
s α̂s σ̂s

s = 1 - -
s = 2 23,878 1,098
s = 3 19,592 1,003
s = 4 17,609 965

Note: All amounts are in 2002 constant dollars; z+ = $30,000.
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8 Appendix

8.1 Graphical illustrations of higher orders of dominance
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Figure 11:P s curves and dominance of the larger population

Figures 11, 12 and 13 display FGT curves (adjusted for differences in population sizes) for
a given order of dominances ≥ 2. In Figure 11, the larger population (with cumulative
distributionG) dominates the smaller one with cumulative distributionF . The three curves
M
N
P s
F (z), P

s
G(z) andP s

Fαs
(z) cross at the same point since we assume thatVDUs is satisfied

and becauseP s
Fαs

(z) coincides withM
N
P s
F (z) whenαs = z.

In Figures 12 and 13, we show two cases for the dominance of thesmaller population over
the larger one. In the first case, a censoring pointzs is introduced. As defined in Section 3,
zs is the censoring income value at whichP s

Fαs
andP s

G intersect. Figure 12 is a more general
case; Figure 13 occurs whenzs is equal toz+.
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Figure 12:P s curves and dominance of the smaller population (case 1)
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8.2 Proof of Theorems (1) and (2)

The proof is similar to that of Theorem3 in Davidson and Duclos (2000) (henceforth
DD) on page 1460. Letψ (z) = M

N
P 1
F (z) + (N−M)

N
I (α1 ≤ z) − P 1

G (z) and thenψ (α1) =

M
N
P 1
F (α1)+ (N−M)

N
−P 1

G (α1). An estimator ofψ (z) is ψ̂ (z) = M̂

N̂
P̂ 1
F (z)+

(N̂−M̂)
N̂

I (α1 ≤ z)−
P̂ 1
G (z). We have thatM̂ = 1

m

∑m
i=1w

u

i andN̂ = 1
n

∑n
j=1w

v

j where(wu

i )
m
i=1 ∼ iid

(
µwu, σ2

wu

)

and
(
wv

j

)n
j=1

∼ iid
(
µwv , σ2

wv

)
, because(w̃u

i )
m
i=1 and

(
w̃v

j

)n
j=1

are assumed to be iid.

According to (37),ψ (α1) ≡ 0. So, using a Taylor expansion forψ (α̂1), there exists̃α1

such that|α̃1 − α1| < |α̂1 − α1| and

ψ
(
α̂1
)
≈
(
α̂1 − α1

)
ψ′
(
α̃1
)

.

Form andn → ∞ such thatr = m
n

remains constant, we have thatα̂1 → α1 and α̃1 →
α1. Then, for large samples,ψ′ (α̃1) 6= 0 becauseψ′ (α1) 6= 0 by assumption, and then

(α̂1 − α1) ≈ ψ(α̂1)
ψ′(α̃1)

. We can use the following result as in DD:

ψ̂
(
α1
)
+ ψ

(
α̂1
)
= o

(
n−1/2

)
. (46)

Therefore,
(
α̂1 − α1

)
≈ − ψ̂ (α1)

ψ′ (α̃1)
. (47)

As defined above, we have

ψ̂
(
α1
)

=
M̂

N̂
P̂ 1
F

(
α1
)
+

(
1− M̂

N̂

)
− P̂ 1

G

(
α1
)

(48)

=
m−1

∑m
i=1w

u

i (α
1 − ui)

0
+

n−1
∑n

j=1w
v

j

+

(
1− m−1

∑m
i=1w

u

i

n−1
∑n

j=1w
v

j

)
(49)

−
n−1

∑n
i=j w

v

j (α
1 − vj)

0

+

n−1
∑n

j=1w
v

j

.

Let

Γ̂(α1) =




m−1
∑m

i=1w
u

i (α
1 − ui)

0
+

m−1
∑m

i=1w
u

i

n−1
∑n

i=j w
v

j (α
1 − vj)

0

+

n−1
∑n

j=1w
v

j


 (50)

with Γ(α1) = E
[
Γ̂(α1)

]
. Note that all of the elements ofΓ̂(α1) are sums of iid observations.

Let Γi(α1) be theith element ofΓ(α1). We can then write
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ψ
(
α1
)
=

Γ1(α
1)

Γ4(α1)
+

(
1− Γ2(α

1)

Γ4(α1)

)
− Γ3(α

1)

Γ4(α1)
.

BecauseΓ2(α
1) = E

[
m−1

m∑
i=1

wu

i

]
= µwu ≡ Γ2 andΓ4(α

1) = E

[
n−1

n∑
j=1

wv

j

]
= µwv ≡

Γ4, we can rewriteψ (α1) as

ψ
(
α1
)
=

Γ1(α
1)

Γ4

+

(
1− Γ2

Γ4

)
− Γ3(α

1)

Γ4

, (51)

and similarly forψ̂ (α1) by replacingΓ by Γ̂ in (51). Let the gradient ofψ (α1) with respect
to Γ(α1) be given by the4× 1 vectorH:

H(α1) =




Γ−1
4

−Γ−1
4

−Γ−1
4

−Γ1(α1)
Γ4

2 + Γ2

Γ4
2 +

Γ3(α1)
Γ4

2


 . (52)

Then, using a usual Taylor’s approximation, we have

ψ̂
(
α1
)
− ψ

(
α1
)
= H(α1)′

[
Γ̂(α1)− Γ(α1)

]
+O

(
n−1/2

)
(53)

whereH ′ is the transpose ofH. Therefore,

Avar
(√

nψ̂
(
α1
))

= nH(α1)′ var
(
Γ̂(α1)

)
H(α1). (54)

We can now give the expression ofvar
(
Γ̂(α1)

)
, which, for simplicity, we sometimes write

var
(
Γ̂
)

:

var
(
Γ̂
)
=




var
(
Γ̂1

)
cov

(
Γ̂1, Γ̂2

)
0 0

cov
(
Γ̂2, Γ̂1

)
var
(
Γ̂2

)
0 0

0 0 var
(
Γ̂3

)
cov

(
Γ̂3, Γ̂4

)

0 0 cov
(
Γ̂4, Γ̂3

)
var
(
Γ̂4

)



. (55)

The elements ofvar
(
Γ̂(α1)

)
can be estimated consistently using the sample covariance ma-
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trix of the elements ofΓ(α1). Using equations (52), (54) and (55) together gives

Avar
(√

nψ̂
(
α1
))

=




2n
[
Γ1(α1)
Γ4

3 − Γ2

Γ4
3 − Γ3(α1)

Γ4
3

]
cov

(
Γ̂3, Γ̂4

)
+

n
[
Γ3(α1)
Γ4

2 − Γ1(α1)
Γ4

2 + Γ2

Γ4
2

]2
var
(
Γ̂4

)
+

n
Γ4

2

[
var
(
Γ̂1

)
+ var

(
Γ̂2

)]
−

2n
Γ4

2 cov
(
Γ̂1, Γ̂2

)
+

n
Γ4

2 var
(
Γ̂3

)




. (56)

Note that

cov
(
Γ̂1(α

1), Γ̂2

)
= m−2

m∑

i=1

m∑

j=1

cov
[
wu

i

(
α1 − ui

)0
+
, wu

j

]

= m−2

m∑

i=1

cov
[
wu

i

(
α1 − ui

)0
+
, wu

i

]

+m−2
m∑

i 6=j

cov
[
wu

i

(
α1 − ui

)0
+
, wu

j

]

︸ ︷︷ ︸
=0

= m−2

m∑

i=1

cov
[
wu

i

(
α1 − ui

)0
+
, wu

i

]

= m−1E
[
(wu)2

(
α1 − u

)0
+

]
(57)

−m−1Γ1(α
1)Γ2

and, in the same manner,

cov
(
Γ̂3(α

1), Γ̂4

)
= n−1E

[
(wv)2

(
α1 − v

)0
+

]
− n−1Γ3(α

1)Γ4, (58)

var
(
Γ̂1(α

1)
)
= m−1 var

[
wu
(
α1 − u

)0
+

]
, (59)

var
(
Γ̂3(α

1)
)
= n−1 var

[
wv
(
α1 − v

)0
+

]
, (60)

var
(
Γ̂2

)
= m−1σ2

wu , (61)

var
(
Γ̂4

)
= n−1σ2

wv . (62)
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Putting (57), (58), (59), (60), (61) and (62) together gives

Avar
(√

nψ̂
(
α1
))

=




1
Γ4

2 var
[
wv (α1 − v)

0
+

]
+

r−1

Γ4
2

[
varwu (α1 − u)

0
+ + σ2

wu

]
+

[
Γ3(α1)
Γ4

2 − Γ1(α1)
Γ4

2 + Γ2

Γ4
2

]2
σ2
wv−

2r−1

Γ4
2

[
E
(
(wu)2 (α1 − u)

0
+

)
− Γ1(α

1)Γ2

]
+

2
[
Γ1(α1)
Γ4

3 − Γ2

Γ4
3 − Γ3(α1)

Γ4
3

]

×
[
E
(
(wv)2 (α1 − v)

0
+

)
− Γ3(α

1)Γ4

]




. (63)

By (53),ψ̂ (α1) is a linear combination of sums of iid variables. We can thus apply the Central
Limit Theorem, which gives that

√
nψ̂
(
α1
) d−→ N(0,Avar

(√
nψ̂
(
α1
))
.

Using (47), the asymptotic variance ofα̂1 is given by

lim
m, n→∞

var
(√

n(α̂1 − α1)
)
=

lim
m, n→∞

var
(√

nψ̂ (α1)
)

(
µwu

µwv

P 0
F (α

1)− P 0
G(α

1)
)2 . (64)

It remains to show that
ψ̂
(
α1
)
+ ψ

(
α̂1
)
= o

(
n−1/2

)
.

Through equations (44) and (37), we know thatψ̂ (α̂1) = ψ (α1) = 0. Then rewrite

−
[
ψ̂
(
α1
)
+ ψ

(
α̂1
)]

= ψ̂
(
α̂1
)
− ψ̂

(
α1
)
−
[
ψ
(
α̂1
)
− ψ

(
α1
)]
.

Using Theorem 2 of DD, we have thatα̂1−α1 = O
(
n−1/2

)
. Simplifying the notation, denote

Ψ̂
(
α̂1, α1

)
≡ ψ̂

(
α̂1
)
− ψ̂

(
α1
)
−
[
ψ
(
α̂1
)
− ψ

(
α1
)]

= ψ̂
(
α1 +O

(
n−1/2

))
− ψ̂

(
α1
)
−
[
ψ
(
α1 +O

(
n−1/2

))
− ψ

(
α1
)]
.

Consequently,

p lim Ψ̂
(
α̂1, α1

)
= p lim

[
ψ̂
(
α1 +O

(
n−1/2

))
− ψ

(
α1 +O

(
n−1/2

))]

−p lim ψ̂
(
α1
)
+ ψ

(
α1
)

= p lim ψ̂
(
α1
)
− ψ

(
α1
)
− p lim ψ̂

(
α1
)
+ ψ

(
α1
)

= 0.
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The second equality comes from the fact that, asymptotically, α̂1 = α1 + O
(
n−1/2

)
→ α1.

Appling Bienaymé-Chebyshev’s inequality tôΨ(α̂1, α1), we can write that for anyε > 0,

Pr
(√

n
∣∣∣Ψ̂
(
α̂1, α1

)∣∣∣ > ε
)
≤

var
(√

nΨ̂ (α̂1, α1)
)

ε2
. (65)

We can then computeAvar
(√

nΨ̂ (α̂1, α1)
)

:

Avar
(√

nΨ̂
(
α̂1, α1

))
= Avar

(√
nψ̂
(
α1 +O

(
n−1/2

)))

+Avar
(√

nψ̂
(
α1
))

(66)

−2Acov
(√

nψ̂
(
α1 +O

(
n−1/2

))
,
√
nψ̂
(
α1
))
.

Using the expression ofAvar
(√

n
(
ψ̂ (α1)

))
given in (54), note thatAvar

(√
nψ̂
(
α1 +O

(
n−1/2

)))

can be written in a similar way. Thus,

Avar
(√

nΨ̂
(
α̂1, α1

))
= nH

(
α1 +O

(
n−1/2

))′
var
(
Γ̂(α1 +O

(
n−1/2

)
)
)

×H
(
α1 +O

(
n−1/2

))

+nH
(
α1
)′
var
(
Γ̂(α1)

)
H
(
α1
)

−2nH
(
α1 +O

(
n−1/2

))′
cov

(
Γ̂(α1 +O

(
n−1/2

)
), Γ̂(α1)

)

×H
(
α1
)
.

Asymptotically,H
(
α1 +O

(
n−1/2

))
≈ H (α1) andΓ̂(α1 +O

(
n−1/2

)
≈ Γ̂(α1). Hence,

cov
(
Γ̂(α1 +O

(
n−1/2

)
), Γ̂(α1)

)
≈ var

(
Γ̂(α1)

)
.

We thus have
Avar

(√
nΨ̂
(
α̂1, α1

))
= 0.

We obtain that
lim

m, n→∞
Pr
(√

n
∣∣∣Ψ̂
(
α̂1, α1

)∣∣∣ > ε
)
= 0. (67)

BecausêΨ(α̂1, α1) = ψ̂ (α1) + ψ (α̂1), then

ψ̂
(
α1
)
+ ψ

(
α̂1
)
= o

(
n−1/2

)
.
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Using (47), the asymptotic variance ofα̂1 is given by

lim
m, n→∞

var
(√

n(α̂1 − α1)
)
=

lim
m, n→∞

var
(√

nψ̂ (α1)
)

(
µwu

µwv

P 0
F (α

1)− P 0
G(α

1)
)2 (68)

where lim
m, n→∞

var
(√

nψ̂ (α1)
)

is given in (63).

We use a similar procedure to derive the asymptotic varianceof α̂s for s ≥ 2. Recall that,
for s ≥ 2, αs satisfies the following equation

M

N
P s
F (z

s) +
N −M

N
(zs − αs)s−1 − P s

G(z
s) = 0. (69)

Denoteφ (αs) = M
N
P s
F (z

s) + N−M
N

(zs − αs)s−1 − P s
G(z

s). Using a Taylor expansion, there
existsα̃s such that|α̃s − αs| < |α̂s − αs| and

φ (α̂s) ≈ (α̂s − αs)φ′ (α̃s)

whereφ′ (α̃s) = − (s− 1) N−M
N

(z+ − α̃s)s−2 andφ′ (α̃s) 6= 0 by assumption. From (47), we
obtain that

(α̂s − αs) ≈ − φ̂ (αs)

φ′ (α̃s)
.

Notice thatφ̂ (αs) = M̂
N̂
P̂ s
F (z

s) + N̂−M̂
N̂

(zs − αs)s−1 − P̂ s
G(z

s) and suppose thatzs ≤ z+

is known. Applying the previous results and assuming that the moments of order2 (s− 1)
exist, we find that

Avar
(√

nφ̂ (αs)
)

= lim
m, n→∞

var
(√

nφ̂ (αs)
)

=




1
Γ4

2 var
[
wv (zs − v)s−1

+

]
+

r−1

Γ4
2

[
varwu (zs − u)s−1

+ + (zs − αs)2s−2 σ2
wu

]
+[

Γ3

Γ4
2 − Γ1

Γ4
2 +

Γ2

Γ4
2 (z

s − αs)s−1
]2
σ2
wv−

2r−1

Γ4
2 (zs − αs)s−1 [E

(
(wu)2 (zs − u)s−1

+

)
− Γ1Γ2

]
+

2
[

Γ1

Γ4
3 − Γ2

Γ4
3 (z

s − αs)s−1 − Γ3

Γ4
3

]
×[

E
(
(wv)2 (zs − v)s−1

+

)
− Γ3Γ4

]




whereΓ1 = E
[
m−1

∑m
i=1w

u

i (z
s − ui)

s−1
+

]
andΓ2 = µwu; Γ3 = E

[
n−1

∑n
j=1w

v

j (z
s − vj)

s−1
+

]

andΓ4 = µwv .

Therefore, the asymptotic variance ofα̂s is given by
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lim
m, n→∞

var
(√

n(α̂s − αs)
)
=

lim
m, n→∞

var
(√

nφ̂ (αs)
)

[
(s− 1)

(
1− µwu

µwv

)
(zs − αs)s−2

]2 .

Similar arguments can be used to establish the asymptotic distribution ofα̂s. �

8.3 Asymptotic equivalence of statistics
Proposition 1
Suppose thatr = m

n
remains constant asm andn tend to infinity. Fors ≥ 1 and for any pair

(z, α) in the interior of[z−, z+]⊗ [α−, α+], such thatP s
G(z) = P s

Fα
(z), the statisticLR (z, α)

tends to the square of the asymptotict-statistic where

t2 (z, α) =
(∆P s (z, α))2

Avar
(√

n
(
P̂ s
G(z)− P̂ s

Fα
(z)
)) +O

(
n−1/2

)
(70)

with ∆P s (z, α) = p lim
m, n→∞

√
n
(
P̂ s
G(z)− P̂ s

Fα
(z)
)
= O (1).

Proof

(Based on Davidson (2009)). We know that

P̂ s
Fα
(z) =

(
1

m

m∑

i=1

wu

i (z − ui)
s−1
+

)/(
1

n

n∑

j=1

wv

j

)
(71)

+

[
1−

(
1

m

m∑

i=1

wu

i

)/(
1

n

n∑

j=1

wv

j

)]
(z − α)s−1

+ (72)

and

P̂ s
G(z) =

(
1

n

n∑

j=1

wv

j (z − vj)
s−1
+

)/(
1

n

n∑

j=1

wv

j

)
. (73)

Let Γ̂1 = 1
m

m∑
i=1

wu

i (z − ui)
s−1
+ , Γ̂2 = 1

m

m∑
i=1

wu

i , Γ̂3 = 1
n

n∑
j=1

wv

j (z − vj)
s−1
+ and Γ̂4 =

1
n

n∑
j=1

wv

j . Thus

P̂ s
G(z)− P̂ s

Fα
(z) =

Γ̂3

Γ̂4

− Γ̂1

Γ̂4

−
(
1− Γ̂2

Γ̂4

)
(z − α)s−1

+ .
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Also denoteΓ̂s =
(
Γ̂1, Γ̂2, Γ̂3, Γ̂4

)′
andΓi = E

[
Γ̂i

]
for i = 1, ..., 4. We use a Taylor

approximation to compute the variance of
(
P̂ s
G(z)− P̂ s

Fα
(z)
)

. Let

Hs =




−Γ−1
4

(z − α)s−1
+ Γ−1

4

Γ−1
4

Γ−2
4

(
Γ1 − (z − α)s−1

+ Γ2 − Γ3

)




and

var
(
Γ̂s
)
=




var
(
Γ̂1

)
cov

(
Γ̂1, Γ̂2

)
0 0

cov
(
Γ̂2, Γ̂1

)
var
(
Γ̂2

)
0 0

0 0 var
(
Γ̂3

)
cov

(
Γ̂3, Γ̂4

)

0 0 cov
(
Γ̂4, Γ̂3

)
var
(
Γ̂4

)




.

Therefore,

Avar
(√

n
(
P̂ s
G(z)− P̂ s

Fα
(z)
))

= lim
m, n→∞

n (Hs)′ var
(
Γ̂s
)
(Hs)

= lim
m, n→∞

{
n

Γ2
4

[
var
(
Γ̂1

)
− 2 (z − α)s−1

+ cov
(
Γ̂1, Γ̂2

)
+
[
(z − α)s−1

+

]2
var
(
Γ̂2

)]

+
n

Γ2
4

var
(
Γ̂3

)
+
n
[
Γ1 − (z − α)s−1

+ Γ2 − Γ3

]2

Γ4
4

var
(
Γ̂4

)

+
2n
[
Γ1 − (z − α)s−1

+ Γ2 − Γ3

]

Γ3
4

cov
(
Γ̂3, Γ̂4

)}
.

But P s
G(z) = P s

Fα
(z) =⇒ Γ3

Γ4
− Γ1

Γ4
−
(
1− Γ2

Γ4

)
(z − α)s−1

+ = 0. ThenΓ1 − (z − α)s−1
+ Γ2 −

Γ3 = − (z − α)s−1
+ Γ4. Consequently,Avar

(√
n
(
P̂ s
G(z)− P̂ s

Fα
(z)
))

becomes

Avar
(√

n
(
P̂ s
G(z)− P̂ s

Fα
(z)
))

= lim
m, n→∞

{
n

Γ2
4

[
var
(
Γ̂1

)
− 2 (z − α)s−1

+ cov
(
Γ̂1, Γ̂2

)
+
[
(z − α)s−1

+

]2
var
(
Γ̂2

)]

+
n

Γ2
4

[
var
(
Γ̂3

)
− 2 (z − α)s−1

+ cov
(
Γ̂3, Γ̂4

)
+
[
(z − α)s−1

+

]2
var
(
Γ̂4

)]}
.
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Now consider theELR statistic. Recall thatELR = 2 [ELF − ELF (z, α)]. We have
that

ELF =

m∑

i=1

log

(
1

m

)
+

n∑

j=1

log

(
1

n

)
. (74)

For ease of exposition, denoteuiα = (z − ui)
s−1
+ − (z − α)s−1

+ andvjα = (z − vj)
s−1
+ −

(z − α)s−1
+ . Using the results of the empirical probabilitiespui andpvj obtained in (27) and

(28) respectively, we have

ELF (z, α) =

m∑

i=1

log

(
1

m− ρ (ν − wu

i uiα)

)
+

n∑

j=1

log

(
1

n+ ρ
(
ν − wv

j vjα

)
)

=
m∑

i=1

log

(
1

m

)
+

m∑

i=1

log


 1

1− ρ(ν−wu

i uiα)
m


 (75)

+
n∑

j=1

log

(
1

n

)
+

n∑

j=1

log


 1

1 +
ρ(ν−wv

j vjα)
n


 .

Hence, asELR = 2 [ELF − ELF (z, α)], we find that

1

2
ELR =

m∑

i=1

log

(
1− ρ (ν − wu

i uiα)

m

)
+

n∑

j=1

log

(
1 +

ρ
(
ν − wv

j vjα

)

n

)
.

We now look at the Lagrange multipliers. First defineΓ̂1α andΓ1α respectively aŝΓ1α =
1
m

m∑
i=1

wu

i uiα andΓ1α = E
(
Γ̂1α

)
. Suppose thatr = m

n
remains constant asm andn tend to

infinity. Because(wu

i uiα) for i = 1, ..., m remain constant asm tends to infinity, and because
(wu

i uiα) i = 1, ..., m are iid, Γ̂1α is a root-n consistent estimator ofΓ1α. The same applies

for Γ̂2α = 1
n

n∑
j=1

wv

j vjα andΓ2α = E
(
Γ̂2α

)
. Recall thatν is given in (29) by

ν =

n∑

j=1

pvjw
v

j vjα. (76)

Rewriteν as

ν =
1

n

n∑

j=1

(
npvj
) (
wv

j vjα

)
. (77)
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Because the terms
(
npvj
)

and
(
wv

j vjα

)
for j = 1, ..., n remain constant asn tends to infinity,

and because
(
wv

j vjα

)
j = 1, ..., n are iid,

√
n multiplied by the quantity of the right-hand

side of the above equation is of constant variance and hence is of order1 in probability. Let
ν̄ be the limit in probability ofν asn tends to infinity. It follows thatν = ν̄ +O

(
n−1/2

)
. In

fact and as will be clearer below,ν = Γ̂2α + O
(
n−1/2

)
. We now turn toρ. Because the first

relation of (29) gives that

m∑

i=1

pui w
u

i uiα =
n∑

j=1

pvjw
v

j vjα, (78)

this allows displayingρ by solving forρ in (78). Using a Taylor expansion on the values of
pui andpvj , we obtain that

ρ =

(
1
m

m∑
i=1

wu

i uiα

)
−
(

1
n

n∑
j=1

wv

j vjα

)

1
m2

m∑
i=1

(wu

i uiα)
2 − ν

m

(
1
m

m∑
i=1

wu

i uiα

)
+ 1

n2

n∑
j=1

(
wv

j vjα

)2 − ν
n

(
1
n

n∑
j=1

wv

j vjα

) . (79)

Because
(
(wu

i uiα)
2)m
i=1

and
((
wv

j vjα

)2)n
j=1

are iid,p lim

[
1
m

m∑
i=1

(wu

i uiα)
2

]
= E

[
(wu

uα)
2]

andp lim

[
1
n

n∑
j=1

(
wv

j vjα

)2
]
= E

[
(wv

vα)
2]. Therefore,1

m

m∑
i=1

(wu

i uiα)
2 and 1

n

n∑
j=1

(
wv

j vjα

)2

are of order1 in probability. See for example Green (2003). This gives that ρ isO
(
n1/2

)
.

Using this, we can show thatν = Γ̂2α +O
(
n−1/2

)
. Indeed, rewriteν as

ν =
n∑

j=1

wv

j vjα

n + ρ
(
ν − wv

j vjα

) .

Then,

ν − 1

n

n∑

j=1

wv

j vjα = −ρ
n

[
1

n

n∑

j=1

wv

j vjα

(
ν − wv

j vjα

)

1 + ρ
n

(
ν − wv

j vjα

)
]

= −ρ
n

[
1

n

n∑

j=1

npvjw
v

j vjα

(
ν − wv

j vjα

)
]

.

But p lim

[
1
n

n∑
j=1

npvjw
v

j vjα

(
ν − wv

j vjα

)
]
= ν̄2 − p lim

[
1
n

n∑
j=1

npvj
(
wv

j vjα

)2
]

. The second

term is of order1 in probability, because it is defined as a weighted average ofiid variables.
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Hence,ρ
n

[
1
n

n∑
j=1

npvjw
v

j vjα

(
ν − wv

j vjα

)
]

is O
(
n−1/2

)
andν − 1

n

n∑
j=1

wv

j vjα = O
(
n−1/2

)
.

Similarly, the relation (78) allows us writing thatν − 1
m

m∑
i=1

wu

i uiα = O
(
n−1/2

)
. Using such

relations, we can write thatν = 1
n

n∑
j=1

wv

j vjα+O
(
n−1/2

)
andν = 1

m

m∑
i=1

wu

i uiα+O
(
n−1/2

)
.

Consequently,ρ becomes

ρ =

1
m

m∑
i=1

wu

i uiα − 1
n

n∑
j=1

wv

j vjα

1
m2

m∑
i=1

(wu

i uiα)
2 − ν2

m
+ 1

n

n∑
j=1

(
wv

j vjα

)2 − ν2

n

. (80)

Using again a Taylor expansion applied on thelog function, we obtain that

m∑

i=1

log

(
1− ρ (ν − wu

i uiα)

m

)
=

m∑

i=1

(
−ρ (ν − wu

i uiα)

m
− ρ2 (ν − wu

i uiα)
2

2m2

)
+O

(
n−1/2

)

= −ρν + ρ
1

m

m∑

i=1

wu

i uiα −
ρ2ν2

2m
− ρ2

2m2

m∑

i=1

(wu

i uiα)
2

+
ρ2ν

m2

m∑

i=1

wu

i uiα +O
(
n−1/2

)

and

n∑

j=1

log

(
1 +

ρ
(
ν − wv

j vjα

)

n

)
=

n∑

j=1

(
ρ
(
ν − wv

j vjα

)

n
−
ρ2
(
ν − wv

j vjα

)2

2n2

)
+O

(
n−1/2

)

= ρν − ρ
1

n

n∑

j=1

wv

j vjα −
ρ2ν2

2n
− ρ2

2n2

n∑

j=1

(
wv

j vjα

)2

+
ρ2ν

n2

n∑

j=1

wv

j vjα +O
(
n−1/2

)
.

Then the expression ofELR becomes
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1

2
ELR = ρ

(
1

m

m∑

i=1

wu

i uiα −
1

n

n∑

j=1

wv

j vjα

)

+
ρ2

2

[
2ν

m

(
1

m

m∑

i=1

wu

i uiα

)
− ν2

m
− 1

m2

m∑

i=1

(wu

i uiα)
2

]

+
ρ2

2

[
2ν

n

(
1

n

n∑

j=1

wv

j vjα

)
− ν2

n
− 1

n2

n∑

j=1

(
wv

j vjα

)2
]
+O

(
n−1/2

)
.

Using the fact thatν = 1
m

m∑
i=1

wu

i uiα + O
(
n−1/2

)
andν = 1

n

n∑
j=1

wv

j vjα + O
(
n−1/2

)
, this

expression is equivalent to

1

2
ELR = ρ

(
1

m

m∑

i=1

wu

i uiα −
1

n

n∑

j=1

wv

j vjα

)
(81)

−ρ
2

2

[
1

m2

m∑

i=1

(wu

i uiα)
2 − ν2

m
+

1

n2

n∑

j=1

(
wv

j vjα

)2 − ν2

n

]
+O

(
n−1/2

)
.

Using (80), the ELR is simply given by

ELR =

(
1
m

m∑
i=1

wu

i uiα − 1
n

n∑
j=1

wv

j vjα

)2

[
1
m2

m∑
i=1

(wu

i uiα)
2 − ν2

m
+ 1

n2

n∑
j=1

(
wv

j vjα

)2 − ν2

n

] +O
(
n−1/2

)
.

Hence, dividing the numerator and the denominator by

(
1
n

n∑
j=1

wv

j

)2

allows writing ELR as

ELR =

(
P̂ s
G(z)− P̂ s

Fα
(z)
)2

[
1
m2

m∑
i=1

(wu

i uiα)
2 − 1

m
ν2 + 1

n2

n∑
j=1

(
wv

j vjα

)2 − 1
n
ν2

]/(
1
n

n∑
j=1

wv

j

)2 +O
(
n−1/2

)
.

(82)
This last expression is equivalent to
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ELR =
n
(
P̂ s
G(z)− P̂ s

Fα
(z)
)2

n

[
1
m2

m∑
i=1

(wu

i uiα)
2 − 1

m
ν2 + 1

n2

n∑
j=1

(
wv

j vjα

)2 − 1
n
ν2

]/(
1
n

n∑
j=1

wv

j

)2 +O
(
n−1/2

)
.

(83)
Denoteui = (z − ui)

s−1
+ , uα = (z − α)s−1

+ andvj = (z − vj)
s−1
+ . Then

1

m2

m∑

i=1

(wu

i uiα)
2 − 1

m
ν2 =

1

m2

m∑

i=1

(wu

i uiα)
2 − 1

m

(
1

m

m∑

i=1

wu

i uiα

)2

+O
(
n−1/2

)

=
1

m2

m∑

i=1

(wu

i ui)
2 − 1

m

(
1

m

m∑

i=1

wu

i ui

)2

−2uα

(
1

m2

m∑

i=1

(wu

i )
2
ui −

1

m2

m∑

i=1

(wu

i ui)
1

m

m∑

i=1

wu

i

)

+u
2
α


 1

m2

m∑

i=1

(wu

i )
2 − 1

m

(
1

m

m∑

i=1

wu

i

)2

+O

(
n−1/2

)
.

The same thing applies for

(
1
n2

n∑
j=1

(
wv

j vjα

)2 − 1
n
ν2

)
and we obtain that

1

n2

n∑

j=1

(
wv

j vjα

)2 − 1

n
ν2 =

1

n2

n∑

j=1

(
wv

j vj

)2 − 1

n

(
1

n

n∑

j=1

wv

j vj

)2

−2uα

(
1

n2

n∑

j=1

(
wv

j

)2
vj −

1

n2

n∑

j=1

(
wv

j vj

) 1
n

n∑

j=1

wv

j

)

+u
2
α


 1

n2

n∑

j=1

(
wv

j

)2 − 1

n

(
1

n

n∑

j=1

wv

j

)2

+O

(
n−1/2

)
.

Therefore the dominator of ELR is simply the following expression:
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]
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1

m
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(wu

i ui) ,
1

m
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i

]
+ u

2
αv̂ar

[
1

m
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i

])

+
n

(
1
n
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j

)2

(
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[
1

n

n∑

j=1
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j vj

]
− 2uαĉov

[
1

n

n∑

j=1

wv

j vj,
1

n
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j=1
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j

]
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2
αv̂ar

[
1

n

n∑
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wv

j
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+O
(
n−1/2

)
.

Using the notation on pages 38 and 44, this expression can be rewritten as

n

Γ2
4

[
v̂ar
(
Γ̂1

)
− 2 (z − α)s−1

+ ĉov
(
Γ̂1, Γ̂2

)
+
[
(z − α)s−1

+

]2
v̂ar
(
Γ̂2

)]

+
n

Γ2
4

[
v̂ar
(
Γ̂3

)
− 2 (z − α)s−1

+ ĉov
(
Γ̂3, Γ̂4

)
+
[
(z − α)s−1

+

]2
v̂ar
(
Γ̂4

)]
+O

(
n−1/2

)
.

Notice that the above expression is exactly the estimator ofthe variance ofn1/2
(
P̂ s
G(z)− P̂ s

Fα
(z)
)

when using the condition thatP s
G(z) = P s

Fα
(z). Hence, as we can see,ELR coincides asymp-

totically with t2 (z, α) given that∆P s (z, α) = p lim
m, n→∞

√
n
(
P̂ s
G(z)− P̂ s

Fα
(z)
)
= O (1). �
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